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Arbitrary crack propagation in multi-phase materials

using the finite volume method
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bFaculty of Mechanical Engineering and Naval Architecture, University of Zagreb

Abstract

An arbitrary crack propagation model using cell-centre finite volume based

method is presented. Crack growth in an elastic solid, across an interface

perpendicular to the initial crack path and into a second elastic solid is

analysed. Crack initiation and the subsequent path of propagation are shown

to arise naturally out of the selection of appropriate cohesive parameters.

It is shown that the allowable crack propagation path is restricted by the

underlying mesh. Results are presented for a number of values of interfacial

strength and ratios of elastic properties between the two elastic solids. For

higher values of interfacial strength, the crack is shown to propagate straight

through the interface, while for lower values of interfacial strength, the crack

is shown to change direction and propagate along the interface. It is shown

that with careful selection of material and interface parameters it is possible

to arrest a propagating crack at the interface. The method represents a useful

step towards the prediction of crack propagation in complex structures.
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OpenFOAM

1. Introduction

The mechanical and fracture properties of many engineering materials are

affected by the underlying microstructure of the material. For this reason it

is important to be able to correctly predict the stresses, crack initiation and

propagation of a complex microstructure. In this paper a finite-volume based

method for the solution of fracture problems containing multiple dissimilar

materials in which the crack path is not prescribed a priori is presented. In

the current work the direction of crack propagation is limited only by the

position and orientation of internal faces in the chosen numerical mesh.

Over the last number of years the Finite Volume (FV) method has become

established as an alternative to the Finite Element Method for the solution

of problems involving stress analysis. The method was first developed for

the solution of solid mechanics problems by Demirdžić and co-workers [1–

5]. Ivanković and co-workers have applied the FV method successfully to

the solution of both fracture problems [6–9] and fluid structure interaction

problems [10, 11].

Recently, Tuković et al. [12] have developed a finite-volume based method

to accurately calculate tractions at the interface of two or more dissimilar

solid materials. Due to the difference in elastic properties of the constituent

material they showed that the interface can be a potential source of the onset

of damage.

Much work has been carried out to study the interaction between a sta-

tionary crack close to an interface [13, 14]. In particular, He and Hutchinson
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[15] considered the competition between deflection and penetration of a crack

at the interface for a crack approaching the interface at different angles. He

and Hutchinson [16] analysed the conditions under which an interface crack

will kink out of an interface. He et al. [17] have also examined the role of

residual stress in determining the crack path.

He and Hutchinson [15] have shown that the solution of simple plane

strain, traction boundary value problems, the solution depends only on the

non-dimensional Dundurs’ parameters, α and β [18]. For plane stress condi-

tions, the parameters are given as:

α =
k(κ1 + 1)− (κ2 + 1)

k(κ1 + 1) + (κ2 + 1)
(1)

β =
k(κ1 − 1)− (κ2 − 1)

k(κ1 + 1) + (κ2 + 1)
(2)

where k is the ratio of shear moduli, µ2/µ1 and κi is Muskhelishwili’s constant

[19], equal to (3− 4νi), where νi is the Poisson’s ratio of material i.

Further, they present a ratio in terms of α and β, which allows one to

assess the relative tendency of a crack to be deflected into an interface or to

penetrate through it. The ratio is given as:

Gd

Gp

=

(
1− β2

1− α

)
|d|2 + |e|2 + 2Re(de)

c2
(3)

where Gd/Gp is the ratio of the energy required for crack deflection along

the interface versus crack penetration through the interface, α and β are the

Dundur’s parameters and c, d and e are complex valued functions of α and

β. The ratio, Gd/Gp as a function of α is plotted in Figure 1 for β = 0.

For α not too different to zero, the critical ratio is approximately 0.25.

This corresponds to a case where the elastic properties are the same either

3



side of an interface. The critical ratio increases to approximately 0.38 when

α = 0.33, corresponding to a modulus factor difference of two across a mate-

rial interface. If the ratio of interface cohesive strength, σint
max to bulk cohesive

strength, σbulk
max is less than the critical ratio then the crack will deflect into

the interface and propagate along the interface rather than penetrate the

interface directly.

Siegmund et al. [20] used the finite element method to numerically predict

the crack path of a crack propagating in an an elastic solid, across and

interface and into an elastic visco-plastic solid. They successfully recovered

the predictions of [15]. For an interface with a cohesive strength less than

25% of the bulk material strength the crack is deflected into the interface

rather than propagating through into the second material. They also show

that with appropriate selection of plastic parameters in the second material

the propagating crack can be permanently arrested at the interface.

This paper describes the application of the finite volume method to the

solution of complex crack propagation problems in a multi-material linear-

elastic model. All numerical procedures described are implemented in Open-

FOAM [21, 22].

2. Numerical Model

An isothermal multi-material linear elastic model is considered where the

behaviour is described by conservation of momentum law and linear elastic

constitutive relation: ∫
V

ρ
∂2u

∂t2
dV =

∮
S

n · σdS (4)

σ = µ[∇u + (∇u)T ] + λtr(∇u)I (5)
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where ρ is the density of the material with volume V , n is the normal to the

surface S, u is the displacement vector with respect to initial configuration,

σ is the Cauchy stress tensor and µ and λ are the Lamé coefficients.

As shown in [12], the normal and tangential components of the traction

vector t = n · σ can be expressed in terms of displacement vector u using

constitutive equation (5) as follows:

tn = (2µ+ λ)n · ∇u− (µ+ λ)n · ∇ut + λntr(∇tut) (6)

tt = µn.∇ut + µ∇tun (7)

where ∇t = (I−nn)·∇ is the tangential gradient operator and the subscripts

n and t represent the normal and tangential components of the vector. Equa-

tions (6) and (7) are valid up to the interface but not across the interface due

to discontinuity of displacement gradient across the interface. The derivation

of the correction traction at the interface can be found in Tuković et al. [12].

The mathematical model described above is discretised in space using

second order accurate collocated unstructured FV method while numerical

integration of the model in time is performed using first (or second) order

accurate implicit method.

According to unstructured FV discretisation, computational space is in

general divided into a finite number of convex polyhedral control volumes

(CV) or cells bounded by convex polygons (faces). The cells do not overlap

and fill the spatial domain completely. Figure 2 shows a simple polyhedral

control volume VP around the computational point P located in its centroid,

the face f , the face area Sf , the face unit normal vector nf and the centroid

N of the neighbouring CV sharing the face f .
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In this study it is assumed that an interface between different elastic

materials coincides with the internal CV faces. In general, however, a CV

can be bounded by a combination of ordinary internal faces, internal faces

at the multi-material interface and boundary faces.

Details of FV discretization of the considered mathematical model can

be found in [12], where special attention is paid to discretization of traction

force at the multi-material interface.

The arbitrary crack propagation model implemented allows prediction of

crack propagation along internal control volume faces [23]. An internal con-

trol volume face at which the failure criterion is satisfied is turned into a pair

of cohesive zone boundary faces. The traction force specified between these

cohesive zone faces is governed by the cohesive zone model. The cohesive

zone model works on the basis that all the damage processes taking place lo-

cally ahead of the crack tip can be described by a unique stress-displacement

relationship as shown in Figure 3. For the simplest models, two parameters

are required to fully describe the model. These are the fracture energy Gc

and the maximum cohesive strength σmax. According to the cohesive zone

model the traction between cohesive zone faces is a function of the separa-

tion distance between the faces. In case of mode I (opening) crack, only

normal separation distance is considered and the traction-separation law de-

fines normal cohesive traction between cohesive faces as a function of normal

separation distance. Once the critical traction, σmax is the normal cohesive

traction, σ decreases from the critical traction to zero traction according to

the specified traction-separation curve. When the critical normal separation

δc is reached, fracture is assumed to have taken place and the cohesive faces
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are thereafter treated as traction-free faces.

In the case of opening mode I crack, failure of a face occurs when tn ≥

σmax. The normal cohesive traction between the faces is then defined by the

cohesive zone model. If there is a shear component of traction on the face,

the cohesive shear traction behaviour is assumed to have the same shape as

the normal cohesive traction behaviour as assumed by Camacho and Ortiz

[24].

In the case of mixed mode I and II crack, the failure criteria for internal

face is defined as:

teff =
√
t2n + |tt|2 ≥ σmax (8)

where tn and tt are normal and tangential components of traction on any

internal face described earlier. The traction between the cohesive faces is

then expressed as a function of effective separation distance, δeff :

δeff =
√
δ2n + δ2t (9)

where δn is the normal separation distance and δt is the tangential separation

distance. For a linear traction separation law the normal and tangential

cohesive tractions, tcn and tct, are then given as:

tcn = t0n

(
1− δeff

δc

)
(10)

tct = t0t

(
1− δeff

δc

)
(11)

where t0n and t0t are the initiation tractions in the normal and tangential

directions respectively and δc is the critical opening displacement.

The solution procedure is given in Figure 4. At the end of each time

step calculation, the traction at each internal cell is determined and all faces
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for which the failure criterion is satisfied are gathered together and ordered

according to traction. The face with the highest traction level is broken. The

internal face is transformed into two cohesive boundary faces. The time step

calculation is then repeated. This procedure is repeated until there are no

more broken faces.

In all of the simulations examined in this work, a linear traction separation

law was specified. The cohesive strength, σmax of the bulk material was kept

constant at 200 MPa and the fracture energy, Gc was 100 J/m2. The ratio of

Mode I cohesive parameters to Mode II cohesive parameters was set to one

in all cases.

3. Results

To validate the developed procedure a simple problem is considered. A

simple bi-material specimen with a centrally located crack oriented perpen-

dicular to the bi-material interface as shown in Figure 5 is analysed. The

initial crack length, a is 0.3 mm, while the half-width L and half-length W

are 1.5 mm and 3 mm respectively. The interface is located at L/2.

A time varying fixed displacement is applied to the top and bottom

boundaries corresponding to a displacement rate, v, of 0.0167 m/s. The

left hand boundary is modeled as a symmetry plane while the right hand

boundary is modeled as traction free. The model is 2-dimensional and plane

stress is assumed. The mesh was created using blockMesh, a utility within

OpenFOAM for creating structured hexahedral meshes, and is a fully orthog-

onal hexahedral grid containing 300×300 cells in x and y directions and 1 in

the z direction that is not solved. The mesh density was chosen arbitrarily
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to allow the simulations to solve in a reasonable amount of time.

In all cases a linear cohesive zone formulation is assumed. For simplicity

the cohesive zone parameters uniform throughout both materials. The co-

hesive properties of the interface differ from those in the bulk material, i.e.

σint
max = mσbulk

max, where m is some fraction between 0 and 1. The allowable

cohesive zone formulations at the interface are restricted such that the criti-

cal opening displacement (∝ Gc/σmax) is unchanged from the bulk material

where E is the plane stress Young’s modulus of the bulk material, and Gc is

the strain energy release rate. Thus, if σmax,i = mσbulk
max, then Gint

c = mGbulk
c .

The limiting crack speed in a linear elastic material is known to be

proportional to the speed of sound for one dimensional wave propagation,

c0 =
√
E/ρ. Roberts and Wells [25] have shown analytically that the crack

limiting speed, ȧ, is equal to 0.38c0, while Freund [26] has calculated numer-

ically for ν = 0.3, ȧ = 0.57c0. Therefore, it is appropriate to choose c0 as

an extremely conservative upper limiting speed. An upper limit on the time

step interval for the crack propagation phase of the simulation can then be

calculated based on this upper crack limiting speed.

The time,t, taken for a crack propagating at a velocity, c0 along a control

volume face of length lf is given by t = lf/c0. For the problems investigated,

the maximum value of c0 is 5.18 km/s (E = 210 GPa, ρ = 7800 kg/m3)

and thus t = 1.95 ns for the mesh of size 300×300 respectively. This value

represents a limiting time step during the crack propagation phase of the

simulation to ensure that only one internal face is cracked per time step and

that all the crack propagation behaviour is captured during the simulation. In

order to further ensure that the time step was sufficiently small, the minimum
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time step in the simulation was set to 1 ns during crack propagation. In

order to speed up the initial loading/initiation portion of the simulation a

much larger time step of 0.1 µs was employed. This time step was gradually

reduced to the limiting time step once the traction directly ahead of the crack

tip reached 90% of the initiation value.

The effect of varying the cohesive properties of the interface on crack

initiation, propagation, and path is investigated for four cases: (1) E1 = E2 =

210 GPa, (2) E1 = 210 GPa, E2 = 420 GPa, (3) E1 = 210 GPa, E2 = 630

GPa and (4) E1 = 210 GPa, E2 = 105 GPa. Poisson’s ratio, ν = 0.3 is kept

constant in all cases. Once the crack reaches a boundary face, the simulation

is stopped. In case (1) the effect of mesh density on the final crack path is

investigated.

3.1. Case 1: E1 = E2 = 210 GPa

Figure 6 shows the final crack path for the case where the elastic proper-

ties of both materials are equal and where the σint
max is, (a) 0.1, (b) 0.2 and (c)

0.3 times the cohesive strength of the bulk material respectively. It can be

clearly seen that there is crack propagation along the interface for the cases

where the ratio, σint
max/σ

bulk
max is less than the critical ratio of 0.25.

In the case of (a), the crack propagates for a distance of 0.3 mm up and

down the interface before changing direction and propagating into material

2. There is continued crack propagation along the interface at this point but

at a greatly reduced rate than in the second material.

If the value of σint
max is raised to 0.2 times the bulk cohesive strength as

in (b) the crack also propagates to the interface and begins to propagate

along the interface. However, there is only 0.1 mm of propagation along the
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interface before the original crack penetrates the interface and propagates

directly through material 2. As before there is concurrent crack extension

along the interface after penetration of the main crack in to material 2 but

at a reduced rate.

The crack path in (c) is simpler to analyse. The ratio of interface cohesive

strength to bulk cohesive strength is significantly higher than the critical

ratio required to deflect the crack into the interface. Therefore, the crack

penetrates directly into material 2 and the relative strength at the interface

does not play any role in determining the crack path.

3.1.1. Effect of mesh density

Figure 7 plots the effect of reduced mesh density on the predicted crack

propagation paths. A mesh of (a) 75×75 cells and (b) 150×150 cells were

employed, reducing the area of a face by one quarter and one half respectively

over the original mesh. It can be seen that there is an asymmetry in the crack

patterns in material 2 in both Figure 7 (a) and Figure 7 (b).

This highlights the fact that numerical asymmetry can occur in this prob-

lem if insufficient care is taken to produce an adequate mesh prior to simula-

tion. As explained previously, each internal face exceeding the critical trac-

tion in a particular time step is ordered and fractured sequentially according

to the absolute value of traction across the face. The face immediately next

to the upper crack in Figure 7 (a) had a slightly higher traction across the

face than in the lower crack and consequently separated before the corre-

sponding face in the lower crack. On updating the boundary conditions, the

traction in the next face in the upper crack then exceeded the traction in

the face immediately ahead of the lower crack and so it was fractured at the
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expense of the lower crack. It can be seen that a finer mesh, Figure 7 (b),

reduces this problem.

3.1.2. Crack growth in a trigonal cell based mesh

The problem presented so far was modeled using a perfectly orthogonal

hexahedral mesh. This is due to the simplicity of the geometry being investi-

gated. Many problems encountered in reality will have much more complex

geometries than that previously described. In order to demonstrate the ap-

plicability of the arbitrary crack propagation simulation on a different mesh,

Case 1 is simulated using a trigonal cell based mesh.

To this end, a mesh containing 8,186 cells was created using third party

meshing software. Figure 8 shows the final crack path and the mesh detail

close to the material interface. It can be seen that there is reasonably good

agreement in the crack path prediction between the perfectly orthogonal

hexagonal mesh originally investigated, Figure 6 (a) and the mesh presented

in Figure 8. Both simulations present the same gross features, crack propaga-

tion in material 1 to the interface followed by propagation along the interface

and finally penetration into material 2 at two locations along the interface.

However, the variation in crack path between the two cases demonstrates

the fact that the allowable crack propagation path is predetermined by the

mesh. Therefore care is still needed when meshing complex geometries to

ensure that the direction of crack propagation should be as independent of

the underlying mesh as possible. A systematic mesh refinement would be re-

quired for complex geometries where the possible crack paths are completely

unknown in order to determine a unique mesh independent solution.
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3.2. Case 2: E1 = 210 GPa, E2 = 420 GPa

In this case the Dundur’s parameters are non-zero and one can calcu-

late, α = 1/3, and β = 2/15. The corresponding critical ratio for cohesive

strengths is approximately 0.4. Therefore, one would expect to observe some

level of crack deflection into the interface below 0.4 with penetration of the

crack through the interface observed for any ratio of cohesive strength greater

than 0.4. An inspection of Figure 9 reveals that this is indeed the case. When

σint
max/σ

bulk
max = 0.5, no crack deflection at the interface is noted whereas for

σint
max/σ

bulk
max = 0.1 and 0.3 varying degrees of crack growth along the interface

is noted.

3.3. Case 3: E1 = 210 GPa, E2 = 630 GPa.

According to He and Hutchinson [15] the critical ratio for crack deflection

at the interface for E3/E1 = 3 is approximately 0.5. Figure 10 presents the

final crack paths for ratios of 0.2, 0.4 and 0.6 respectively. It can be seen that

below the critical ratio some crack growth along the interface is noted with

the amount of crack growth decreasing as the critical ratio is approached.

Above the critical ratio the crack penetrates the interface and no interface

crack growth is observed.

In all three cases investigated the total crack growth rate increases, Figure

11, as a result of entering the stiffer material. The onset of bifurcation occurs

slightly later in order to absorb the excess energy being delivered to the crack

front, at which point the global crack growth rate is observed to increase once

again.
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3.4. Case 4: E1 = 210 GPa, E2 = 105 GPa.

The corresponding Dundur’s parameters for this case are: α = −1/3,

β = −2/15. The critical ratio for crack deflection according to He [15] is

approximately 0.2. Figure 12 presents the final crack paths for ratios of

σint
max/σ

bulk
max of 0.1, 0.2 and 0.3 respectively. The crack growth for each of

these case versus time is given in Figure 13.

It can be clearly seen that when the interface cohesive strength is 10% of

the bulk cohesive strength the crack deflects into the interface and propagates

entirely along the interface. Unlike the case presented in 6 (b) the crack does

not penetrate material 2. This is because the energy requirements required

to advance the crack into the lower modulus material 2 are not met. The

crack length history curve in 13 indicates that the rate of crack growth is

barely retarded by deflection to the interface.

A comparison of the crack length history for σint
max/σ

bulk
max = 0.2 and 0.3

in Figure 13 indicates that the behaviour is not what might be intuitively

expected. It appears that the crack in 20% interface strength model retards

earlier, at ∆a = 1.32 mm, than for the 30% case, ∆a = 1.86 mm. Further-

more, crack arrests for longer in the 20% case than the 30% case. For the 20%

model, the crack propagates to the interface as before and is then deflected

into the interface where it propagates a small amount as shown in Figure 12

(b) before arresting. Continued crack growth in material 2 occurs at 0.0285 s

and no subsequent propagation is noted at the interface. In the 30% case the

initial crack grows, and penetrates the interface without retardation before

arresting 0.6 mm into material 2 by virtue of the fact that material 2 is more

compliant. Crack growth continues earlier than in the 20% case as the stress
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intensity factor is greater for the single crack tip than the branched crack at

the interface shown in Figure 12 (b).

The fact that there exists a certain preferential cohesive interface strength

between phases which promotes crack arrest in a composite material has

important ramifications for the design of structural composite materials. If

the interface strength is too low, the crack will quickly propagate along the

interface, too high and the crack will penetrate the second phase.

4. Conclusions

A finite-volume based multi-material arbitrary crack propagation proce-

dure developed in OpenFOAM was presented. Particular attention was paid

to the correct calculation of tractions at a multi material interface. The pro-

cedure was validated against a classic problem in the literature. The results

show that the procedure is capable of reproducing the predictions of He and

Hutchinson [15] for a crack approaching a bimaterial interface. It has also

been shown that the crack propagation path is influenced by the choice of

mesh since the crack can only propagate along the cell faces.

The importance of precisely understanding the role of the interface in

crack path selection has been demonstrated and it has been shown that

for given material combinations there exists a preferential interface strength

which maximises the ability of a composite material to successfully retard a

propagating crack.
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Figure 1: Critical ratio of interface strength versus bulk material strength for crack de-

flection versus crack penetration as a function of α. Data reproduced from [15]
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Figure 2: Polyhedral control volume (cell).
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(b) General form.

Figure 3: A cohesive zone model.
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Figure 4: Solution flow diagram for arbitrary crack propagation procedure.
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Figure 5: Geometry of the centre crack bi-material specimen.
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(a) σint
max = 0.1(σbulk

max). (b) σint
max = 0.2(σbulk

max). (c) σint
max = 0.3(σbulk

max).

Figure 6: Final crack paths for E1 = E2 = 210 GPa.

(a) 75 by 75 cells. (b) 150 by 150 cells.

Figure 7: Effect of mesh density on the final crack paths for Case 1.

Figure 8: Crack path predictions using a trigonal cell based mesh.
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(a) σint
max = 0.1(σbulk

max). (b) σint
max = 0.3(σbulk

max). (c) σint
max = 0.5(σbulk

max).

Figure 9: Final crack paths for E1 = 210 GPa, E2 = 420 GPa.

(a) σint
max = 0.2(σbulk

max). (b) σint
max = 0.4(σbulk

max). (c) σint
max = 0.6(σbulk

max).

Figure 10: Final crack paths for E1 = 210 GPa, E2 = 630 GPa.
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Figure 11: Crack length history for E1 = 210 GPa, E2 = 630 GPa and σint
max/σ

bulk
max = 0.2,

0.4 and 0.6.

(a) σint
max = 0.1(σbulk

max). (b) σint
max = 0.2(σbulk

max). (c) σint
max = 0.3(σbulk

max).

Figure 12: Final crack paths for E1 = 210 GPa, E2 = 105 GPa.
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Figure 13: Crack length history for E1 = 210 GPa, E2 = 105 GPa and σint
max/σ

bulk
max = 0.1,

0.2 and 0.3.
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