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Entropy Stable Multi-dimensional Dissipation Function

for the Roe Scheme on Unstructured Meshes

Aleksandar Jemcov∗ Hrvoje Jasak†

Flux difference schemes based on the Roe approximate Riemann solver provide for
sharp resolution of shock waves and contact discontinuities. Despite its good properties,
the Roe scheme does not possess entropy stability that is required for the scheme to
provide physically correct solutions. In addition, since the approximate Riemann solver was
developed using one-dimensional considerations, the carbuncle instability appears around
stagnation points for mesh-aligned flows. A solution to both entropy stability and the
carbuncle problem is considered here. An alternative form of the dissipation function is
developed that addresses both problems. The new dissipation function is based on the
multidimensional modification to dissipation function of Roe scheme. The new scheme is
shown to maintain sharp resolution comparable to the Roe flux difference scheme while
satisfying entropy stability and removing the carbuncle type of instability.

Nomenclature

A Jacobian Matrix
E Cartesian x-components of flux vector
F Cartesian y-components of flux vector
G Cartesian z-components of flux vector
Q Vector of conservative variables
I Unit matrix
Λ Diagonal matrix of eigenvalues
λ Jacobian eigenvalues
r Right eigenvectors of Jacobian matrix
F Flux vector
p Pressure, Pa
ρ Density, kg/m3

u, v, wVelocity components, m/s
H Total enthalpy
Φ Numerical flux function
P Dissipation functions
Ψ Limiter function
n Face normal vector

Subscript
i Variable number
l, r Left and right face index
0 Total thermodynamic quantity

I. Introduction

The Roe flux difference splitting scheme1 is characterized by a sharp resolution of waves in non-linear
and linear hyperbolic time dependent problems. The approximate Riemann solver of Roe employs linear

∗Independent Consultant, 67 Melanson Lane, Brookside, Nova Scotia, B3T 2K9, Canada.
†Director, Wikki Ltd., 31 Dolben Court Montaigne Close, London, SW1P 4BB, UK
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waves and the Roe averaging procedure to compute non-linear waves produced by non-linear flux functions.
The resulting numerical flux is very well suited for the resolution of discontinuous solutions and it is often
employed in computational fluid dynamics as the Riemann solver of choice. Also, the Roe scheme is known
not to be entropy stable, and it can produce unphysical solutions in the vicinity of sonic points. A typical
example of an unphysical solution that is characteristic of the Roe scheme is the appearance of expansion
shocks in violation of entropy stability. Several approaches to remedy the situation have been proposed
in the past2,3 through so-called entropy correction modifications. While these proposals are successful in
removing the non-physical solutions, thus providing the entropy stability to the scheme, they still suffer
from instabilities in the vicinity of stagnation points, often referred to as the carbuncle phenomenon.4

While carbuncle instability under certain circumstances represents a correct vanishing viscosity solution,5

the phenomenon is usually considered harmful, leading to an incorrect physical solution. The carbuncle type
of instability appears in the solution of Euler equations in more than one space dimension. The instability is
linked to the lack of cross flow dissipation that is typical of high resolution upwind one-dimensional schemes
such as Roe scheme, when applied to multi-dimensional flow problems.

At the same time, it is well known that the numerical schemes based on a central differencing approach
do not suffer from the carbuncle or entropy instabilities.3 The classical examples of schemes that are based
on central differencing formulas are Lax-Friedrichs, local Lax-Friedrichs, and JST schemes.3,6 All of these
schemes are characterized by increased dissipation that is of multi-dimensional nature. While JST scheme
satisfies the entropy stability condition7 we limit the analysis to Lax-Friedrichs and local Lax-Friedrichs
schemes since they provide a form of the numerical fluxes that can be easily related to the Roe scheme.

The main idea employed here is to modify the dissipation function of the Roe flux difference formula
so that it has some of the favorable dissipation characteristics of Lax-Friedrichs and local Lax-Friedrichs
schemes, while maintaining a sharp resolution of discontinuities. The resulting numerical flux is still of
the Roe type with the modified dissipation function, so that the entropy and multi-dimensional stability
requirements are satisfied.

II. Governing Equations and Numerical Method

Inviscid compressible fluid flow is described by Euler equations

∂Q

∂t
+
∂E

∂x
+
∂F

∂y
+
∂G

∂z
= 0 (1)

where Q is the vector of conserved variables

Q =


ρ

ρu

ρv

ρw

ρE


and E and F are vectors of inviscid fluxes

E =


ρu

ρu2 + pnx

ρuv

ρuw

ρuH

 , F =


ρv

ρuv

ρv2 + pny

ρvw

ρvH

 , G =


ρw

ρuw

ρvw

ρw2 + pnz

ρvH


and u, v, w, p, E, H have their usual meaning of Cartesian components of velocity, static pressure, total
energy and total enthalpy, respectively. Operator B acting on vector variable Q defines the inviscid boundary
conditions. In the particular example of interest here, wall boundary conditions are described by the no-
penetration condition

unx + vny + wnz = 0
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and inlet and outlet boundary conditions are prescribed in accordance with the sign of characteristics with
the following relationships between total and static quantities

To
T

= 1 +
γ − 1

2
M2 (2)

po
p

=

(
1 +

γ − 1

2
M2

)γ/(γ−1)

(3)

ρo
ρ

=

(
1 +

γ − 1

2
M2

)1/(γ−1)

(4)

Here nx ny, and nz are Cartesian components of the unit normal vector of the boundary ∂Ω, M is the
Mach number and all quantities with subscript ”o” represent total thermodynamic quantities. Eq. (1) can
be written in compact form using index notation

∂Q

∂t
+
∂Fi(Q)

∂xi
= 0. (5)

Here Fi are components of the flux vector and xi are components of a vector of Cartesian coordinates.
In finite volume methods Eq. (5) is transformed into a weak form through integration∫

Ω

∂Q

∂t
+

∫
Ω

∂Fi(Q)

∂xi
= 0. (6)

Application of Green’s theorem to Eq. (6) results in the following weak form containing the surface terms∫
Ω

∂Q

∂t
+

∫
Γ

Fi(Q)ni = 0. (7)

If the whole computational domain is discretized in non-overlapping control volumes Ωi, the weak form in
Eq. (7) for each finite volume takes the following form:∫

Ωi

∂Q

∂t
+
∑
i

∫
Γi

Fi(Q)ni = 0 (8)

where the sum is taken over all faces of finite volume Ωi.
The numerical flux function Φ(Ql,Qr) is introduced into Eq. (8) in order to evaluate surface integrals∑

i

∫
Γi

Fi(Q)ni ≈
∑
i

Φi(Qli,Qri, ni). (9)

Subscripts l and r correspond to “left” and “right” states relative to the face Γi and the numerical flux
function Φi defined through a local Riemann problem evaluated at integration points on the face. The
general form of numerical flux function Φi, suitable for description of both upwind and central difference
schemes, is given by

Φi(Ql,Qr, n) =
1

2
(Fl + Fr)n−

1

2
P (Ql,Qr, n). (10)

Various schemes take a different form of the dissipation function P (Ql,Qr, n) depending on whether they
are based on upwind flux difference splitting or the central scheme. In the case of the Roe scheme, the
dissipation function takes the following form:

P (Ql,Qr, n) = |A(Qf , nf )|(Qr −Ql), (11)

or equivalently after spectral decomposition of Jacobian A:

P (Ql,Qr, n) = |Λ(Qf )|r(Qr −Ql). (12)

Lax-Friedrichs numerical flux can be cast in the form given by Eq. (10) by noting that the dissipation function
of that scheme is given by the following expression

P (Ql,Qr, n) = λmax(Qr −Ql), (13)
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where
λmax = max

λ,Q
(λ(Q)). (14)

The resulting Lax-Friedrichs scheme has a dissipation function with uniform viscosity coefficient λmax. This
numeric flux function is known to be very dissipative. Similarly, the local Lax-Friedrics flux dissipation
function is given by

P (Ql,Qr, n) = λlrmax(Qr −Ql), (15)

where
λlrmax = max

λl,r,Ql,Qr

(λ(Q)). (16)

Instead of selecting one uniform dissipative coefficient as in Eq. (14), the local Lax-Friedrichs scheme selects
a non-uniform cell based dissipation coefficient in Eq. (16), thus providing for a less dissipative numerical
flux function. It is also known that both Lax-Fiedrichs and local Lax-Friedrichs schemes are entropy stable
with respect to any entropy pair associated with Eq. (5). Moreover, due to the multi-dimensional nature of
the dissipation function, both schemes are free of the carbuncle phenomenon.

In contrast to dissipation functions in Eq. (14) and (16), the Roe dissipation function does not satisfy
the discrete entropy stability condition

d

dt
U(Q) +

1

V

∑
i

Gini ≤ 0 (17)

for arbitrary entropy pair (U,G). This situation can be remedied by introducing the following entropy stable
dissipation function3

P (Ql,Qr, n) = max
{
|λlr|,KC1

lr(Qr −Qr)
}
, (18)

or

P (Ql,Qr, n) = |λlr|+
[

1

6
(λr − λl) + C2

lr(Qr −Qr)
2

]
. (19)

The modifications in Eq. (18) and (19) are sufficient to provide entropy stability and avoid unphysical
solutions for sufficiently large choice of constants K, C1

lr, and/or C2
lr. However, expressions in Eq. (18) and

(19) are derived with one-dimensional numeric flux functions in mind, and they do not address the lack of
cross diffusion in the dissipation function that leads to the carbuncle instability.

One possible way of addressing both entropy stability and carbuncle problems in the Roe scheme is to
use the general form of the numerical flux function Eq. (10) to take advantage of the local Lax-Friedrichs
formulation of the dissipation function, and bring its stability to the Roe dissipation function. That can be
done if the new dissipation function takes the following form:

P (Ql,Qr, n) =

[
α1|Λ(Qf )|r + α2 max

λl,r,Ql,Qr

(λ(Q))I

]
(Qr −Ql). (20)

Two arbitrary parameters α1 and α2 appear in Eq. (20. They have to be selected so that the entropy stability
requirement in Eq. (17) is satisfied. However, it is also important that the selection of the constants does
not bring too much viscosity into the dissipation function since this would destroy the good properties of
the Roe scheme. Therefore, it is required that the numerical dissipation in Eq. (20) does not exceed the
numerical dissipation of the local Lax-Friedrichs scheme in Eq. (16). This requirement clearly indicates that
parameters α1 and α2 should not be chosen independently. In order to satisfy the stated requirement, one
possible choice of the dissipation function could be the following expression:

P (Ql,Qr, n) =

[
|Λ(Qf )|r +K

∣∣∣∣ max
λl,r,Ql,Qr

(λ(Q))I− |Λ(Qf )|r
∣∣∣∣] (Qr −Ql), K ∈ {0, 1} . (21)

Constraining the constant K to the interval {0, 1} assures that the dissipation function never exceeds the
value of the local Lax-Friedrichs dissipation. The value of the the constant K is numerically determined and
may vary from problem to a problem. However, once selected, it should be valid for a wide range of Mach
numbers.
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III. Numerical Experiments

In order to demonstrate the newly defined dissipation function, numerical experiments were performed for
flows known to contain expansion waves and stagnation points. One such problem is described in Woodward
and Collela.8 It consists of supersonic flow in a wind tunnel with a step, as shown in figure 1. This is a
two-dimensional problem that has uniform Mach 3 flow at the inlet of the wind tunnel. The wind tunnel is
1 length unit wide and 3 length units long, with a step. The flow field is characterized by the presence of
a strong bow shock close to the step, expansion wave around the corner, reflected waves and slip surfaces.
Since there is a strong stationary bow shock and expansion wave in the flow field of this problem, both
entropy stability and the carbuncle phenomenon are tested by this case.

Figure 1. Computational mesh for the Mach 3 wind tunnel with a step. The mesh size correspond to spacing 4x =
4y = 1/80.

An explicit time marching algorithm using a four stage Runge-Kutta scheme was used to compute the flow
field at various times. A cell centered finite volume discretization was used to obtain the spatial discretization.
In order to obtain second order accuracy, primitive variables were extrapolated to the centroids of the finite
volume faces in accordance with the following expression

φf = φc + Ψ−→r · ∇φ. (22)

A Multidimensional limiter function Ψ is employed to guarantee stability of the second order scheme.9
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Pressure and density distributions are shown in figure (2) and figure (3 at the time t = 3.

Figure 2. Pressure distribution at time T = 3 computed by the Roe scheme. The mesh size correspond to spacing
4x = 4y = 1/80.

Close inspection of figure (2) and figure (3 reveals significant fluctuations in both pressure and density
just behind the stationary leading shock wave and stagnation point. The ripples in fields are a sign of the
instability caused by the carbuncle phenomenon. This effect can be seen closely in figure (4) in the case of
the density field computed on higher density grid (4x = 4y = 1/160).

In contrast to Roe flux differencing, the local Lax-Friedrichs scheme shows no signs of carbuncle or entropy
instability. Pressure and density fields are shown in figure (6) and figure (5). However, due to increased
viscosity, local Lax-Friedrichs does not resolve shock waves and other discontinuities in the flow field.

Even though the local Lax-Friedrichs scheme is second-order accurate and satisfies the entropy condition,
it does not resolve discontinuities as sharply as the Roe scheme. However, it has superior stability charac-
teristics in comparison to the Roe scheme. Details of the density field computed by the local Lax-Friedrichs
scheme are shown in figure (7). The figure shows very smooth pressure and density fields, with satisfactory
resolution of shock waves even though the results are somewhat dissipative.

Therefore, it is natural to try to combine the best characteristics of both schemes through Eq. (21).
Numerical results show that the selection of parameter K = 0.01 retains the usual entropy fix of Roe scheme,
while increasing its robustness. However, if the entropy fix described in2 is replaced by the dissipation in
Eq. 21) with the parameter K = 0.4, essentially all of the sharp resolution of Roe scheme and stability of
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Figure 3. Density distribution at time T = 3 computed by Roe scheme. The mesh size correspond to spacing 4x =
4y = 1/80.

the local Lax-Friedrichs are retained. Computational results shown in figure (9) and figure (8).
The details of the computed density field are shown in figure (10). The computed flow field is smooth

behind the shock wave while the resolution of discontinuities is close to the Roe scheme. The modified Roe
scheme satisfies both entropy and carbuncle stability conditions.

IV. Conclusion

In the final version of the paper, more computational experiments will be described. Also additional
analysis of the modified Roe scheme will be provided. All sections will be expanded significantly to provide
more information on the details of the new method.
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Figure 5. Pressure distribution at time T = 3 computed by local Lax-Friedrichs scheme. The mesh size correspond to
spacing 4x = 4y = 1/80.
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Figure 6. Density distribution at time T = 3 computed by local Lax-Friedrichs scheme. The mesh size correspond to
spacing 4x = 4y = 1/80.
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Figure 7. Density distribution at time T = 3 computed by local Lax-Friedrichs scheme. The mesh size correspond to
spacing 4x = 4y = 1/160.
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Figure 8. Pressure distribution at time T = 3 computed by modified Roe scheme. The mesh size correspond to spacing
4x = 4y = 1/80.
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Figure 9. Density distribution at time T = 3 computed by modified Roe scheme. The mesh size correspond to spacing
4x = 4y = 1/80.
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Figure 10. Density distribution at time T = 3 computed by modified Roe scheme. The mesh size correspond to spacing
4x = 4y = 1/160.
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