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The interaction of closely spaced microbubbles (MBs) exposed to a transient external
pressure field is relevant for a variety of industrial and medical applications. We
present a computational framework employing an interface tracking approach to
model the transient dynamics of multiple, interacting, insonated MBs in arbitrary
settings. In particular, this technique allows studying the effects of mutual proximity,
confinement, and variations in excitation amplitude on the translatory motion of pairs
of differently sized MBs. Domains of mutual repulsion or attraction are observed for
closely spaced MBs in the investigated range of excitation frequencies. The repulsion
domain widens and shifts to lower frequencies with increasing excitation pressure
amplitude. When the MBs are confined in rigid tubes of decreasing diameters, we
observe a shift of the translatory patterns towards lower frequencies, accompanied
by a change in relative strength of the two translation modes. This effect is correlated
to a decrease of the resonance frequency due to confinement which causes changes
in oscillation amplitude and phase shift between the bubble vibrations. Coupling
to the viscous host liquid gives rise to phenomena such as collective MB drift,
non-symmetric attraction or repulsion, and reversal of translation direction. A system
comprising six MBs inside a narrow tube highlights the potential of the computational
framework to treat complex setups with multiple bubbles. © 2014 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4883482]

I. INTRODUCTION

A growing range of ultrasound (US) applications relies on gas-filled microbubbles (MBs) as
agents to create or augment a desired effect. The spectrum comprises technological applications
such as the cleaning of surfaces,' especially of wafers in microelectronics processing” and of optical
devices, as well as medical use for surgical instrument disinfection® or removal of biofilms.* In
medicine, MBs have been employed for decades as contrast agent for diagnostic US.> More recently,
they have been utilized for targeted drug delivery® and the transient opening of the blood-brain
barrier.”” In all these applications, an ensemble of MBs is exposed to US and the desired response
is generated by the coupled dynamics of the MBs. Yet, the processes driving these applications are
insufficiently understood. The capability to model the interaction of MBs in configurations relevant
for the above applications would grant insight into the involved dynamics, which could then be used
for process optimization. This study is specifically geared towards the excitation parameter range,
microbubble size, and configurations relevant for medical applications.
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The response of individual MBs in an infinite liquid volume to an incident US field has been
studied extensively'® and is analytically described.!! Moreover, some aspects of MB dynamics in a
confined space can be predicted.'? The non-linear response of MBs to increasing levels of ultrasound
excitation was examined by Lauterborn'? employing frequency response curves. In the last decade
experimental investigations'# have profited from the availability of ultra-high frame rate cameras.'>
However, capturing the small length scales and the rapid vibrations of MBs in the MHz frequency
range remains challenging, especially when multiple bubbles are considered.

The force resulting from a spatial pressure gradient acting on a vibrating bubble was investi-
gated by Bjerknes.!® This gradient may either be created by an external source, giving rise to the
primary Bjerknes force (fg;), or caused locally by the vibrations of a neighboring bubble, result-
ing in the secondary Bjerknes force (fg;). The interaction of two MBs is governed by the latter
force, which, according to linear theory, determines mutual attraction or repulsion depending on
the difference in vibration phase.!” For simplified systems where the MBs retain a spherical shape
throughout the oscillation cycle and are spaced sufficiently far apart, the dynamics can be stud-
ied by analytical means.'®!® Most derivations assume viscous, incompressible host liquids, and
adiabatically compressible bubbles.?*>> Non-spherical oscillations of MBs in close proximity in
an inviscid, incompressible liquid were studied by Pelekasis and Tsamopoulos>* using Legendre
modes. The influence of non-linear pulsations on the translation direction was investigated by Oguz
and Prosperetti' using a virial theorem approach which was further developed and refined by Harkin
et al.** Doinikov? proposed a model for the time-averaged dynamics of multiple bubbles spaced at
arbitrary distances and specifically addresses the time-averaged force of closely spaced air bubbles
in an inviscid fluid.?® The direction of this force depends also on the distance between the MBs*?
and the excitation amplitude.'® A detailed review of the topic is provided by Doinikov.?’

Experimental observations of fg, are reported by Garbin et al.,*® who studied the impact
of close-by walls or neighboring MBs on the oscillation pattern of an MB. Marmottant et al.>
investigated the oscillatory and translator dynamics of a MB interacting with a wall using ultra-fast
imaging technologies.!> Yoshida et al.*® reported the observation of changes in direction of the
relative motion of two MBs and its dependence on their distance. The aggregation of stable bubble
clusters,’! called bubble grapes, could be related to this phenomenon.??

Volume of fluid, level set,>* and front tracking3® methods have been proposed to describe the
bubble interface, for example, in the modeling of rising macroscopic gas bubbles.’”*! An interface
tracking algorithm employing marker particles on a static grid*> was employed by Ye and Bull*?
to model the expansion of a bubble inside a flexible tube. Hosseinkhah and Hynynen** addressed
ultrasound induced oscillations of individual microbubbles in a viscous incompressible fluid inside
compliant microvessels, while the dynamics of a single bubble near a rigid wall in an inviscid host
liquid was investigated by Zhang et al.*> using boundary integrals. Hsiao and Chahine*® used a
boundary element approach to model the non-spherical dynamics of encapsulated microbubbles
for medical purposes. Mendez and Gonzalez-Cinca*’ employed a similar modality to model the
interaction of insonated bubble pairs in an inviscid, incompressible fluid. The interaction of multiple
bubbles was simulated by Kawamura and Kodama*® in turbulent flow conditions using a front
tracking algorithm.

Current theoretical models for MB interaction are limited in their generality by assuming either
widely separated spherical bubbles, inviscid host liquids, or by resorting to averaged dynamics with-
out a full consideration of the physics of the surrounding liquid dynamics. Experimental observations
require large efforts to allow insight into kinematics, but lack the ability to assess important dynamic
properties like pressure. We have developed a computational framework (CF) that is capable of mod-
eling the transient interaction of multiple, arbitrarily positioned MBs in an incompressible, viscous,
isothermal, Newtonian liquid excited by a transient pressure field. This framework enables the study
of configurations that are not readily accessible to theoretical models or experimental techniques,
and allows for the harvesting of a wealth of important kinematic and dynamic information. Here
we focus on assessing the influence of bubble spacing, excitation pressure, and confinement on
MB dynamics, studying in particular the uniaxial translatory behavior along the MB conjugation
line. The geometric setups and parameter ranges are chosen to be of relevance for intravascular
microbubble dynamics in medical applications.
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FIG. 1. Setups used to study the interaction of two MBs in a large liquid envelop (a) and inside a cylindrical tube (b). aa
and ap denote the MB radii, xo and xp are the positions of the MB centers, and d4p is the distance between these centers.
Drawings are not to scale.

Il. MATERIALS AND METHODS

Two different sets of axisymmetric geometries are considered, where MBs are immersed in
an incompressible, viscous liquid either arranged along a common axis inside a very large sphere
of radius Ry, mimicking an infinite liquid envelop as assumed in many theoretical treatments, or
situated along the axis of arigid cylindrical tube of variable radius r; (Figure 1). These setups enable
the study of the effects of MB proximity, varying excitation amplitude, and of spatial confinement
on MB dynamics and kinematics.

A numerical solver tailored to address this problem setting was developed in the OpenFOAM
numerical platform.*® The solver relies on an interface tracking approach,”® where the gas-liquid
interface coincides with a boundary of the mesh and hosts an adaptable boundary condition that is
updated according to the conditions in the MB. This gas-liquid boundary is deformed until force
equilibrium,

P; = Py — oKk —2uVs - Vi, (1)

is reached at the interface. Here, P; is the liquid pressure at the interface, o is the surface tension,
W is the dynamic viscosity of the liquid, and v; denotes the liquid velocity at the interface. The
letter « denotes twice the local curvature of the interface calculated by k = —V, - i, where Vj is the
surface gradient operator defined as Vg = V — fifi - V with i being the interface unit normal vector
pointing out of the liquid domain. P, is the pressure inside the MB, considered homogeneous and
only dependent on time. It is calculated via a polytropic law

Vio\”
Pg:Pgﬁ(Tb) ) ()

where P, o is the equilibrium gas pressure, V}, o is the MB equilibrium volume, V), is the current MB
volume, and y is the polytropic exponent. This simplification is applicable because the wavelength
in the gas is considerable larger than the size of the MB!' such that no mayor pressure gradients
may establish inside a MB: Considering a bubble of 2 um diameter and speed of sound in air of
343 m/s,’! the maximum attainable pressure gradient is 1.8% of the peak-to-peak pressure ampli-
tude. This introduces a maximum uncertainty of <1.2% in the MB radius, translating to a similar
uncertainty in « and in the viscous stress term in Eq. (1). Due to the local determination of «, P;,
and v;, Eq. (1) is able to handle non-linear bubble vibrations leading to non-spherical shapes. V,,
and the position of the center of gravity x;, of the MB are determined from the vertex positions on
the interface mesh. The index b in the equations is a placeholder for the letter designating a specific
MB, introduced later in the text.

The liquid domain is resolved with an unstructured hexahedral mesh covering a quarter of the
actual rotationally symmetric geometry and symmetry boundary conditions are used to account
for the entire domain. This mesh is deformed to accommodate the motion of the bubble interface
using a vertex-based dynamic mesh adaptation method>? that employs Laplace point diffusion in
conjunction with tetrahedral cell decomposition. This algorithm is capable of accommodating severe
deformations while maintaining a valid, high quality mesh. Computation is terminated if the criteria



062106-4 Wiedemair et al. Phys. Fluids 26, 062106 (2014)

for solution convergence are no longer met or the continuously monitored quality of the deformed
mesh falls below pre-set thresholds, which is particularly relevant for the close approach of two
MBs and the related distortion of the interjacent cells. This procedure, while computationally costly,
allows retaining the sharp bubble-liquid interface throughout the computation. A precisely defined,
smooth interface is indispensable for an exact determination of «x, which is needed to accurately
evaluate Eq. (1) that is dominated by the surface tension term due to large MB curvature.

The flow of an incompressible, viscous fluid in an arbitrarily shaped volume V bounded by a
moving surface S is governed by the conservation laws for mass and linear momentum:

/n-vdS:O, 3)
S
d 1
5/VdV+/n~(v—vs)vdS=/n-(vVv)dS——/VPdV, @
P
1% N S v

where v denotes the liquid velocity, vy is the displacement velocity of the surface S, n is the outward
pointing unit normal on S, p denotes liquid density, v = u - p~! is the kinematic viscosity of the
liquid, and P is the pressure. The space conservation law>* defines the relationship between the rate
of change of the volume V and v; :

d dv dS=0 5

dr / n-vs — Y. ( )

14 s

These governing equations are applicable to a dynamically deforming computational mesh and
use an arbitrary Lagrangian-Eulerian (ALE) formulation. The equations are discretized in space
using a second order accurate finite volume method (FVM) formulation for a collocated, cell-
centered field variable arrangement on an unstructured 3D mesh. The algebraic model consists of a
discretized momentum equation and a discretized pressure equation, which is obtained by combining
the momentum and continuity equations using the Rhie-Chow momentum interpolation method.>*
Discretization employs a bounded linear deferred correction scheme with skewness correction for the
convection term and a central difference scheme with non-orthogonality correction for the Laplacian
terms. The transient problem is treated in a time-marching manner with uniform time steps Az. An
implicit second order accurate three-time-level scheme’ is employed for the temporal discretization.
The resulting algebraic system is solved in a segregated pressure-velocity coupling procedure based
on the PISO algorithm>® using preconditioned conjugate and bi-conjugate gradient schemes for the
pressure and momentum equations, respectively.

Water was taken as the liquid to host the MBs, setting dynamic viscosity to . = 103 kgm™' s~
and density to p = 1000 kg m~3. Compressibility of the liquid is neglected for the examined range
of frequencies®’ and small pressure amplitudes'®® because radiation damping is much smaller
than viscous damping?® for low acoustic Mach numbers. We verified this assumption by comparing
the results yielded by the incompressible Rayleigh-Plesset model'' with the Keller-Miksis model'”
(see Appendix B). Attenuation or absorption was not considered in this model because the small
absorption coefficient @ = 0.0022 dB/cm/MHz>® of the liquid causes a negligible pressure amplitude
drop (<0.002%) even for the highest employed frequencies in domains of the sizes considered here.
In view of medical applications, also surrounding tissues (¢ = 0.54 dB/cm/MHz) or whole blood
(0.2 dB/cm/MHz)® cause a very limited amplitude drop of 0.1% of a 1 MHz signal in a 100 um
domain. The gas inside the MBs is considered to have properties similar to air, rendering o =
0.07323 kg s~2, while the density and viscosity of the gas are negligible. Adiabatic compression and
expansion are assumed, yielding y = 1.4.

A transient sinusoidal pressure, varying around a pressure baseline level of Py = 0 Pa, is applied
at the outer boundary of the liquid envelop or the inlets of the tube, respectively. The considered
frequency f,, of this external excitation ranges from 100 kHz to 5 MHz with pressure amplitudes P,,
between 10 kPa and 50 kPa. With a speed of sound in water of ¢,, = 1480 m/s,>8 the wavelength in
the relevant frequency range is A,, = 0.3—15 mm, which is much larger than the diameter of a MBs

1
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or the distance between the MBs. The maximum spatial pressure gradient 2 - 7 - P,/A,, imposed
by the external field at the highest f,, could cause a pressure variation across the MB diameter of
less than 0.5% of the peak-to-peak pressure amplitude of the external field. Therefore, fg; can be
neglected and P,, is assumed to vary synchronously at all domain boundaries.

This modelling approach inherently assumes transmissive boundaries and neglects any change in
pressure patterns due to reflections at those. This is a reasonable assumption for medical intravascular
applications given the close match of the acoustic impedances of the liquid phase and tissue;’® the
resulting reflection coefficient for normal incidence is below 2% at their interface. The MB vibrations
are incited by this external pressure stimulus which acts on the interface between the incompressible
liquid and the compressible MB gas content, causing the MB to change volume according to Eq. (2)
in order to meet the dynamic equilibrium required by Eq. (1).

Prior to the actual study, the numerical solver was examined in detail with respect to its
numerical stability and consistency (see Appendixes A and B). Discretization independence studies
confirm that the results reported herein are grid and time step size independent. The validity of the
results is confirmed by comparison of the numerical results with analytical predictions for bubble
oscillation and bubble translation.

lll. RESULTS

We examine the interaction of MBs of equilibrium radius ag4 = 1 um (bubble A) and app =
1.2 um (bubble B), relevant for medical applications, in different setups. Starting from a situation
where a pair of MBs of different size is spaced far apart inside a large liquid envelope, we investigate
the impact of excitation amplitude variations and the effect of moving the MBs closer together.
Subsequently, the closely spaced configuration is confined inside rigid tubes of different diameters,
and finally the number of MBs is increased. MBs of that size®’ with an added encapsulating layer
are commonly used in medical applications® in the selected frequency range.®' Confining tube sizes
are chosen according to blood vessel dimensions on the capillary®? and pre-capillary levels.

A. Excitation pressure dependence

Most analytical studies consider bubbles in an unbounded space, separated by a distance dp
substantially larger than their diameters. Here we start similarly, to facilitate comparisons, by
studying the response of a MB pair with initial dp, = 40 um (setup I) inside a large spherical liquid
envelope of radius R;, = 100 um. This configuration is exposed to a sinusoidal driving pressure at
three different amplitudes settings of 10 kPa, 30 kPa, and 50 kPa with f,, ranging from 1 MHz to
5 MHz.

The oscillation range Ada of the MB vibration is found by drawing a signal envelope over the
transient, spatially averaged radius a@ of each bubble and comparing the instantaneous maximum
and minimum values at an instance when most oscillations have reached a steady amplitude level.
The plot of this parameter over a certain frequency range yields the frequency response curve and
is an indicator for the resonance properties of a MB.'3 The frequency response curves of the MBs
in setup I for the three P,, setting are displayed in Figure 2. At low P,,, the Aa pattern of each MB
shows a single maximum response peak of height Aa,,,, at a maximum response frequency fag max Of
3.4 MHz for bubble A and 2.6 MHz for bubble B.

The linear resonance frequency of a single MB in an infinitely large, viscous fluid envelope can
be calculated as

f = ! <3 P+ 1)) 4 6)
"\ 4n2pa2 e Y 2r2agp?’

where the last term on the right hand side accounts for viscous damping.®3> Resonance frequencies
of f,a = 3.394 MHz fora MB of gy, = 1 pm and f,.5 = 2.586 MHz for a MB of app = 1.2 um are
predicted by this formula, which is in excellent agreement with the low amplitude numerical results.
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FIG. 2. Frequency dependent Aa response for two interacting MBs of ap4 = 1 um (a) and app = 1.2 um (b) with dp
=40 pm (setup I) at P,y levels of 10 kPa, 30 kPa, and 50 kPa. The increase in excitation pressure causes a growth of Adyqx
and a shift of fag max to lower f,, values from 3.4 MHz via 3.1 MHz to 2.8 MHz for bubble A and from 2.6 MHz via 2.2 MHz
to 2.0 MHz for bubble B. The low frequency slope of the main peaks steepens and secondary peaks establish at lower f,,. The
acquired results are underlaid with the theoretical predictions (grey) for single MBs from the RPE. Numerical and analytical
results show excellent agreement for bubble B and an offset in Adjuqx and fag max for bubble A at higher P, values.

With increasing P,, the maximum response Ady,,, grows and fagmq. shifts to lower values of
Jex, passing from 3.4 MHz to 2.8 MHz for bubble A and from 2.6 MHz to 2.0 MHz for bubble
B. The low frequency slope of the main peak steepens markedly with growing P,, and secondary
peaks appear close to half the maximum response frequencies. These results are compared to Aa
predictions by the Rayleigh-Plesset equation (RPE, see Appendixes A and B) for single spherical
MBs at similar settings (grey lines in Figure 2). We observe a close correspondence for the larger
bubble and a slight offset in peak position and height for the smaller bubble.

B. Bubble proximity

The secondary Bjerknes force fg, scales inversely with the square of the distance dj;, between
bubbles. Marked differences in coupled MB dynamics can thus be expected when decreasing dj;, to
6 um (setup II). A comparison between the vibrations of the MBs in setups I and II exposed to a
sinusoidal driving pressure of P,, = 50 kPa at f,, = 2.8 MHz is depicted in Figure 3. The vibration
amplitude of the smaller MB is strongly reduced when the two MBs approach. Moreover, their
previously rather phase synchronous vibrations acquire a phase offset.

The Ad response of the closely spaced configuration for f,, ranging from 1 MHz to 5 MHz at
the three P, levels is depicted in Figure 4. Similar to setup I, the peaks in Aa grow and shift towards
lower frequencies with growing P,,. The pattern of the larger bubble B remains almost unaltered
by the decrease in dp;, in the monitored frequency range. On the other hand, bubble A exhibits a

1.8 (a) :Q

a
o

0.6 0.6

2 3 1 2 3
Time [us] Time [us]

FIG. 3. Radius-time curves of the MB pair when separated by 40 um (a) and 6 um (b) and exposed to a transient pressure
of P,y = 50 kPa and f,, = 2.8 MHz. While bubble B retains its pattern and amplitude almost unchanged, bubble A suffers a
major decrease in amplitude and also acquires a larger phase shift with respect to bubble B.
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FIG. 4. Frequency response curves for dp, = 6 um at three P,, settings. (a) Bubble A exposes two peaks of almost equivalent
height. The low frequency peak aligns with the main peak of bubble B and the high frequency one is shifted to higher fo,
values compared to setup I. For both MBs, Adj,x grows and fa g max decreases with increasing values of P,,. (b) The response
of the larger bubble B shows no appreciable changes compared to setup I.

low frequency peak that is aligned with the main peak of bubble B, even in the linear P,, regime.
Its high frequency peak is considerably diminished as compared to setup I and shifted to higher
frequencies of 3.6 MHz, 3.4 MHz, and 3.2 MHz at the respective P,, levels of 10 kPa, 30 kPa,
and 50 kPa, respectively. The frequency gap of 1.2 MHz between the two peaks appears to remain
constant during the shifts. Due to the inhomogeneous pressure field at their interfaces caused by the
proximity of the neighbor, the MBs oscillate not only in volume but also in shape. The deviation
from the spherical shape measured by

Amax — Amin

ﬁ amax (7)
increases with decreasing distance between the MBs. Here a,,,, and a,,;, are, respectively, the
maximum and minimum distances of a surface element from the center of gravity of the MB at a
given instant. At the applied low pressure amplitudes, the MBs stay almost spherical (8 < 0.05) for
more than 90% of the oscillation cycle, with peak B values not exceeding 0.22. In configurations
with low Aa, 8 remains below 0.01 for the entire duration of excitation. The bubble surface stays
smooth during the simulation without the formation of surface ripples.

In addition to their individual vibrations, the MBs respond to a transient external pressure by
a translation relative to each other. Attraction between the MBs is signaled by a negative value of
their average relative velocity, vy, = (d(dpp)/dt), measured along the bubbles’ center-to-center axis
(CCA), while repulsion acquires a positive sign. The frequency dependence of vy, (Figure 5, top
row) shows two domains of attraction framing a domain of repulsion. The average phase offset 6
between the oscillation patterns of bubble A and bubble B (Figure 5, center row) is determined by
the relative temporal distance of their well-defined radius minima. Bubble repulsion is correlated
with phase offsets of approximately 90° or higher.

The assessment of vy, and 6 is performed for three P, values of 10 kPa, 30 kPa, and 50 kPa.
The repulsive region widens and shifts to lower frequencies with increasing P,,, thereby displacing
the transitions between attraction and repulsion from 3.1 MHz and 3.5 MHz to 2.3 MHz and 3.3
MHz, respectively. The peak values of v, grow with Ad,.,, which increases with P,,. The low
frequency attractive vy, peak appears in the vicinity of the common fa g 4 0f the two bubbles.

In addition to considerations on frequency dependent average translation, the investigation of
the transient behavior of MB pairs at selected f,, reveals further interesting phenomena. To visualize
them, a technique similar to streak images® used in experimental MB observation is employed.
It captures the portions of CCA covered by a MB at every time instance and encodes the normal
distance of the MB surface from the axis by brightness shading. This allows for display of oscillation
and translational in one graph while the superimposed lines trace the position of the MB centers.

A selection of streak plots acquired from setup II at P,, = 50 kPa and different excitation
frequencies shows that the small MB tends to move faster towards the larger MB upon attraction,
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FIG. 5. Frequency dependence of vy, (a)—(c), 6 (d)—(f), and Aa (g)—(i) for P, = 10 kPa (a), (d), (g); Pexr = 30 kPa (b), (e),
(h); and P, = 50 kPa (c), (f), (i) in setup II. The relative velocity shows a transition between attraction at low f,, to repulsion
in the range where 6 is roughly at or above 90°, and attraction again at higher frequencies. Increasing P,, levels cause a
widening of the repulsion region, its shift towards lower frequencies, and a rise in peak relative velocities. The strongest
attraction is observed in the vicinity of the common fag mqx Of the two bubbles.

but the larger MB shows much stronger drift away from the common center in case of repulsion
(Figure 6). The bubbles may also drift in the same direction at different speeds. Finally, the direction
of motion can change when the MBs have reached a certain distance from each other.

In a perfectly symmetric configuration comprising two MBs of ay = 1.2 um spaced with dp,
= 6 um in a liquid sphere of R; = 100 um (setup IIa), the MBs attract each other at all inspected
fex settings in a perfectly symmetric way. The computation stops when the mesh between the MB
surfaces is compressed by approximately a factor of 25, as this causes deterioration of the mesh
quality below the pre-set thresholds. Two sample streak plots of MBs inside a large liquid envelope
exposed to P,, = 50 kPa are shown in Figure 7. The MBs approach each other considerably faster
when excited at f,, = 2.8 MHz than at f,, = 3.2 MHz.

C. Impact of confinement

The influence of bubble confinement is investigated using three setups of rigid circular cylindrical
tubes of different radii r;,, MB spacing of 6 um and P,, = 40 kPa: r, =20 um (setup III), r, = 7.5 um
(setup IV), and r, = 3 um (setup V). Such tubes correspond in terms of geometry to idealized
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FIG. 6. Selected streak plots of two oscillating MBs at dj, = 6 um and P,, = 50 kPa inside a large liquid envelope (setup
II). At fox = 1.2 MHz (a) and f, = 1.8 MHz (b) the smaller MB is attracted at higher speed than its counterpart. At 2.4 MHz
(c) the MBs remain approximately in place while at 2.8 MHz (d), the larger MB drifts away from the common center and the
small MB stays almost in place. This pattern develops at 3.4 MHz (e) into a situation where the smaller MB is initially drawn
towards a rather static larger MB, which then starts to move out while the smaller MB slows down its approach, leading to a
switch from overall attraction to repulsion. At 4.2 MHz (f), the MBs attract each other again with the small MB being drawn
in faster than the large one.

capillary®? and pre-capillary® blood vessels. We assess the frequency dependence of vy, Ad, and 6
for these configurations. The domain of repulsion moves towards lower frequencies when the tube
narrows (Figure 8). At the same time, the speed of repulsion and high frequency attraction decreases,
while the attraction at lower frequencies gains in relative magnitude with its peak shifting from
1.9 MHz via 1.7 MHz to 0.7 MHz. The two frequencies of transition between repulsion and attraction
correspond closely to the f,, values where 8 crosses 90°. It is remarkable that lower local peaks in
0 occur at fractions of the central frequency of repulsion. This behavior is particularly prominent
in the narrowest tube. A gradual decrease of fagmqx for both MBs from 1.6 MHz to 1.4 MHz and
finally to 0.7 MHz, as well as a diminishing high frequency peak for bubble A are observed. The
Aa patterns of both bubbles become more similar in shape with decreasing r;, and Ada,,,, decreases
for both MBs.

The asymmetries in translation of the MBs, identified above for setup II (Figure 6), are also
observed in confinement. However, the features appear less pronounced as can be assessed from
a comparison of the trace of the MB centers (Figure 9). These traces show a transition of MBs

N
o

Time [us]

5 % 3 -1 1
X, [um]

FIG. 7. Streak plots of two identical MBs of ap = 1.2 um at dp, = 6 um exposed to a transient pressure of P, = 50 kPa.
The MBs approach each other at about double the speed for f,, = 2.8 MHz (a) compared to f,x = 3.2 MHz (b).
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FIG. 8. Comparison of the frequency dependent characteristics of pairs of MBs with ag 4 = 1 um and ag g = 1.2 um exposed
to a transient pressure field of P,, = 40 kPa inside a rigid tube of r; = 20 um (a), (d), (g); r = 7.5 um (b), (e), (h); and r; =
3 pum (c), (), (i). (a)—(c) With decreasing r;, the repulsive region diminishes in strength relative to the attractive region and
both shift towards smaller f,. (d)—(f) 6 crossing 90° reflects very accurately the transition between repulsion and attraction.
Secondary and even tertiary peaks in 6 establish with decreasing r;. (g)—(i) Reduction of r; results in a shift of the Aa peaks
of both MBs towards lower excitation frequencies. The high-frequency peak of bubble A almost vanishes.
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FIG.9. Traces of the transient positions of MB centers with dj;, = 6 um inside a large liquid envelope exposed to P,y = 50 kPa
(setup II) (a) and inside a rigid tube of r, = 7.5 pm exposed to P,, = 40 kPa (setup IV) (b) at various excitation frequencies.
In setup II, the MBs transit from attraction at low f,, to repulsion in the intermediate range and back to attraction at high
Jex values. Non-symmetric attraction at 1.8 MHz and 4.0 MHz and non-symmetric repulsion at 2.8 MHz is visible together
with collective drift at 3.2 MHz and a change in motion direction at 3.4 MHz. For setup IV, non-symmetric phenomena are
less pronounced and velocities are lower, but we identify non-symmetric attraction at 4.0 MHz, non-symmetric repulsion at
3.2 MHz, and collective drift at 3.4 MHz.
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FIG. 10. Streak plots showing the vibrations and translatory motion of six interacting MBs in a narrow rigid tube of r, =
3 um at P, = 65 kPa. (a) At f,x = 1 MHz the innermost MBs attract each other, dragging the MB to their left with them,
while the rightmost MB drifts away from the others. When increasing f,, to 1.5 MHz (b) and 2 MHz (c), the central attraction
slows down, leaving the left neighboring MB in a static position and the rightmost MB is dragged inward.

translation in setup IV from moderate attraction at 1.0 MHz to strong attraction at 1.8 MHz and via
moderate attraction at 2.4 MHz to asymmetric repulsion at 3.2 MHz. This is followed by collective
drift at 3.4 MHz and again weak attraction at 4.0 MHz. A similar behavior involving larger velocities
and more pronounced repulsion is found for setup II.

D. Multi bubble systems

The computational framework used in this study is capable of handling an arbitrary number of
bubbles. As an example, we illustrate a case of 6 MBs lined up along the axis of a narrow tube of
r, = 3 um, with initial bubble spacing of dp, = 6 um. The MBs are alternatingly of size ag -1
=1 um and agy, = 1.2 um, where m is the index designating a MB. Figure 10 displays streak
plots of those interacting MBs when exposed to a pressure field of P,, = 65 kPa and f,, values of
1.0 MHz, 1.5 MHz, and 2.0 MHz, respectively. The interaction and the resulting translation behavior
are expectedly more complex than in the setups with two bubbles: At 1.0 MHz, the innermost MBs
attract each other and drag their left neighbor with them, while the rightmost bubble is slightly
displaced away from the scene. With increasing f,,, the speed of attraction between the innermost
MBs weakens, their left neighbor remains in place and the rightmost MB changes direction and is
dragged inward.

IV. DISCUSSION

The results presented above document the dependence of vy, on insonation frequency, pressure
amplitude, and confinement inside rigid tubes. They further illustrate changes in Ad,,,, and a shift
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of fazmax When reducing dpp, as well as changes in 6 and Ad in confinement and upon variation of
P... Using streak plot visualization, non-symmetric translation phenomena and reversal of motion
direction were identified. Finally, the dynamics of a more complex setup of six confined MBs
was investigated, demonstrating the ability of the presented computational framework to model
the interaction of multiple, closely spaced and confined MBs. Such intricate configurations are not
accessible to full-scale theoretical investigations and have, to our knowledge, not been investigated
numerically before.

In addition to verifying the numerical accuracy of our modeling approach, we confirmed that
the transient simulations are able to reproduce the physical patterns predicted by theory'!' with good
long-term stability and reliability (see Appendices A and B). Moreover, the fagmqx values for setup
I (Figure 2) correspond closely to the predicted values for individual MBs, as expected for large
dpp, where the MB dynamics should be basically decoupled. For low P.,, the prediction was based
on an analytical relation (6) while in the non-linear regime theoretical values are derived from the
RPE. The deviations of the Aa pattern of the smaller bubble A from the predictions is assigned to
the long-range influence of the larger bubble B, which itself exhibits a frequency response in close
accordance with predictions.

A comparison between our modeling approach and the force balance approach (see
Appendix B) often employed for theoretical studies yields good qualitative agreement for non-
confined MBs. The analytical approaches are based on several simplifications, assumptions and
empirical coefficients that may vary in the course of an oscillation cycle. In contrast, the present
computational approach employs the complete conservation principles as described earlier, making
it more generally applicable to arbitrary setups.

The excitation pressure amplitude has a marked effect on the Aa response (Figure 2) and the
translatory behavior (Figure 5) of a pair of dissimilar MBs. The low frequency slopes of the peaks in
the frequency response steepen with increasing P, in accordance with findings by Lauterborn'? and
part of the excitation energy is transferred to subharmonics,’ resulting in secondary low frequency
peaks. A decrease of resonance frequency for widely spaced MBs with growing P, is observed in
agreement with literature predictions for single bubbles with clean interface.'* %’ The developed CF
allows for going beyond the single MB configuration, revealing a splitting of the resonance peak
of bubble A into a high and a low frequency segment (Figure 4) due to the influence of a larger
neighboring MB. This pattern shifts towards lower frequencies with increasing P,, with a constant
frequency gap.

When MBs move closer to each other, their resonance properties change due to the coupling to
their neighbor.?% This effect is visible in Figure 3, which also indicates that the dynamics of the
larger MB change considerably less than those of the smaller MB.®” The larger MB perceives the
smaller partner as a mere particle entrained in its oscillatory near field flow and is not significantly
disturbed by the small bubble’s vibrations. Conversely, the forced pulsatile translation of the smaller
MB due to the vibration of the bigger MB imposes the frequency characteristics of the larger onto
the smaller bubble, leading to the alignment of their fag max-

This alignment promotes a strong attractive behavior in the vy, pattern around the common
Sfaamax- The f., range of MB repulsion widens with increasing P, (Figure 5) and the repulsive
velocities become comparable in magnitude to the attractive velocities. The transition between
repulsion and attraction is marked by the phase shift # surpassing 90°, as predicted by theory.!”
Together with the Aa pattern, the vy, response and the 6 distribution shift towards lower f,, with
increasing P,,.

In confinement, the resonance frequencies (f,) of the MBs are expected to decrease with decreas-
ing r,'? due to the inertia of the liquid column and viscous damping at the walls. This is reflected
in the shift of Ada patterns towards lower frequencies and the shrinking of the high-frequency peak
of the smaller bubble (Figure 8). This effect is accompanied by a change in vy, patterns, where
the repulsion domain and the high frequency attraction are diminished compared to low frequency
attraction. This occurs due to the establishment of small Aa in the high f;, range, leading to reduced
liquid agitation and an increase of Ada at low f,,. Furthermore, the decrease in magnitude of v, in
narrower tubes correlates with reduced Aa,,., values. The decrease of f, in confinement causes a
change in the phase relation between an individual MB and the external excitation, which in turn
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alters the mutual MB phase shift 6. We observe a translation of the main 6 peak towards lower f,,
values in confinement. In accordance with the identified correlation between the change of sign in
vy, and 6 crossing 90°, the vy, pattern equally shifts towards lower frequencies.

Cases of non-symmetric translation upon attraction or repulsion of two non-equal MBs or
collective drift were identified in our results (Figures 6 and 9). These phenomena are attributed
to differences in drag and inertia of the MBs and do not contradict momentum conservation due
to the viscous nature of the liquid. Non-symmetric translation of two differently sized MBs is
predicted by Oguz and Prosperetti'® and, according to Doinikov,?! the symmetry in forces and
thus in motion of the two bubbles will be broken by the dissipative processes in a viscous host
liquid. Hence, the bubble system may attain a non-zero linear momentum and even motion of
both MBs in the same direction can occur.?’ In some cases we observed inversion of the motion
from attraction to repulsion. The growing coupling of the approaching MBs influences their res-
onance properties, leading to an increase of 6 and eventually an inversion of transverse motion.
Such phenomena have been experimentally observed by Yoshida et al** and theoretically pre-
dicted by Ida.?? To our knowledge, the present computational model is the first to reproduce these
phenomena.

The numerical approach provides access to all relevant kinematic and dynamic quantities such
as Vp, a, Xp, instantaneous shape of each bubble, Py, dyp, vpp, Oscillation phase relative to the
excitation, 0, and fluid forces. In advancing the state of the art compared to analytical models
valid for special cases, our computational model brings with it significant generality and allows
the study of multiple MBs of different sizes in close proximity and in arbitrary configurations
including confinement. The modeling of linear and non-linear oscillations as well as translatory
phenomena is within the scope of the CF. Starting from an undisturbed system, the transient sim-
ulation can provide insight into the initial transition phase. While this work concentrates on rather
small MBs of around 1 pwm equilibrium radius as appropriate for medical applications, there is
no restriction to the application of the developed computational framework to setups of larger
bubbles.

V. CONCLUSIONS

The purpose of this study was twofold: to introduce, verify, and establish a novel computational
method based on FVM and interface tracking for modeling multiple interacting MBs in a viscous
host liquid, and to employ this method to investigate the impact of proximity, excitation amplitude,
and spatial confinement on interacting MBs, focusing on their translatory motion. We studied setups
with pairs of dissimilar MBs at variable distance and inside rigid tubes of variable radius. Those
were exposed to transient excitation pressure of variable amplitude and frequency to highlight
the versatility and generality of the presented CF. Non-linear characteristics such as steepening of
low frequency slopes, secondary peaks and non-spherical MB shapes are observed for increased
pressure levels, where the frequency domain of repulsion widens and becomes more prominent. In
confinement, the repulsive motion weakens relative to attraction and the translation velocity peaks
shift to lower frequencies along with the amplitude maxima of the two MBs. A correlation between
the onset of repulsion and the vibration phase offset surpassing 90° was found. Phenomena like
non-symmetrical relative motion, collective drift or inversion of motion direction were identified in
MB translation. Pairs of similar MBs consistently exhibited attraction in accordance to theoretical
predictions. The ability to treat arrangements of multiple bubbles was illustrated for a configuration
hosting six MBs.
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FIG. 11. Temporal development of average bubble radius (a) and average fluid pressure at the bubble surface (b) for both
bubbles A and B on three successively refined grids. The overall pattern agreement for all considered mesh configurations
was excellent, with the largest deviations located around the extrema of the radius and the maxima of pressure. The insets
(on a significantly enlarged scale to make the differences visible) show these regions in detail and suggest a gradual decrease
in difference between the solutions with refinement.

APPENDIX A: COMPUTATIONAL ACCURACY

Here we assess the numerical validity of our results by varying the refinement of the computa-
tional grid as well as the time step size (Af) of the transient calculation and show the independence
of the converged solution from those variations.

1. Grid independence

A configuration comprising two MBs of equilibrium radii ap4 = 1.0 um and app = 1.2 um
at a distance dsp = 6 um inside a large spherical liquid envelop of R, = 100 um excited by a
transient sinusoidally varying pressure of amplitude P,, = 50 kPa and frequency f,, = 2.8 MHz was
selected as the reference case. Three similarly structured meshes comprising 39 808 cells, 76 200
cells, and 129 888 cells, respectively (resulting from consecutive decreases of the edge length of
the computational cells by 20%), were created for this geometry. These mesh configurations are
accordingly referred to as coarse (index c), regular (index r), and fine (index f). The converged
solutions on those three meshes are compared with respect to parameters such as the average bubble
radius (@) and the average fluid pressure at the bubble surface (P;) as shown in Figure 11.

The acquired solutions for the three grid refinement levels show a very good agreement with
the largest deviations situated around the extrema of the respective graphs. A closer inspection
reveals that the small difference between the results decreases with growing refinement. We further
quantify the impact of mesh refinement by the relative change in individual parameters, such as
bubble volume V}, a, or P;, at a specific sampling time defined as

s1(t) — 52(1)

82, max — $2,min

e(t) = , (A1)

where s; is the transient parameter value on the respective coarser mesh and s, is its value on the
finer mesh, while s ., and sy i, denote the overall maximum and minimum on the finer mesh. For
the investigated setup, the maximum relative errors in @ comparing the coarse and regular grid were
£cra(@) = 2.2% for bubble A and ¢&.,p(d@) = 0.3% for bubble B. These reduce to &,z4(a) = 0.55%
and ¢&,7p(a@) = 0.19% when comparing the regular and fine configurations. Similarly, the maximum
relative errors in V;, amount to £.,4(V)) = 1.6% and &.,3(V;) = 0.44% and reduce to &,£4(V}) =
0.57% and &,,5(Vp) = 0.21%. The maximum relative errors in P, decrease from &..(Pp,) = 1.5% for
both bubbles to 8rf,A(Pb) = 1.0% and 8,]§B(Pb) = 0.75%.

The monitored parameters show closely matching patterns and quantitative changes of 1% or
less throughout the entire calculation time when comparing the regular to the fine mesh, which
contains 70% more mesh cells. Considering a balance between precision and computational time
requirements, the regular mesh is chosen as the ideal configuration and used further on. The other
setups used in this study have been assessed accordingly and appropriate mesh settings were chosen.
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FIG. 12. Evolution of bubble volume (a) and average fluid pressure at the bubble surface (b) for both bubbles A and B using
three consecutively shrinking time step settings. While the patterns match very well on a global scale, a detailed investigation
shows minute temporal offsets between the three graphs, most notably at the sharp pressure peaks (shown in an expanded
scale for visibility).

2. Time step independence

The influence of the choice of time step size (A¢) in this transient computation was assessed by
comparing the solutions acquired from calculations on a single setup using three different time step
valuesof 1 x 10725s,5 x 107195, and 2.5 x 107105, respectively, called large (At;), nominal (A#,),
and small (At,) time step. A setup similar to the one used for the mesh independence assessment
with the MBs separated by a distance of dap = 40 um was examined. The variations of V;, and P
(Figure 12) caused by a change of time step setting are considered as indicators for a proper choice
of At.

Qualitatively the solutions for the three different time step settings agree very well and differ-
ences are only perceivable upon detailed inspection. They are largest in the peak regions and a minute
temporal shift is noticeable when comparing the peaks of P,. The quantitative comparison (A1) of
the three configurations with respect to change of V;, yields variations in the range of 0.8%—0.9%
for both the comparisons between the solutions for At; and At, as well as Az, and At for bubble A
and relative errors below 0.15% for the comparisons with respect to bubble B. A closer inspection
of the results shows that eventually the converged solution for At, is closer to the solution for Ag;
and on other occasions it is very close to the solution for Az, while all three solutions stay within
1.3% of each other throughout the entire computation.

The main source of error regarding P}, is a slight temporal offset between the solutions. This
effect combined with the very rapid change of P, in time near the peaks makes the error determined
by a comparison at every time instance appear unjustly high. Hence a comparison of the height of
the individual peaks is preferred, as it offers a more balanced assessment. We define the relative
change in peak height caused by a change in time step setting as

51(@) — 52(1)

§2,max — $2,min

epp(i) = ) (A2)

where i is the index of a peak. This metric yields maximum relative error values of 0.6%-0.8%
for bubble A and around 0.1% for bubble B. Again no appreciable difference is observed when
comparing the solutions for Az; and At, or At, and At,.

Based on the findings presented in this section, the value Az, =5 x 10719 s, which provides
2000 sampling points within the wavelength of a 1 MHz signal, was chosen.

APPENDIX B: MODEL VERIFICATION
1. Single bubble model

To verify our computational model, we compare results obtained therewith to those of the
RPE:!!

3 2 AL
oL <aé+§d2>=Pg—Poo——a— Hia (B1)

a a
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FIG. 13. Comparison between the numerical results and analytical predictions of the transient radius (a) and P}, pattern (b)
for a single MB excited by a time-varying pressure of fox = 3.2 MHz and P.x = 50 kPa. The patterns match very well with
discernible discrepancies only in the initial transition phase and around the extrema. The relative error in peak height for all
extrema of the radius curve and for the maxima in pressure is shown in the respective insets.

Here, a is the bubble radius, the dots denote derivation with respect to time, and P, is the liquid
pressure at infinity.

The RPE model describes the oscillation of a single gas bubble in an infinite volume of liquid.
While the requirement of an infinite liquid envelope is obviously not strictly implementable in grid-
based numerical models, we chose to use a liquid sphere with R, = 100 um to host the bubble.
To prove that this choice is sufficient to achieve an accurate solution for infinite surroundings, we
compare the acquired results to the solution attained with a setup using a substantially larger liquid
sphere of R, = 1000 pum.

We quantify the impact of enlarging the setup by the relative change (A1) in a transient parameter
such as bubble volume V), or average bubble radius a, at a specific sampling time. We find that the
choice of a larger liquid sphere causes a maximum relative error of close to 3% in the temporal
development of the average radius & of two MBs of ap4 = 1.0 um and a5 = 1.2 um separated by a
distance dap = 6 um and exposed to an oscillating pressure field of f,, = 2.8 MHz and P,, = 50 kPa.
Relative to a tenfold increase in radius of the liquid sphere, this error is clearly acceptable taking
into account the computational time constraints imposed by a large extension of the mesh size.

To verify the employed numerical solver we chose a configuration with a single bubble of
equilibrium radius ap = 1.2 um excited by pressure oscillations of amplitude P,x = 50 kPa and
frequencies of 2.8 MHz or 3.2 MHz. Figure 13 shows a comparison for the MB radius and the
pressure at the bubble interface P, between the results acquired from numerical simulations and
the predictions from (B1). The match between the patterns is very good and even improves after an
initial transition phase. The maximum relative errors (A1) in bubble radii are 6.3% and 4.2% for the
respective frequencies. After an initial transitional phase of 3 us these errors level off to below 1.6%
and 2%, respectively.

The main cause of the error is a small temporal offset between the numerical and the analytical
solution. Therefore we deem a comparison of peak height values (A2) more appropriate. For the
radius comparison in both investigated cases we find ¢,, = 2.3%, which reduces to below 1% after
the first 3 us. For Py, the analysis yields €,, = 4.3% for a 2.8 MHz excitation which reduces to
2.3% after the initial 3 us, and ¢,, = 3.8% for 3.2 MHz, reducing to 1.9% after the initial 3 us.
This excellent agreement between the numerical results and the analytically predicted patterns is
achieved with a mesh comprising 78 200 computational cells. This is similar in resolution to the
regular setup described in Appendix A, Subsection 1.

To confirm the incompressibility assumption for the liquid, we compared the oscillation patterns
predicted by the RPE with those obtained using the Keller-Miksis equation'® for the f,, and P,,
ranges relevant in this study. The relative differences between the radius predictions of the two
models normalized by the maximum oscillation range Aa,,,, were assessed for MBs of ¢y = 1.0 um
and ap = 1.2 um, and were found to be below 3% except for two sets of f,, and P,, values where
they reached up to 8%. The parameter settings yielding the highest relative errors coincide with the
Aa peaks of the RPE solution in Figure 2 (grey lines).
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2. Comparison to force balance model

Theoretical descriptions of the interaction of two bubbles usually focus on identifying the acting
forces and working out a force balance.?>** The main acting forces on bubbles driven by a transient
but spatially homogeneous ultrasound field are identified as the secondary Bjerknes force fg,, the
viscous drag force f4, and the added mass force f,, where fg, + fy + f, = 0. fz, may be written for
two compressible gas cavities inside an incompressible liquid according to Mettin et al.'® as

0 d*Va

f = —VsVP = ——v,=2
b i dwdi, " dr

€4 (B2)
with the unit vector e4 pointing along the axis connecting the bubble centers, and the indices A
and B designating different bubbles. The drag exerted on the bubble, which results from translatory
motion in a viscous medium, may be written as

f; = —6muav, (B3)

for Reynolds numbers of the order unity. The velocity of the bubble relative to the fluid is denoted
by v, = vy, — V(Xp), where v, = d(Xp)/d? is the absolute velocity of the bubble derived from the
temporal change of the position x;, of its center of gravity and v(Xp) is the absolute velocity of the
fluid at the position of the bubble. This quantity is approximated by the speed of the flow created by
the neighboring bubble at the position of the considered bubble

a%dB
2
dbb

V(X4) = e,. (B4)
This approach is approximately valid if the affected bubble is small compared to the distance dj;
from its neighbor and if its own oscillations cause only minor disturbances to the flow field. Finally,
the added mass force felt by the bubble can be written as

pd
f,=—=— ) - BS5
> (Vpvr) (B5)

This expression contains a term dv,/df = & which represents the acceleration of the bubble. All these
force expressions assume certain values for coefficients such as drag coefficient and the coefficient
of added mass, which depend on the flow conditions and may change during an oscillation cycle.
Further, the bubbles have to be considered as far away from each other, static and point-like objects
in order to calculate v, analytically.

In contrast, our numerical model is based on the direct application of the basic physical prin-
ciples of mass conservation and momentum conservation without relying on any assumptions as
to the shape of the bubbles, flow conditions or size of the added mass envelop. A comparison of
the numerical with the analytical results is thus expected to yield only a qualitative agreement, with
the numerical results giving a more accurate representation of reality.

The acceleration of the MBs in the numerical results is derived from the temporal development
of the position of its center of gravity as &, = X;,, while the equivalent acceleration predicted by the
analytical model is

th 2(f32 + fd) ["b .
=== 9y, + ) B6
; oV va (xp) + v(xp) (B6)

Here the instantaneous bubble volumes, average radii, radial and translational velocities are supplied
by the numerical simulation. Figure 14 shows the comparison between the analytical model and our
numerical results with respect to bubble acceleration for a pair of MBs that are 40 pwm apart and
two closely spaced MBs with dqg = 6 wm, both pairs being excited by a 2.8 MHz transient pressure
field with P,, = 50 kPa.

The general patterns agree for both comparisons, while locally notable deviations become
apparent. We observe differences in the maximum values and the appearance of an additional
shoulder in the analytical results for the larger bubble B. According to our assessment, the height
of the analytically predicted peaks depends on the choice of the added mass coefficient and drag
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FIG. 14. Comparison of the predicted acceleration from the analytical model based on a force balance and the numerical
results for a pair of MBs positioned 40 pum apart (a) and a pair of MBs spaced at 6 um (b) in a 2.8 MHz ultrasound field at
Pex =50 kPa. A close qualitative agreement between the patterns is observable together with reduced numerical peak values
and the appearance of additional shoulders in the analytical prediction for bubble B.

coefficient and the appearance of the additional shoulder in those plots scales with the absolute liquid
velocity.

We stress that this comparison should be seen in the light that the derivations of the above
forces and of v, are based on various simplifications or assumptions. Several coefficients need to be
chosen according to parameter models and those coefficients, like the drag coefficient, may vary in
the course of an oscillation cycle. Hence, quantitative differences seen in Figure 14 point to inherent
shortcomings of the analytical model rather than to inaccuracies of the numerical simulation.
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