
 

 1 

ECCM 2010
IV European Conference on Computational Mechanics

Palais des Congrès, Paris, France, May 16-21, 2010

Application of Schrödinger Equation to an Alpha Field in 
Nanorobotics 

B. Novakovic1, D. Majetic2, J. Kasac3, D. Brezak4

 
 
1 FSB-University of Zagreb, Croatia, branko.novakovic@fsb.hr  
2 FSB-University of Zagreb, Croatia, dubravko.majetic@fsb.hr  
3 FSB-University of Zagreb, Croatia, josip.kasac@fsb.hr  
4 FSB-University of Zagreb, Croatia, danko.brezak@fsb.hr  

       As it is well known, nanorobotics is the field that deals with the controlled manipulation with 
atomic and molecular-sized objects [1]. At the nanoscale the control dynamics is very complex 
because there are very strong interactions between nanorobots, manipulated objects and 
nanoenvironment in a multipotential field. The problem is to design the control dynamics that will 
compensate or/and control the mentioned interactions. Generally, at the nanoscale the well known 
quantum efects can not be neglected. Therefore one has to include the Schrödinger equation that 
describes how the quantum state of a physical system changes in time. Thus, for a general quantum 
system one can employ time dependent Schrödinger equation [2]: 
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Here Ψ(r,t) is the wave function, which is the probability amplitude for different configurations of the 
system. Parameter ħ is the reduced Planck's constant and r = (x, y, z) is the particle position in three-
dimensional space. With Ĥ is denoted the related Hamiltonian operator. Thus, for application of 
Schrödinger equation to a multipotential Alpha Field one should found out the related Hamiltonian 
operator Ĥα as the function of the field parameter α and α' of that field. Generally, there are four 
solutions for field parameters α and α′ (like in Dirac's theory) as the dimensionless functions of the 
total potential energy Uα of a particle in the related potential field. For the simplicity here will be 
presented the first solution only [3]: 
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In the equations (2) mo is a rest mass of a particle, c is the speed of the light in a vacuum and i = √(-1) 
is an imaginary unit. The relations in (2) are valid for a strong potential field. Meanwhile, in the case of a weak 
potential field (Uα << moc2) the quadratic term (Uα/moc2)2 can be neglected in the relations (2). Now, we can 
define an Alpha Field as any potential field that can be described by the field parameters α and α′. To this 
category belong, among the others, an electromagnetic field and a gravitational field. 

At the nanoscale control of a particle (sample) motion or/and manipulation with nanorobots, we 
usually have the multi-potential field with n-potentials, plus an artificial control field of the nanorobot 
that influents to the particle with a potential energy Uc. Thus, the related potential energy of the 
particle (sample) in that case can be calculated by using the following equation: 
                                                                     (3) 1 2 n c j cU U U .. U U U U , j 1,2,.., nα = + + + + Σ + ==

In the relation (3) Uj is a potential energy of the particle in the j-th potential field. Starting with (2) and 
(3), the relativistic Hamiltonian H has been derived in the reference [4], with the following form: 
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In the relation (4) He is the extended Hamiltonian and Pe is the extended momentum. Now, including 
the relations (2), where the total potential energy Uα is a nonlinear function of the relativistic invariant 
term αα', we can derive the nonlinear form of the relativistic Hamiltonian Hα: 
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This Hamiltonian is a function of the extended momentum Pe and potential energy Uα of the particle in 
the related multipotential field. Here v is a particle velocity in a vacuum, while vα is a particle velocity 
in an Alpha Field, vα= v-(α-α')c/2. In a nonrelativistic case (vα << c), the parameter H from (5) is close 
to one (H ≅ 1) and momentum P = mov. For that case the relation (5) is transformed into the form: 

                          
R

2 2
2

0 2 2
0 0

v U v U1 1m c P U , P U .
2m 2mc c

α α
α α α

⎛ ⎞ ⎛ ⎞≅ + − + ≅ − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

H H α                    (6) 

Here Hα is a nonrelativistic approximation of the Hamiltonian in a weak potential Alpha Field. The 
reduced nonrelativistic approximation of the Hamiltonian, HαR, is without rest-mass energy, moc2. 

In order to apply nonrelativistic Hamiltonian (6) into the nonrelativistic quantum systems one 
should employ the reduced nonrelativistic approximation of the Hamiltonian, HαR. Thus, starting with 
the second equation in (6), the related Hamiltonian operator can be derived in the following form:  
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Here  is the extended Laplacian operator. Applying the Hamiltonian operator from (7) to (1) we 
obtain the time dependent Schrödinger equation for a single particle in three dimensional space: 
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Here Ψ(r,t) is the wave function, which is the amplitude for the particle to have a given position r at 
any given time t, and Uα(r) is the potential energy of the particle at each position r in an Alpha Field. 
       For every time independent Hamiltonian operator Ĥα there exists a set of quantum states 
|Ψn 〉 known as energy eigenstates and corresponding real numbers En satisfying the eigenvalue 
equation: 
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This is the time independent Schrödinger equation. For the case of a single particle, the Hamiltonian 
Hα is the linear operator given by the second equation in (9). This is a self-adjoint operator when Uα is 
not too singular and does not grow too fast. The presented Schrödinger equations describe a particle 
dynamics in an Alpha Field, without spin effects. For inclusion of the spin effects one should employ 
the related Dirac's equations. Dynamics of the quantum feedback systems and control concepts and 
applications are presented in the references [5] and [6], respectively. 
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