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The cement industry sector is one of the largest carbon emitting industrial sectors, and due to the effect
of global warming sustainable cement production is increasingly gaining on importance. Controlling the
combustion of coal and the thermal degradation of limestone, the two main thermo-chemical processes
that occur inside a cement calciner, is of significant importance, since these processes have a direct
influence on the cement quality, pollutant formation and overall energy efficiency of the cement
manufacturing process. One of the possibilities for the improvement and control of these thermo-
chemical processes are Computational Fluid Dynamics — CFD simulations. The results gained from
these simulations are being increasingly used to enhance the efficiency of cement production, since they
improve the understanding of the flow characteristics and transport phenomena taking place inside the
cement calciner. The purpose of this paper is to present that a more energy efficient and sustainable
cement production can be achieved by deploying CFD simulations in the process of cement production.
The numerical models of limestone thermal degradation, also known as the calcination process, and
pulverized coal combustion were developed and implemented within the commercial computational
fluid dynamics code FIRE, which was then used for the analysis. The developed models are based on the
solution of Navier—Stokes equations for the gas phase, and on the Lagrangian dynamics for the discrete
particles. A three dimensional complex geometry of a real industrial cement calciner was used for the
CFD simulation. The information obtained from this numerical simulation, such as the distribution of
particles, distribution of temperatures and the concentrations can be used for better understanding of
particle kinetics and pollutant emissions from the given cement calciner and also for its further inves-
tigation and optimization.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

accounts for around 5% of global anthropogenic GHG emissions
(Wang et al., 2013). Therefore, improvement in energy efficiency is

Over the past five decades rapid increases in the concentrations
of greenhouse gases — GHG in the atmosphere, mainly coming from
the industrial sector, have resulted in global climate changes (IPCC,
2007). Due to this reason, cleaner and more sustainable production
is becoming more and more important within all industrial sectors
(Klemes et al., 2012). The cement industry sector as an energy
intensive industrial sector, where energy costs represent approxi-
mately 40% of the total production costs per ton of cement (Zhang
et al., 2013), and one of the highest GHG emitting industrial sectors,
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becoming increasingly important for fulfilling the CO, emissions
limitations coming from this industrial sector (Dovi et al., 2009).
Currently, the most energy efficient technology for cement
production is a dry rotary kiln process with a multi-stage preheater
and a cement calciner (Benhelal et al., 2013). The latter, cement
calciner, is a pyroprocessing unit found in front of the rotary kiln,
and inside of which the raw material, mainly composed of lime-
stone, undergoes the calcination process. The calcination process is
a strong endothermic reaction that requires combustion heat
released by the fuel, indicating that endothermic limestone calci-
nation and exothermic fuel combustion proceed simultaneously
(Mikulci¢ et al., 2013a). Controlling of these two thermo-chemical
processes is of significant importance, since they have a direct in-
fluence on the cement quality, pollutant formation and overall
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energy efficiency of the cement manufacturing process. There are
various approaches for controlling and improving of the energy
efficiency within industrial furnaces. However, using CFD simula-
tions (Klemes et al., 2010) to investigate and improve thermo-
chemical processes is becoming increasingly important. Together
with experiments and theory, CFD simulations have become an
integral component of pyroprocessing unit’s research. The results
gained from CFD simulations can be used for the optimization of
turbulent reacting fluid flow, the design of the pyroprocessing unit,
and finally for the enhancement of the fuel efficiency, e.g. energy
efficiency, making the cement production more sustainable.

Several studies have examined some of the numerical aspects of
complex multiphase flow inside cement calciners. Oh et al. (2004)
analyzed the turbulent gas-particle flow, coal combustion and heat
transfer within a cement calciner. Their work showed that the
numerically predicted results agreed well with the measured re-
sults. Hillers et al. (2005) numerically investigated processes that
occur in cement calciners, e.g. they modelled the turbulence, ra-
diation, calcination process, coal combustion, and NOx formation.
Their study showed that CFD shows a great potential regarding
emission control and fuel savings. Zheng et al. (2005) studied the
effects of primary jet velocity and throat diameter on the two-
phase gas—solid flow inside a cement calciner. Their study
showed that for the simulated cement calciner, these two effects
have a strong influence on flow structure and particle concentra-
tion. Dou et al. (2009) investigated the coal combustion and the
decomposition of raw material inside a cement calciner. Their work
showed that in order to increase the raw material decomposition
and optimise the temperature inside the calculated cement
calciner, the direction of the tertiary inlet needs to be tangentially
adjusted, and that the raw material inlet needs to be opposite the
coal inlet. Ha et al. (2010) studied the separation of coal particles
and its corresponding influence on the decomposition of limestone
inside a cement calciner. Their study showed that by combusting
finer coal particles a negligible influence can be observed on the
decomposition of limestone. Nance et al. (2011) using the mineral
interactive computational fluid dynamics investigated the “Hot-
Reburn” conditions inside a cement calciner. Their work showed
that the proposed method greatly assists in the optimization of a
cement calciner’s operating conditions and design. Mikulcic et al.
(2013a) numerically studied the impact of different inlet mass
flows and fuel amounts, on the coal burnout rate, limestone
decomposition rate, and pollutant emissions. Their study showed
that CFD is a useful tool for a cement calciner’s process optimiza-
tion. All of these studies show that despite ongoing efforts in the
development of both physical and chemical modelling, CFD simu-
lation of the complex multiphase flow inside the cement calciners
cannot as yet be considered fully predictive on a quantitative level
and further research is required.

The processes occurring inside a cement calciner have a direct
influence on cement quality, pollutant formation and the overall
energy efficiency of the cement manufacturing process. Appro-
priate numerical models need to be used to numerically study the
role and interaction of pulverized coal combustion and limestone
calcination within a cement calciner. In this study a numerical
model of pulverized coal combustion was developed and imple-
mented within the commercial finite volume based CFD code FIRE.
This code was used to simulate turbulent fluid flow, temperature
field, species concentrations and the interaction of particles with
the gas phase inside the complex three dimensional geometry of a
real cement calciner, by solving the set of mathematical equations
that govern these processes. The numerical model is based on the
solution of Navier—Stokes equations for the gas phase, and on the
Lagrangian dynamics for the discrete particles. Actual plant data
were used to verify the accuracy of the modelling approach. The

test of the numerical model’s accuracy yielded satisfactory results
and proper trends for the coal burnout rate as well as limestone
degradation rate. The results gained by this real-plant example
show that for better understanding of fluid flow, transport phe-
nomena, and the thermo-chemical reactions taking place inside the
cement calciner, the proposed model is a useful tool for investiga-
tion. Furthermore, the proposed model can assist in the improve-
ment of the specific local conditions for the calcination process, the
overall optimization of cement calciner’s operating conditions,
reduction of pollutant emissions, and the improvement of the
cement calciner’s design.

2. Numerical model

The continuous phase is described by solving conservation
equations using the Eulerian formulation. These equations are
based on the conservation laws for mass, momentum and energy.
They are obtained by using the finite volume approach, where the
fluid flow is divided into a number of control volumes and a
mathematical description is developed for the finite control vol-
ume. The general form of conservation equation is fundamentally
derived in integral form, taking into consideration the total amount
of some property within the control volume:

0 0
/ 2 (v + / (po)ujnds = / <r¢a—)‘?> nds + / 5,dV,
\4 S S J \%4

(1)

where t is the time, p is the density, V is the volume, S is the surface,
u; velocity, nj normal vector, x; Cartesian coordinates, I',, diffusion
coefficient, and S, is the source term of the dependent variable ¢. In
Eq. (1) the first term is an unsteady term, the second term is con-
vection, the third term is diffusion and the last term is source or
sink. The first term on the left hand side represents the rate of
change of the scalar property ¢ in the control volume. The second
term on the left hand side is the net convective flux of this property
across the control volume boundaries. The first term on the right
hand side is the net diffusive flux across the control volume
boundaries. The final term on the right hand side is the source or
sink of the property ¢. Two transport mechanisms can be distin-
guished across the control volume boundaries: convection —
transport due to the motion of the fluid, and diffusion — transport
due to the differences in concentration.

The motion and transport of the solid particles are tracked
through the flow field using the Lagrangian formulation. Solid par-
ticles are discretized into finite numbers of particle groups, known as
particle parcels, which are supposed to have same size and also the
same physical properties. The trajectory of each particle parcel
within the flow field is calculated using the Lagrangian scheme,
which means that representative parcels are tracked by using a set of
equations that describe their dynamic behaviour as they move
through the calculated flow field. Furthermore, the equations of
motion for each particle parcel based on the Lagrangian approach are
coupled with the Eulerian representation of the continuous phase.
This allows the decomposition of complicated and highly nonlinear
systems of transport equations and describes the interactions be-
tween the control volumes and the system of equations that govern
processes in individual control volumes, including the exchange
between the solid particles and the gas phase. The systems of these
equations are mainly integrated using a much shorter time step than
the global time steps that are used for calculation of the gas phase.
The coupling between the parcels and the gaseous phase is taken
into account by introducing appropriate source terms for mass,
momentum and enthalpy exchange.
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The heterogeneous reactions of the mathematical model used
for the calcination process, coal combustion calculation are treated
in the Lagrangian spray module, where thermo-chemical reactions
occur inside a particle involving particle components and gas phase
species. The homogeneous reactions used for the coal combustion
calculation are treated in the gas phase using the Eulerian formu-
lation. In order to simulate the named thermo-chemical reactions
properly, the developed models were integrated into the com-
mercial CFD code via user-functions written in the FORTRAN pro-
gramming language (FIRE, 2011).

2.1. Calcination process

Calcination is an industrial process that uses high temperature to
change the chemical and physical properties of limestone, a sedi-
mentary rock composed of the mineral calcite — calcium carbonate
and other mineral dolomites. The calcination process is used in many
different industries today, such as cement, chemical, pharmaceutical
and sugar industry, where limestone CaCOs is converted by thermal
decomposition into lime CaO and carbon dioxide CO». This reaction is
highly endothermic and requires combustion heat released by the
fuel where the temperature is between 780 °C and 1350 °C, indi-
cating that endothermic limestone calcination and exothermic fuel
combustion proceed simultaneously. The following equation is used
to present the calcination process:

+178 kJ/mol
e =

CaCOs3(s) Ca0(s) + COy(g). (2)

The previously developed and validated numerical model was
used to describe the calcination process (Mikulcic et al., 2012). In the
developed model, limestone calcination reaction is calculated using
the Arrhenius rate equation for the liberation of CO, from the particle.
The model takes into account the effects of temperature, decompo-
sition pressure, diffusion, and particle porosity since dissociation of
the limestone begins at the outer surface of the limestone particle and
shifts inward, leaving a porous layer of lime at the surface.

2.2. Pulverized coal combustion

Pulverized coal combustion is a very significant mode of fuel
utilization the cement industry. Due to the increase of environ-
mental awareness, and the need for more sustainable coal utiliza-
tion, plant operators are trying to lower greenhouse gas emissions.
Moreover, due to the current energy crisis the need for the design of
more powerful, fuel efficient, and environmentally friendly com-
bustion systems is more and more highlighted. In addition to the
influence on cement quality, pulverized coal combustion also af-
fects the overall energy efficiency of the cement manufacturing
process and the pollutant formation.

The combustion of coal can be considered, as a four step process:
drying, devolatilisation process, combustion of char, and combus-
tion of volatiles. In some extreme cases, different combustion
stages may co-exist within a single particle (Backreedy et al., 2006).

2.2.1. Drying process
The evaporation of water vapour is related to the difference in
water vapour concentration at the particle surface and in the gas:

Nw = kw(Cp — Gg), (3)

where N, is the molar flux of water vapour, k,y is the mass transfer
coefficient, Cp is the water vapour concentration at the droplet
surface, and Gy is the water vapour concentration in the gas.

The water vapour concentration at the droplet surface is eval-
uated by assuming that the partial pressure of water vapour at the

particle surface is equal to the water saturation pressure psat, at the
particle temperature Tp:

Dsat
C = T > (4)
P RT,

where R is the universal gas constant.
The concentration of vapour in the gas is known from solution of
the following equation:

p
Ce = XH,05+5 5
g HZORT' ( )
where Xy, 0 is the local water mole fraction, p is the local absolute
pressure, and T is the local temperature in the gas. The mass
transfer coefficient is calculated from the Sherwood number cor-

relation (Ranz and Marshall, 1952a,b):

kwdp

Shyp = = 2.0+ 0.6Re;Sc”, (6)

where dp is the particle diameter, Rep, is the particle Reynolds
number, and Sc is the Schmidt number. The Schmidt number is
calculated according the following equation:

Sc = p,%w 7)

where u is the dynamic viscosity, p is the density, and D,y is the
diffusion coefficient of water vapour in the gas.

The water vapour flux becomes a source of water vapour in the
gas phase species transport equation, and the mass flux of water
vapour multiplied by the latent heat becomes a source in the en-
ergy equation.

dT, dm
mpcpd—tp = aAp(Tg — Tp) + epoAp (Tg - Tf}) +d—tphlatent- (8)

In Eq. (8), my is the particle mass, ¢, is the particle heat capacity, T,
is the particle temperature, Ty is the surrounding gas temperature,
Ap is the particle surface area, « is the convective heat transfer
coefficient, ¢p is the particle emissivity, ¢ is the Stefan—Boltzmann
constant, and hjaeent is the latent heat.

When the particle reaches the boiling temperature, i.e. 100 °C,
the boiling process starts. During the whole boiling process particle
temperature remains the same, until the entire capillary bounded
water is vaporized (Agraniotis et al., 2010).

2.2.2. Devolatilisation process

For devolatilisation a single rate expression is used meaning that
the devolatilisation rate dccoq/dt is in a first order dependency on
the amount of coal remaining in the particle (Eq. (9)).

dc
%ﬂl = _klycoal- (9)

Here ycoal is the mass fraction of coal remaining in the particle and
kq is the kinetic rate defined by an Arrhenius type expression
including a pre-exponential factor (kp1) and an activation energy
(E1) (Eq. (10)).

ki = ko1 exp(— E; /RTp). (10)
The values of the kinetic constants (ko; — the pre-exponential

factor and E; — the activation energy) for devolatilisation of
different coals are obtained from the literature (Gorner, 1991).
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2.2.3. Volatile combustion

For the combustion of the volatiles released during the devo-
latilisation process, a detailed chemistry approach is used for each
homogeneous reaction. The source terms in the species transport
equations and in the gas phase energy equation, accounting for the
gas phase reactions, are calculated with reaction rates depending
on species concentrations and temperature, i.e. as defined by the
Arrhenius law. The modelled homogeneous reactions include tar
and CO oxidation, NOy formation and the combustion of methane
(Mikulci¢ et al., 2013b).

2.2.4. Char combustion

Parallel to the devolatilisation, coal char is oxidized to form CO
and CO; taking into account a mechanism factor depending on char
particle size and temperature.

—395 kJ/mol
-1101 1
C+l02 ﬂ— (2—£>C0+<[£—1)C02.
m fm m

(11)

In Eq. (11), fy represents the mechanism factor, which ranges be-
tween 1 and 2, and is calculated by the following expressions:

. cho + 2.

fm = foi2

dp < 50 pm, (12)

~ 2fco+2  feo(dp —50)

Jm = fro+2  (fco +2)-950°

50 pm < dp < 1000 pm.
(13)

Here d, is the particle diameter, and the temperature dependence
fco is defined as (Arthur, 1951)

feco = 2500-exp(—6240/T), (14)

where T is the temperature.

Char combustion (Eq. (11)) is modelled according to the kinetics/
diffusion limited reaction model of Baum and Street (1971). The
model assumes that the reaction rate of char combustion is limited
either by the kinetics of the heterogeneous reaction kgh or by the
oxygen'’s diffusion into the particle’s mass expressed by the value of
kgh as presented in Egs. (15)—(18).

dc

d—tc = —kyApPoxe, (15)
]ch,]Ph

) = L‘Zh (16)
kst + kb

K" = kefy-exp(— ES" /RT) (17)

kgh _ 24"fm'DO TO'75'105 (18)

- R-dp~T6<75

In Eq. (15) the char reaction rate dcc/dt in terms of rate of change of
mass fraction is given. Here y. is the mass fraction of char remaining
in the particle, Ay, is the specific particle surface area, pox is the
oxygen partial pressure, and k; is the overall kinetic rate of char
combustion. In Eq. (16) the kinetics of the heterogeneous reaction
kgh is defined as an Arrhenius type expression with a pre-
exponential factor kg‘l and activation energy Egh. In Eq. (18) Dg is

the oxygen diffusion coefficient, d,, is the particle diameter, and Ty is
the reference temperature. The values of the kinetic constants for
the char combustion model are obtained from the literature
(Gorner, 1991).

3. Computational details

A complex geometry cement calciner used in the cement plant
Lukavac, Bosnia and Herzegovina, was simulated and analyzed.
Fig. 1 shows the calculated calciner’s three dimensional geometry
and the boundary conditions used in the CFD simulation. The
calciner is 75 m high in total. The lower part of the calciner consists
of two vertical tubes, of which one is used as the tertiary air inlet,
and the other is used as an inlet for the hot flue gases coming from
the rotary kiln. At the bottom of each of these tubes, inlets for coal
and pre-dried limestone are positioned. Both tubes have an
approximate diameter of 2 m, and they connect at the height of
25 m to form a rectangular shaped junction, where tertiary air and
hot flue gases coming from the rotary kiln, together with the
introduced limestone and coal particles, are mixed. After the rect-
angular shaped junction a single vertical tube, with diameter of
3.1 m, serves to direct the flow to the top of the calciner. The top of
the calciner is designed in a way that it, by using the swirling effect,
directs the upward stream to a downward stream. Finally after the
flow is directed downwards, a tube, with diameter of 3.1 m, is used
to direct the fluid flow together with now already calcined raw

Calciner wall

Outlet

Limestone and

. coal inlet 2
Limestone and

coal inlet 1

Hot gas from Tertiary air
rotary kiln inlet T inlet

Fig. 1. Cement calciner’s geometry and boundary conditions.
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Table 1
Boundary conditions.
Notation Mass flow rate [kg/h] T[°C] p [kg/m3] dp [nm] 0, [mass %] N3 [mass %] CO, [mass %]
Limestone and coal inlet 1 Coal 5800 70 1300 50
Limestone 126,000 780 3100 50
Limestone and coal inlet 2 Coal 1380 70 1300 50
Limestone 21,000 780 3100 50
Tertiary air inlet 20,690 780 1.292 28 71.8 0.2
Hot gas from rotary kiln inlet 48,275 1060 1.292 8 72 20
Outlet Static pressure 10° Pa

material to the outlet of the calciner. The outlet of the calciner
corresponds to the inlet of the fifth preheater cyclone, where
measurement data are obtained. The total calciner volume is
603 m>.

The computational domain consists of 160,000 cells, which
were employed to discretize the computational domain. The dif-
ferencing scheme used for momentum, continuity and enthalpy
balances was MINMOD Relaxed (FIRE, 2011) and for turbulence and
scalar transport equations an Upwind scheme was applied. Tur-
bulence was modelled by the standard k—¢ model. The P-1 radia-
tion model was employed to model the radiative heat transfer. The
P-1 radiation model takes into account the radiative heat exchanges
between gas and particles, and is accurate in numerical simulations
of pulverized coal combustion with radiation scattering (Sazhin
et al., 1996). It has some disadvantage but it is advantageous in a
way that it is easily applicable to the complicated geometries, like
the one used in this study. The boundary conditions used for the
cement calciner’s simulation are given in Table 1. The values given
in Table 1 were the input data that were provided to the authors.

The coal used in the cement plant Lukavac, comes from the coal
quarry located close to the cement plant. Its composition was the
input data that was provided to the authors. The proximate and
ultimate analysis of used coal is tabulated in Table 2.

4. Result and discussion

CFD is an effective tool for the investigation of the multiphase
flow inside the cement calciner. The results showed some inter-
esting features of the flow, which help to understand the operating
conditions of the simulated calciner.

Fig. 2 shows the flow streamlines inside the calculated calciner.
As can be observed, in the lower part of the calciner, in the tertiary
air tube and the hot flue gases coming from the rotary kiln tube, the
flow streams are stable and uniform, and going upwards. Both
streams join together in the rectangular shaped junction, after
which they form one stream that is going upwards to the top of the
calciner. In this part of the calciner the majority of the limestone
thermal degradation, e.g. calcination process, occurs. At the top of
the calciner, where the fluid flow changes the direction, from an
upward to a downward direction, the flow becomes highly swirled.
The reason for this highly swirled flow is the big mass flow of the
stream that is coming to the top of the calciner and the design of the

Table 2
Proximate and ultimate analysis of the used coal.

Proximate (%wt raw) Ultimate (%wt daf)

Moisture 7.64 C 77.94
Volatile matter 15.38 H 5.07
Fixed carbon 32.16 0 1.69
Ash 44.82 N 13.87
Lower heating value (MJ/kg) 23.34 S 1.43

calciner’s top, that by using the swirling effect effectively changes
the flow direction. After the flow is directed downwards, the flow
gradually loses its swirling effect and together with now already
calcined raw material goes to the outlet of the calciner. Under-
standing of the flow characteristics inside the calciner is of crucial

Fig. 2. Flow streamlines inside the calculated calciner.
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Fig. 3. Limestone degradation at different particle residence time: 2 s (left); 4 s (second from left); 6 s (second from right); 8 s (right).

importance for plant operators, since the flow characteristics give a
good estimation of the particle residence time. The particle resi-
dence time is important, since limestone and coal need several
seconds to fully decompose and burn.

Fig. 3 shows, from the left hand side to the right hand side, the
position of limestone particles and its degradation at 2, 4, 6 and 8 s

Lime Mass Fraction [-]
1

09

of particle residence time. For each particle residence time, the
limestone mass fraction in particles is shown. It can be seen that
limestone particles need several seconds to fully decompose.

Fig. 4 shows, from the left hand side to the right hand side, the
position of produced lime particles at 2, 4, 6 and 8 s of particle
residence time. For each particle residence time, the lime mass

Fig. 4. Lime production at different particle residence time: 2 s (left); 4 s (second from left); 6 s (second from right); 8 s (right).
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Fig. 5. Char oxidation at different particle residence time: 2 s (left); 4 s (second from left); 6 s (second from right); 8 s (right).

fraction in particles is shown. When compared to Fig. 3, the cor-
responding increase of the lime mass fraction at different particle
residence time can be observed. In this figure, like in the previous
one, it can be observed that the calcination process needs several
seconds to finish.

Fig. 5 shows, from the left hand side to the right hand side, the
position of char particles in the lower calciner part at 2, 4,6 and 8 s
of particle residence time. For each particle residence time, the char
mass fraction in particles is shown. As can be observed, char par-
ticles combust in the lower part of the calciner, e.g. in two vertical
tubes, of which one is used as the tertiary air inlet, and the other is
used as an inlet of hot flue gases coming from the rotary kiln. Here it
can be seen that unlike the calcination process, the char oxidation is
a faster reaction and it does not need several seconds to fully react.

In Fig. 6 the particle residence time is shown. Due to increased
environmental awareness, but also by increased environmental
restrictions, plant operators and practical engineers are increas-
ingly being interested in efficient cement production. Particle
residence time is an important parameter for stabile and efficient
operating cement calciner. As it was seen in previous figures raw
material needs several seconds to fully decompose, by knowing the
particle residence time inside the cement calciner plant operators
can adjust the operating conditions for a more efficient operating
calciner.

Due to the complex geometry of the calculated calciner, it is
difficult to represent the concentration of species and the tem-
perature field. For that reason, the back view of the calciner is
shown in Figs. 7 and 8. Fig. 7 shows the combustion process inside
the calculated calciner. The char mass fraction in particles is pre-
sented on the left hand side, in middle the temperature field is
presented, and on the right side the ash mass fraction in particles is
presented. Also the distribution of char and ash particles inside the
calculated calciner is shown. The ‘empty’ regions for char mass
fraction indicate the regions where conversion of char to CO, CO»,
and ash, to a large extent, has already been completed. In this figure
the decrease of char mass fraction and the corresponding increase
of ash mass fraction towards the outlet can be observed. Also, it can
be seen that since the calcination process is a strong endothermic
reaction, throughout the cement calciner the temperature field is
uniform and there are no extreme temperature peaks inside the
calciner. When looking at the shown temperature field, it can be

Particle Residence Time [s]
g

7.2
64
56
4.8
4

3.2
24
16
0.8
0

Fig. 6. Particle residence time.
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observed that calcination process lowers the temperature, and in
that way lowers the thermal load on the calciner’s walls. Further-
more, from Fig. 7 the distribution of char and ash particle can be
observed. It can be seen that the char particles are concentrated
close to the inlets, and that the ash particles are found in the whole
calciner.

Fig. 8 shows the thermal degradation of limestone inside the
calculated calciner. On the left hand side the limestone mass frac-
tion in particles is shown, in middle the CO, mass fraction is shown,
and on the right hand side of the figure the produced lime mass
fraction in particles is shown. It can be observed that as expected
the limestone particles decompose from bottom of the calciner to
its top and exit. The corresponding increase of the lime mass
fraction can be observed on the right hand side of the figure. The
mass fraction of lime in the particle increases as raw material
particles move to the top of the calciner and its exit. The CO, mass
fraction shown in the middle of the figure shows that the highest
concentrations are located at the bottom of the calciner where the
combustion of coal occurs, and between the rectangular junction
and the top of the calciner where most of the calcination process
occurs.

Comparison of numerically obtained results with experimental
data is essential for the validation of the numerical model used. The
measurement equipment of this fully operating industrial calciner
was placed on its outlet. On the outlet of the calciner, coal burnout

Char Mass Fraction [-] Temperature [K]
0.6 1200

0.54 170
048 1140
04z 1110
0.36 1080
03 1050
0.24 1020
018 . 990
012 . 960
0.06 330
300

o

1
3
4
1

rate, limestone degradation rate and the outlet temperature was
measured. In Table 3, the comparison of measurement data and
numerical predictions is shown. As can be seen, the numerical
predictions are in good correlation with the measured data. Coal
burnout rate is the same, whereas for the limestone degradation
rate and the outlet temperature numerical predictions are slightly
higher, but still in good agreement with the measured data.

The results presented herein show that computer simulation
method can serve as an advanced tool to analyze and improve
understanding of complex turbulent reacting flow in real cement
calciner. The proposed models and methods can assist plant oper-
ators and practical engineers in the optimization of cement
calciner’s operating conditions, which are crucial to ensure better
plant efficiency and reduction of pollutant emissions.

5. Conclusion

Computer modelling of the combustion and calcination pro-
cesses provides a valuable tool that can be used for the investiga-
tion and better understanding of particle kinetics and pollutant
emissions from cement combustion systems. A numerical model
for the prediction of the flow, temperature field, calcination pro-
cess, and pulverized coal combustion was presented. The numerical
model of the pulverized coal combustion, as well as the numerical
model of the calcination process, was implemented into a

Ash Mass Fraction [-]
1

[k:]
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Fig. 7. Combustion process inside the calculated calciner.
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Fig. 8. Calcination process inside the calculated calciner.

commercial CFD code FIRE. The model takes into account the effects
that dominate the named thermo-chemical reactions. For the pul-
verized coal combustion the effects of drying, the degradation
during devolatilisation, generation of gaseous species and char
oxidation are taken into account. For the calcination process the
effects of decomposition pressure, temperature, diffusion, and
particle porosity were taken into account. The model is detailed
enough to contain the relevant physical and chemical processes, yet
simple enough to run on the real industrial meshes needed for
detailed CFD simulations of pyroprocessing units. The numerically
obtained results were compared with available measurement data,
and they are in good agreement. From the results shown it can be
concluded that the presented model can be used for the investi-
gation of reactive multiphase flows, and that numerical modelling
can assist in the improvement of specific local conditions needed
for the efficient calcination process. This paves the way for facili-
tating the reduction of pollutant emissions thus contributing to a
more sustainable cement production.

Table 3
Comparison of measurement data and numerical predictions.
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