
Journal of Engineering Design
iFirst, 2012, 1–28

Formal modelling of technical processes and technical process
synthesis

Tino Stankovića*, Mario Štorgaa, Kristina Sheab and Dorian Marjanovića

aFaculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb, Croatia;
bEngineering Design and Computing Laboratory, Department of Mechanical and Process Engineering,

ETH Zurich, Zurich, Switzerland

(Received 4 October 2011; final version received 14 August 2012)

The computational design synthesis approach considered in this paper, proposes directed multigraph and
graph grammar-based models of technical processes and technical process synthesis.The theory of technical
systems, which is adopted as a theoretical foundation for this work, assumes a teleological viewpoint
bringing together the purpose of technical systems and fulfilment of customer demands and societal needs.
These demands and needs are met by means of a technical process inside which the operands are transformed
with the assistance of a technical system to achieve a desired state. Formal models of technical processes
and technical process synthesis establish the foundation for further application of search algorithms to
support early engineering design. The engineering knowledge about technical processes is provided within
a set of graph grammar rules. As the result of the proposed approach, the designer is enabled to consider
different operand transformations in an expedient fashion with the possibility of the generation of novel
alternatives. The proposed approach is illustrated through an example of the design of a stiffened panel
assembly line involving welding and riveting as two basic principles.

Keywords: theory of technical systems; computational design synthesis; graph grammars; formal
modelling; technical processes

1. Introduction

Technical evolution, with design as its principal activity (Simon 1996), can be understood as a
response to needs and requirements of human society, for which to be satisfied, assistance by
technical means is necessary (Asimow 1962). In a teleological sense, the justification for a partic-
ular technical system’s existence is enclosed within its purpose. Thus, engineering design implies
at least an acknowledgement of the socio-technical context that amongst others examines the
interactions between human operators, technical systems, and the environment (Asimow 1962).
These interactions define a technical system as being far from just a physical embodiment realised
with a disregard for its surrounding environment but that it contains the principles according to
which technical systems participate, or how and in what way they might be used, in the pro-
cesses of fulfilling various needs and requirements. For that matter, according to the systems

*Corresponding author. Email: tino.stankovic@fsb.hr

ISSN 0954-4828 print/ISSN 1466-1837 online
© 2012 Taylor & Francis
http://dx.doi.org/10.1080/09544828.2012.722193
http://www.tandfonline.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by FAMENA Repository

https://core.ac.uk/display/34008557?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.researchgate.net/publication/272088622_Sciences_of_The_Artificial?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4

2 T. Stanković et al.

theory (Gharajedagi 2011), the viewpoint of a single cause–effect relationship is extended by the
notion of plurality, which considers the possibility that systems in general may attain multiple
structures and exert multiple behaviour modes. Additionally, they can be run by, or participate
in, different processes. Rather like problem solving, the technical process in which a technical
system participates (Hubka and Eder 1992) is a transformation process, the execution of which
exerts purposeful change on the environment by transforming inputs to outputs. The plurality of
processes states that there might be numerous working principles by which that transformation
may be accomplished (Bertalanffy 1969). Thus, as its structure is not solely dependent on the
inputs and outputs, small changes in inputs may result in completely different outputs. Therefore,
the structure and behaviour of a technical system are interconnected with the technical process in
which it participates and supposedly propels. Both the modalities of a technical system’s usage
as governed by its operator and the various principles, whose combination accounts for the trans-
formations results in a satisfactory fulfilment of need, should be considered or at least, should be
acknowledged before the establishment of a technical system’s structure.

This work discusses and proposes formal modelling of technical process synthesis, which
according to the theory of technical systems (TTS) (Hubka and Eder 1992, 2002) initiates the
conceptual design phase, especially for novel engineering design. In abstracting the design process
as a spanning tree to show the transformation of the problem specification into a detailed technical
description through a series of design decisions (Andreasen and Hein 1987), the causality within
the design process is clearly indicated, emphasising the importance of the initial stages as they
effect significant alterations in the steps that follow. The formal modelling that is presented in
this work is intended to establish a foundation for the creation of a computational-based support
for designers in the technical process synthesis design phase. As such, this work also belongs
to the research area of computational design synthesis (CDS), in which there is a deficiency in
the support of technical process synthesis (as elaborated in Section 3). With respect to the CDS
generic framework (Cagan et al. 2005), this work addresses the representation and generation
steps of the formal synthesis procedure outlined. A formal system realised by means of a graph
grammar, encapsulating the engineering knowledge regarding working principles (technology),
is used to perform the synthesis of technical processes. It is expected that the formalisation of
technical process synthesis through the developed logical framework presented in this paper, will
allow currently available algorithms and search techniques to speed up and to make the solution
search process more thorough and efficient.

The motivation for proposing the formal model of technical process synthesis, as well as the
theoretical foundations, is discussed in Section 2 of this paper. Section 3 presents the state-of-the-
art of CDS. The most recent approaches tackling design and product development are compared
and analysed to show that almost none of these methods address transformation processes in gen-
eral or technical process synthesis in particular. The conclusions are drawn to justify the selection
of graph grammars for technical synthesis formalisation. Section 4 proposes a graph-based for-
mal model of technical processes, as well as a graph grammar-based decomposition procedure,
in order to conduct the synthesis of technical processes. An illustrative example is presented
that will show how through a series of graph grammar transformations sufficient information is
gained to understand and specify the function of the technical system. Discussion of the results
and recommendations for future work close the paper.

2. Design theory background

The TTS, the viewpoints of which are adopted as the design theory foundations of this research,
is concerned with studying technical systems as artefacts that are of a technical or engineering

https://www.researchgate.net/publication/200025939_General_System_Theory_Foundations_Development_Applications_London?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4

Journal of Engineering Design 3

nature (Hubka and Eder 1992). It also brings together how technical systems came to be with the
methods and processes that conceived and created them. Acknowledging the interactions between
the technical system, human operator, and the environment, the TTS models the socio-technical
context through the introduction of a technical process synthesis, inside which designers are urged
to reason about the possible ways and principles by which societal needs can be purposefully met
with the assistance of a designed technical system. With respect to the latter, a technical process is
defined as an artificial process in which the state of an operand is intentionally transformed under
the influence of effects delivered from a technical system, a human operator, and the environment
(Hubka and Eder 1992). Backed by the available state-of-the-art reviews on approaches to func-
tional modelling of technical systems (Erden et al. 2008) and design process activity structuring
(Sim and Duffy 2003), it can be concluded that the vast majority of design theoretical approaches
blur the distinction between technical processes and the functions of technical systems. Unlike
the transformation within a technical process, the transformation occurring within technical sys-
tems is performed solely by the technical system itself with the goal of delivering the necessary
effects to support the technical process (Hubka and Eder 1992, 2002). With respect to the latter,
the transformation within the technical system is conceived with the goal to realise the effects
necessary to make possible the transformation within the technical process. These effects are
the result of technology (working principles) that is based on the principles of the physical laws
used to structure the technical system. Thus, the task of a designer is to consider a number of
variants of technical processes based on different technological principles and to select the most
suitable variant that produces the required transformation of operands under some given set of
criteria. Here, the technology can be understood as a linking element that clearly puts into the
relation a purpose and a function of the technical system, with the latter being defined as the
capability to produce the necessary effects. It can be concluded that by omitting technical process
synthesis from the design process, valuable information, such as modes of user-product inter-
action or technological principles, by which the technical system is driven and correspondingly
the function of the technical system is conceived, can be overlooked and realisation possibilities
left unexplored.

2.1. Synthesis of technical processes

Synthesis of technical processes is carried out by the decomposition of higher-level sub-processes,
inside fixed systems boundaries, resulting in a growing number of primitive elements, i.e.
operations, interconnected with flows (Figure 1).

The object that is undergoing the transformation in the technical process is regarded as an
operand (see Figure 1); a passive member in the technical process that is the subject of both struc-
tural and behavioural changes. Depending on the selected available technologies, which differ in
the principles by which the change of the operand’s state is performed, the designer decomposes
the high-level processes into sub-processes and operations, in order to obtain more detailed trans-
formation sequences. In terms of TTS, applying a technology is always considered together with
the assistance of the supporting technical systems, which is realised by providing various effects
to sustain the transformation (Figure 1). As required by the applied technology, the additional
secondary inputs (disturbances) and resulting outputs may appear as well. Decomposition lasts
until the designer gains sufficient insight to grasp all of the relevant aspects, clearly identifying
the functional requirements of the technical system that will have to be designed.

Although the decomposition of the technical processes at first glance may appear as purely
analytical, to obtain the technical system function specification also requires synthesis. Namely,
the establishment of the technical processes involves decomposition, but to perform this, a struc-
turing of the technical process is necessary. The definition of a system’s structure is a synthetic

https://www.researchgate.net/publication/225764396_Towards_an_ontology_of_generic_engineering_design_activities?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4

4 T. Stanković et al.

Figure 1. Decomposition of technical process.

activity (Simon 1996), which in the case of the technical processes, occurs at every level of the
decomposition process: the determination of operations with necessary effects based on selected
technological principles, the setting up of the system boundaries and the relating of the operations
with operand flows in different states are all required to specify the transformation process. It can
be said that the analytic part of the technical process decomposition is concerned with the insights
by which the function of the technical system is determined, but to attain these, a transformation
process synthesis is required at each and every step of decomposition.

3. State-of-the-art review on CDS

CDS is a complex multidisciplinary research area that involves the algorithmic creation of designs
using computers and often includes a formal approach to design and design space modelling
(Cagan et al. 2005).Advanced computational techniques and search algorithms are used to conduct
efficient search across the design space, in order to provide a foundation on which designers can
make well-informed decisions. A summary of the state-of-the-art of recent CDS approaches for
the early product development phase is given in Table 1. The columns in the table are organised
to show the scope and theoretical foundations of each of the approaches analysed, as well as
how it managed to realise the four generic steps involved in the formal synthesis process, i.e.
representation, generation, evaluation, and guidance (Cagan et al. 2005). The bracketed entries
in scope columns of Table 1 denote the required inputs for the synthesis approach to operate.

Another view by which CDS methods and tools may be differentiated is according to their
general approach to computational problem solving (Goldstein and Papert 1977): method and tool
development may be founded on the design of better mathematical algorithms, search techniques,
and computational paradigms (e.g. parallel processing), or through an epistemological approach
that looks for better ways to express, recognise, and use diverse and particular forms of knowledge.
Therefore, a non-strict division could be applied to Table 1 with the result that the analysed
approaches in rows 1–10 are in fact knowledge based, whereas the approaches in rows 11–14
rely on mathematical algorithms and search techniques. The non-strictness of the division is to
emphasise that approaches that are, for instance, agent based (row 13 in Table 1), depend on
emergent complex behaviour that is not explicitly algorithmic nor knowledge based.

https://www.researchgate.net/publication/272088622_Sciences_of_The_Artificial?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/222457794_Artificial_Intelligence_Language_and_the_Study_of_Knowledge?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4

JournalofE
ngineering

D
esign

5

Table 1. Overview of CDS methods and tools.

Scope Realisation of CDS steps

Design Technical Function Organ structure/ Components/ Architecture/
Authors Method theory process structure behaviour structure platform Representation Generation Evaluation Guidance

1 Bolognini
et al.
(2007)

Computational
synthesis
for MEMS
design

X CNS
Graph

Rule-based
spatial
graph trans-
formations

Pareto multi-
objective

CNS-BURST
with non-
domination
principle

Simulation
driven per-
formance
metrics

2 Lin et al.
(2009)

Automated
gearbox
synthesis

X Graph,
Power flow

paths

Spatial
grammar

Multi-
objective,
multiple
weighting
factors

Past perfor-
mance rule
selection

Simulated
annealing
SA

3 Schmidt
and
Cagan
(1997)

GGREADA Pahl and
Beitz

X X Function
structure

Graph
grammar

Performance
metrics
embedded
inside rules

Simulated
annealing
SAComponent

structure
Graph

4 Siddique
and
Rosen
(1999)

PFRS Pahl and
Beitz

X X X Function
structure

Graph
grammar

Sub-graph
isomor-
phism

Enumerative
PC/PSPV

Component
structure
Graph

Acceptance
grammar

(Continued)

6
T.Stanković

etal.

Table 1. Continued.

Scope Realisation of CDS steps

Design Technical Function Organ structure/ Components/ Architecture/

Authors Method theory process structure behaviour structure platform Representation Generation Evaluation Guidance

5 Starling
and
Shea
(2005)

Parallel
grammar for
simulation-
driven
mech.
design

Pahl and
Beitz

X X X FBS
Graph

Graph
grammar

Pareto multi-
objective
Simulation
driven per-
formance
metrics

Hybrid pattern
search

Structure
grammar

Simulated
annealing
SA

6 Schmidt
et al.
(2000)

Structure
synthesis of
mechanisms

X Labelled graph Graph
grammar

Powertrain
ratios on
basis of
labelled
nodes and
edges

Enumerative

Grammar
based rules
for iso-
morphism
detection

7 Jin and Li
(2007)

HiCED Pahl and
Beitz

X X Function
structure

GP tree
Binary string

Graph
grammar

Multi-
objective,
multiple
weighting
factors

Evolutionary
Building-

block
hypothesis
GP, GA

JournalofE
ngineering

D
esign

7

8 Wu et al.
(2008)

Bond graph,
CAD of
dynamic
systems

X X Bond graph Automated
mapping
from system
concept to
bond graph

Simulation
driven per-
formance
metrics

Evolutionary
Building-

block
hypothesis
GA

9 Helms and
Shea
(2012)

BOOGGIE
mechatronic
design
synthesis

Pahl and
Beitz

X X X FBS
Graph

Graph
grammar

Component
compat-
ibility

Enumerative

Simulation
driven

Performance
metrics
embedded
in rules

10 Wyatt et al.
(2012)

CAM toolbox
EPA

X X Schema Elementary
operations
applied to
schema

Constraint
based

Constraint-
based
Depth-first
search

Configuration
graph

11 Hutcheson
et al.
(2006)

Concept
Variant
Selection

Pahl and
Beitz

X Morphological
chart

Heuristics Multi-
objective,
multiple
weighting
factors

Evolutionary
Building-
block
hypothesis
GA

(Continued)

8
T.Stanković

etal.

Table 1. Continued.

Scope Realisation of CDS steps

Technical Function Organ structure/ Components/ Architecture/

Authors Method Design theory process structure behaviour structure platform Representation Generation Evaluation Guidance

12 Bryant
et al.
(2005)

Concept
Generator

Pahl and
Beitz

X X FCM Matrix algebra Component
occ.
frequency
based
ranking

Enumerative
Tree

Component
compati-
bility from
DSM

13 Campbell
et al.
(1998)

A-Design X Catalogue-
based
design

Agent-based
Heuristics

Pareto multi-
objective

Tabu-based
learning

14 Rihtaršić
et al.
(2010)

SOPHY TTS X X Schema Variation
of chains
of linear
expressions

Causality Enumerative
Physical

law, wirk
elements-
ports Semi-

automated
sketch
generation

Journal of Engineering Design 9

3.1. Formal grammars-based CDS approaches

A production system is a formal system designed to perform transformation of a certain input to a
particular output, using a set of condition-action rules that can be applied whenever conditions to
do so have been met (Levet 2008). Initially, Post’s (1943) production systems transformed strings
as sequences of symbols belonging to a specified fixed vocabulary. These are found extensively in
linguistic theory for establishing formal grammars, because they are a type of production system
capable of describing linguistic structures, thus formalising the language under consideration
(Chomsky 1957). Formal grammars became widespread in other domains, such as: theory of
computation, artificial intelligence, automated problem solving, image processing, resulting in
the development of formal systems that are able to accept and transform more varied types of
structures, including terms, trees, and graphs.

3.1.1. Shape and spatial grammars

The use of formal grammars for architecture and visual arts applications was first presented by
Gips and Stiny (1980), who developed shape grammars as a production system that specifies a set
of design solutions called a language, by the transformations required to generate that set. Shape
grammars assume the transformation of shapes, which involves recognition of sub-shapes and their
replacement with new shapes. To help specify the context of the productions, a marker is commonly
used to denote the replacement origin. If required for the purpose, the labelling of shapes may be
applied as well. With respect to engineering design and product development, shape grammars are
most commonly applied to support topological synthesis in the design phase, e.g. shape annealing
arising by unifying shape grammars with a simulated annealing algorithm (Shea 1997, Shea and
Cagan 1998). These were successfully applied for solving the topological optimisation problems
of truss structures involving both in-plane and in-space problems. Also, a series of industrial
design papers attempted to identify brand style features and then generate solutions using these
specific styles embedded within grammar rules; this research being predominantly motivated for
vehicle applications (Pugliese and Cagan 2002, McCormack and Cagan 2004).

An interesting approach is the one developed for computational support of simulation-driven
microelectromechanical system (MEMS) synthesis (Bolognini et al. 2007). A connected-node
system (CNS)-Burst method was developed as a combination of a CNS, which is in fact a
hypergraph-based representation of the MEMS system and a multi-objective generate and test
search algorithm, called Burst. The search principle is based on the procedure where the CNS
modification operators are applied in short bursts to the current system’s layout. Frequencies of
modifications are user-defined. A special evaluation module was designed to obtain performance
metrics of the created system, by which a non-dominated solution population is identified.

A spatial grammar-based method for gearbox synthesis was developed by Lin et al. (2009). The
component structure is represented using a virtual graph consisting of gear pairs and shafts, which
depicts a power flow inside the gear-box. The system topology and geometry transformations are
derived by following a set of spatial grammar rules inside a simulated annealing search process.
Grammar rules are ranked according to the performance of the design they created.

3.1.2. Graph grammars

Graph grammars are defined as production systems consisting of vocabulary and a set of rules
for implementing graph transformations. As either vertex or edge replacing, the productions
must contain some additional embedding procedures through which the inserting structure is
integrated with the remainder of the graph’s structure. Most commonly, these procedures include

https://www.researchgate.net/publication/222022605_Speaking_the_Buick_Language_Capturing_Understanding_and_Exploring_Brand_Identity_with_Shape_Grammars?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/225759547_Capturing_a_rebel_Modeling_the_Harley-Davidson_brand_through_a_motorcycle_shape_grammar?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/261288920_Essays_of_Discrete_Structures_Purposeful_Design_of_Grammatical_Structures_by_Directed_Stochastic_Search?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/272087448_Syntactic_Structures?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4

10 T. Stanković et al.

edge reconnection or node labelling to provide guidance for the matching. Schmidt and Cagan
(1997) developed a graph grammar-based machine design algorithm (GGREADA). Built on
the foundations of the function to form recursive annealing design algorithm (FFREADA) that
uses a string of symbols to generate hand drill designs, GGREADA uses graph grammars to
generate concepts using components based on Meccano� parts. GGREADA is a mixture of
configuration and catalogue selection design. Function-to-form transformation is realised top-
down with components realising product functions. Also, function-sharing was implemented to
allow for one component to realise several functions. GGREADA uses simulated annealing to
recursively evolve a product on both function and component levels. The objective function uses
multiple weighting factors.

Siddiqque and Rosen (1999) applied graph grammars to develop a product family reasoning
system to assist in the design of product platforms. Two questions were addressed: how to establish
a common platform for a set of different products and conversely, how to specify the product
portfolio supported by the platform. By using sub-graph isomorphism to recognise similarities
in the products’ structures, common functions are identified. Based on this, production rules are
defined to generate a variety of product function structures, which are then mapped to components
containing function-to-component relationships. To address the second question, an acceptance
type grammar was applied to parse the product architectures, in order to see whether they fitted
the language of the specific product family. A different domain approach, which also involved
detection of similarities among graphs, was developed for the automated synthesis of epicyclical
gear trains (Schmidt et al. 2000). Graph grammars are used to add vertices and loops to the
initial start graph. By processing the vertices and edge labels to interpret the resulting structure,
the desired gear transmission ratio is obtained. Additional graph grammar rules are added for
identifying isomorphic graphs to produce unique solution variants only.

A parallel grammar for mechanical design synthesis was developed by Starling and Shea (2005),
to investigate the feasibility of the simulation-driven environment, in order to produce better qual-
ity designs. To achieve this, a cross-domain modelling language Modelica� inside Dymola� is
used to obtain the simulation results. Precompiled simulation executables are used that only
required a parameter value update within the input files. A parallel grammar is established based
on the function-behaviour-structure (FBS) product representation (Umeda et al. 1996). Two types
of rules are applied: function-grammars, which generate function structure using predefined
building-blocks and structure-grammars, which then create parametric component structure as
a simulation starting point. The Pareto optimal set is identified using a hybrid pattern search
algorithm.

A good example of how to tackle the problem of computational concept generation using gram-
mars was presented by Jin and Li (2007). A hierarchical co-evolutionary design approach assumes
iterative co-evolution of products on different abstraction levels. First, based on the knowledge
stored inside a rule library, an initial population of functional decompositions is created. Then,
genetic programming and a genetic algorithm are triggered to co-evolve the products’ functions
and components as functional means. Functional and component structures are represented as
simple flow graphs. The fitness function is formulated using weighting factors.

Wu et al. (2008) developed a systematic approach for an automated design of mechatronic
dynamic systems based on bond graph formalisms. It is a simulation-driven approach, which
requires a conceptual definition of a dynamic system as an input to define a state space.
For this purpose, a conceptual dynamics graph is introduced, which represents information
about the relationships between the components of a system. Generic models of components
having various types of connection possibilities are stored within a repository. A dynamic
model of a system represented with state-space equations is automatically generated out of
the defined concept using bond graph transformations with user-defined goals. Optimisation is
performed using a real-valued genetic algorithm with an individual solution genotype derived

https://www.researchgate.net/publication/215623145_A_Graph_Grammar_Approach_for_Structure_Synthesis_of_Mechanisms?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/228979560_Bond_Graph_Based_Automated_Modeling_for_Computer-Aided_Design_of_Dynamic_Systems?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/267650146_A_Parallel_Grammar_for_Simulation-Driven_Mechanical_Design_Synthesis?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4

Journal of Engineering Design 11

based on a hierarchical representation of the component design rules, constraints, and physical
laws.

A recent framework that brings object-oriented graph grammars into engineering is developed
according to the FBS product model (Helms and Shea 2010, 2012). The framework considers
mainly the top-down approach of automatically decomposing the product on all three levels of FBS
to generate, for example, alternative hybrid powertrain concepts. An object-oriented meta-model
is used incorporating the different levels of abstraction, i.e. FBS, and defines interconnections
between vocabulary, both within one level and between levels, based on the definition of ports.
The definition of ports enables the use of generic rules at all levels, which are independent of the
vocabulary definition, through port matching, in addition to allowing the graphical description of
application specific graph rules.

3.2. Other approaches in CDS

An approach to computationally explore possible architectures (EPA) was developed by Wyatt
et al. (2009, 2012) and implemented as a part of Cambridge advanced modeller toolbox. The
basic principle of EPA claims that for any given initial architecture, any other architecture of
that product is reachable through a state-space search process, by carrying out a sequence of
transformations. Therefore, a designer using a graphical modelling language defines a schema
as a graph composed of a finite set of different relations, components, and logical constraints.
The schema logically frames an architecture state space. Using a depth first search, elementary
transformations on the initial product architecture are executed and then tested against the proposed
schema. Two evaluation metrics are changeability to represent immunity to change propagation
and designability to show a required design effort.

The problem of generating optimal concepts out of a morphological chart was reduced to a
combinatorial genetic algorithm-driven approach by Hutcheson et al. (2006). The approach only
dealt with problems having a number of functions for which it was meaningful to represent
their relationship inside a simple chain. When considering more complex structures, the user
had to compose the function structure in such a manner that the overall structure is reducible
into a series of function chains. For the creation of functional models, it was proposed to use
a standard taxonomy as defined by the National Institute of Standards and Technology of USA
(Stone and Wood 2000). The validation of the solution principles is performed by the energy flow
compatibility check with the search objective formulated as a weighted fitness function.

A similar approach was undertaken with the Concept Generator, which is a computational tool
developed by Bryant et al. (2005), intended to create design solutions by establishing a mapping
from a predefined function structure to components using matrix algebra. Solutions are generated
on the basis of a web-based repository of function-to-component matrices (FCM). The FCM shows
those technical solutions that can realise a given function and design structure matrices (DSM)
in which the component-to-component compatibility with respect to energy flows is defined.
Ranking is achieved by comparing the frequency of occurrence of the components inside the
generated solutions, with the data gathered from over 70 consumer products.

A somewhat different approach was presented with A-Design (Campbell et al. 1998), which
included a collection of software agents to create meaningful solution concepts out of a com-
ponent catalogue. Different agent types are developed: configuration agents that perform an
interface-based connection of components managed by an input–output type compatibility check,
instantiation agents the duty of which is to retrieve new components from the catalogue and frag-
mentation agents that segmented solutions and preserved them to be improved in later iteration
steps. Based on their merit of performance, a manager agent determined those agents that would
cooperate with a bit of randomness included, to avoid local optima. Learning was achieved in a

https://www.researchgate.net/publication/237044161_A_Computational_Method_to_Support_Product_Architecture_Design?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/237044161_A_Computational_Method_to_Support_Product_Architecture_Design?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/245910108_Development_of_a_Functional_Basis_for_Design?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4

12 T. Stanković et al.

process similar to the Tabu search algorithm; designs were identified as Pareto optimal and as
good or bad and were stored as such. The user had a chance to affect the evolution course adapting
it to their own preference so that the created designs successfully met the criteria.

SOPHY, which stands for a synthesis of physical laws (Rihtaršić et al. 2010), is a tool aimed
at supporting designers by generating a sketch of a concept, clearly depicting the working prin-
ciple on which that concept is based. A similar approach based on a chaining of equations was
utilised some years ago for the development of mechatronic systems (Weber 2005). The pro-
cess of sketch generation is performed with the designer’s assistance, using predefined physical
law-based schemas, which are coupled into a complete concept.

3.3. Discussion on state-of-the-art review

What is clearly visible from the presented analysis (Table 1) is that most of the CDS approaches for
the support of the early design phase use graph-based representations and graph-grammar-based
solution generation as an established principle. Almost all of the design theories model high-level
product representations as systems that are often formally and visually represented as graphs, i.e.
function structures, process flow diagrams, and so forth. Taking the latter with the possibilities of
formal grammars to efficiently capture the knowledge on graph transformations (Kreowski et al.
2006), it becomes clear that the graph grammars are suitable formalisms for the modelling of
technical process synthesis.

As shown in Table 1, the highest level of abstraction, according to TTS, from which the recent
CDS approaches are able to provide support, is the functional level of product abstraction making
no reference to technical processes or transformation systems at all. The methods analysed most
often address only the technical system’s functions and their realisation by a catalogue-based
selection of components, or the methods deal only with the establishment of a component structure,
i.e. a system’s architecture design. The way in which a technical system participates in the technical
process in order to fulfil its purpose by delivering effects necessary for operands transformation
is not the focus of the analysed methods.

4. Formal modelling

This section offers a formal model of technical processes and technical process synthesis. To be
able to describe the transformation process, a labelled directed multigraph is selected. This partic-
ular graph type is selected to provide sufficient semantic richness necessary for technical process
modelling. Operands, effects, and operations are associated as labels to the graph’s elements, i.e.
operations to vertices, operands, and effects to directed edges. Multiple edges between nodes
account for operand flows in order to express the operand transformation process.

The engineering knowledge about technical processes synthesis, including technological prin-
ciples and the effects necessary for technical process realisation, are formalised within a graph
grammar that enables a rule-based transformation mechanism to achieve synthesis of a technical
process. Formalisation of part of the TTS, to show that engineering design synthesis is in the
early phase of conceptualisation can be performed computationally, is the key contribution of this
paper, both in design theory as well as in the field of CDS.

Rule-based transformation of graphs used in this work is understood as performing a local
change to the graph’s structure under the conditions given by a production rule p : L → R
(König 2004, Ehrig et al. 2006, Kreowski et al. 2006). The basic procedure of the transfor-
mation algorithm, to decompose a sub-process into a chain of operations using a production rule
p, is shown in Figure 2:

https://www.researchgate.net/publication/37684948_Analysis_and_Verification_of_Systems_with_Dynamically_Evolving_Structure?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/228612124_Some_essentials_of_graph_transformation?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/228612124_Some_essentials_of_graph_transformation?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/228612124_Some_essentials_of_graph_transformation?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4

Journal of Engineering Design 13

Figure 2. Example of transformation algorithm to perform a TP decomposition step under the production rule p.

The production p is defined by the terms of its left-hand side L, specifying the element of a
technical process structure that will be replaced, i.e. process or sub-process. The right-hand side R,
specifies the decomposed structure, i.e. a sub-graph consisting of sub-processes and operations that
will be inserted and reconnected into the technical process (TP) structure (Figure 2). In addition to
the production rule definitions that account for the formalised knowledge on technical processes,
the transformation algorithm must involve the definition of matching procedures, because L from
p : L → R must be identified in G and the specification of connecting procedures must be defined
as well, to integrate R into the structure of G after L has been subtracted.

4.1. Modelling of technical process

Multigraphs are considered as non-simple graphs in which multiple edges between vertices, i.e.
nodes, are allowed but no loops are permitted (Rosen et al. 2000, Weisstein 2009). In general,
a multigraph G, can be defined as an ordered pair (V , E), where V is a set of nodes and E is
a multiset of edges. To formally model technical processes, it is necessary to introduce related
technical process entities, namely operands, effects, and operations into a graph’s structure. Hence,
operations are mapped to the graph’s nodes and operands and effects are mapped to the arcs. The
definition of a set of TP entities �G is given as follows:

Definition 1 A finite non-empty set of TP entities is defined as �G = �Od ∪ �Eff ∪ �Op, where
�Od denotes a set of operands Od ∈ �Od, �Eff is a set of effects Eff ∈ �Eff and �Op is set of
operations Op ∈ �Op.

Definition of TP entities provides meaning to the multigraph structure. Thus, the operands are
the subject of transformations within the technical process. The TTS recognises three classes of
operands: materials and object of biological origin, energy, and information. The transformation
within the operations affects the properties of the operands, such as structure, form, or position
in space and time. These operations are supported by the effects, i.e. any action or means that are

https://www.researchgate.net/publication/238208070_The_CRC_Concise_Encyclopedia_of_Mathematics?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4

14 T. Stanković et al.

Figure 3. An example of TP modelled by G with TP entities.

required to sustain the operation, delivered from the technical system and human operator by that
describing a human–machine interaction and clearly specifying the function of technical system.
If �G is understood as an alphabet, then a multigraph G can be defined over �G as follows:

Definition 2 A multigraph G defined over alphabet �G is represented as an ordered tuple
G = (V , E, s, t, lE , lV) where:

• V is a finite non-empty set of vertices,
• E ⊆ {(u, v)|u, v ∈ V ∧ u �= v} is a finite non-empty bag of directed edges e,
• s : E → V is a mapping, which for each edge e assigns a source vertex u,
• t : E → V is a mapping, which for each edge e assigns a target vertex v,
• lE : E → �Od ∪ �Eff maps for each edge e an operand or an effect,
• lV : V → �Op is a mapping, which for each vertex v assigns an operation.

Figure 3 shows an arbitrary structure of technical process. Operands Od1, . . . , Od7 can be
understood as operands of different types (classes), or as operands of the same type but in varying
states. Some of these operands may be the operands of the transformation that directly satisfy the
existent users’ needs and some may emerge as secondary, as required or generated by the trans-
formation system. Operations OP2 and OP3 are performed in parallel, thus creating a sequence
when coupled together with OP1.

The vertices labelled in and out are added to a graph’s structure to represent flows crossing
the system border. The eff vertex accounts for the source of the effects (i.e. human operator and
technical system) within the transformation system. According to the TTS, for all operations
to be executed, the effects are a necessary condition. However, a formal model, as considered
in our research, allows that the effects are not specified over each and every operation, which
assumes that the designer does not know in advance all of the necessary effects required to sustain
the transformation within the technical process, e.g. black-box abstraction of the problem. The
interpretation is as follows: if an effect already exists (e.g. Eff1 in Figure 3), then it must be
obeyed when applying the production rules, otherwise eff can be left isolated. Thus, the following
definition introduces additional constraints that have to account for the formal modelling of the
technical processes:

Definition 3 A labelled directed multigraph G = (V , E, s, t, lE , lV) is a formal model of technical
process iff (if and only if) the following is satisfied:

• |V | ≥ 4 with the following conditions for vertices:
◦ ∃1v ∈ V |lV (V) = in
◦ ∃1v ∈ V |lV (V) = out
◦ ∃1v ∈ V |lV (V) = eff

Journal of Engineering Design 15

• restrictions to edges:
◦ �e ∈ E|lV (t(e)) = in
◦ �e ∈ E|lV (s(e)) = out
◦ �e ∈ E|lV (t(e)) = eff

• G has to be well connected.

To clarify Definition 3, the number of vertices being greater or equal to four implies the
existence of at least one operation within the technical process, which exerts a transformation
on the operands. Additionally, there must be exactly one of the in, out, and eff-labelled vertices.
Restrictions to the edges define the roles of the in, out, and eff-labelled vertices, which are to
supply the input operand flows (in), to accept the output flows (out) and to provide the effects
(eff). Finally, the well-connectedness states that there are no isolated graph areas to perform
operand transformations independently of the main transformation.

4.2. Matching procedure

In order to be able to perform a graph grammar transformation using productions p : L → R, the
mechanism, i.e. a match of m(L) in G, has to be defined (Ehrig et al. 2006, Kreowski et al. 2006).
The result of matching is the identification of a sub-process L inside a technical process G. Thus,
if found in G, L is formally a sub-graph of G the definition of which is given as follows:

Definition 4 Let G� be a finite set of all possible graphs that can be constructed over the
alphabet of technical processes �G, then a graph C ∈ G� is called a sub-graph of H ∈ G� ,
if and only if the following conditions are satisfied: VC ⊆ VH , EC ⊆ EH , sC(e) = sH(e), tC(e) =
tH(e), lEC (e) = lEH (e), lVC (u) = lVH (u) ∀e ∈ EC ∧ u ∈ VC.

Definition 4 states that if a graph is also a sub-graph of another graph, then the former must
match: its structure, nodes and directed edges, and its labelling, i.e. operations, effects, and
operands. Building on the latter, it is possible to define a structure that preserves mappings over
the G� by providing means to structures match. Matching assumes respecting the contact condi-
tions – the identity of TP entities, including both lE : E → �Od ∪ �Eff and lV : V → �Op through
which operands, effects, and operations have been assigned to the directed edges and vertices.
The following gives the definition addresses of the contact conditions of a structure-preserving
mapping:

Definition 5 For graphs C, H ∈ G� , a mapping m : C → H is a pair of structure preserving
mappings mV : VC → VH and mE : EC → EH such that the following holds:

1) ∀e ∈ EC − (e|lEC (sC(e)) ∈ {in, eff} ∧ lEC (tC(e)) = out) ∧ u ∈ VC − u|lVC (u) ∈ {in, out, eff}:
◦ mV (sC(e)) = sH(mE(e)), mV (tC(e)) = tH(mE(e))
◦ lEH (mE(e)) = lEC (e), lVH (mV (u)) = lVH (u)

2) ∀e ∈ EC |lEC (sC(e)) = in:
◦ mV (tC(e)) = tH(mE(e)), lEH (mE(e)) = lEC (e)

3) ∀e ∈ EC |lEC (tC(e)) = out:
◦ mV (sC(e)) = sH(mE(e)), lEH (mE(e)) = lEC (e)

4) iff ∃e ∈ EC |lEC (sC(e)) = eff:
◦ mV (sC(e)) = sH(mE(e)), lEH (mE(e)) = lEC (e)

The definition of connection conditions for all operations and edges, which do not interact with
in, out, and eff labelled vertices is given by (1). Directed edges that model the operand input to

https://www.researchgate.net/publication/228612124_Some_essentials_of_graph_transformation?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4

16 T. Stanković et al.

the transformation are addressed with (2). The source of input flows is not being taken into the
consideration by condition (2) as it will be dependent on the connecting procedure as defined in
Section 4.5. Similarly, (3) applies for the outgoing operand flows with their target left open to be
determined by the connection procedure. Finally, the effects are addressed by condition (4) which
applies only if the effect exists. Again, for the effects, the same assumptions hold as in Definition
3. If the effects are specified inside the production rule p, then the source and label are conserved,
whilst the target depends only on the contents of the right-hand side of the production. Given
Definitions 4 and 5, a match of L in G can be defined with the following:

Definition 6 A match of L in G is found by the existence of m : L → G with m(L) ⊆ G, thus
satisfying connection conditions in Definition 5.

The match of L in G is defined to support an arbitrary number of operations. However, it is
important to stress that the match applied for the production rule will always correspond to only
one operation vertex that will be identified in G. The right-hand side of the rule, R, can have
more than one Op. The graphical interpretation of matching m(L) within the first stage of the
transformation algorithm can be seen in Figure 2.

4.3. Graph grammar of technical processes

A rule p application results with technical process or sub-process decomposition. Driven by a set
of production rules p, matching procedures m, and connecting procedure ρ (see Section 4.5), it
is possible to traverse between any two points in the technical process decomposition synthesis.
The following definition formally states this point:

Definition 7 Using alphabet � ⊆ �G, as the graph is labelled over �G and taking a finite
non-empty set of production rules p : L → R, then for every existing match m : L → G a direct
derivation can be established as G

p,m,ρ=⇒ H.

The terminals symbols are determined as the symbols for which no more decomposition can
be found in TP grammar. Thus, what can be stated is that the terminal graph structure will
contain terminal TP entities � ⊂ �G as the graph is labelled over �G. Hence, terminal entities
are operations from �Op. All graphs composed of terminals are defined as G� ⊂ G� .

Definitions 8 and 9 define the graph grammar of the technical processes and in that respect,
a formal language of the technical processes as a set of all possible technical process variants
defined in G�:

Definition 8 A graph grammar of technical processes GG is defined as an ordered triplet GG =
(S, PG, �), with S ∈ G� as starting symbol, PG as a finite non-empty set of productions p ∈ PG

of type p : L → R and alphabet � ⊆ �G over which graph is labelled.

Definition 9 A language of technical processes LTP generated by graph grammar GG is
a set of graphs G ∈ G�, which can be derived according to GG = (S, p, �) as LTP(GG) =
{G|G ∈ G�, S ⇒∗

GG G} (the asterisk denotes derivation sequence).

4.4. Context-free language of technical processes

According to the literature (Kreowski et al. 2006), if a string is composed as a sequence of symbols
a1a2a3 . . . an, n ∈ Z, |a| = 1, with symbols being elements of some given alphabet an ∈ �, then it

https://www.researchgate.net/publication/228612124_Some_essentials_of_graph_transformation?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4

Journal of Engineering Design 17

Figure 4. Example of the string grammar derivation process and corresponding graph grammar derivation (in, out, and
eff vertices omitted).

is possible to construct a string graph consisting of n + 1 nodes and n edges. Similarly, the gram-
mar of technical processes GG applied for technical process synthesis modelling could be related to
string grammars as well. Furthermore, if each of the graph nodes with inbound and outgoing flows
is mapped to a symbol, i.e. token, then a graph grammar GG can be represented as a string context-
free grammar, written in the Backus–Naur form (BNF) (Naur 1963) providing the transformation
algorithm and the connecting procedures. Mapping a token to a graph operation assumes the reuse
of the node labelling in �Op, which has already been applied in the multigraph G definition (see
Definition 2). Each derivation step in the context-free grammar has to correspond to one decom-
position step of the technical processes in the graph grammar. The motivation for introducing a
string grammar can be justified as it eases the determination of the structure-preserving mapping,
because it provides the layout followed by graph grammars when decomposing the technical
process. The latter implies that m(L) is easily resolved by referring to the corresponding an ∈ �.
Furthermore, the introduction of string grammars enables a straightforward application of heuris-
tic search algorithms, which operate by string building-block recombination, such as BNF and
genetic algorithm-based grammatical evolution (O’Neill and Ryan 2001). An example of string
grammar derivation and its corresponding graph grammar derivation is depicted in Figure 4:

The left-hand side of Figure 4 shows a derivation tree of the context-free string grammar
(CFG). Decompositions of TP and SubTP1 performed by CFG production rules are accompanied
by graph grammar GG connecting together OP2 and OP3 with OP1. As an example of connecting
procedures, on the right-hand side of Figure 4 (derivation Step 2) it can be clearly seen how
operand Od3 enters the transformation from outside the system as a secondary input required
to feed OP1. After decomposing sub-process SubTP1, operation OP3 manages to supply the
OP1, thus eliminating the unnecessary secondary flow. However, to succeed in the transformation
operation OP3 requires a supporting effect provided by the human operator or technical system.
The context-free grammar of technical processes CFGTP and its language of LTP = LTP(CFGTP)

are defined as follows:

Definition 10 A context-free grammar of technical processes CFGTP expressed in BNF is a
quadruple (�s, Vs, Ss, Ps) where: �s ⊂ �Op is a finite non-empty set of terminals belonging to
operations, Vs ⊂ �Op is a finite non-empty set of non-terminal symbols or variables satisfying

https://www.researchgate.net/publication/245473112_Revised_Report_on_the_Algorithmic_Language_ALGOL_60?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4

18 T. Stanković et al.

�s ∩ Vs = ∅, SS, is a starting symbol or axiom with Ss ∈ Vs, and Ps is a finite non-empty set
of production rules of the type ps : a → b where: a ∈ Vs and b ∈ (�s ∪ Vs)

∗ (here the asterisk
denotes the set of all possible combinations).

Definition 11 A formal language LTP = LTP(CFGTP) generated by grammar CFGTP =
(�s, Vs, Ss, Ps) is defined as LTP(CFGTP) = {ω|ω ∈ �∗

s , Ss ⇒∗
CFGTP

ω}.

Finally, it is important to stress that the graph grammar inherits the orderings of operations Op
as prescribed by the CFGTP generated a1a2ai · · · an string, thus making the connecting procedure
ρ not completely invariant.

4.5. Transformation algorithm and connection procedure ρ

The transformation algorithm for the synthesis of the technical process represented over graph
G = (V , E, s, t, lE , lV) and under the set of production rules p : L → R and connecting procedure
ρ, is given as follows:

• First, according to the p : L → R, a match of process or sub-process L has to be identified
in technical process G. The decomposition is always performed by replacing only a single
process or sub-process with the structure in R consisting of an arbitrary number of operations
and effects.

• Let uOp = m(L) such that L � uOp ∈ G, uOp|lV (uOp) ∈ �Op meaning that this particular single
process or sub-process is present both in the left-hand side L of rule p and in the TP as G. An
intermediate structure G− = G − uOp is then created by subtracting TP of uOp. The result is a
number of dangling edges, either one of these edges is deprived of only one source or target
but not of both at the same time. These flows eG−

i
are collected into interfaces set by satisfying

the following: EG−
i

= {(u, nil) ∨ (nil, u)|u ∈ VG−}.
• Using the effect deleting function DelEff (G−, EG−

i
), all the effects eG−

Eff
∈ EG−

i
satisfying

lVG(s(eG−
Eff

)) = eff are deleted from G− and EG−
i

as they will all be provided by R.
• As the right-hand side R of the production rule p also complies with Definition 2, R has to

be deprived of all in and out vertices thus R− = R − VTrfS , with VTrS = {uR ∈ R|lVR(uR) ∈
{in, out}}. The interfaces eR−

i
∈ R− resulting from the subtraction are collected as ER−

i
=

{(u, nil) ∨ (nil, u)|u ∈ VR−}.
• The effects eR−

Eff
∈ R− are collected as well to be used for further matching as ER−

eff
=

{((uR−|lV−
R
(uR−) = eff), vR−)|uR− , vR− ∈ VR−}.

• Furthermore, R− is deprived of the eff labelled vertex thus producing R− ← R − VEff , VEff =
{uR− ∈ R−|lV−

R
(uR−) = eff}.

• To proceed with the transformation, R−must be added to the G− resulting in G′
T ← G− + R−.

• To integrate R− in G′
T the expressions (1)–(3) comprising the connecting procedure ρ (see

the following page) have to be performed to complete the transformation. Matching of the
interfaces is regulated by the interface function Inter(eG−

i
, eR−

i
), which yields truth if both of

the following are satisfied:

lE(eG−
i
) = lE(eR−

i
) ∧ s(eG−

i
) = u ∈ VG− ∧ s(eR−

i
) = nil

lE(eG−
i
) = lE(eR−

i
) ∧ t(eG−

i
) = u ∈ VG− ∧ t(eR−

i
) = nil

(1)

If Inter(eG−
i
, eR−

i
) = true, then eG−

i
will take for source/target the operation v from R− for which

it holds the following v ∈ R−|s(eR−
i
) = v ∨ t(eR−

i
) = v. The interface reconnection procedure

Journal of Engineering Design 19

Table 2. Transformation algorithm.

Input: G, ps : α → β, p : L → R
Output: GT

1: uOp ← m(L); Identification of L in G
2: G− ← G − uOp; Subtracting L from G

3: EG−
i

i←− G−; Interfaces (flows) collected from G−

4: DelEff (G−, EG−
i
); Effects deletion from R

5: R− ← R − VTrfS in, out vertices deletion from R

6: ER−
i

i←− R−; Interfaces (flows) collected from R−

7: ER−
eff

← R−; Effects collected from R−

8: R− ← R− − VEff ; eff vertex deletion from R−
9: G′

T ← G− + R−; Inserting R− into G−

10 : compare each eG−
i

with each eR−
i

using Inter
(

eG−
i

, eR−
i

)
do

11 : if Inter
(

eG−
i

, eR−
i

)
then

12 : Reconn
(

eG−
i

, eR−
i

)
;

13 : delete eR−
i

from ER−
i

;
14 : fi
15 : od
16 : Copy(ER−

eff
, G−);

17 : foreach eR−
i

reconnect secondary flows using TrS(eR−
i
);

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

ρ

Reconn(eG−
i
, eR−

i
) is defined as follows:

Reconn(eG−
i
, eR−

i
) =

{
iff s(eR−

i
) = nil, t(eG−

i
) ← t(eR−

i
)

iff t(eR−
i
) = nil, s(eG−

i
) ← s(eR−

i
)

(2)

The effects collected within ER−
eff

are copied to G− using Copy(ER−
eff

, G−) to reconnect these to

eff source vertex in G− with proper operation v from R− that satisfies t(eR−
i
) = v. Finally, the

remainder in ER−
i

are secondary input/output flows and are reconnected to G− as follows:

TrS(eR−
i
) =

{
iff s(eR−

i
) = nil, u ∈ G−|lV (u) = in ← s(eR−

i
)

iff t(eR−
i
) = nil, u ∈ G−|lV (u) = out ← s(eR−

i
)

(3)

Transformation algorithm GT
ρ← G− + R− is given in pseudo-code in Table 2 (connection

procedure ρ is defined in lines 10–17):

5. Example

The purpose of the example is to show how technical process synthesis can be performed using
the formalisms proposed in the previous sections. The design task being considered is the design
of a stiffened panel assembly line. In order to perform the synthesis, the designer needs to gain
knowledge about the different working principles on which the transformation of operands can be
performed for this particular task as well as the necessary effects needed that should be provided in
order to sustain the different transformations. Depending on the required effects for the different
possible transformations (technology, working principles), the conceptual design of an assembly
line involves solutions that may result in a multitude of different technical systems included as

20 T. Stanković et al.

a part of the assembly line. Plates and stiffeners welded or riveted together are two working
principles for joining structural parts assumed in this example. To show the difference in the
technical system’s function specification, as a consequence of different working principles being
applied, the following example’s grammar explains in more detail the decompositions of the
panel welding and riveting, while the sub-processes of panel stiffening by welding and riveting
are only considered as further exploration possibilities. The process of stiffened panel assembly
is decomposed within the 10 sub-processes. The production rules that address those sub-process
are given in Table 3 in CFGTP grammar (Definition 10) (sub-processes as non-terminals are
represented as tokens, while the operations as terminals begin with ‘_’ symbols):

Further explanation of the production rule variants as expressed in Table 3 is as
follows:

• Stiffened panel assembled < spa > is the initial non-terminal. The process of stiffened panel
assembly is decomposed within three logical steps: step one is the positioning of steel plates
and their assembly into a steel panel < assembled >, step two comprises cutting the panel
to the desired dimensions < treated > and then, possible surface cleaning and setting of the
markings for placement of stiffeners < stiffened >. It is assumed that steel plates and stiffeners
enter the transformation in the state appropriate for the application of those two technologies,
assuming appropriate welding joints and holes required for riveting.

• Panel assembled < assembled > involves the positioning of steel plates _platePos as a
preparation for the joining of the plates to the panel by welding < plateWeld > or riveting
< plateRivet >.

Table 3. CFG of stiffened panel assembly in BNF.

1 < spa > ::= < assembled >< treated >< stiffened > (0)

2 < assembled > ::= −platePos < plateWeld > (0)
| −plate Pos < plateRivet > (1)

3 < plateWeld > ::= < plateSec >< plateWeld′ > −panelRelease (0)
| < plateSec >< plateWeld′ > −panelTurn (1)

< plateWeld′ > −panelRelease

4 < plateRivet > ::= < plateSec >< plateRivert′ > −panelRelease (0)

5 < plateWeld′ > ::= −maw (0)
| −saw−granRemoved (1)

6 < plateRivet′ > ::= −rivetPos′ −rivetSec′ −impactRiv′ (0)
| −rivetPos′ −rivetSec′′ −impactRiv′′ (1)
| −rivetPos′′ −rivetSec′′ −impactRiv′′ (2)

7 < plateSec > ::= −plateSec′ (0)
| −plateSec′′ (1)
| −plateSec′′′ (2)

8 < treated > ::= −panelCut < dirtRemoved > −stf Pos (0)

9 < dirtRemoved > ::= −blast−abrSeparated′ (0)
| −brush (1)

10 < stiffened > ::= −panelPos −stfWeld (0)
| −panelPos −stfRivet (1)

Journal of Engineering Design 21

• Plates welded < plateWeld > assumes two process variants; the first (0) involves only one side
welding and the other (1) assumes both sides welding that requires a panel being turned upside
down. Also involved are the sub-processes of plate securing < plateSec > and operations of
panel turning _panelTurn and releasing _panelRelease.

• Plates riveted < plateRivet > performs similarly as variant (0) of plate welding with respect
to plates being secured and released, with distinction in the actual panel join performed by
riveting < plateRivet′ >.

• Plates welded (one side) < plateWeld′ > allows two distinct approaches: one is a manual
arc welding operation, i.e. variant (0) involving a human operator and the other is a fully
automated, submerged arc welding under a protective coating, which needs to be removed after
the procedure (1).

• Plates impact riveted < plateRivet′ > assmues that all three variants comprise operations
involving rivets being positioned, secured and then impact riveted. The difference between them
is the level of automation being applied. Namely, the operations rivetPos′_rivetSec′_impactRiv′
in variant (0) are performed manually using appropriate tools, while variant (2) is completely
automated _rivetPos′′_rivetSec′′_impactRiv′′ (see Table 4 for details on operations). Although
the transformation results in the same main operand transformations, the secondary flows defer,
as well as the necessary effects.

• Plates secured < plateSec > involves three different principles for securing plates required for
panel joining. The first variant (0) applies a pneumatic principle to create suction to grip plates,
(1) utilises electromagnetic force, whilst the last, (2) is hydraulic based to grip plates.

• Panel treated < treated > considers operation of panel cutting to fit the exact mea-
surements _panelCut, a sub-process of cutting produced dirt removal < dirtRemoved >

and operation _stfPos of locating and marking of positions to which stiffeners will be
attached.

• Dirt removed < dirtRemoved > can be executed in two ways, manually using a brush_brush,
or fully automatically by blasting the panel _blast with abrasive particles that are later collected
and stored_abrSeparated′.

• Panel stiffened < stiffened > defines either welding _stfWeld or riveting _stfRivet to attach
stiffeners to the panel, together with a pre-operation of panel positioning _panelPos to relocate
the steel panel.

Table 4 shows building-blocks that are used to compose the graph grammar GG of the technical
processes based on the knowledge represented in Table 3. A detailed specification of the input
and output operand flows, as well as of the required effects for each sub-process/operation, is
presented.

When formalising knowledge, the proposed method first requires a definition of TP enti-
ties �G (Definition 1). Then, these are used to label directed multigraph G (Definition 2) to
create a set of building-blocks. The building-blocks are used to define the graph grammar in
compliance with Definition 8. Both sides of the graph grammar productions have to be in com-
pliance with Definition 3 and they must all satisfy the connecting procedures ρ from Section 4.5.
For example, a black-box formulation of stiffened panel assembly < spa >, thus specifying
the left-hand side of the graph grammar production rule p with operands in their initial and
desired state, is given in Figure 5. The operands in their required input states are both plates
and a stiffener and the desired output is a stiffened panel. Effects are rendered as unknowns at
the beginning. The corresponding decomposition of the stiffened panel assembly < spa > into
< assembled >< treated >< stiffened > is according to the string grammar in Table 3 and build-
ing blocks in Table 4. Figure 6 presents two possible ways of the < assembled > sub-process
decomposition according to Tables 3 and 4 and the transformation algorithm in Section 4.5.

22 T. Stanković et al.

Table 4. Graph grammar building-blocks.

Process/Operation Input Od flows Output Od flows Effects Eff

Stiffened panel assembled 〈spa〉 Plate Stiffened panel
Plate

Panel assembled 〈assembled〉 Plate Panel
Plate

Panel treated 〈treated〉 Panel Panel (treated)
Panel stiffened 〈stiffened〉 Panel (treated) Stiffened panel

Stiffener
Plates positioned −platePos Plate Plate (positioned)

Plate Plate (positioned)
Plates welded 〈plateWeld〉 Plate (positioned) Panel

Plate (positioned)
Plates riveted 〈plateRivet〉 Plate (positioned) Panel

Plate (positioned)
Plates secured 〈plateSec〉 Plate (positioned) Plate (secured)

Plate (positioned) Plate (secured)
Plates welded (1 side) 〈plateWeld’〉 Plate (secured) Panel (secured)

Plate (secured)
Panel release −panelRelease Panel (secured) Panel
Panel turned −panelTurn Panel (secured) Plate (secured) Energy (mechanical)

Plate (secured)
Plates riveted (both sides)

〈plateRivet’〉
Plate (secured) Panel (riveted)
Plate (secured)

Manual arc welded −maw Plate (secured) Panel (secured) Energy (arc)
Plate (secured) Fumes Human force
Electrode (coated) Light Regulation

Submerged are welded −saw Plate (secured) Panel (secured) Energy (arc)
Plate (secured) and granulate Regulation
Wire Ceramic slab
Ceramic slab
Granulate (flux)

Panel granulate separated
−gran Removed

Panel (secured) Panel (secured) Energy (pneumatic)
and granulate Granulate (free)

Rivet positioned −rivetPos’ Plate (secured) Plate (secured) Human force
Plate (secured) Plate (secured)
Gripping tool Gripping tool
Rivet (hot) Rivet(positioned)

Rivet secured −rivetSec’ Plate (secured) Plate (secured) Human force
Plate (secured) Plate (secured)
Riveting support Rivet (secured)
Rivet (positioned) Riveting support

Plate riveted −impactRiv’ Plate (secured) Panel (secured) Human force
Plate (secured) Riveting support Regulation
Riveting support Pneumatic hammer
Rivet (secured)
Pneumatic hammer

Rivet positioned −rivetPos Plate (secured) Plate (secured) Energy (mechanical)
Plate (secured) Plate (secured)
Rivet (hot) Rivci (positioned)

Rivet secured −rivetSec” Plate (secured) Plate (secured) Energy (mechanical)
Plate(secured) Plate (secured)
Rivet (positioned) Rivet (secured)

Plate riveted −impact Riv” Plate (secured) Panel (secured) Energy (mechanical)
Plate(secured) Regulation
Rivet(secured)

Plate secured −plateSec’ Plate (positioned) Plate (secured) Energy (pneumatic)
Plate (positioned) Plate (secured)

Plate secured −plateSec” Plate (positioned) Plate (secured) Energy (electromag.)
Plate (positioned) Plate (secured)

Plate secured −plateSec”’ Plate (positioned) Plate (secured) Energy (hydraulic)
Plate (positioned) Plate (secured)

Panel cutting −panelCut Panel Panel Energy (heat)

(Continued)

Journal of Engineering Design 23

Table 4. Continued

Process/Operation Input Od flows Output Od flows Effects Eff

Dirt removed 〈dirlRemoved〉 Panel Panel
Particles (waste)

Stiffener positioning −stfPos Panel Panel (marked) Regulation
Marker Marker

Panel brushed −brush Panel Panel Human force
Brush Brush

Particles (waste)
Panel blasted −blast Panel Panel and

Abrasive particles abrasive particles
Panel and particles separated

−abrSeparated’
Panel and abrasive Panel Energy (pneumatic)
particles Abrasive particles

Abrasive particles (waste)
Panel positioning −panelPos Panel (treated) Panel (positioned) Energy (mechanical)

Regulation
Stiffener welded −stfWeld Panel (positioned) Stiffened panel Energy (arc)

Stiffener Regulation
Stiffener riveted −stfRivet Panel (positioned) Stiffened panel Energy (mechanical)

Stiffener Regulation

Figure 5. Black-box process formulation of stiffened panel assembly and its corresponding decomposition (in, out, and
eff omitted).

Figure 6. Decomposition of stiffened panel assembly (in, out, and eff omitted).

24 T. Stanković et al.

Figure 7. Production derivation tree (left-hand sides of production shown).

6. Results and discussion

A derivation tree showing all theoretically possible production application sequences for the
stiffened panel assembly line based on Tables 3 and 4 is depicted in Figure 7. Only the left-hand
side of the BNF production is shown, as well as the corresponding rule alternative, which was
applied for the decomposition (Table 3). For convenience and in order to make the figure more
comprehensive, only the rule-variant ordinals were given in the areas where the space did not
permit the full corresponding left-hand side. The number of technical process variants that can
be created using this simple grammar is almost 100. As an example, the variant with the minimal
number of operations involving a fully automated process is presented in Figure 7 as a shaded
area. Four areas divide the derivation tree clearly showing the solution variants, which assume
panel welding or panel riveting and the welding or riveting of stiffeners, altogether creating four
principle solution groups.

Based on the variant production trees presented in Figure 7 and grammar, as defined in the
previous section, an example of how a variation at the technical process level may yield different
technical systems is shown in Figure 8. Because of the number of operations involved, only
excerpts of two technical process variants are depicted; one with fully automated panel riveting
and the other involving fully automated panel welding sub-process. Plate riveting and welding
sub-processes are shown in detail, while the rest of the sub-processes are not decomposed to
preserve space (Figure 8).

The technical system for riveting must be capable of providing the impact force, thus specifying
one of the system’s functions. In the other technical process, which corresponds to shaded area in
Figure 7, the technical system for welding must be capable of providing an electrical arc able to
perform unification of two plates into a panel. These two functions, provision of impact force for
riveting and arc for welding, are direct consequences of the different technological principles on

Journal of Engineering Design 25

Figure 8. How a variation on the technical process level may yield different technical systems.

which the operand transformation variants were founded. The same reasoning holds for securing of
rivets and removal of granulate. Moreover, the necessary input flows of technical systems, such as
rivets or welding wire for instance, are also the result of different technical process that need to be
supported (it is assumed that inputs and secondary outputs of technical systems are not the same).

The example in Section 5 also exemplified the process of the formation of production rules by
which the engineering knowledge is formalised. However, in order to define production rules, the
definitions about terms used must be clarified to the users, in order to be able to produce coherent
results in the end. Thus, a prerequisite for a successful knowledge-based system and knowledge
generalisation is at least having a shared understanding about domains of concern (Gruber 1993),
i.e. taxonomy of related terms thus creating possibilities to organise knowledge more efficiently.
Such generalisation will enable only what is necessary to describe each of the objects to be put for-
ward, thus eliminating irrelevant details and maintaining the production rule redundancy. The illus-
trative example shown in Section 5 is label bounded, having no knowledge generalisation possibil-
ities within the bounds of the context-free grammar. Effects and operations attached to the multi-
graph’s edges are technical process labels and not objects of their respective classes. The extension
to include attributes, types, and inheritance and to even define operations would require definition
of type graph and typed graph, thus introducing semantics and creating a robust system. In that
respect, the definitions within Section 4 hold, assuming that additional definitions on flows, effects,
and operations are equal to enable comparison. Thus, the definition of type graphs will enable the
more efficient utilisation of stochastic search, because the rules would not have to be defined so
strictly and label bounded but would instead be tied to types of objects, similar to that presented
in Helms and Shea (2012). It can only be suggested to define a type graph of technical processes
according to some of the available engineering design formalisms, such as Merged Ontology for
Engineering Design (Ahmed and Štorga 2009) or Design Ontology (Štorga et al. 2010).

7. Conclusions and future work

The aim of this work was to provide the formal modelling of technical processes and technical
process synthesis. As such, this work contributes to the research area of CDS, as it may serve as a

https://www.researchgate.net/publication/265975259_Merged_ontology_for_engineering_design_Contrasting_empirical_and_theoretical_approaches_to_develop_engineering_ontologies?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/244437488_A_Translation_Approach_to_Portable_Ontology_Specifications?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4

26 T. Stanković et al.

foundation for creation of a computational-based support to aid designers in the technical process
synthesis design phase. As a result of this work, the following points can be highlighted:

• For the modelling of technical processes, a labelled directed multigraph with operations,
operands, and effects is defined (Definitions 2 and 3). Directed multigraphs offer richness
in description as demanded for technical process modelling. Operations, operands, and effects
are process-related entities defined as TP entities (Definition 1) and they constitute the graph’s
vocabulary. A graph of technical processes, as a carrier structure, is invariant to the operations,
effects, and operands, i.e. objects that have been assigned, thus creating possibilities for further
development. As the method for synthesis is defined over the same multigraph type, it is also
invariant to the type of objects being assigned to the graph’s nodes and directed edges. At the
current stage of development only the association of labels to the technical processes structure
is performed.

• It was shown that by applying graph grammar transformations using a set of predefined rules
and by following a breadth-first node rewriting principle, it is possible to support computational
synthesis of technical processes. In order to achieve embedding of each of the decompositions
into the technical processes’ structure, a transformation algorithm with special connection pro-
cedure ρ is defined. The knowledge about technical processes synthesis based on technological
principles is formalised within a set of production rules. The synthesis process is modelled
within a formal language of technical processes (Definitions 10 and 11) using BNF as a layout
for synthesis.

• By writing down the formal language of technical processes in BNF notation, it was shown that
it is possible to directly apply heuristic search algorithms, which operate over string encoded
solution variants. For instance, the algorithm of grammatical evolution (O’Neill and Ryan 2001)
that operates on a genetic algorithm using BNF notation is a reasonable candidate as the search
algorithm. As at the current stage of development, TP entities do not permit more attributes as
these would require technical process knowledge generalisation and systematisation, it is not
possible to construct useful metrics beyond the trivial. Thus, to describe the universal virtues
(Hansen and Andreasen 2002) of technical process, it is necessary to be able to perform search
and optimisation.

• As the proposed method for the generation of operand transformation variants is knowledge-
driven, it was necessary to explore the requirements that need to be met in order to formalise
the knowledge about the technical processes within a set of production rules. It is important
to stress that the aims of this work did not include research about the content of knowledge
about technical processes in respect to its systematisation and generalisation. It was intended to
provide a means to formalise that knowledge within a set of production rules and to utilise these
productions by the developed method in order to generate operand transformation variants.

Further research efforts might be directed towards extending the technical process model to
include type graphs of TP entities. By doing so, a cumbersome process of production rules
definition would become easier as the rules become more generalised with respect to TP entities.
For such generic rule building-blocks, a more expressive context-sensitive grammar could be
applied to formulate productions. The latter could enable a reuse of productions with respect to
classes of TP entities and consequently reduce the number of rules.

References

Ahmed, S. and Štorga, M., 2009. Merged ontology for engineering design: contrasting an empirical and a theo-
retical approach to develop engineering ontology. Artificial Intelligence for Engineering Design, Analysis and
Manufacturing, 23 (4), 391–407.

Andreasen, M.M. and Hein, L., 1987. Integrated product development. Berlin: IFS-Springer.

https://www.researchgate.net/publication/265975259_Merged_ontology_for_engineering_design_Contrasting_empirical_and_theoretical_approaches_to_develop_engineering_ontologies?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/265975259_Merged_ontology_for_engineering_design_Contrasting_empirical_and_theoretical_approaches_to_develop_engineering_ontologies?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/265975259_Merged_ontology_for_engineering_design_Contrasting_empirical_and_theoretical_approaches_to_develop_engineering_ontologies?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4

Journal of Engineering Design 27

Asimow, M., 1962. Introduction to design. Engelwood Cliffs, NJ: Prentice Hall.
Bertalanffy, L., 1969. General system theory – foundations development, applications. New York: George Braziller.
Bolognini, F., Seshia, A.A., and Shea, K., 2007. Exploring the application of a multi-domain simulation-based compu-

tational synthesis method in MEMS designs. In: Proceedings of the 16th international conference on engineering
design (ICED 07). Glasgow: Ecole Centrale Paris & The Design Society, 81–82.

Bryant, C.R., et al., 2005. Concept generation from the functional basis of design. In: Proceedings of the 15th international
conference on engineering design (ICED 05). Glasgow: The Design Society, 280–281.

Cagan, J., et al., 2005. A framework for computational design synthesis: model and applications. Journal of Computing
and Information Science, 5 (3), 171–181.

Campbell, M., et al., 1998. A-design: theory and implementation of an adaptive, agent based method of conceptual design.
In: J. Gero and F. Sudweeks, eds. Artificial Intelligence in Design ’98. Dordrecht: Kluwer Academic Publishers,
579–598.

Chomsky, A.N., 1957. Syntactic structures. The Hague: Mouton.
Ehrig, H., et al., 2006. Fundamentals of algebraic graph transformation. Berlin: Springer-Verlag.
Erden, M.S., et al., 2008. A review of function modelling: approaches and applications. Artificial Intelligence for

Engineering Design, Analysis and Manufacturing, 22 (2), 147–169.
Gharajedagi, J., 2011. Systems thinking: managing chaos and complexity. Burlingoton: Morgan Kaufmann.
Gips, J. and Stiny, G., 1980. Production systems and grammars: a uniform characterization. Environment and Planning

B, 7 (4), 399–408.
Goldstein, I. and Papert, S., 1977. Artificial intelligence, language, and the study of knowledge. Cognitive Science, 1 (1),

84–123.
Gruber, T., 1993. A translation approach to portable ontology specifications. Knowledge Acquisition, 5 (2), 199–220.
Hansen, C.T. and Andreasen, M.M., 2002. Two approaches to synthesis based on the domain theory. In: A. Chakrabardi,

ed. Engineering design synthesis – understanding, approaches and tools. London: Springer-Verlag, 93–108.
Helms, B. and Shea, K., 2010. Object-oriented concepts for computational design synthesis. In: D. Marjanović, et al., eds.

Proceedings of the 11th international design conference DESIGN 2010. Glasgow: Faculty of Mechanical Engineering
and Naval Architecture, University of Zagreb and The Design Society, 1333–1342.

Helms, B. and Shea, K., 2012. Computational synthesis of product architectures based on object-oriented graph grammars.
Journal of Mechanical Design, 134 (2), 021008-1, 021008-14.

Hubka, V. and Eder, W.E., 1992. Engineering design: general procedural model of engineering design. Berlin: Springer-
Verlag.

Hubka, V. and Eder, W.E., 2002. Theory of technical systems and engineering design synthesis. In: A. Chakrabardi, ed.
Engineering design synthesis – understanding, approaches and tools. London: Springer-Verlag, 49–65.

Hutcheson, R.S., et al., 2006. Application of a genetic algorithm to concept variant selection. In: ASME conference
proceedings (IDETC/CIE2006), Philadelphia, PA, 43–52.

Jin, Y. and Li, W., 2007. Design concept generation: a hierarchical coevolutionary approach. Journal of Mechanical
Design, 129 (10), 1012–1022.

König, B., 2004. Analysis and verification of systems, with dynamically evolving structure. Habilitationsschrift zur
Erlangung der Venia Legendi in Informatik, Institut für Formale Methoden der Informatik, Universität Stuttgart.

Kreowski, H., Klempien-Hinrichs, R., and Kuske, S., 2006. Some essentials of graph transformations. In: Z. Esik et al.,
eds. Recent advances in formal languages and applications. Berlin: Springer-Verlag, 229–254.

Levet, W.J.M., 2008. An introduction to the theory of formal languages and automata. Amsterdam: John Benjamins.
Lin, Y., et al., 2009. A method and software tool for automated gearbox synthesis. In: ASME conference proceedings

(IDETC/CIE 2009). San Diego, CA.
McCormack, J.P. and Cagan, J., 2004. Speaking the Buick language: capturing, understanding, and exploring brand

identity with shape grammars. Design Studies, 25 (1), 1–29.
Naur, P., 1963. Revised report on the algorithmic language ALGOL 60. Communication ACM, 6 (1), 1–17.
O’Neill, M. and Ryan, C., 2001. Grammatical evolution. IEEE Transactions on Evolutionary Computation, 5 (4), 349–358.
Post, E., 1943. Formal reductions of the general combinatorial decision problems. American Journal of Mathematics, 65,

197–215.
Pugliese, M.J. and Cagan, J., 2002. Capturing a rebel: modeling the Harley–Davidson brand through a motorcycle shape

grammar. Research in Engineering Design, 13 (3), 139–156.
Rihtaršić, J., Žavbi, R., and Duhovnik, J., 2010. Sophy – tool for structural synthesis of conceptual technical systems. In:

D. Marjanović et al., eds. Proceedings of the 11th international design conference DESIGN 2010. Glasgow: Faculty
of Mechanical Engineering and Naval Architecture, University of Zagreb and The Design Society, 1391–1398.

Rosen, K.H., et al., 2000. Handbook of discrete and combinatorial mathematics. Boca Raton: CRC Press LLC.
Schmidt, L.C. and Cagan, J., 1997. GGREADA: a graph grammar-based machine design algorithm. Research in

Engineering Design, 9 (4), 195–213.
Schmidt, L.C., Shetty, H., and Chase, S.C., 2000. A graph grammar approach for structure synthesis of mechanisms.

ASME Journal of Mechanical Design, 122 (4), 371–376.
Shea, K., 1997. Essays of discrete structures: purposeful design of grammatical structures by directed stochastic search.

Thesis (PhD). Carnegie Mellon University.
Shea, K. and Cagan, J., 1998. Generating structural essays from languages of discrete structures. In: J. Gero and

F. Sudweeks, eds. Artificial Intelligence in Design ’98. Dordrecht: Kluwer Academic Publishers, 365–384.
Siddique, Z. and Rosen, D.W., 1999. Product platform design: a graph grammar approach. In: ASME conference

proceedings (DETC 1999). Las Vegas, NV.

https://www.researchgate.net/publication/228947650_Object-Oriented_Concepts_For_Computational_design_synthesis?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/228947650_Object-Oriented_Concepts_For_Computational_design_synthesis?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/228947650_Object-Oriented_Concepts_For_Computational_design_synthesis?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/239538954_Formal_reductions_of_the_combinatorial_decision_problem_Am_J_Mathem?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/239538954_Formal_reductions_of_the_combinatorial_decision_problem_Am_J_Mathem?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/215623145_A_Graph_Grammar_Approach_for_Structure_Synthesis_of_Mechanisms?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/215623145_A_Graph_Grammar_Approach_for_Structure_Synthesis_of_Mechanisms?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/222022605_Speaking_the_Buick_Language_Capturing_Understanding_and_Exploring_Brand_Identity_with_Shape_Grammars?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/222022605_Speaking_the_Buick_Language_Capturing_Understanding_and_Exploring_Brand_Identity_with_Shape_Grammars?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/227090550_GGREADA_A_graph_grammar-based_machine_design_algorithm?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/227090550_GGREADA_A_graph_grammar-based_machine_design_algorithm?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/200025939_General_System_Theory_Foundations_Development_Applications_London?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/37684948_Analysis_and_Verification_of_Systems_with_Dynamically_Evolving_Structure?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/37684948_Analysis_and_Verification_of_Systems_with_Dynamically_Evolving_Structure?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/270776308_Computational_Synthesis_of_Product_Architectures_Based_on_Object-Oriented_Graph_Grammars?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/270776308_Computational_Synthesis_of_Product_Architectures_Based_on_Object-Oriented_Graph_Grammars?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/222457794_Artificial_Intelligence_Language_and_the_Study_of_Knowledge?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/222457794_Artificial_Intelligence_Language_and_the_Study_of_Knowledge?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/239614909_Product_platform_design_A_graph_grammar_approach?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/239614909_Product_platform_design_A_graph_grammar_approach?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/245473112_Revised_Report_on_the_Algorithmic_Language_ALGOL_60?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/23541808_Production_systems_and_grammars_A_uniform_characterization?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/23541808_Production_systems_and_grammars_A_uniform_characterization?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/228612124_Some_essentials_of_graph_transformation?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/228612124_Some_essentials_of_graph_transformation?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/225759547_Capturing_a_rebel_Modeling_the_Harley-Davidson_brand_through_a_motorcycle_shape_grammar?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/225759547_Capturing_a_rebel_Modeling_the_Harley-Davidson_brand_through_a_motorcycle_shape_grammar?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/275104926_Design_Concept_Generation_A_Hierarchical_Coevolutionary_Approach?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/275104926_Design_Concept_Generation_A_Hierarchical_Coevolutionary_Approach?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/2576574_Under_the_Hood_of_Grammatical_Evolution?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/261288920_Essays_of_Discrete_Structures_Purposeful_Design_of_Grammatical_Structures_by_Directed_Stochastic_Search?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/261288920_Essays_of_Discrete_Structures_Purposeful_Design_of_Grammatical_Structures_by_Directed_Stochastic_Search?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/244437488_A_Translation_Approach_to_Portable_Ontology_Specifications?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/272087448_Syntactic_Structures?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4

28 T. Stanković et al.

Sim, S.K. and Duffy,A.H.B., 2003. Towards an ontology of generic engineering design activities. Research in Engineering
Design, 14 (4), 200–223.

Simon, H.A., 1996. The sciences of the artificial. Cambridge, MA: The MIT Press.
Starling, A.C. and Shea, K., 2005. A parallel grammar for simulation driven mechanical design synthesis. In: ASME

conference proceedings (IDETC/CIE 2005), Long Beach CA.
Stone, R.B. and Wood K.L., 2000. Development of a functional basis for design. Journal of Mechanical Design, 122 (4),

359–370.
Štorga, M., Andreasen, M.M., and Marjanović, D., 2010. The design ontology – contribution to the design knowledge

exchange and management. Journal of Engineering Design, 21 (4), 427–454.
Umeda, Y., et al., 1996. Supporting conceptual design based on the function-behaviour-state modeller. Artificial

Intelligence for Engineering, Design, Analysis and Manufacturing, 10 (4), 275–288.
Weber, C., 2005. CPM/PDD – an extended theoretical approach to modelling products and product development processes.

In: Proceedings of the 2nd German–Israeli symposium on advances in methods and systems for development of
products and processes. Stuttgart: Fraunhofer-IRB-Verlag, 159–179.

Weisstein, E.W., 2009. The CRC encyclopedia of mathematics. Boca Raton, FL: CRC Press/Taylor & Francis.
Wu, Z., Campbell, M.I., and Fernandez, B.R., 2008. Bond graph based automated modelling for computer-aided design

of dynamic systems. ASME Journal of Mechanical Design, 130 (4), 041102–041111.
Wyatt, D.F., Wynn, D.C., and Clarkson, P.J., 2009. A computational method to support product architecture design. In:

ASME conference proceedings (ASME-IMECE 2009). Lake Buena Vista, FL.
Wyatt, D.F., et al., 2012. Supporting product architecture design using computational design synthesis with network

structure constraints. Research in Engineering Design, 23 (1), 17–52.

All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately.

https://www.researchgate.net/publication/237044161_A_Computational_Method_to_Support_Product_Architecture_Design?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/237044161_A_Computational_Method_to_Support_Product_Architecture_Design?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/225764396_Towards_an_ontology_of_generic_engineering_design_activities?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/225764396_Towards_an_ontology_of_generic_engineering_design_activities?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/272088622_Sciences_of_The_Artificial?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/245910108_Development_of_a_Functional_Basis_for_Design?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/245910108_Development_of_a_Functional_Basis_for_Design?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/228979560_Bond_Graph_Based_Automated_Modeling_for_Computer-Aided_Design_of_Dynamic_Systems?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/228979560_Bond_Graph_Based_Automated_Modeling_for_Computer-Aided_Design_of_Dynamic_Systems?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/267650146_A_Parallel_Grammar_for_Simulation-Driven_Mechanical_Design_Synthesis?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/267650146_A_Parallel_Grammar_for_Simulation-Driven_Mechanical_Design_Synthesis?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4
https://www.researchgate.net/publication/238208070_The_CRC_Concise_Encyclopedia_of_Mathematics?el=1_x_8&enrichId=rgreq-f5865b5a-e1f2-4042-bb02-30dd324b227c&enrichSource=Y292ZXJQYWdlOzIzMTA5Njc3MDtBUzo5OTAwOTA2MjUwNjUyMEAxNDAwNjE3MDA4ODc4

