
 

431 

Stanislav KITAROVIĆ, University of Zagreb, Faculty of Mechanical Engineering and Naval 
Architecture, Ivana Lučića 5, HR-10000 Zagreb, Croatia, stanislav.kitarovic@fsb.hr 
Jerolim ANDRIĆ, University of Zagreb, Faculty of Mechanical Engineering and Naval 
Architecture, Ivana Lučića 5, HR-10000 Zagreb, Croatia, jerolim.andric@fsb.hr 
Karlo PIRIĆ, University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, 
Ivana Lučića 5, HR-10000 Zagreb, Croatia, karlo.piric@fsb.hr 
Antonio MIKULIĆ, University of Zagreb, Faculty of Mechanical Engineering and Naval 
Architecture, Ivana Lučića 5, HR-10000 Zagreb, Croatia, toni_mikulic@hotmail.com 
 

MAGNIFICATION OF THE PLATE SHEAR LOAD CAPACITY IN 
ANALYSIS AND SYNTHESIS OF THE SHIP STRUCTURES 

 
Abstract 

 
Pronounced shear loading of the significant intensity can induce occurrence of the shear buckling 
and eventually lead to the shear collapse of the hull girder structural elements loaded in shear, if 
acting shear load surpasses their ultimate shear load capacity. Therefore, consideration of the 
stiffened plate shear load capacity can represent a relevant aspect and important structural adequacy 
criterion in analysis and synthesis of the ship structures. Since the contemporary ultimate shear load 
capacity formulations are based on correction of the calculated elastic shear buckling critical stress, 
this paper investigates various possible approaches to inhibition of the elastic shear buckling and 
identifies the most effective one. Based on relevant theoretical aspects and results of the performed 
finite element method analyses of the considered problem, a formulation for determination of the 
critical shear stress for the appropriately stiffened plates is proposed. 
 
Key words: plate elastic shear buckling, stiffened plate elastic shear bucking, critical shear stress 
 
MOGUĆNOSTI POVEĆANJA SMIČNE NOSIVOSTI PLOČA U ANALIZI I 

SINTEZI BRODSKIH KONSTRUKCIJA 
 

Sažetak 
 
Izraženo smično opterećenje značajnog intenziteta može izazvati pojavu smičnog izvijanja, a u 
konačnici izazvati i smični kolaps smično opterećenih elemenata konstrukcije trupa broda, ukoliko 
narinuto opterećenje nadmaši njihovu smičnu graničnu nosivost. Stoga, razmatranje smične 
nosivosti ukrepljenih ploča može predstavljati relevantan aspekt i važan kriterij strukturne 
podobnosti u okviru analize i sinteze kostrukcije broda. S obzirom da se postojeće formulacije 
smične granične nosivosti zasnivaju na korekciji kritičnog smičnog naprezanja pri elastičnom 
smičnom izvijanju, u okviru ovoga rada se razmatraju različiti mogući načini odgađanja pojave 
elastičnog smičnog izvijanja te se identificira najefektivniji prisup s tim u vezi. Na temelju 
relevantnih teorijskih aspekata i rezultata provedenih analiza razmatranog problema metodom 
konačnih elementata, predložena je formulacija za određivanje kritičnog smičnog naprezanja 
prikladno ukrepljenih ploča. 
 
Ključne riječi: elastično smično izvijanje ploče, elastično smično izvijanje ukrepljene ploče, kritično 
smično naprezanje 
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1. Introduction 

During the ship exploitation, an imposed vertical shear loading is predominantly resisted by 
the vertically oriented parts of the hull girder structure (e.g. sides and longitudinal bulkheads). 
Pronounced shear loading of the significant intensity can induce occurrence of the shear buckling 
and eventual shear collapse of the structural elements loaded in shear when acting shear load 
surpasses their ultimate shear load capacity. Possibility of incidence for such a hazardous event 
becomes even more significant when relevant structural elements were previously damaged (e.g. by 
collision) and consequently suffered a notable decrease in the load capacity with respect to the 
undamaged condition. In this context, consideration of the hull girder structural elements shear load 
capacity can represent a relevant aspect and an important structural adequacy criterion in analysis 
and design of the ship structures. 

Occurrence of the shear buckling does not represent the ultimate limit state of the plate loaded 
in edge shear. Its ultimate limit state is eventually reached by a total depletion of the complete load 
capacity margin of the diagonal tension fields [1], i.e. by the complete plastification (yielding) of 
the plate material loaded in tension. Unfortunately, exact assessment of the (ultimate) shear load 
capacity of the hull girder plating necessitates detailed description of the still unresolved and very 
complex interaction of all relevant parameters of influence. This disables complete and accurate 
theoretical description of the shear collapse phenomena. Consequently, virtually all of the existing 
ultimate shear strength formulations are of the semi-empirical nature and are predominantly 
formulated by means of the regression analyses based on various results obtained by numerical 
simulations. Concise description of the various existing formulations of the plate ultimate shear load 
capacity can be found in [2]. 

Since the most of the contemporary ultimate shear load capacity formulations are based on the 
correction of the calculated elastic shear buckling critical stress, within the framework of this paper 
various possible approaches to the elastic shear buckling inhibition are discussed. The most obvious 
one among them is to maximize the rotational restraint along the plate edges, resulting ultimately 
with the clamped edge restraints. However, the actual edge restraint imposed at the plate edge joints 
of the realistic thin-walled structures varies between the two extreme cases (simply supported and 
clamped). Only the worst (simply supported) case, which provides the highest margin for the 
increase of the plate elastic shear load capacity, is considered further in this paper. 

1.1. Elastic shear buckling of the simply supported plates 

An isotropic, flat plate of length L, breadth B and thickness t, loaded along the all four 
boundaries (edges) by pure and uniformly distributed in-plane edge shear stress is considered (see 
Fig. 1). 

 

Fig. 1. Elastic shear buckling of the simply supported (un)stiffened plate. 
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If the geometrical and material characteristics of the considered plate are such that elastic 
shear buckling occurs at the critical intensity of the imposed edge shear loading, the corresponding 
deflected state of the unstable equilibrium can be described by the St. Venants equation [3] (given 
for the pure edge shear case), which is valid if the lateral displacements are small with respect to t: 

4 4 4 2

4 2 2 4

2
2

P
crtw w w w

D x yx x y y

τ ∂ ∂ ∂ ∂
+ + = −   ∂ ∂∂ ∂ ∂ ∂ 

 (1) 

where τcr
P represents the plate elastic shear buckling stress, D denotes the plate flexural 

rigidity, while w denotes the out-of-plane or lateral (in direction of the z-axis) displacements. 
Although the exact solution of the Eq. (1) is not known, an approximate solution (which suggests 
appearance of the buckling half waves along the plate compressive diagonals) can be derived using 
the stationary potential energy principle and a Ritz method (lateral displacements expressed in 
terms of the appropriate coordinate functions which satisfy considered boundary conditions) [3]: 
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Form of the buckling half waves generally depends on the tensile forces acting along the 
tensile diagonals, while their number is proportional to the plate aspect ratio L/B. E and ν denote 
Young’s modulus of elasticity and Poisson’s ratio, respectively, while kP denotes non-dimensional 
factor dependant only on L/B: 
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Although formulation of kP given by Eq. (3) is widely accepted in the contemporary structural 
analysis and design practice, it actually represents the parabolic approximation of a more accurate 
values of kP calculated previously by various authors [1]. 

1.2. Plate shear buckling capacity magnification 

It should be noted that for a given plate material, τcr
P depends solely on the plate geometrical 

characteristics L/B and t/B, according to Eq. (2). This suggests that τcr
P can be increased by two 

distinct approaches: by decrease in the L/B value and/or by increase in the t/B value. Decrease in the 
L/B value can be accomplished by subdivision of the plate onto smaller and equal parts by addition 
of the equidistantly placed transverse (parallel with the y-axis) stiffeners, whereby t/B ratio remains 
unchanged. On the other hand, increase in the t/B value can be accomplished by the increase of the 
plate thickness and/or by subdivision of the plate onto smaller and equal parts by addition of the 
equidistantly placed longitudinal (parallel with x-axis) stiffeners. Yet, since the aspect ratio of the 
obtained plate subdivisions a/b (where a denotes length of the plating between stiffeners - parallel 
to the stiffener orientation, while b denotes breadth of the plating between stiffeners - perpendicular 
to the stiffener orientation, see Fig. 1) is thereby increased, it seems, at the first glance, that the 
positive effect of this approach is somewhat attenuated. Since various possible approaches to the 
plate elastic shear buckling capacity magnification are identified, it would be useful to determine 
the most effective one among them, i.e. to identify the most gainful approach which would enable 
maximum increase in critical shear stress. 

In this respect, it is important to emphasize that the most gainful effects of the plate stiffening 
can be exploited only if the critical value of the acting shear load induces imminent occurrence of 
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the local shear buckling (shear buckling of the plating between stiffeners), i.e. that occurrence of the 
global shear buckling (shear buckling of the whole stiffened plate) is successfully disabled. In 
another words, this will be accomplished only if the plating between stiffeners can be considered as 
a set of an independent, simply supported plates loaded in edge shear. Ability to comply with this 
requirement depends on the flexural rigidity of stiffener(s) employed, which must be sufficient to 
enable successful resistance of the stiffener(s) to the predominant vertical bending load imposed by 
the buckling half waves during their spread along the stiffened plate. 

Based on this paradigm, originally introduced by Timoshenko [1], Fig. 2 illustrates the 
maximum theoretically possible relative increase in the critical shear stress attainable by the 
longitudinal and/or transverse (equidistant) stiffening of the plate for various L/B ratios and number 
of added stiffeners NS, where τcr

SP denotes elastic shear buckling stress of the stiffened plate. It is 
important to emphasize that the curves depicted by Fig. 2 are qualitatively and quantitatively valid 
for an arbitrary plate thickness, i.e. t/B ratio. 

 

Fig. 2. Maximum increase in the elastic shear buckling capacity attainable by the plate stiffening. 
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< 1 cases, while longitudinal stiffening is preferable for the L/B > 1 cases. Furthermore, it should be 
noted that inverse pairs of the L/B values (e.g. L/B = 2 and L/B = 0.5) are characterized by the 
identical results. This is due to the inherent irrelevance of the acting edge shear load direction, 
which consequently induces overall symmetry of the obtained results with respect to the L/B = 1 
case, which is characterized by the lowest attainable relative critical shear stress increase. For this 
case identical results are obtained by longitudinal and transverse stiffening, since both of those 
approaches result in an identical stiffened plate layout. Hence, based on the above considerations, it 
can be generally concluded that the plate stiffening with stiffeners parallel to the longer side of the 
initial plate always represents a more gainful approach, irrespective whether L/B < 1 or L/B > 1. 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

τ
S

P
cr

/ τ
P

cr

L / B

1 longitudinal stiffener.

1 transverse stiffener.

2 longitudinal stiffeners.

2 transverse stiffeners.

3 longitudinal stiffeners.

3 transverse stiffeners.

FEA (t/b=0.0025).

FEA (t/b=0.0050).

FEA (t/b=0.0075).



Magnification of the plate shear load capacity in analysis and synthesis of...                            21st symposium Sorta 2014 

435 

1.3. Existing formulations of the stiffened plate elastic shear buckling capacity 

The first formulation regarding the considered problem was proposed by Timoshenko [1] for 
a stiffened plate having one or two transverse stiffeners. This pioneering theoretical work based on 
the energy approach was extended subsequently by many authors and an extensive overview of the 
research work regarding this problem can be found in [1, 4 and 5]. All of the existing formulations 
are based on the previously mentioned Timoshenko’s paradigm and it is interesting to note that 
virtually all of them are derived considering stiffening parallel to the shorter side of the initial plate 
only, although the discussion given in Section 1.2 clearly suggests that an alternative stiffening 
approach is much more effective.  

Hence, in addition to the identification of the most effective approach to the magnification of 
the elastic shear buckling capacity of the simply supported plate, the overall aim of this paper is to 
provide a corresponding formulation valid for this approach to the considered problem in a 
sufficiently general and accurate manner. 

2. Modeling of the considered problem 

In order to validate the above given theoretical considerations, as well as to provide the basis 
for the general formulation proposed in Section 4, an overall total of 276 rationally designed 
numerical experiments are performed employing the finite element method (FEM) simulations for 
generation of the results for various (un)stiffened plate configurations. All considered variants are 
characterized by the same (isotropic and elastic) material (E = 206 GPa; ν = 0.3) and B = 3200 mm. 
Furthermore, due to the previously mentioned symmetry of the considered problem, only variants 
characterized by L/B ≥ 1 are considered. Although all other geometrical properties fall within the 
(relatively wide) range determined to cover the characteristic dimensions of the ship hull girder side 
plating (flat single side plating between wing and bilge tanks of the existing and variously sized 
bulk carriers), obtained results are fully applicable in other fields of the structural engineering 
dealing with the thin-walled structures whose (flat) members could be imposed with the edge shear 
loading during the exploitation. 

Unstiffened plates are analyzed in order to investigate the correspondence of the results 
obtained by utilization of Eq. (2) and by numerical simulations. For this purpose five different L/B 
values (1; 2; 3; 6; 12) and five different t/B values (0.0025; 0.00375; 0.005; 0.00625; 0.0075) are 
considered, resulting in a total of 25 numerical experiments. 

Furthermore, in order to verify the theoretically obtained envelopes (see Fig. 2) and their 
independence of t, analyses of the plates stiffened by one, two or three longitudinal or transverse 
stiffeners (of the infinite flexural rigidity) are performed for three different L/B values (1; 2; 3) and 
three different t/B values (0.0025; 0.005; 0.0075), resulting in a total of 54 numerical experiments. 

Finally, in order to generate the experimental basis for the proposed formulation, analyses of 
the plates stiffened by longitudinal stiffeners (of the finite flexural rigidity) are performed. In this 
respect, previously mentioned Timoshenko’s paradigm (which neglects torsional rigidity of 
stiffeners) enables arbitrary selection of the shape and scantlings of the employed stiffener profile, 
since only the stiffeners moment of inertia IS is relevant for its flexural rigidity. Among an infinite 
number of the possible stiffener profile variants characterized by the same particular IS, a flangeless 
(flatbar) stiffener profile is selected for the further consideration. This choice is due to the 
irrelevance of the higher section modulus (offered by the flanged profiles) for the considered 
problem and since the flatbar stiffener offers the highest possible IS for the particular stiffener cross 
sectional area, or in another words, provides attainment of the particular flexural rigidity with the 
least amount of the stiffener material. Furthermore, since the results (τcr

SP/τcr
P) are suggestively 

independent of t, the same value (16mm) is used for the stiffener web thickness tw and t of all 
variants considered within this experimental batch and various stiffener flexural rigidities 
considered are attained only by variation of the stiffener web height hw. Thereby, 13 different 
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stiffener flexural rigidities are considered for each of the three different L/B values (1; 2; 3) and 
three different NS values (1, 2, 3), resulting in a total of 117 numerical experiments. 

Throughout the paper, particular variant can be easily identified according to the assigned 
designation (e.g. AR1-T16-S1L designates the plate with L/B = 1, t = tw = 16mm and one 
longitudinal stiffener). 

2.1. Numerical simulations 

All executed numerical simulations are based on utilization of the FEM analysis of the 
discretized models of the considered (un)stiffened plate variants, whose bifurcation buckling load is 
determined by the eigenvalue analysis, as implemented within the employed FEMAP/NX Nastran 
[6] computer program. Lanczos method is used for the eigenvalue extraction and the lowest 
(positive) eigenvalue is accepted as the quantitative representative of the relevant buckling mode. 

2.2. Discretized model 

All considered models are discretized by the two-dimensional, quadrilateral, isoparametric 
finite elements with four nodes (CQUAD4) and six degrees of freedom (DoFs) at each node. 

The imposed edge shear load is applied by means of the properly oriented nodal forces along 
the plate edges, as illustrated by Fig. 1. Their magnitude is determined according to the expressions 
given in Fig. 1, where Fn

L and Fn
B denote the absolute values of the nodal forces applied along the L 

and B edges, respectively. FL
corner and FB

corner denote the absolute values of the components (parallel 
to the L and B edges, respectively) of the resultant nodal force applied at the plate corners (nodes 
coincident with the points P1, P2, P3 and P4), while AL and AB denote the cross sectional areas of the 
L and B edges, respectively. FL and FB denote the absolute values of the total forces applied along 
the L and B edges, respectively, while nL and nB denote the total number of nodes along the L and B 
edges, respectively. 

Indicated expressions for Fn
L, Fn

B, FL
corner and FB

corner are derived in order to ensure the proper 
in-plane deformation of the corner finite elements, i.e. to ensure that the straightness of the plate 
edges is fully retained in the deformed state. In this respect, it can be observed that Fn

L/FL
corner 

and/or Fn
B/FB

corner ratios should be equal to 4. 

In order to properly simulate deformation of the simply supported (un)stiffened plate models, 
nodal DoF constraints are applied as described by Table 1, where 0 and 1 denote constrained and 
unconstrained nodal DoF, respectively. For the numerical simulations of the simply supported 
plates reinforced by the stiffeners of the infinite flexural rigidity, in addition to the constraints given 
by Table 1, vertical nodal displacements are constrained (Tz = 0) for all nodes along the plate to 

stiffener joint (line segment 6 7P P  in Fig. 1). 

In order to rationally determine an appropriate finite element mesh density for discretization 
of all considered FEM models, an extensive mesh convergence study is performed. For this 
purpose, two extreme values of L/B (1; 12) and t/B (0.0025; 0.0075) are considered for both 
unstiffened and stiffened (by three stiffeners of the infinite flexural rigidity) plate variants, since the 
sensitivity of the results obtained for those cases should envelope the sensitivities characteristic for 
all other (un)stiffened plate variants considered by the above given plan of numerical experiments. 
For each of those eight (un)stiffened plate variants, ten different mesh density variants are 
considered, with 12, 24, 36, 48, 60, 72, 84, 96, 108 and 120 elements along the B edges. 
Corresponding number of elements along the L edges is unambiguously determined so as to keep 
the finite element aspect ratio equal to 1 for each mesh density variant. This results in a total of 80 
additional numerical experiments considered within the framework of the mesh convergence study. 

The results of the mesh convergence study are concisely given by Fig. 3. It can be noted that 
the mesh resolution characterized by 96 elements along the B edges gives a considerable relative 
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reduction (>35%) of the total number of DoFs NDoF, while always providing a very small relative 
difference (<0.15%) of the obtained results (τcr), all with respect to the finest mesh resolution. 
Consequently, this mesh resolution is used for all subsequently performed numerical simulations. 

Table 1. Applied constraints of nodal DoFs. 

Node location 
(Fig. 1) 

Nodal DoFs: 

Tx Ty Tz Rx Ry Rz 

1 2P P ; 2 3P P ; 3 4P P ; 4 1P P  1 1 0 1 1 0 

P5 0 0 1 1 1 0 

All other plate nodes 1 1 1 1 1 0 

 

Fig. 3. Results of the mesh convergence study. 

3. Results 

Fig. 4 illustrates the results obtained for the considered unstiffened plates. An excellent 
agreement of the results obtained by Eq. (2) and numerical simulations can be observed. Although 
an approximated relationship between those results is proposed (see Fig. 4), only a negligible error 
is introduced by its disregard (τPcr-FEA = τPcr-ANALYTICAL). The results of the numerical simulations 
obtained for plates stiffened by the infinitely rigid stiffeners are given in Fig. 2. It should be 
observed that the results obtained for various t/B ratios are practically coincident. 

Furthermore, a very good agreement with the proposed theoretical envelopes can be observed. 
Superimposed display of all results obtained by the numerical simulations performed for all 
considered plate variants reinforced by stiffeners with various (finite) flexural rigidity is given in 
τcr

SP/τcr
P – ASP/AP space, represented by Fig. 5, where ASP denotes the area of the transverse cross 

section of the longitudinally stiffened plate, while AP denotes the area of the transverse cross section 
of the initial (unstiffened) plate. A more detailed display of the same results is given in τcr

SP/τcr
P – 

IS/Ib space, represented by Figs. 6 to 8, where Ib denotes the moment of inertia of the plating 
between stiffeners. Fig. 6 additionally indicates the results obtained by three existing formulations 
of the considered problem, applicable only for L/B = 1 cases among the considered ones. Fig. 5 also 
displays the results obtained by the plate thickness increase approach in τcr

PE/τcr
P – APE/AP space, 

where τcr
PE denotes the elastic shear buckling stress of the plate characterized by the (increased) 

equivalent thickness tE (see Fig. 5), while APE denotes the area of its transverse cross section. 
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Fig. 4. Unstiffened plate results obtained by FEM analyses and Eq. (2). 

 

Fig. 5. Results obtained by longitudinal stiffening and increase of plate thickness. 
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 a)                                  a) 

 
 b)                                  b) 

 
 c)                                  c) 

         Fig. 6. Results for AR1-T16: a) S1L; b) S2L; c) S3L.            Fig. 7. Results for AR2-T16: a) S1L; b) S2L; c) S3L. 
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 a)                                   b) 

 

c) 

Fig. 8. Results for AR3-T16: a) S1L; b) S2L; c) S3L. 

4. Formulation of the elastic shear load capacity of the longitudinally stiffened and simply 
supported flat plates made of isotropic material 

Results obtained by the numerical simulations performed for nine considered plate variants 
reinforced by stiffeners of various (finite) flexural rigidity are used for formulation of the 
approximate description (surrogate model) of the considered problem. For this purpose a regression 
analysis based on utilization of the least squares method is performed, whereby coefficient of 
determination (R2) is used as a quantitative measure of the accomplished approximation quality. 

The crucial choice regarding the appropriate form of the approximation function is based on 
the similar ‘S-shaped’ layout of the results obtained for every considered stiffened plate variant, 
which can be observed in Fig. 5. Although various sigmoid functions were considered for 
approximation of the results in τcr

SP/τcr
P – ASP/AP space, the best approximate fit is accomplished by 

utilization of the adjusted cumulative distribution function of the Weibull distribution: 
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where C0, C1 and C2 represent the non-dimensional coefficients, whose specific values 
characterize every particular stiffened plate variant considered. C0 actually represents the highest 
τcr

SP/τcr
P value obtained (by numerical experiments) for each stiffened plate variant, while the 

corresponding values of C1 and C2 are determined numerically, using a Levenberg-Marquardt 
algorithm, within the framework of the least squares method. Calculated values of the C0, C1, C2 
and R2, along with the corresponding plots of Eq. (4) in τcr

SP/τcr
P – IS/Ib space, are given in Figs. 6 to 

8 for each of the nine considered stiffened plate variants. 

In order to derive the general formulation valid for an arbitrary L/B ratio within the considered 
range (1 ≤ L/B ≤ 3), all values of the C0, C1 and C2 determined for the nine considered stiffened 
plate variants are used. Considering the number of the available results and their scatter (see Fig. 9), 
the second degree polynomial is selected as an adequate function for determination of the exact fit: 

2

0 1 2( ) ( ) ( ) ; 0,..., 2 ; 1,...,3i ij ij ij
a a

C i j
b b

κ κ κ
   

= + + = =   
   

 (5) 

where (κij)0, (κij)1 and (κij)2 represent the (non-dimensional) polynomial coefficients valid for 
the respective stiffened plate variant. Calculated values which determine curves illustrated by Fig. 
9, are given in Table 2. 

 

Fig. 9. Graphical display of C0, C1 and C2 coefficients. 
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Table 2. Calculated values of (κij)0 , (κij)1 and (κij)2 coefficients. 

 NS = 1 (j = 1) NS = 2 (j = 2) NS = 3 (j = 3) 
 (κij)0 (κij)1 (κij)2 (κij)0 (κij)1 (κij)2 (κij)0 (κij)1 (κij)0 

C0 (i = 0) 1.75756 0.66568 -0.04857 2.61768 1.35419 -0.06938 4.06229 1.93972 -0.07564 

C1 (i = 1) -0.01043 0.03179 -0.00238 0.02913 0.03136 -0.00123 0.09979 0.02239 -0.00004 

C2 (i = 2) 2.13970 0.08064 -0.01762 1.45656 0.09352 0.00381 0.63110 0.34641 -0.01347 

 

It should be noted that the validity of the proposed formulation is limited on stiffening parallel 
to the longer side of the plate, with NS = 1, 2, 3, while both 1 ≤ L/B ≤ 3 and 0.333 ≤ L/B ≤ 1 ranges 
are covered due to the previously mentioned symmetry of the considered problem (with respect to 
L/B = 1). However, within the 0.333 ≤ L/B < 1 range, L and a should be interchanged with B and b, 
respectively. 

5. Conclusions 

Accuracy of the commonly and widely accepted formulation of the elastic shear buckling 
capacity of the unstiffened flat plates, given by Eq. (2), is verified by the results obtained by 
numerical simulations (see Fig. 4). Furthermore, proposed theoretical envelopes and their 
independence of t, derived using Timoshenko’s paradigm and Eq. (2), are also verified by the 
obtained results of the numerical simulations (see Fig. 2). This confirms the proposition that 
longitudinal stiffening for L/B > 1 cases and transverse stiffening for L/B < 1 cases, i.e. stiffening 
parallel to the longer side of the plate, always represents a more effective approach to the 
considered problem than the stiffening parallel to the shorter side of the plate (considered by all 
existing formulations). Moreover, comparison of the results obtained for all considered plates 
reinforced by stiffeners of various (finite) flexural rigidity (see Figs. 5 to 8), with respect to the 
results obtained for the plate thickness increase approach (see Fig. 5), suggests that the proposed 
stiffening approach always represents a more effective/efficient approach to the considered 
problem. Hence, it can be unconditionally concluded that the proposed stiffening approach 
represents the most rational course for the elastic shear load capacity magnification of the simply 
supported plates. Furthermore, based on the results of the rationally designed and properly 
configured numerical simulations, an approximate formulation for this stiffening approach is 
proposed (valid for 0.333 ≤ L/B ≤ 3 and NS = 1, 2, 3). In this respect, a considerably high accuracy 
level of the proposed formulation, as well as its convenient nature, can contribute to its recognition 
as an useful additional tool in the process of analysis and/or design of the ship structures. 
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