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Summary. Horizontal liquid film flow sheared by an external air flow field is encountered 

in many engineering applications. Taking into account its physical complexity and high cost 

of experimental investigation, numerical simulations are nowadays considered as a valuable 

alternative. They are becoming a useful tool for detailed understanding of complex flow 

characteristics and transport phenomena, especially in situations where experimental 

measurements are infeasible or too expensive. The focus of this paper is the implementation 

and validation of a mathematical model of surface tension effects within the existing 

numerical framework in order to achieve a more accurate description of the liquid wall film 

phenomena. After literature review, optimum mathematical model has been chosen and 

implemented in commercial computational fluid dynamics (CFD) code. Validation was 

carried out using a well established case of isothermal droplet spreading for which there are 

analytical expressions. Comparison of simulation results with non-dimensional droplet profile 

shows excellent agreement with analytical results and gives confidence for commercial 

application of implemented model. 
 

1 INTRODUCTION 

Liquid film flow sheared by an external air flow field is a physical phenomenon 

encountered in many engineering applications such as: burners, rocket nozzles, heat 

exchangers, steam turbine blades and especially internal combustion (IC) engines due to 

present and upcoming stringent environmental regulations [1].  

In IC engines it has been observed that unburnt fuel that goes directly to the manifold 

causes an increase in the emissions of unburnt hydrocarbons in the petrol engines and the 

larger product of soot in the compression-ignited engine. Also, injection of precursor 

substance into exhaust gases before the catalyst leads to the formation of liquid wall film due 
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to unsteady engine working conditions [2]. Above mentioned examples show great 

importance of the correct prediction of wall film behaviour. 

Assumptions of thin liquid film lead to the implementation of the wall film model as a 2D 

finite volume method on the air flow wall boundaries. Current wall film model in commercial 

CFD code Fire contains mathematical description of physical phenomena in the form of three 

conservation laws: conservation of mass, momentum and energy. However, surface tension 

effects which are of great importance at the late film spreading stages when the inertial forces 

are negligible [3] and also in cases when shear-driven film comes at a sharp expanding corner 

[4] are not taken into account. 

The film surface tension effects that are present at the boundary edges of the liquid phase 

play a crucial role in slowing down the film progression. These effects are not currently 

accounted and the approximation of constant film height over the control volume does not 

allow reconstructing the characteristics of the interface. That way scattering of liquid film 

causes high numerical diffusion which does not correspond to physical reality. The threshold 

value can be set by the user, and only the cells where the film is higher than this value are 

considered active. This approach is not acceptable and therefore the object of this work is 

improvement of current model by incorporating proper mathematical description of surface 

tension effects.  

The continuum surface force (CSF) method of Brackbill has been employed extensively 

over the last 13 years to model surface tension in various fixed (Eulerian) mesh formulations 

for interfacial flows, in particular in the volume-of-fluid (VOF), level-set (LS) and front 

tracking (FT) interface representation techniques [5]. The main drawback of mentioned 

approaches is that there are unsuitable for finite area Eulerian approach because of 

computational demands. They are usually used on small scale interfaces such as impinging 

droplet or few droplet collisions. Another approach of describing surface tension was made by 

Bai [6] who developed the solution procedure where capillary forces are taken into account 

through a capillary pressure term. It is suitable to incorporate this pressure term into 

momentum equation of wall film and details of the procedure are given in the following 

section.  

2 MATHEMATICAL MODEL 

The equations of continuum mechanics are based on the conservation laws for mass, 

momentum and energy. The general form of the time averaged conservation equation for any 

dependent variable φ of the continuous phase in the differential form is:  

 

 
(1) 

where ρ is the density, uj Cartesian velocity, Γφ diffusion coefficient, and Sφ is the source term 

of the dependent variable φ. The source term Sφ is used for the coupling of the liquid and the 

gaseous phases [7]. 

Fundamental assumptions and simplifications of the wall film model incorporated in 

commercial CFD code Fire are listed below:  

- Gas and wall film flow are treated as separate single phases; the coupling of the two 

phases is achieved by a modified set of boundary conditions based on a semi-
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empirical relations; 

- The film thickness is very small in relation to the mean diameter of the gas flow, so 

no adaptation of the volume grid to the film surface is necessary; 

- Due to the thin film and its small velocity, wall friction and interfacial shear stress 

dominate the film behaviour – a momentum equation could be dropped for a steady 

state; 

- Wall temperature is below the Leidenfrost point; 

- The wavy surface of the film is modelled as a mean film thickness with a 

superimposed film roughness; 

- Mean film surface is assumed to be parallel to the solid wall. 

The above assumptions lead to the implementation of the wall film model as a 2D finite 

volume method on the air flow wall boundaries.  

The film thickness equation is the basic governing equation for the wall film flow. It 

represents a slightly modified formulation of the continuity equation where, instead of mass, 

the wall film thickness is conserved property. The Cartesian formulation of the film thickness 

equation is: 

1 2

1 2

1
( )

mD mV

u u
S S

t x x A

 



 
   

  
 (2) 

where δ is the film thickness, ρ is the film density, u1 and u2 are film velocity components, 

SmD and SmV are source terms and A is the surface of the film. If we assume that the source 

terms are provided, equation (2) can be solved explicitly if the velocity components are 

known. 

Film momentum equation describes dynamics of liquid film interaction with its environment - 

wall, air stream above film, impinging droplets, etc. Equation (3) gives mathematical 

formulation of wall film momentum conservation law: 
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where Mi is film momentum, ρ is the film density, ui is film velocity, Vj is wall velocity, in̂  is 

normal to the face cell facing outwards, L is length of the face cell boundary, δ is the film 

thickness, p is film pressure, m is film mass, gi is gravity vector, Γi is the term that takes into 

account all shear stresses and Sm present various source and sinks terms such as film 

entrainment, spray droplets impingement and film evaporation.   

Inclusion of surface tension effects into pressure term of momentum equation was made by 

calculating capillary pressure. This force drives the surface towards a minimal energy state 

characterized by a configuration of minimum surface area and is represented by the combined 

action of liquid surface tension σ and film surface curvature C [3]: 

Cp    (4) 

As shown in [8, 9], the mean curvature of the free-surface can be approximated using the 

following expression: 
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On quality computational meshes surface area patches are so small than first two terms of 

equation (5) could be neglected. So, film surface curvature could be approximated with 

Laplacian of film thickness.  

 

Figure 1: Schematic representation of wall film cells 

Using schematic representation of wall film cells given on the Figure 1, Laplacian of film 

thickness could be numerically approximated with following equation: 
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where S is surface patch area, Li is length of the neighbour edge, ni is unit normal on common 

edge facing outwards and AB  is length between cell centers A and B. Equation (6) was 

incorporated into pressure term of momentum equation of existing numerical framework.  

3 ANALYTICAL CASE OF DROPLET SPREADING 

In order to test the numerical scheme and to check if the capillary pressure effect can be 

predicted properly, there is need for a simple case, where only capillary force effects are 

relevant and possibly for which there is analytical solution. Thus, the spreading of an 

isothermal droplet on a solid surface is simulated. The droplet is driven with Laplace 

(capillary) pressure as dominant force and other forces being absent or negligible. Similar 

tests were obtained by Diez et al. [10] (proposed analytical solution using lubrication theory 

which neglects convective terms in momentum equation and obtained experiments). The full 

momentum equations are solved together with the interface mass continuity equations, despite 

the fact that the convective term in the momentum equations may be negligible. The problem 

can be observed as two-dimensional because of axial symmetry. Diez et al. [10] showed that 

the normalized film thickness h/h0 can be expressed as a single function of the scaled radial 

position r/rf, irrespective of the time level.  
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4 NUMERICAL SIMULATIONS 

The simulation domain with relevant boundary conditions is shown in Figure 3. A three 

dimensional computational mesh with dimensions of 5 x 5 x 0.1 mm with 20 000 orthogonal 

hexahedron cells was used for the simulation. The wall boundary condition was defined at the 

bottom of the domain, whilst a static pressure outlet was imposed at all other sides. The 

domain pressure was 1 bar and temperature was equal to the droplet temperature. Pressure 

velocity coupling of momentum and continuity equation was obtained using the 

SIMPLE/PISO algorithm. The central difference discretisation scheme was used for the 

convective term in the continuity equation with a blending factor of 1, whilst a MINMOD 

Relaxed with a blending factor of 0.5 was used for the convective terms in the momentum 

equations. Turbulence model was deactivated since quiescent air is necessary for comparison 

with analytical expression. Energy equation was also deactivated in order that the only 

relevant force stays capillary pressure which tends to spread given droplet shape. 

  

Figure 2: Computational domain with boundary conditions and initial shape of droplet  

The simulation starts from a drop which initially takes the shape of a rotational paraboloid, 

shown on the right part of Figure 2, with volume of 0.12 mm
3
 and thickness at the center of 

0.08 mm. The spatial and time discretization increment were 0.05 mm and 10
-5

 s. Simulation 

time was 0.5 s since spreading of the droplet practically remained unchanged around and after 

0.4 s.  

5 RESULTS 

Qualitative depiction of droplet evolution is presented on Figure 3. As can be seen, droplet 

shape changes only after 1 ms. Reason behind this phenomena is that only relevant force is 

capillary pressure which produces fairly small spreading velocities whose effects on droplet 

spreading is visible only after 1ms. Further time evolution shows that droplet shape doesn’t 

change much between 0.25 and 0.4 s, since the wall film thickness gradients on the edge of 

the droplet tend to zero. On the same picture also could be noticed that the behaviour of the 

droplet during the whole period of the simulation remains symmetrical which is qualitatively 

in agreement with analytical results of Diez [10].  



Jakov Baleta, Milan Vujanović, Klaus Pachler, Neven Duić  

 6 

 

Figure 3: Simulation of droplet spreading  

Quantitative comparison given on Figure 4 shows that the present numerical predictions 

are in excellent agreement with the experimental data, indicating that the numerical modelling 

of the capillary pressure is reasonable in terms of optimum between accuracy of results and 

computational demands. However, the model does not include correction of the film curvature 

at the film front due to the wettability effects represented by (dynamic) contact angle. These 

effects are omitted from modelling due to the relatively large spatial discretisation which 

prevails in most of the practical applications where wall film phenomena are important.   

 

Figure 4: Comparison of simulated results with theoretical droplet profile 
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6 CONCLUSIONS 

After literature review, appropriate surface tension model was chosen taking into account 

an optimum between computational demands and accuracy of the solution. Thus, effects 

resulting from capillary forces are modelled as a part of a pressure term of the wall film 

momentum equation. Simulation results conducted with the new model were compared to 

analytical non-dimensional profile of isothermal droplet spread on flat surface. Agreement is 

excellent and gives confidence for commercial application of implemented model.     

In this paper was shown that incorporation of surface tension effects into existing wall film 

model can increase its capabilities in prediction of film propagation with a high accuracy, 

providing this way a powerful tool for the design and optimization of devices where liquid 

film phenomena play an important role. 

The continuation of this work would entail implementation of proper wall film rupturing 

model in which surface tension has important role in film stabilization opposing inertial 

forces.  
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