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Abstract  

Due to the lack of computational power to perform a fully atomistic simulation of practical, 

engineering systems, a number of concurrent multiscale methods is developed to limit atomic 

model to a small cluster of atoms near the hot spot. In this paper the overview of salient features 

of the main multiscale families is given. The special attention is drawn towards the role of 

model adaptivity, that is, which part of the problem domain to model by the atomic scale (the 

hot spot) and which by coarse scale model, as well as where to place the interface of the two 

models to control the accuracy. Taking Quasicontinuum method as a reference, review of the 

evolution of the Bridging domain/Arlequin method is given, which parallels the development of 

a posteriori modeling error estimation. 

Keywords: molecular mechanics, atomistic-to-continuum coupling, quasicontinuum, bridging 

domain, Arlequin, Cauchy-Born rule, RVE, goal error estimates, goals algorithm 

1 Introduction 

The emphasis of scientific research in material science has shifted from micro- and meso-scale 

to the study of the behavior of materials at the atomic scale of matter. The first trends of this 

kind go back to the 1980s. when the scientists and engineers began to include atomistic 

descriptions into models of materials failure and plasticity [Buehler 2008]. This research is 

related to the terms nano-technology and nano-mechanics. At nano-scale, the effects of single 

atoms, individual molecule, or nano-structural features may dominate the material behavior, 

especially at failure [Buehler 2008]. The classical continuum mechanics, that has been the basis 

for most theoretical and computational tools in engineering [Ibrahimbegovic 2009], is not 

suitable for nano-scale applications. Thus, different kind of computational modeling, in 

particular atomistic and/or molecular simulation, has become increasingly important in the 

development of such new technologies [Cleland  2003, Rapaport  2004, Phillips 2004]. 

For many engineering application domains, the numerical simulations of this kind are 

replacing the expensive experimental testing or are being used to complete the experimental 

observations and to increase the reliability of parameter identification in experiments under 

heterogeneous stress field. In the case of nano-mechanics it is usually impossible to perform the 

simple tests (such as the simple tension test), or most of experiments are very expensive and not 

very reliable. The experimental analysis of nano-mechanical properties at sub-micrometer 

scales de facto became possible with the developments of techniques relying upon the atomic 

force microscope (AFM), nanoindentation, or optical tweezers. These techniques and 
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instrumentation can observe and characterize forces of the order of hundreds of pN, with 

displacements of the order of nanometers [Buehler 2008]. Atomistic simulation has been used 

in the research topics like: the atomic-scale effect in fracture and wear, dislocation dynamics in 

nano-indentation, nano-composites, carbon nano tubes, nano electro mechanical system 

components, semiconductors and biomechanics [Buehler ,7]. 

The main challenge is that atomistic models typically contain extremely large number of 

particles, even though the actual physical dimension may be quite small. For example, even a 

crystal with dimensions below a few micrometers sidelength has several tens of billions of 

atoms. Predicting the behavior of such large particle systems under explicit consideration of the 

trajectory of each particle is only possible by numerical simulation, and must typically involve 

the usage of the supercomputers [Buehler 2008]. Even though nanoscale systems and processes 

are becoming more viable for engineering applications, our ability to model their performance 

remains limited, since the fully atomistic simulations remain out of reach for engineering 

systems of practical interest. 

Multiscale (MS) modeling methods have recently emerged as the tool of choice to link the 

mechanical behavior of materials from the smallest scale of atoms to the largest scale of 

structures [Wing et al 2006]. MS methods are often classified as either hierarchical or 

concurrent. Hierarchical methods are the most widely used, for their computationally 

efficiently. In these methods, the response of a representative volume element (RVE) at the fine 

scale is first computed, and from this a stress-strain law is extracted. Thus, the computations are 

performed on each scale separately and the scale coupling is often done by transferring the 

problem parameters leading to the classical problem of homogenization (e.g. see early work 

[Sanchez-Palencia 1980]). For severely nonlinear problems, hierarchical models become more 

problematical, particularly if the fine scale response is path dependent. It should be noted that 

when failure occurs, in many circumstances hierarchical models are invalid and cannot be used 

[Fish 2009]. 

Concurrent methods, on the other hand, are those in which the fine scale model (e.g. 

atomistic, treated with molecular mechanics) is embedded in the coarse scale model (usually 

continuum model treated with FEM) and is directly coupled to it. In the study of fracture, for 

example, fine scale models can be inserted in hot spots where stresses become large and where 

there is the biggest risk of failure. These hot spots can be identified on the fly or by a previous 

run. Molecular mechanics (MM) and/or quantum mechanics (QM) models are required for 

phenomena such as bond breaking, but the relevant configuration is far too large to permit a 

completely atomistic description. In order to make such problems computationally tractable, the 

molecular model must be limited to small clusters of atoms in the vicinity of a domain of 

interest where such high resolution models are necessary and a continuum method should be 

used for the rest of the domain [Fish 2009]. Here we primarily focus on the concurrent, static 

(equilibrium), atomistic-to-continuum MS modeling, strongly coupling atomistic and 

continuum scales. 

An overview of current research activities on MS methods can be found in several reviews 

[Curtin and Miller  2003, Harold and Park  2004, Liu et al 2004, Rudd and Broughton  2000, 

Miller and Tadmor 2009, Broughton et al 1999, Srivastava and Atluri 2002], each giving a 

preference to a preferred choice of the method or its particular feature. For that reason, we seek 

to give a more complete overview covering all the salient features of the main families, each 

covered with a brief, but pointed discussion. There is also a novel idea to draw attention 

towards a special role of adaptivity in providing an optimal form of the atomistic-to-continuum 

coupling based on the overlapping domain decomposition. With such focus on adaptivity, this 

paper compares quasicontinuum (QC) method and the bridging domain (BD) or Arlequin based 

coupling. The QC method uses an adaptive coarse graining approach rather than classical 
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coupling, it can be used as a reference for adaptive strategy. More precisely, the question we 

thus address pertains to which part of the domain should be modeled by the fine (atomic) scale 

and which by coarse scale model in a particular problem, and where to place the interface of the 

two models to control the accuracy for any solution stage? 

The paper is organized as follows. Following this introduction, the paper starts with the 

short overview of atomic models in Section 2 and finishes with the motivation for the MS 

methodology and a short list of leading MS methods. Then the standard QC and BD/Arlequin 

methods are described in Sections 3 and 4, respectively. Following the general description of 

the two methods the comparison is summarized in 5. Numerical examples of model adaptivity 

are presented in Section 6 in order to illustrate these ideas, and provide quantitative comparison 

between different adaptive modelling strategies. The concluding remarks are stated in Section 7. 

2 Atomistic (particle) model 

2.1 Atomistic interaction modeling 

The first choice that should be made for any kind of material modeling is the energy function 

describing the system of interest. Once the energy of the atomic interaction is defined, the 

essential of material behavior is determined. The main goal of this section is to give a general 

introduction to atomistic i.e. non-continuum material modeling, to introduce the essential ideas 

and review the literature. It is worth to mention that the reason for introducing the atomistic 

modeling is two-folded. First, the atomistic modeling is used as a testing ground for energetics 

of the system, by using the simplest generic form of the interaction model. Second, the potential 

function (U) driving the molecular system can take an extremely complicated form, when the 

goal is to represent the quantitative predictions for specific material. In this case, an accurate 

representation of the atomic interactions has to be material specific. The nature of these 

interactions is due to complicated quantum effects taking place at the subatomic level that are 

responsible for chemical properties such as valence and bond energy [Wingat al 2006, 

Ercolessi1997, Griebel et al 2007]. However, quantum mechanics based description of atomic 

interaction is not discussed herein, emphasis is rather on the empirical interaction models that 

can be derived as the result of such computations. Alternatively, the function U in classical 

interatomic potential that can be obtained from experimental observations and should accurately 

account for the quantum effects in the average sense. However, many different expressions can 

be fit to closely reproduce the energy predicted from quantum mechanics methods (semi-

empirical), while retaining computational efficiency [Buehler 2008, Allen and Tildesley 1987]. 

Needless to say, there is no single approach that is suitable for all materials and for all different 

phenomena of material behavior that we need to describe. The choice of the interatomic 

potential depends very strongly on both the particular application and the material. 

The general structure of the potential energy function for a system of N atoms is 

  (          )  ∑   (  )  ∑   (     )  ∑   (        )                   (1) 

where the function            , represents the m-body potential and   the position vector of 

the atom i. The first term of the equation (1) indicates the effect of an external force field on the 

system where it is immersed, such as gravitational or electrostatic. This term is usually ignored 

in practice, [Wing et al 2006]. The second term    or     shows pair-wise interaction depending 

only on the pair separation             between atoms i and j. The three-body term involves 

angle-dependent forces, whereas four-body term includes torsion effects. In short, m-body 

potential terms for m > 2 are usually called multi-body potentials. The simplest form used for 
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practical reasons is when the sum in (1) is truncated after second term resulting with the pair-

wise potential. 

2.2 Pair-wise potentials 

The total energy of the system in pair potentials is given by summing the energy of all atomic 

bonds 
1
 (  (   )) over all N particles in the system. 
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Note the factor 1/2 accounts for the double counting of atomic bonds. One of the most well 

known interatomic potentials is the Lennard-Jones (LJ), or yet called 6-12 potential. The 

potential energy function for the LJ potential is expressed as 
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where   and   are constants chosen to fit material properties (no relation to continuum stress 

and strain, see Fig. 1) and     is the distance between two atoms i and j. The      
  term is meant 

to model the repulsion between atoms as they approach each other, and is motivated by the 

Pauli principle in chemistry. The Pauli principle implies that as the electron clouds of the atoms 

begin to overlap, the system energy increases dramatically because two interacting electrons 

cannot occupy the same quantum state. The      
  term adds cohesion to the system, and is 

meant to mimic van der Waals type forces. The van der Waals interactions are fairly weak in 

comparison to the repulsion term, hence the lower order exponential is assigned to the term. LJ 

6-12 is an example of potential limited to the simulations where a general class of effects is 

studied, instead of specific physical properties, and a physically reasonable yet simple potential 

energy function is desired [Harold and Park 2004]. 

Since the LJ potential is highly nonlinear function of the atom pair distance    , it is 

sometimes useful to use its linearized form in terms of so-called harmonic potential 

   
 (   )  

 

 
   (         )

 
, (4) 

where       is the initial (equilibrium) atomic pair distance, and     is the bond stiffness. The 

harmonic potential can describe the atomic system behavior for small atomistic separation (refer 

Fig. 1). Hence, this potential is usually chosen as the first and simplest description of the atomic 

interaction, in particular in development of the MS methods where the emphasis is on the 

coupling and not on the accurate and realistic description of different material mechanisms. 

LJ look alike potentials are the Morse and Buckingham potentials. The Morse potential 

consists of the exponential repulsion and attraction and three adjustable parameters [Sunyk 

2004]. It is originally designed for covalent bond which is strongly space oriented and a 

description of radial stretching is not sufficient to describe it. The Morse potential is 

computationally more expensive than the LJ potential due to the exponential term but it models 

interaction in a more realistic way. The Buckingham potential consists of more physical 

exponential Born-Meyer repulsion and the van der Waals attraction but at the small inter-atomic 

separations the potential becomes un-physical (often referred to as Buckingham catastrophe) 

[Sunyk 2004]. In the sequel the example of the improved pairwise potential is described. 
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Fig. 1. Lennard-Jones and Harmonic potential (dashed line). Note that the Harmonic potential is 

a suitable approximation when the particles are around the equilibrium position. 

2.3 Embedded atom method (EAM) potentials and multi-body potentials 

This kind of interaction models are widely used to model metals [Daw and Baskes 1983, 

Doyama and Kogure 1999]. A local density dependent contribution is added to the pair potential 

energy function (2) by embedding energy term F 

   ∑   (   )      ∑  (  )   (5) 

The embedding energy  (  ) is related to the environment of the atom i, and    is the local 

electron density. The main advantage of this kind of potential is the ability to describe surfaces 

or cracks since they incorporate the variation of bond strength with coordination (density). 

A number of different approaches to realistic description of behavior of solids based on the 

first-principles or quantum mechanical calculations have been developed in recent decades. 

These models account for the environmental dependence of the bond strength with the force 

between any two particles depending upon the position of several neighbouring particles. 

Besides EAM, the other examples of this kind of potentials are Finnis and Sinclair potential 

describing metallic bonds, and the Brenner potential used for hydrocarbon bonds [Griebel et al 

2007]. 

2.4 Solution strategy and motivation for MS methods 

We focus in this work upon the mechanics behavior only, in the context of quasi-static loading 

applications. The equilibrium configuration of solids corresponds to a state of minimum energy. 

Similar to the FEM, that the positions of all nodes are determined by minimizing the energy in 

the solid. Thus, for a system of N atoms, the equilibrium configuration is determined by 

minimizing 

     ∑   ̅    
 
 . (6) 

where U denotes the energy stored in the atomic bonds, and    and   ̅ denotes displacement and 

external force on atom i, respectively. Since the continuum FEM and molecular me- chanics 

share a common ground of energy minimization there is a number of contributions regarding so 

called atomistic FE approach (or AFEM method), inserting molecular mechanics in the context 
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of FEM, see e.g. [Liu  et al 2004, Liu et al 2005, Liu  et al 2008, Wang et al 2006, Wackerfuß 

2009]. 

The task of minimizing (6) quickly becomes intractable for large number of particles 

(atoms). This, together with the assumption that the calculation of specific quantities of the 

solution can be accurately approximated by replacing the particle model by a coarser model (i.e. 

continuum model), is the basis for multiscale (MS) modeling. Extensive work has been done in 

the development of atomistic-to-continuum MS modelling approaches, starting with early works 

by [Mullins and Dokainish 1982] and [Kohlhoff et al. 1990]. Mullins simulated 2D cracks in  -

iron with the atomic scale models, and due to the restrictions of the computational power the 

question was how to connect the atomic model and surrounding continuum. Kohlhoff et al. 

proposed a new method for combined FE and atomistic analysis of crystal defects, called FEAt. 

Both papers dealt with the problem of proper treatment of the transition between the lattice and 

continuum. 

A number of MS methods developed recently from theoretical standpoint of view appear 

very different. However, as shown in [Miller and Tadmor 2009], at the implementation level all 

these methods are in fact very similar. The performance of a number of most frequently used 

methods is compared in a linear framework on a common benchmark test. The ways in which 

various multiscale methods differ are the formulation (energy or force based model), the 

coupling boundary conditions, the existence of the handshake region (overlapped or non-

overlapped domain de-composition), and the choice of the continuum model. The list 

containing: quasicontinuum (QC) method (in Section 3), bridging domain (BD) method (in 

Section 4), coupling of length scales (CLS), bridging scale (BS) method [Harold and Park 2004, 

Karpov et al 2006, Qian et al 2004], coupled atomistics and discrete dislocations (CADD), 

Atomistic-to-continuum coupling (AtC) [Fish et al 2007, Badia et al 2007, Badia et al 2008], 

etc. is also not exhaustive but the unified framework, available computer code, and a 

quantitative comparison between the methods offer a good overview. Note that there is also a 

very recent effort of coupling non-local to local continuum [Han and Lubineau 2012] in the 

Arlequin framework (see Section 4). An alternative to discrete modeling of atomic/particle 

systems is the use of non-local continuum mechanics models (NLCM) [Lubineau et al 2012]. 

NLCM reduces the computational costs but has the ability to capture non-local interactions. 

However since the simulation using NLCM is also costly due to assembly operation of the 

discretized model where each interaction point interacts with multiple neighbours, and the fact 

that this reduces the sparsity of the matrices, similar principle as in BD and QC method of 

coupling discrete, non-local particle model with local continuum is used. The key challenge is 

then again the gluing of non-local continuum model with the local one. 

The standard approach in these models is to a priori identify the atomistic and continuum 

regions and tie them together with some appropriate boundary conditions. In addition to the 

disadvantage of introducing artificial numerical interfaces into the problem a further drawback 

of many of these models is their inability to adapt to changes in loading and an evolving state of 

deformation. Take for example the problem of nanoindentation. As the loading progresses and 

dislocations are emitted under the indenter the computational model must be able to adapt and 

change in accordance with these new circumstances. 

In the sequel the QC and the BD/Arlequin methods are described in more detail. The goal 

is, however, to show the evolution of the BD/Arlequin coupling approach and to compare the 

features regarding ability to adapt. 
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3. Quasicontinuum method 

The Quasicontinuum (QC) method is originally proposed in late 90‘s by Tadmor, Ortiz and 

Phillips [Tadmor et al 2012]. Since then it has seen a great deal of development and application 

by a number of researchers. The QC method has been used to study a variety of fundamental 

aspects of deformation in crystalline solids, including fracture [Miller  et al 1998, Miller  et al 

1998, Hai and Tadmor 2003] 2 , grain boundary slip and deformation [Shenoy et al 1999]. The 

nano-indentation [Shenoy et al 2000] and similar applications are examples where neither 

atomistic simulation nor continuum mechanics alone were appropriate, whereas the QC was 

able to effectively combine the advantages of both models. The main goal of the QC method is 

the provide a seamless link of the atomistic and continuum scales. This goal is achieved by the 

three main building blocks [Eidel et al 2010, Miller and Tadmor 2002]: 

1. Reduction of degrees of freedom (DOF) by coarse-graining of fully atomistic 

resolution via kinematic constraints. The fully atomistic description is retained only in 

the regions of interest. 

2. An approximation of the energy in the coarse grained region via numerical quadrature. 

The main idea is to avoid the need to calculate the energy of all the atoms, but retain 

only a few so-called rep-atoms. 

3. Ability of the fully re?ned, atomistic region to evolve with deformation, where 

adaptivity is directed by suitable re?nement indicator. 

3.1 DOF reduction or coarse graining 

If the deformation changes gradually on the atomistic scale, it is not necessary to explicitly 

track the displacement of every atom in the region. Instead it is suffcient to consider some 

selected atoms, often called representative atoms or rep-atoms. This process is in essence the 

upscaling via coarse graining. Only rep-atoms have independent DOF while all other atoms are 

forced to follow the interpolated motion of the rep-atoms. The QC incorporates such a scheme 

by means of the interpolation functions of the FE method, and thus the FE triangulation has to 

be performed with rep-atoms as FE mesh nodes. This way continuum assumption is implicitly 

introduced in QC method. Thus, if the potential   is given as a function of displacement u 

(similarly as in (6))  

  ( )      ( )  ∑   ̅  
 
   , (7) 

Where   ̅ is the external force on the atom i and      is an atomistic internal energy 

      ∑   (
 
    ), (8) 

the kinematic constraint described above is performed by replacing     , with        

        ∑   (
 
     ). (9) 

In the above equation the displacement approximation is given via standard FE interpolation 

    ∑   ( )
    

   
, (10) 

where    is a shape function for the node/rep-atom i. The density of rep-atoms vary in space 

according to the considered problem. In the vicinity of region of interest every atom is 

considered as rep-atom and in region of more slowly varying deformation gradient, only a few 

atoms are chosen. 
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3.2 Efficient energy calculation via Cauchy-Born rule 

Described kinematic constraint on most of the atoms in the body will achieve the goal of 

reducing the number of degrees of freedom in the problem. However, for the purpose of energy 

minimization the energy of all the atoms (not just rep-atoms) has to be computed. The way to 

avoid visiting every atom is the Cauchy-Born (CB) rule [Ericksen 1984, Ericksen 2008, 

Zanzotto  1996]. The CB rule postulates that when a simple, mono-atomic crystal is subjected to 

small displacement on its boundary then all the atoms will follow this displacement. In QC this 

rule is implemented in that every atom in a region subject to a uniform deformation gradient 

will be energetically equivalent. Thus, energy within an element can be estimated by computing 

the energy of one, single atom in the deformed state. The estimation is performed simply by 

multiplying the single atom energy by the number of atoms in the speci?c element. The strain 

energy density (SED) of the element can be expressed as: 

  ( )  
  ( )

  
, (11) 

where    is s the energy of the unit cell when its lattice vectors are distorted according to 

deformation gradient F, and    is the volume of unit cell. The sum in eq. (9) is reduced to 

number of FEs (     ) 

               
 ∑    (  )

     
   , (12) 

where the element volume and unit cell volume are related as        , and    is the number 

of atoms contained in element e. Using the CB rule, the QC can be thought of as a purely 

continuum formulation (local QC), but with a constitutive law that is based on atomistic model 

rather than on an assumed phenomenological form [Miller and Tadmor 2002]. Within QC 

framework, the calculation of CB energy is done separately in a subroutine. For a given 

deformation gradient F the lattice vectors in a unit cell are deformed according to given F and 

the SED is obtained according to eq. (11). 

3.3 Non-local QC and local/non-local coupling 

In settings where the deformation is varying slowly and the FE size is adequate with respect to 

the variations of the deformation, the local QC is sufficiently accurate and very effective. In the 

non-local regions, which can be eventually refined to fully atomistic resolution, the energy in 

(9) can be calculated by explicitly computing only the energy of the rep-atoms by numerical 

quadrature 

               
 ∑     ( 

 )
    

   
 (13) 

where    is the weight function for rep-atom i and is high for rep-atoms in regions of low rep-

atom density and low for high density. Thus,    is the number of the atoms represented by the i-

th rep-atom with the limiting case of      for fully atomistic case and consistency 

requirement 

 ∑     
    

   
. (14) 

The main advantage of the non-local QC is that when it is refined down to the atomic scale, it 

reduces exactly to lattice statics. 

High accuracy of non-local formulation can be combined with the high efficiency of the 

local formulation. In order to do that non-local formulation is employed in the region where 

atomic scale accuracy is needed, and local where the deformation is changing relatively slow. In 

this coupling approach the rep-atom can be chosen as local or non-local depending on its 

deformation environment giving                  . Total energy is approximated as 
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        ∑     ( 
 )

       
    ∑     ( 

 )
    
   , (15) 

where the weights n i are determined from the Voronoi tessellation i.e. by means of the cells 

around each rep-atom. The cell of atom i contains    atoms, and of these atoms   
  reside in FE 

e adjacent to rep-atom i. The weighted energy contribution of rep-atom i is then found by 

applying the CB rule within each element adjacent to i such that 

      ∑   
   

 

    (  ),      ∑   
    

 

 , (16) 

where    is the cell volume for single atom, and    
 is the number of FE adjacent to atom i. 

3.4 Local/non-local criterion 

The criterion to trigger the non-local treatment is based on the significant variation of 

deformation gradient 
3
 . Precisely, we say that the state of deformation near a representative 

atom is nearly homogeneous if the deformation gradients that it senses from the different 

surrounding elements are nearly equal. The non-locality criterion is then: 

      
   |  

    
 |   , (17) 

where   
  is the k-th eigenvalue of the right stretch tensor for element a, k = 1 . . . 3 and indices 

a and   (   ) refers to the neighboring elements of rep-atom. The rep-atom will be made 

local if this inequality is satisfied, and non-local otherwise, depending on the empirical constant 

 . 

3.5 Adaptivity 

Without a priori knowledge of where the deformation field will require fine-scale resolution, it 

is necessary that the method should have a built-in, automatic way to adapt the finite element 

mesh through the addition or removal of rep-atoms. This is a feature that is in QC inherent from 

the FE literature, where considerable attention has been given to adaptive meshing techniques 

for many years. Typically in FE techniques, a scalar measure is defined to quantify the error 

introduced into the solution by the current density of nodes (or rep-atoms in the QC). Elements 

in which this error estimator is higher than some prescribed tolerance are targeted for 

adaptation, while at the same time the error estimator can be used to remove unnecessary nodes 

from the model. 

The error estimator in terms of deformation gradient is defined as the difference between 

the actual solution and the estimate of the higher order solution (see [Miller and Tadmor 2002]). 

If this error is small, it implies that the higher order solution is well represented by the lower 

order elements in the region, and thus no refinement is required. Needles to say, elements for 

which the error is greater than some prescribed error tolerance are targeted for refinement. 

Refinement then proceeds by adding three new rep-atoms at the atomic sites closest to the mid-

sides of the targeted elements 
4
 . If the nearest atomic sites to the mid-sides of the elements are 

the atoms at the element corners, the region is fully refined and no new rep-atoms can be added. 

The same error estimator is used in the QC to remove unnecessary rep-atoms from the mesh. In 

this process, a rep-atom is temporarily removed from the mesh and the surrounding region is 

locally re-meshed. If all of the elements produced by this re-meshing process have a value of 

the error estimator below the threshold, the rep-atom can be eliminated. Essentially, the idea is 

to examine the necessity of each node. To prevent excessive coarsening of the mesh far from 

defects the nodes corresponding to the initial mesh are usually protected from deletion [Shenoy 

et al 1999]. 
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4 Bridging domain and Arlequin-based coupling 

The Bridging domain (BD) method is in essence a partially overlapping domain decomposition 

scheme used for atomistic-to-continuum coupling developed by Belytschko and Xiao in 2003 

[Belytschko and Xiao 2003] for the static, and [Xiao and Belytschko 2004] for dynamical 

problems. The compatibility in the overlapping domain is enforced by Lagrange multipliers. 

The evolution of the aforementioned method (see also [Zhang et al 2007, Anciaux et al 2008, 

Belytschko et al 2010]) has much in common with recent works in the finite element (FE) 

community on the coupling of nonconforming meshes in the overlapping subdomain. This 

approach is known as Arlequin method developed by Ben Dhia [Dhia and Rateau 2005, Dhia et 

al 2008, Guidault and Belytschko 2007]. The same Arlequin approach is lately also applied for 

atomistic-to-continuum coupling like in [Bauman et al 2008, Prudhomme et al 2008, Bauman et 

al 2009, Guidault and Belytschko 2009, Prudhomme et al 2009, Chamoin et al 2010, Dhia et al 

2010]. More precisely, the domain with models coupling of is divided in three subdomains as 

shown in Fig. 2. The atomistic domain    is discretized with molecular dynamics or rather 

molecular mechanics (MM), whereas the continuum mechanics domain    discretization is 

carried out by FEs. The atomistic and continuum domains overlap in the domain         . 

This overlapping domain is also called bridging, handshake or coupling domain. The role of the 

continuum 

 

Fig. 2. Scheme of the coupled model and the nSM technique. 

model is to replace the molecular model with a coarser, and thus computationally cheaper, 

model in      away from the region of interest (e.g. lattice defect). Initially emphasis of the 

research was to make the coupling of the two different models as seamless as possible. No 

special attention was devoted to the question how to adaptively refine the model around the 

region of interest and where to position the handshake zone i.e. how far from the region of 

interest. 

4.1 Construction of surrogate model 

The role of the surrogate model is to propagate only the large-scale information. The choice of 

this model depends on the nature of the material but it should be selected as the most 

‘compatible‘ model with the atomistic or particle model in the sense of homogenization [62]. 

Thus, the material parameters of the surrogate continuum constitutive model should be 

calibrated accordingly. To that end, there are two approaches that appear in the BD/Arlequin 

literature. 

The first one is related to the construction of constitutive equation via the Cauchy-Born rule 

introduced by the quasi-continuum (QC) approach as proposed e.g. in [Xiao and Belytschko 
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2004, Zhang et al  2007]. The Cauchy-Born rule is described in detail in section 3.2. The second 

approach pertains to computing the equivalent continuum model parameters through 

homogenization. Simple illustration for 1D case is given in [Bauman et al 2007] for the case of 

linear elastic continuum. More systematic approach to calibrating the continuum model 

parameters exploits the virtual experiments on the representative volume element (RVE) as 

suggested in [Prudhomme et al 2009]. The continuum model is based on plane stress linear 

elasticity and the constitutive relation is defined by Hooke‘s law. A RVE is considered to be a 

piece of material (atomistic lattice in this case) whose dimension is increased in iteratively until 

the consistent homogenized medium is obtained where the material parameters do not vary with 

further size increase. The lattice samples are larger than the effective RVEs in order to avoid 

boundary effects. The choice of the continuum model is, naturally, problem dependent (see 

[Bauman et al 2009] for nonlinear hyperelastic material model suitable for polymeric materials). 

An example of the (virtual) experiment for the uniaxial tension case is described in sub-

sequently. Let the lattice sample size be       with constraints on the left and bottom atom 

layers, and imposed force (to obtain traction t) or displacement u on every right-most atom Fig. 

3. Without loss of generality we take the pair-wise interaction, where the internal energy 

 

Fig. 3. Scheme of the lattice sample and increasing square shaped RVEs (1, 2, . . . , i, . . . , n) 

increasing until material parameters convergence. Due to simplicity, only RVE 1 is shown as a 

lattice structure. 

of the RVE is calculated as in (2) with        . The strain energy density is calculated by 

dividing the atomic energy     by the initial volume of the RVE (  ) 

    
    

  
. (18) 

The variation of the atomistic SED with the size of the RVE is shown in Fig. 4. It is assumed 
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Fig. 4. Atomistic strain energy density (  ) convergence with increasing size of RVE. 

that the energy densities obtained from the continuum and atomistic models are identical, so 

that     
5
 , where W is continuum strain energy density. Such value of W is further used to 

calculate the continuum part of energy (as indicated in equations (19) and (20)). This kind of 

approach obviates the need for the CB hypothesis to be fulfilled, which is used for composite 

lattices e.g. in 1D setting [Chamoin et al 2010]. 

4.2 Governing equations and coupling 

Total potential energy of the system may be written as 

            
 ( )    

 ( )      (   ), (19) 

where u i d are displacement vectors in the continuum and atomistic domains, respectively. 

Furthermore,      is the work of external forces, while   
  and   

  are weighted continuum and 

atomistic energies, defined as 

   
 ( )  ∫   ( ) ( )   

             
 ( )  

 

 
∑             . (20) 

In the bridging domain the two models overlap, and the weighting functions    and    in (20) 

partition the energy. The weighting function serves to blend the behavior from the continuum 

model (  ) and the atomistic model (  ) and to avoid the double counting of the energy in the 

bridging domain. Furthermore, the use of an overlapping subdomain obviates the need for the 

FE nodes of the continuum model to correspond to the atomic positions. The weighting 

functions    and    define a partition of unity of the energy in the bridging domain as follows: 

 

  ( )              

  ( )              

  ( )    ( )           

 (21) 

The energy weighting functions can be taken with constant value (e.g. 0.5), linear (ramp) and 

cubic functions of X in    for 1D case see Fig. 5). We note that all three possible distributions 

for the atomistic weighting function    are depicted in Fig. 5, but only the linear continuum 

weighting function for continuum energy is indicated in Fig. 5) by dashed line in order not to 
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Fig. 5. Energy weighting function distribution in the bridging zone. 

overburden that illustration. Already in early contributions by [Belytschko and Xiao 2003, 

Zhang et al 2007] the discrete coupling of the atomistic and continuum models was achieved by 

forcing displacement compatibility in the bridging domain as  (    )          . There, 

the Lagrange multiplier (LM) method was used to convert the problem of constrained 

minimization into finding the minimum of the larger, unconstrained problem. Hence, LMs, 

denoted with  , are used to enforce the compatibility between the discrete atomistic 

displacement (discretely for each atom within the coupling zone) and the continuum 

displacement field. This results with the following Lagrangian 

                    ∑ ∫  ( )
     ( )      (    )      , (22) 

where C is the constraint in terms of the energy. In numerical implementation, displacement 

field in    and LM fields in    are approximated by using, respectively, the shape functions 

  ( ) and   
 ( ) as 

  ( )  ∑   ( )        ( )  ∑   
 ( ) ̂        , (23) 

with    and  ̂  as the corresponding nodal values. Two limit cases regarding the LM field 

approximation are: i) the strict (or so called non-interpolated or atomic/particle) coupling with 

the LMs defined with atoms in the bridging zone and where i.e.   
 (  )        ) the 

interpolated (or continuum) coupling where the  -nodes coincide with FE nodes and the LM 

shape functions   
  correspond to the FE shape functions  . The distribution of the  -nodes for 

the two cases is illustrated in Fig. 6 for 1D case. 

 

Fig. 6. Scheme of the distribution of the LM nodes for strict and interpolated coupling. 

In recent works on BD/Arlequin method e.g. [Bauman et al 2008, Guidault and Belytschko 

2009, Prudhomme et al 2009, Chamoin et al 2010, Qiao et al 2011] the displacement 

compatibility is given as  ( )    ( ), where   ( ) is the regularized atomistic displacement 

field in    that can be interpolated. For example, the atomistic displacement field is based on an 

MLS approximation in [Guidault and Belytschko 2009], or on a linear polynomial 

interpolations in [Bauman et al 2008]. As in the discrete case, the Lagrange multiplier field   is 

used to enforce the displacement continuity in a weak sense defined through the scalar product 

(       ). Two kind of scalar products are considered (       )   and (       )   

together with the performance and applicability in atomistic-to-continuum coupling. The 

coupling term C (as shown in (22)) is now defined as follows 
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     ∫   (     )  
  , (24) 

     ∫   (     )     ( )  (     )  
  , (25) 

where l has the unit of a length, and corresponds to a characteristic dimension of the coupling 

zone. Apart from the advances in the coupling itself which is mostly related to the development 

of the Arlequin method advocated in initial work by Ben Dhia [Dhia and Rateau 2005] and its 

further application to the atomistic-to-continuum coupling, this method is acquiring the ability 

to accommodate the model and decrease the error in chosen quantity of interest. That is, the 

adaptivity described above for the QC method was included in the BD/Arlequin. This evolution 

parallels recent development in goal oriented error estimate theory as discussed in forthcoming 

section. 

4.3 Adaptivity and error estimate 

In computer simulations of physical models there are two major sources of error. 

Approximation error due to the discretization of mathematical models, and modeling error 

related to the simplification or in general to the natural imperfections in abstract models of 

actual physical phenomena. The focus is here on the estimation and control of modeling error. 

This subject has been introduced in recent years and was initially devoted to estimating global 

modeling error e.g. [Ainsworth and Oden 1997]. Since then, extensions to error estimates in 

specific quantities of interest (estimate upper and lower bounds of error in linear functionals) 

have been proposed [Oden and Vemaganti 2000, Oden and Prudhomme 2002, Prudhomme et al 

2003]. As an example Oden and Vemaganti [Oden and Vemaganti 2000] proposed an extension 

of a posteriori modeling error estimation for heterogeneous materials to the quantities of 

interest so-called goal-oriented error estimates. Many candidates for local quantities of interest 

are de facto quantities that one actually measures when assessing mechanical response e.g. 

average stresses on material interfaces, displacement, etc. Mathematically, a quantity of interest 

is any feature of the ?ne-scale solution that can be characterized as a continuous linear 

functional on the space of functions to which the ?ne-scale solution belongs. Analogously as in 

[Oden and Vemaganti 2000], where the error estimates are related to the error between ?ne-

scale and regularized (homogenized) model, goal-oriented error estimation is extended to the 

case of discrete models (lattice) in [Oden et al 2005]. That is, this approach is used to estimate 

the modeling error between the atomic structure (lattice) and the surrogate, continuum model 

(i.e. FE discretization of the continuum model). 

The idea behind the goal oriented adaptive modeling (as shown in the mentioned 

references) is to start from coarse, regularized model and to adaptively proceed towards fine 

model. Hence, the model is adopted to deliver local quantity of interest to within preset 

accuracy. The general process of adapting the surrogate model in order to decrease the 

modeling error in specific quantities of interest is referred to as the Goals Algorithms. 

The basis of goal oriented error estimates is furthermore employed in the coupling of 

atomic and continuum models. The difficulty in the use of such coupling methods is to decide 

where to locate the overlap region between the two models so as to control the accuracy of their 

solutions with respect to the fully atomistic model. The convergence study of the modeling error 

in the context of atomistic-to-continuum (Arlequin type) coupling approaches is performed in 

[Prudhomme et al 2008, Dhia et al 2010]. The study is performed on a simple 1D problem that 

consists of chain of springs (as a fully atomic model), with a local defect modeled by a sudden 

change in the spring stiffness, and the coupled atomic-continuum model. The errors that are 

quantified between the two models are defined in terms of atomic displacement in   . The 

exact displacement is the one obtained by the fully atomic model (d) and the approximation 

(  ) obtained by the coupled model. Two quantities of interest are studied: firstly (  ) defined 
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as atomic displacement, and the second one (  ) as average force on atom. The associated 

modeling errors are      ( )    ( 
 ), where      . This convergence study shows 

decrease of the mentioned modeling errors with the increase of the   . This analysis was a first 

step
6
 , and a basis for the development of the adaptive strategy. 

Finally, the Goals algorithm is extended to the Arlequin based coupled atomic-to-

continuum modeling [Prudhomme et al 2009, Dhia et al 2010]. The adaptive procedure that 

controls the error is obtained by generating a sequence of surrogate problems so that the 

modeling error satisfies: 

    ( )   (  )      , (26) 

where      is predefined tolerance. Reduction of the modeling error at each iteration is done by 

locally enriching the surrogate model, i.e. by locally switching on the atomic model in the 

subregions where the continuum model is not accurate enough 
7
. Modeling error is defined 

globally over the whole domain but can be decomposed into local contributions (subdomains). 

Naturally, the elements of the finite element mesh used to discretize the continuum model are 

chosen as subdomains or cells. Now, some user-defined parameter (subdomain tolerance similar 

as     ) is chosen to decide when can the subdomain be switched from the continuum model to 

the particle model. 

5 MS methods comparison 

In the foregoing, we have given an overview of the mainstream MS methods in terms of QC 

method and BD/Arlequin based coupling. The latter currently attracts the greatest attention with 

many BD/Arlequin recent developments, but it still has not been fully completed as the simpler, 

but well known QC method. Therefore, we try to present in this section the comparison of these 

two methods, hoping to be able to draw lessons on further improvements to the present practise. 

This comparison is carried out regarding: 1. coupling algorithm, 2. continuum modeling, 3. 

applicability, and finally 4. adaptivity strategy. 

5.1 Coupling algorithm 

The coupling algorithm of these two methods are drastically different. QC method seeks to 

provide a gradual transition, where the mesh composed of repatoms as nodes is gradually 

refined starting from the local towards the non-local description. This gradual transition is 

numerically more convenient regarding its capability to reduce the ill-conditioning. However, it 

also has a few drawbacks. First of all, an enormous refinement has to be performed in going 

from the FE continuum representation to the atomistic lattice size. Furthermore, the FE nodes 

and the atoms have to coincide. Contrary to that, BD/A method couples the two models only in 

the zone of partial overlap. Neither gradual transition nor coincidence between the nodes and 

elements are needed. However, atomistic and continuum DOFs are completely separated and 

additional unknowns in terms of Lagrange multipliers that enforce the coupling need to be 

accounted for. In addition, in order to avoid double counting the blending of the energy in 

overlapping domain is done by weighting functions, which also have to be chosen 

appropriately. 

5.2 Continuum modeling 

QC method works with large deformation intrinsically. That is, CB rule is used for continuum 

constitutive relation thus constitutive law is based on atomistics rather than on an assumed 

phenomenological form. On the other hand CB hypothesis is satis?ed only for simple lattice 
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structures 
8
 . On the other hand, due to use of classical coupling of atomic and continuum 

domains, The BD/A method offers another approach to defining the surrogate (homogenized) 

continuum model. Namely, fitting the material parameters by virtual experiments on RVE, the 

atomistic part is reduced to the corresponding continuum. Thus, there is no need for CB 

hypothesis to be satisfied. 

5.3 Applicability 

During development period of the QC method, it served both as a key vehicle for understanding 

of the nature of atomistic-continuum coupling, and as a practical tool for investigating problems 

requiring coupled atomistic-continuum solution procedure. Nowadays, there is a unified web 

site qcmethod.org as the original source of information, with publications and the most 

important download section. Under the download section the QC code is available written in 

Fortran90 by the Tadmor and Miller. On the other hand, BD/A method was not used that much 

as a practical tool (apart some application to carbon nano tubes by Xiao and Belytschko), it was 

more used for the theoretical testing of different aspects of coupling and MS modeling in 

general. However the method is from the very beginning extended to dynamics, dealing with 

spurious wave reflections in the transition from the atomic to continuum domain. There is no 

unified web site as for QC method, but there are examples like libmultiscale.gforge.inria.fr. 

5.4 Adaptivity strategy 

Original QC method is in essence an adaptive FE approach, and adaptivity is intrinsically in the 

formulation in QC method. BD/A method was initially assumed as approach to couple two 

different models. However, the described evolution associated with the goal oriented error 

estimate theory, with the strong mathematical foundations, improved the method so that it is 

equal if not better compared to the QC method in the sense of model adaptivity. In particular, 

the choice where to place the fine and where to remain with coarse scale model, and how to 

provide the appropriate evolution of that region is still the most important question. More 

precisely, the BD/A method adaptivity is driven by the goals algorithm, controlling the model 

refinement with respect to the any chosen quantity of interest. In QC method non-locality 

criterion is based on a significant variation in the deformation gradient (no other criteria). In 

very recent contributions the model adaptivity is being combined with optimal control theory 

and shape optimization allowing size and shape of the zone of interest to be automatically 

determined (or controlled in the sense of the error in the quantity of interest). 

6 Numerical examples with model adaptivity 

The idea of model adaptivity described in the previous chapters is shown schematically in the 

following table for the simplest 1D case. Even though this procedure is similar to a mesh 

refinement (especially for the QC approach), the main goal is to address the model comparison 

that allows us to substitute the continuum model with the atomic one.  
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We present further some numerical examples that can clearly demonstrate the model adaptivity 

for the BD/A based coupled model. The accuracy of chosen quantities of interest (QOI) is used 

as the measure of the model adaptivity performance. Contrary to QC method, there are many 

candidates for local QOIs, and the best choice certainly depends on the problem on hands. In 

the examples the follow, the quantities are selected for the sake of overview: Q1 -displacement 

of the rightmost node, Q2 - L2 norm of displacement error in overlapping zone, Q3 - mean 

strain in the overlapping zone, Q4 - L2 norm of strain error in overlapping zone, Q5 - stress 

difference between neighbouring bonds. Next to QOIs, some other parameters of the model 

ought to be selected selected, and properly adapted. These parameters are divided in two 

groups. The first one pertains to the shape i.e. size of the overlap along with the size of the FEs 

for continuum domain. The second group concerns the size of the ?ne scale (particle) domain 

i.e. to issue where to place the overlap. 

6.1 Adapting model topology - FE and overlap size 

In this example, we demonstrate the influence of the model topology on the accuracy of QOIs 

Q1 . . . Q4. The accuracy improvement is performed in the simple, chainlike (1D) problem as in 

Fig. 7 (see Section 4 and [Marenic et al 2012]). Two parameters are taken into consideration for 

the 

 

Fig. 7. 1D coupling BD/A based model scheme with the symmetry BC on the left end of the 

atomistic domain.  
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topology adaptation: the size of the FE (  ), and the size of the overlapping zone (  ). In 

extension, local (only    ) and nonlocal (   and    , see Fig. 7) types of interaction are selected 

in the atomistic domain and taken as the third parameter. 

Parameter 1: the size of the FE    

For the local, non-interpolated case of the model problem the solution of the full molecular and 

coupled model show no error in the mentioned QOIs with the variation of the parameter    . On 

the other hand, for the case of interpolated coupling within the local interaction in    , the error 

in the QOIs exists and it is shown in the Fig. 8 with respect the variation of the parameter    . In 

the analysis of the influence of parameter    upon the QOIs, the other parameter (the size of the 

overlapping zone) is kept constant (            ). On the 

 

Fig. 8. Local interaction in    with FE size    as a parameter. Quantities of interest Q1, 

Q2, Q3 and Q4 are shown on plots denoted as a), b), c) and d), respectively. 

Fig. 8 a) the relative error in Q1, the displacement of the end node, is given as 
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      (     
  )   

  , (27) 

where    and   
   is the displacement of the rightmost node and the exact value for the 

displacement, respectively. Note that in the examples presented herein, the exact values refer to 

the fully molecular (or particle) solution. 

On the Fig. 8 b) relative L 2 norm of the displacement error in the overlapping zone is 

given as 

       
√∑ (     

  )     

√∑ (  
  )

 
    

, (28) 

where    and   
   are atom displacement solution (     ) for the coupled model and the exact 

solution, respectively. The relative error in Q3, the mean strain in the overlapping zone, is given 

on Fig. 8 c) as 

     ̅  
 ̅  ̅  

 ̅  , (29) 

where   ̅ and  ̅   are the mean strain in overlapping zone and exact mean strain, respectively. 

Likewise, on the Fig. 8 d) relative    norm of the strain error in the overlapping zone is given as 

       
√∑ (     

  )     

√∑ (  
  )

 
    

, (30) 

where    and   
   are strain solution (     ) for the coupled model and the exact solution, 

respectively. 

Similarly, the same analysis is performed with the non-local interaction in atomistic 

domain. The results are shown in the Fig. 9 indicating the same tendency as for local interaction 

with the bigger error. Note that for all the plots in Figs. 8 and Fig. 9 the errors in QOIs drops 

down to zero as the size of the FE decreases to lattice constant being       . This result is 

rather logical, since decreasing the FE size for the interpolated coupling case we approach the 

non-interpolated case (see Fig. 6) where no error occurs, as already mentioned above. 

Parameter 2: the size of the bridging zone    

The FE size is varied here together with the size of the bridging zone, as in Fig. 10 a), keeping 

FE size equal to overlap size (      as in Fig. 10 a)). This is because if the size of the FE is 

kept constant with the variation of the   (see Fig. 10 b)) then the influence of the number of the 

FE in the bridging zone is notable (as studied in the section above). For the local, non-

interpolated case of the model problem, the solution of the full molecular and coupled model 

show no error in the mentioned QOIs with the variation of the parameter   . The same goes for 

FE size as parameter. For the case of interpolated coupling, the error in the QOIs is shown in 

the Fig. 11 with respect to the variation of the parameter    , only for the simpler case of local 

interaction. Note that the diagrams a) and c) on Fig. 11 show that the error in displacement of 

the end node and the error in mean strain drops with the increase of the   . 
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6.2 Adapting the position of the overlap 

In this section the parameter for adapting the coupled model is the position of the overlap zone 

with respect to the strain gradient caused by distributed load or by hypothetical defect. Actually, 

the position of the overlap is directly related to the fine scale model size, that is to the question 

pertaining to the size of the fine-scale model. 

 

Fig. 9. Nonlocal interaction in    with FE size    as a parameter. Quantities of interest Q1, Q2, 

Q3 and Q4 are shown on plots a), b), c) and d), respectively. 

6.3Model with distributed load 

A model with the distributed load spreading in the particle domain is chosen to analyse the 

influence of the overlap position on the accuracy of the certain QOIs. Three different 

configurations are considered as shown in Fig. 12. The two limiting cases, one where the 

distributed load is completely in the atomistic domain (spreading also in the overlap called case 

3)) and the other with distributed load only in atomistic domain but not in overlap (denoted as 

case 1)). Case 2) concerns configuration(s) between. The error in QOIs Q1 and Q2 versus 
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mentioned three cases is plotted on Fig. 13. Not quite surprising, the presented results show 

better accuracy in terms of selected QOIs as the particle size is increased (i.e. as the distributed 

load is further from the overlap). Furthermore, QOI Q5 representing stress difference between 

neighbouring bonds is taken as the control variable to adapt the ?ne scale size. The relative error 

in Q5 is defined as 

      (       )     , (31) 

 

Fig. 10. Options for the study of the influence of the bridging zone size parameter. a)    =    

and b)    = cst. 

where      and      is the exact stress difference and the one obtained from coupled model, 

respectively (see Fig. 14 a)). Stress difference is obtained as            , i.e. the difference 

of stress (piece-wise constant) in the neighbouring bonds. Results of the relative error in stress 

difference of the leftmost atom in the overlap versus the position of overlap is presented in Fig. 

14 b). The results show that the error in terms of stress QOI decreases with the increase of the 

size of fine scale model. Clearly, when the strain gradient, caused by the distributed load, is in 

fine scale model completely the error in stress QOI does not exist. This QOI provides a very 

good local refinement criterion. We note in passing that such a QOI, apart from being a good 

refinement criteria, can be related to the often mentioned ghost forces problem. Thus, choosing 

this QOI Goals algorithm can be used to iteratively adapt coupled model to increase the 

coupling quality i.e. ghost forces. This is more important for complex interatomic potential with 

non-local interaction, which is the subject of forthcoming research. 

6.4 Model with defect 

Next, a model with the defect is analyzed. This defect is modeled as the sudden stiffness change 

(see Fig. 15 a)) which occurs inside the particle domain. Problem is similar as the distributed 

load but with a more severe strain gradient. According to the adaptive scheme in Fig. 15 b) the 

fine-scale model size is increased. Not surprisingly, adapting the model in a way that the defect 

(severe strain gradient) is included in fine scale model, reduces the error in QOIs as can be seen 

in Fig. 16. 

7 Conclusions and perspectives 

In the consideration where nano-scale effects are important, the reference solution can be 

obtained by using the full atomic model relying upon interatomic potentials to provide the 

results of interest. However, due to the complexity of engineering problems and the 

corresponding scales that appear in realistic problems, explicit modeling of all with only the 

atomic degrees of freedom will very likely never be feasible. Thus, one must reduce the size of 

the problem by multiscale strategies (MS) that selectively removes most of the degrees of 

freedom by homogenized continuum formulation in order to make the problem solution 

tractable.  

In this survey, we have discussed the salient features, similarities and some recent 

developments in the most frequently used strategies that selective reduce the number of degrees 

of freedom, BD/A and QC methods. In the references related to the BD/A MS methods authors 

usually concentrate on the atomistic-to-continuum coupling performance. Thus, selective 
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removing of degrees of freedom i.e. model adaptivity is neglected. The QC method is based on 

adaptive approach, thus being an exception and the reference for comparison in this review 

survey. The evolution of the BD/A method from atomistic-to-continum coupling to adaptive 

MS method is presented, as well as the literature regarding error estimation theory which 

parallels the development. 

The general idea of model adaptivity is demonstrated on few numerical examples. The 

presented examples deal with the simplest 1D case, and they should not be used to quantify 

computational efficiency or the limits of adaptive criteria (tolerances). The idea was, 

 

Fig. 11. Local interaction in    with size of   (  ) as a parameter. Quantities of interest Q1, 

Q2, Q3 and Q4 are shown on subplots a), b), c) and d), respectively. 

rather, to illustrate several useful choices for the parameters to adapt. Likewise, the choice of 

functional defining quantities of interest is not fully exhaustive. Different choices of the 

parameters and the quantities of interest made herein are used in order to illustrate that they 

remain problem dependent. 
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Further perspectives of the BD/A method development is related to the implementation of 

the complex multi-body potential which enables more realistic description of the discrete 

model. In many such case, the complex potential is even more computationally demanding as 

elaborated in the Section 2, which additionally justifies using the MS strategy. The use of this 

kind of potentials enables modeling of inelastic behavior and localized failure at the nano-scale. 

Equally, those potentials are able to describe the behavior of ‘living‘ material in life science. 

Both of this issues are presently very important in the technical and biomechanics research 

domain (e.g. see Kojic et al. [Kojic et al 2008, Kojic 2008]). 

 

Fig. 12. Three cases of the position of the bridging zone with respect to the distributed load 1) 

distributed load (q) not in overlap, 2) q partially in overlap and 3) q on all atoms, completely 

covering the overlap. 

 

Fig. 13. Local interaction in    with position of distributed load as a parameter (for L2 and H1 

coupling, see eq. 24). Quantities of interest Q1 and Q2 are shown on plots a) and b), 

respectively. 
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Fig. 14. a) stress plot for the model that for the model that needs refinement. The stress 

difference for the coupled model and referential, particle model are shown, and b) relative error 

in stress difference of the leftmost atom in the overlap versus the position of overlap. 

 

Fig. 15. Modeling of defect by the sudden spring stiffness drop located on the left end a), and 

characteristic cases regarding the overlap position (d 0 ) with respect to the defect radius (R def 

) used to illustrate adaptive process b). 



Journal of the Serbian Society for Computational Mechanics / Vol. 6 / No. 1, 2012 

 

193 

 

Fig. 16. Local interaction in Ω a with position of the defect (d 0 ) as parameter. QOI Q2 is 

shown for the four variants of coupling (strict, interpolated, L2 and H1)  
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Извод 

Адаптивно моделирање у мултискалним методама од атомске до 

континуум скале 
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Резиме 

Због недостатка компјутерске снаге да се уради потпуна атомистичка симулација 

практичних, ижењерских система, један број садашњих мултискалних метода је развијен 

да ограничи атомистички модел на мали кластер атома у близини значајне тачке. У овом 

раду се даје преглед најбитнијих карактеристика основних мултискалних фамилија. 

Посебна пажња је посвећена улози адаптивности метода, тј. који део домена проблема да 

се моделира на атомској скали (значајна зона), а која са моделом на грубој скали, као и 

питање где поставити границу између два модела да би се контролисала тачност. 

Узимајући Квазиконтинуум методу као референтну, дат је преглед развоја методе 

повезивања домена, односно Арлеквин методе (Bridging domain/Arlequin method), који је 

паралелан са развојем накнадне (a posteriori) процене грешке моделирања. 

Кључне речи: молекуларна механика, повезивање атом-континуум, квазиконтинуум, 

повезивање домена, Арлеквин ,  Коши-Борн правило, РВЕ (референтна еквивалентна 

запремина), циљна процена грешке,  циљни алгоритам.  
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