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Abstract

This thesis deals with development of an automatic mesh generator for dis-

cretization of materials with internal interfaces. The mesh generator developed

in this thesis can create triangular finite volume meshes. The user is required

to specify the signed distance function and mesh size function. The applied

algorithm is based on a conjunction between the Delaunay triangulation and

mechanical analogy. Extensions related to dealing with polygonal domains

and handling the internal boundaries were done. Obtained results shown re-

liability of the method.



Extended Abstract (Croatian)

Kako bi se sustav parcijalnih diferencijalnih jednadžbi mogao numerički rješiti

potrebno je najprije zadanu domenu diskretizirati, odnosno podjeliti na konačan

broj kontrolnih volumena – mrežu. Prema navodu Versteega i Malalasekere

(Versteeg & Malalasekera, 2007) na projektima vezanim uz računalnu di-

namiku fluida preko 50% vremena se utroši na definiranje geometrije domene

i generiranje mreže. Ukoliko domena u sebi sadrži unutarnje domene koje

takoder treba diskretizirati, primjerice materijal sa svojom mikrostrukturom,

generiranje mreže postaje znatno složenije. Stoga se ovim radom razvija

automatski generator mreže konačnih volumena u svrhu izrade numeričkih

studija vezanih uz materijale sa diskontinuitetima.

Metode automatskog generiranja numeričke mreže svrstavaju se u tri glavne

skupine (Zienkiewicz et al., 2005):

• metoda Delaunayjeve triangulacije,

• metoda napredujuće fronte i

• metode stabla (kvartalno stablo u 2D i oktalno stablo u 3D).

Algoritam koji je korǐsten u radu najbliži je metodi Delaunayjeve triangulacije.

Riječ je o DISTMESH algoritmu, kojeg su razvili Persson i Strang (Persson &

Strang, 2004). Algoritam se temelji na kombinaciji analogije vlačnih opruga

sa Delaunayjevom triangulacijom, i rezultira kvalitetnim trokutnim konačnim

volumenima.

Kako bi se diskretizirala domena Ω algoritam zahtjeva od korisnika definiranje:

• funkcije udaljenosti dΩ za definiranje geometrije domene

• funkcije veličine hΩ za definiranje gradacije mreže.

Za proizvoljnu točku pi vrijedi:

dΩ(pi) =





min{d(pi, ∂Ω)} za pi /∈ Ω

0 za pi ∈ ∂Ω

−min{d(pi, ∂Ω)} za pi ∈ Ω

(1)



gdje ∂Ω označava vanjsku granicu domene. Iz navedenog slijedi da funkcija

udaljenosti vraća udaljenost izmedu bilo koje točke u unaprijed definiranom

graničnom pravokutniku (engl. bounding box) i najbliže vanjske granice domene.

Negativan predznak vrijedi za točke unutar domene, dok pozitivan upućuje da

je točka izvan domene. Pri dΩ(pi) = 0 točka se nalazi na vanjskoj granici

domene.

Dakle, najprije se distribuira N početnih točaka unutar prethodno zadanog

graničnog pravokutnika, te se iste pohranjuju u dvodimenzijsko polje p:

p =
�
x y

�
(2)

Točke se pomiču, a nakon toga se provjerava funkcija udaljenosti dΩ za svaku

točku. One točke koje imaju dΩ(pi) ≤ 0 se zadržavaju. Zatim se funkcija

veličine hΩ ispituje za svaku od zadržanih točaka, te se odbacuju one točke koje

pokazuju vjerojatnost proporcionalnu 1/hΩ(pi)
2. Ovaj konačan skup točaka

predaje se Delaunayjevom triangulacijskom algoritmu koji spaja zadržane

točke.

Delaunayjeva triangulacija jest triangulacija skupa točaka pri čemu opisana

kružnica pojedinog trokuta prolazi jedino kroz točke istog. Time Delaunay-

jeva triangulacija ujedno ostvaruje i maksimiziranje najmanjeg kuta na cijeloj

triangulaciji što daje elemente visoke kvalitete. U sklopu procesa triangulacije,

težǐsta svih elemenata su ispitana, te oni sa dΩ > 0 bivaju izbrisanima.

Dobivena mreža fiktivno postaje mehanička struktura. Pritom su točke spojevi

a spojnice dviju točaka (engl. edges) vlačne opruge. Kako su koordinate točaka

zapravo nepoznanice, tako se iste dobivaju postizanjem statičke ravnoteže ovog

sustava.

U svakoj točki mreže pi, može se definirati polje sile F(pi) kao suma svih sila

koje djeluju na spomenutu točku:

F(pi) = Fint(pi) + Fext(pi) (3)

gdje Fint i Fext označavaju unutarnje i vanjske (reakcije na granicama) sile.

Unutarnje sile koje djeluju na pojedinu točku se odnose na odbojne sile od

svih spojnica povezanih na tu točku. Vanjske pak sile prisutne su jedino kod

točaka na granicama domene, koje se nakon djelovanja unutarnjih sila nadu

izvan domene. Valja istaknuti da su kod unutarnjih točaka ove sile jednake

nuli, a kod fiksnih točaka su sve sile jednake nuli.



Ukupna unutarnja sila Fint koja djeluje na točku pi glasi:

Fint(pi) =
�

e

f(le, l0) (4)

gdje e označava sve spojnice povezane sa točkom pi, l0 je željena duljina

spojnice, a le je duljina spojnice koja spaja susjedne točke pi i pj:

le = ||pi − pj|| (5)

Član pod znakom sumacije na desnoj strani jednadžbe (4) odnosi se na ranije

spomenutu odbojnu silu koja djeluje na krajevima spojnica (tj. djeluje na

točke):

f(le, l0) = f ij =

�
(l0 − le)ni,j if le < l0

0 if le ≥ l0
(6)

gdje je ni,j vektor normale:

ni,j =
pi − pj

le
(7)

Sila f ij koja djeluje na točku pi jednaka je po iznosu, a suprotna po smjeru

sili koja djeluje na susjednu točku pj:

f ij = −f ji (8)

Naglasak na odbojnim silama je u svrhu distribucije točaka po cijeloj domeni.

U prilog tome, željena duljina spojnice dviju točaka se postavlja na malo veću

vrijednost od one koja je definirana funkcijom veličine hΩ:

l0 = hΩ(pmid,e)Fscale

�������

�

e

l2e

�

e

hΩ(pmid,e)
2

(9)

gdje pmid,e označava točku na sredini spojnice, a Fscale je fiksni faktor. Persson

i Strang (Persson & Strang, 2004) preporučaju vrijednost 1,2 za Fscale.

Kao što je naglašeno ranije, koordinate točaka mreže p se dobivaju postizanjem

statičke ravnoteže uvedenog fiktivnog mehaničkog sustava koja glasi:



F(p) = 0 (10)

U tu svrhu, definirana je pseudo-nestacionarnost:

dp

dt
= Fint(p), t ≥ 0 (11)

Stacionarno rješenje jednadžbe (11) zadovoljava jednadžbu (10) i daje dobru

raspodjelu točaka. Obična diferencijalna jednadžba (11) se rješava koristeći

Eulerov eksplicitni algoritam:

pn+1 = pn +ΔtFint(p
n) (12)

gdje pn+1 su nove, a pn poznate koordinate točaka. Pseudo-vremenski korak

je Δt, a Fint je ukupna unutarnja sila.

Nakon djelovanja unutarnjih sila, neke točke završavaju izvan granica domene.

Te točke se vraćaju na granicu domene postupkom projiciranja. Projiciranje

proizvoljne točke pi na granicu glasi:

pi = pi −
dΩ(pi)

|∇dΩ|2
∇dΩ (13)

te se postupak projiciranja ponavlja dok se ne postigne dΩ(pi) = 0.

Postupak Delaunayjeve triangulacije i djelovanja sila, ponavlja se sve dok po-

maci točaka ne spuste ispod neke unaprijed zadane vrijednosti.

Ovaj bazni algoritam implementiran je u C++ biblioteku OpenFOAM�.

Samom implementacijom postignuta je mogučnost defniranja domena jedino

preko kontinuiranih funkcija poput jednadžbe kružnice ili elipse. Kako je

mikrosturuktura koju se želi diskretizirati zapravo skup konveksnih polig-

ona, tako se javlja potreba za razvojem algoritma koji bi davao udaljenost

proizvoljne točke od najbliže granice. Izvorna MATLAB� implementacija u

tu svrhu koristi ugradenu ”inpolygon” funkciju.

Stoga je razvijen algoritam kvadratne vremenske složenosti O(n2) koji ko-

risteći vektorski račun daje udaljenost točke od najbliže granice. Pritom se

podrazumijeva da je poligon konveksan, te da je definiran fiksnim točkama u

smjeru suprotnom od smjera kazaljke na satu.

Razvijeni algoritam dostupan je u sklopu drugog poglavlja zajedno sa pri-

padajućim skicama, jednadžbama i objašnjenjima.



Nadalje, bazni algoritam u stanju je diskretizirati domenu načinjenu bez diskon-

tinuiteta. Kako kompozitni materijali sadrže vlakna, tako diskretizacija takvih

domena obvezuje na proširivanje algoritma u tom smjeru. Algoritam za izradu

domene sa unutarnjim granicama dan je u četvrtom odjeljku drugog poglavlja.

Na generiranim mrežama uočavaju se gotovo izotropni elementi:

Figure 1: Diskretizirana kružna domena.

Kvalitetni trokutni elementi posljedica su primjenjene Delaunayjeve triangu-

lacije, ali i djelovanja fiktivnih sila. Posebno se djelovanjem sila omogućava

kvalitetna mreža na granicama domene što inače slovi kao problem Delaunay-

jeve triangulacije.

Algoritam podržava i definiranje geometrije koristeći Booleove operacije:

• uniju:

dΩ1∪Ω2(p) = min(dΩ1(p), dΩ2(p)) (14)

• razliku:

dΩ1\Ω2(p) = max(dΩ1(p),−dΩ2(p)) (15)

• presjek:

dΩ1∩Ω2(p) = max(dΩ1(p), dΩ2(p)) (16)

Domena definirana koristeći Booleove operacije prikazana je na sljedećoj slici:

Figure 2: Domena diskretizirana koristeći Booleove operacije.



Koristeći algoritam za generiranje poligona i njegovom kombinacijom sa funkci-

jom udaljenosti za kružnicu preko Booleovih operacija, omogućeno je generi-

ranje domene koja se može, primjerice, iskoristiti za analizu naprezanja:

Figure 3: Ploča s rupom.

Na priloženim diskretiziranim domenama, uočava se gotovo uniformna mreža,

tj. hΩ(p) = 1 jest zadano. Kako funkcija veličine hΩ opisuje relativni razmak

izmedu točaka mreže, tako je omogućena rafinacija pojedinih zona.

(a) (b)

Figure 4: Mreža sa gradacijom.

Uvodenjem unutarnje funkcije udaljenost dIΩ i pritom primjenjujući pripadajući

algoritam, omogućava se uskladenost domene sa unutarnjim granicama.

Sada je moguće automatsko generiranje dvodimenzijske jednične čelije sa 6

vlakana konstantnog polumjera i volumnim udijelom vlakana od 19%. Vlakna

su posložena u dva reda i u svakom od njih su jednako razmaknuta.



(a) (b)

Figure 5: Geometrija (a) i diskretizacija (b) jedinične čelije sa 6 vlakana.

Koristeći isti princip, omogućena je triangulacija 20 slučajno raspodjeljenih

vlakana, različitih polumjera koji zauzimaju 15% domene.

(a) (b)

Figure 6: Geometrija (a) i diskretizacija (b) čelije sa 20 slučajno rasporedenih vlakana.

Razvijena metoda automatskog generiranja numeričke mreže primjenjena je

na problem analize naprezanja kod materijala sa mikrostrukturom.



(a)

(b)

Figure 7: Geometrija (a) i diskretizacija (b) sintetičke mikrostrukture.

Domena sa slike 7. diskretizirana je po principu ”poligon po poligon”. Takav

princip podrazumijeva primjenu razvijenog algoritma za konveksne poligone i

kontrolu kontinuiranosti raspodjele točaka na unutarnjim granicama.

Figure 8: Raspodjela normalnog naprezanja σxx u materijalu sa mikrostrukturom.



Chapter 1

Introduction

1.1 Motivation

The mesh is the discrete structure on which the discrete representation of the governing

partial differential equations is made. This discrete representation may be finite element,

finite volume, or finite differences – in any case there is an underlying grid discretizing

the field into a collection of finite cells defined by associated grid points (Thompson

& Hamann, 1997). Within the finite volume method, the points are arranged so that

they can be grouped into a set of volumes and the partial differential equations can be

solved by equating various flux terms through the faces of the finite volumes (Shaw,

1992). Creating the compuational mesh is very time consuming task. As reported by

Versteeg and Malalasekera (Versteeg & Malalasekera, 2007) over 50% of the time spent

in industry on a computational fluid dynamics project is devoted to the definition of

the domain geometry and grid generation. If a domain is consisted of arbitrary shaped

internal structures, an effort to discretize a domain is even more pronounced.

Therefore, the aim of this thesis is to develop an automatic mesh generator for dis-

cretization of domains with an explicitly defined two-phases (material and its internal

structure). The main directions in the field of automatic mesh generation are given in the

next Section.

1.2 Automatic Mesh Generation

As outlined by (Zienkiewicz et al., 2005) the attempt to create a fully automatic mesh gen-

erator started from the early 1970s with the work of Zienkiewicz and Phillips (Zienkiewicz

& Phillips, 1971). According to George (George, 1996) a method is said automatic if it

requires no intervention from the user who only needs to provide the necessary data. A

large number of automatic unstructured mesh generation algorithms have been proposed
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in the literature, but the most widely used algorithms are based on one or some kind

of combination of the three fundamentally distinctive methods, which are (Zienkiewicz

et al., 2005)

• the Delaunay triangulation method,

• the advancing front method and

• tree methods (the finite quadtree method in two dimensions and the finite octree

method in three dimensions).

These approaches are capable of automatically generating tetrahedral meshes for ar-

bitrary domains. In these methods crucial steps are the local connectivity modifications

(Roca Navarro, 2009). By observing the fact that a quadrilateral can be formed by two

triangles which share a common edge, the above-mentioned methods can be extended to

automatically generate unstructured quadrilateral meshes in two dimensions.

A brief information on these approaches is given in the remainder of the Section.

1.2.1 The Delaunay triangulation method

The Delaunay triangulation is a triangulation for which no circumcircle of a triangle

contains points in its interior. This property guarantees that the Delaunay triangulation

maximizes the minimum angle among all possible triangulations of the point set (Nguyen

et al., 2009).

One of the difficulties of the Delaunay approach is maintaining the integrity of the

boundary (Henshaw, 1996). Care must be taken to prevent the formation of triangles

whose edges cross the specified boundary. Another problem is that the Delaunay criteria

is not appropriate for creating very thin triangles in a boundary layer, some other condition

must be used (Henshaw, 1996).

The ”empty circumcircle” geometrical criterion provides a mechanism for connecting

points. The task of point generation must be considered independently. Hence, grid

generation by Delaunay triangulation involves two distinct problems of point connection

and point creation (Thompson et al., 1999).

1.2.2 The Advancing Front Method

The advancing front method is a grid generation technique based on the simultaneous

point generation and connection (Thompson et al., 1999). The advancing front method

starts from the boundaries and progressively adds triangles. The triangulated region grows

into the interior, forming a propagating front (Henshaw, 1996). Since the procedure begins

at the boundary, the triangles near the boundary can be constructed to be of high quality,

this is an especially important feature for many PDEs (Henshaw, 1996).
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1.2.3 Tree Methods – Quadtree (2D), Octree (3D)

The quadtree approach proceeds by dividing the region into four rectangles and then

recursively subdividing some of those rectangles into four additional rectangles (Henshaw,

1996). The cell size is reduced to meet certain criteria and so that the boundary is

represented to sufficient resolution. The cells intersecting the boundary are replaced by

polygons that follow the boundary (Henshaw, 1996). Octree is the three dimensional

analog of quadtree.

1.3 Outline of the Thesis

Among the algorithms presented in the last Section, here implemented method is closest

to Delaunay triangulation algorithms. It is about DISTMESH algorithm proposed by

Persson and Strang (Persson & Strang, 2004) which is described within the following

Chapter 2. In the paper of Nguyen and collaborators (Nguyen et al., 2009) DISTMESH is

compared with MESHGEN and TRIANGLE. The last two are well established adaptive

triangular mesh generators known for the high quality of the generated meshes (Fan et al.,

2011). The evaluation was done by considering the 12 quantitative quality measures

and DISTMESH algorithm has shown better performance. This algorithm utilizes an

implicit description of the domain through signed distance function. This is in contrary

to the usual explicit form. A common explicit form for describing geometries are Non-

Uniform Rational B-Splines (NURBS), which have become the standard in most popular

Computer Aided Design (CAD) and Computer Aided Engineering (CAE) systems (Cui,

2013). Furthermore, within Chapter 2, some extensions of the base algorithm are proposed

and explained. Chapter 3 presents generated meshes and shows some properties of the

algorithm. The algorithms introduced in Chapter 2 are utilized and their reliability is

shown. At the end, Chapter 4 summarizes the achievements of the work and offers

recommendations regarding future developments.



Chapter 2

An Automatic Mesh Generator

2.1 Introduction

A mesh generator which automatically generates two-dimensional triangular meshes is

described in this Chapter. The mesh generator is written in C++ and implemented within

OpenFOAM�, an open-source C++ library for Computational Continuum Mechanics.

The base algorithm is given in Section 2.2 and its contents are explained. Furthermore,

an extension of the base MATLAB� code was necessary to C++ implementation and

is discussed in Section 2.3. Since the application of this mesh generator is to discretize

the domains of discontinuous material, handling of internal boundaries is introduced and

described in Section 2.4. Important facts related to this Chapter are given in the last,

Section 2.5.

2.2 The Algorithm

A mechanical analogy based mesh generation algorithm proposed by (Persson & Strang,

2004) is used as a base for the automatic mesh generator presented here. In order to

discretize a domain Ω, the algorithm requires the user the definition of:

• A signed distance function dΩ for the domain definition

• A mesh size function hΩ to specify the relative mesh resolution

As mentioned above, the computational domain Ω ⊆ R2 is defined by the signed distance

function dΩ : R2 → R where for an arbitrary point pi we have:

dΩ(pi) =





min{d(pi, ∂Ω)} if pi /∈ Ω

0 if pi ∈ ∂Ω

−min{d(pi, ∂Ω)} if pi ∈ Ω

(2.1)
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where ∂Ω denotes domain’s boundary. This means that the signed distance function

gives the distance from any point in defined bounding box to the nearest boundary of the

domain. The sign is negative for points inside the domain and positive for points outside

the domain. Zero level set (dΩ(pi) = 0) defines the boundary of the domain. The size

function hΩ(p) specifies the mesh element sizes through the domain. For hΩ(p) = 1 an

uniform mesh is defined. Algorithm 1 shows the steps of the applied algorithm.

Algorithm 1 DISTMESH algorithm by Persson and Strang

Input: Desired mesh element size h0, bounding box [x1, y1] × [x2, y2] � Ω , distance

function dΩ, size function hΩ.

1: An initial set of points pn = p(0) is distributed over the defined bounding box region

and a minimum spacing h0 between them is ensured. Remove all points with dΩ > 0

as well as the points with a probability proportional to 1/h2Ω;

2: Triangulate pn by means of Delaunay triangulation algorithm and compute all edge

lengths le;

3: Determine Fint(p
n) from ordinary linear springs model as the sum of forces applied

by its neighbouring points;

4: Move the points by using the forward Euler method pn+1 = pn +ΔtFint(p
n);

5: Find the points which now are outside the domain (dΩ > 0) and project them on the

domain boundary applying first order approximate projection;

6: Break if every point has moved less than a predefined tolerance. Otherwise, set

n �→ n+ 1 and repeat from step 2.

Output: point array p and triangles list m.

Firstly (line 1), N initial points are distributed within the bounding box region and

stored in an N-by-2 array p

p =
�
x y

�
(2.2)

A distance between the points is h0 in x- and
√
3/2 in y- direction. A minimum distance

h0 between the points is created by displacing every even row for h0/2 in x-direction. The

signed distance function is checked for all points and the points with dΩ(pi) ≤ 0 are kept.

Then, the size function hΩ(pi) is evaluated for the retained points and the points with a

probability proportional to 1/hΩ(pi)
2 are discarded. This final set of points is now passed

to a Delaunay triangulation routine (line 2) which connects those points. The Delaunay

triangulation is a triangulation of a point set p where the circumcircle of each triangle

passes only through its points as shown on Figure 2.1.

Also, the Delaunay triangulation maximizes the smallest angle over all triangulation

which leads to elements of high quality. Within the triangulation process, the centroids
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(a) (b)

Figure 2.1: Satisfied (a) and not satisfied (b) Delaunay criterion (Owen, 1998).

of all elements are examined. If the element’s centroid lies outside the geometry (dΩ > 0),

the element is deleted.

This formation is now considered to be a fictive mechanical structure. The element’s

points corresponds to joints and the edges correspond to elastic springs. Forcing this

mechanical structure to a static equilibrium gives the final positions of the points. In

every mesh point pi the force field F(pi) is defined as a sum of all forces acting on that

point (line 3):

F(pi) = Fint(pi) + Fext(pi) (2.3)

where Fint and Fext denote internal and external (reactions at boundaries) forces respec-

tively. The internal forces acting on each point refer to the repulsive forces from all the

edges connected to that point as depicted in the Figure 2.2 (a). The external forces are

existing only for boundary points which go outside the domain (Figure 2.2 (b)). Since

those points are going outside of the domain due to their moving induced by the internal

forces, the external forces are discussed later in this Section (line 5). The total force

acting at fixed points is equal to zero.

The total internal force Fint acting on point pi reads

Fint(pi) =
�

e

f(le, l0) (2.4)

where e denotes all the edges connected with point pi, l0 is the desired length of an

element’s edge and le is the length of the edge connecting the neighbouring nodes pi and

pj which reads

le = ||pi − pj|| (2.5)

The term under summation operator on the right hand side of equation (2.4) refers to

a linear repulsive force attached at edge endpoints
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(a) (b)

Figure 2.2: Forces: (a) internal forces and (b) external forces (Persson, 2006).

f(le, l0) = f ij =

�
(l0 − le)ni,j if le < l0

0 if le ≥ l0
(2.6)

where ni,j is the normal vector

ni,j =
pi − pj

le
(2.7)

The force f ij acting on point pi is equal and of opposite sign to one acting on the neigh-

bouring point pj (Figure 2.3)

f ij = −f ji (2.8)

Figure 2.3: Repulsive forces acting on the edge endpoints.

The emphasis on the repulsive forces enables the distribution of points across the

whole domain. This is also supported by choosing the value l0 to be slightly larger than

the desired length defined by the size function hΩ
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l0 = hΩ(pmid,e)Fscale

�������

�

e

l2e

�

e

hΩ(pmid,e)
2

(2.9)

where pmid,e denotes an edge midpoint vector, and Fscale is a fixed factor. Persson and

Strang (Persson & Strang, 2004) recommend the value of 1.2 for Fscale.

As outlined earlier, the locations of mesh points p are computed by forcing a truss

structure to its static equilibrium which reads

F(p) = 0 (2.10)

To this end, a false transient is introduced as follows

dp

dt
= Fint(p), t ≥ 0 (2.11)

The steady state solution of (2.11) satisfies (2.10) and provides well distributed points.

The ODE (2.11) is solved using the Euler explicit algorithm (line 4)

pn+1 = pn +ΔtFint(p
n) (2.12)

where pn+1 are new and pn are known points positions. Pseudo time step is Δt and

Fint(p
n) is the total internal force.

Due to this update of points positions, some points can settle outside the domain Ω.

Those points are than projected to the closest domain’s boundary. The projection of an

arbitrary point pi which crossed the boundary is defined as

pi = pi −
dΩ(pi)

|∇dΩ|2
∇dΩ (2.13)

and is repeated until dΩ(pi) = 0 is achieved.

The steps 2 – 5 of Algorithm 1 are repeated until every point has moved less than a

predefined tolerance, i.e. the termination criterion is met.

2.3 The Level-set Function of a Convex Polygon

The base algorithm presented in former Section requires one user-defined function dΩ to

define the domain Ω. For many simple geometries, such as circles and ellipses the signed

distance function can be expressed as a single function. On the other hand, in many real

applications domains are convex polygons. Since the convex polygon cannot be expressed

as a single function, an algorithm of quadratic time complexity O(n2) is proposed for

computing the distance to a polygon given by its Npfix
counter-clockwise defined fixed
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points. Algorithm 2 presents proposed method to compute the signed distance function

for a polygonal domain.

Algorithm 2 Signed distance function of a polygon

Input: point p

1: Initialize n, rp, erp ,d0,dN , dN , Le

2: for c ← 0 to Npfix
− 2 do

3: Compute n, rp, erp ,d0,dN , dN , Le for all polygon’s edges except the last one

4: end for

5: Compute n, rp, erp ,d0,dN , dN , Le for the last polygon’s edge

6: Initialize t,Lt, t, dout(NPfix
), c0, doutMin, ddist, ddistMin

7: Check if the point is inside the polygon

8: if c0 = Npfix
then

9: for all dN do

10: if ||dN(c1)|| < ||ddistMin|| then
11: ddist ← ddistMin

12: end if

13: end for

14: end if

15: for all dN do

16: if dN(c2) > 0 then

17: Compute t,Lt, t

18: if t ≥ 0 and t ≤ Le(c2) then

19: Point is inside the edge zone – store ddist

20: break

21: else

22: Point is outside the edge zone – store ddist

23: break

24: end if

25: end if

26: end for

27: dΩ ← ddist

Output: signed distance dΩ

Every point is passed once in Algorithm 2 and its distance to the nearest domain’s

boundary is returned. To determine the distance to the nearest boundary of the domain,

for all domain’s edges except the last one the following quantities are computed (lines

2–4, Figure 2.4):
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Figure 2.4: Computing the signed distance to a convex polygon.

• edge vector rp (c is the current value of the counter)

rp(c) = pfix(c+ 1)− pfix(c) (2.14)

• edge length Le

Le(c) = ||rp(c)|| (2.15)

• edge unit vector erp

erp(c) =
rp(c)

Le(c)
(2.16)

• edge normal n (k̂ is the unit vector pointing in the positive z direction)

n(c) = erp(c)× k̂ (2.17)

• distance vector d0 from an arbitrary point pi to the edge’s rightmost fixed point.

The rightmost is defined with respect to outward pointing normal as shown on the

Figure 2.4

d0(c) = pi − pfix(c) (2.18)

• point to boundary distance vector dN

dN(c) = (d0(c) · n(c))n(c) (2.19)
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• distance value dN

dN(c) = n(c) · dN(c) (2.20)

The same procedure is applied on the last edge (line 5), only on the right hand side

of Equation (2.14) instead of next fixed point is the first fixed point which yields

rp(c) = pfix(0)− pfix(c) (2.21)

The distance between the point pi and all the polygon edges is calculated and stored

in Npfix
x 1 array dN . If the point is inside the polygon, the distances to all edges are

negative as one can see on the Figure 2.5

Figure 2.5: Only the point which has all distances negative is inside the polygon.

According to Equation (2.1) the smallest of those distances is determined (lines 8 –

14), and passed to Algorithm 1.

Otherwise, if a point has any positive distance, the point is outside the domain (line

16). Outside the domain, one can recognize two zones. One is an edge zone characterized

by isolines of constant distance, and the other is a point zone where the isolines are circles

with common center in the nearest fixed point. Figure 2.6 shows the point pi which lies

inside the edge zone. The algorithm recognizes whether the point is inside or outside the

edge zone by computing an indicator value t (line 17)

t = erp(c) · Lt (2.22)
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where Lt denotes the distance vector from an intersection point t to the rightmost edge’s

fixed point defined the same as in Equation (2.18). This vector reads

Lt = t− pfix(c) (2.23)

where t is the intersection point’s vector defined as

t = pi − dN(c) (2.24)

If the indicator value t determined by Equation (2.22) is a value in range [0,1] the

point is inside the edge zone and distance dN(c) is returned (lines 18 – 20).

Figure 2.6: Points outside the polygon.

Let the point p�
i lies in the point zone. Than, the distance is calculated as follows

doutMin = ||p�
i − pfix(c)|| (2.25)

The distance to the nearest fixed point is determined (lines 21 – 23) and returned to

mesh generation procedure given in Algorithm 1.
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2.4 Internal Boundaries

In order to handle an internal boundary, one should extend Algorithm 1. Here it is done

as proposed by Persson (Persson, 2005). The procedure presented as Algorithm 3 is added

between the lines 4 and 5 in Algorithm 1. Therefore, an internal distance function dIΩ

is introduced. The internal distance function is checked for all the element endpoints in

the domain (line 2 – 4). If for a two edge endpoints, dIΩ has an opposite sign (line 5 or

line 12), the edge is crossing the internal boundary. For the edge which is crossing the

internal boundary, the distance magnitudes ||dIΩ|| are computed and the lower distance

magnitude ||dIΩ|| is determined (line 6 or line 13). The edge endpoint with lower distance

magnitude is than projected on internal boundary applying the same procedure as in line

5 of Algorithm 1.

Algorithm 3 Internal boundaries generation on an existing mesh

Input: Updated point set pn+1 not aligned to internal boundaries

1: Initialize dI0(Nedges), dI1(Nedges)

2: for all edges do

3: dI0(c) ← dIΩ(p
n+1[edge[c][0]])

4: dI1(c) ← dIΩ(p
n+1[edge[c][1]])

5: if dI0(c) > 0 and dI1(c) < 0 then

6: Dmin ← min(||dI0(c)||, ||dI1(c)||)
7: if (||dI1(c)|| −Dmin) < 1E-15 then

8: Project the second edge point on an internal boundary

9: else

10: Project the first edge point on an internal boundary

11: end if

12: else if dI0(c) < 0 and dI1(c) > 0 then

13: Dmin ← min(||dI0(c)||, ||dI1(c)||)
14: if (||dI0(c)|| −Dmin) < 1E-15 then

15: Project the first edge point on an internal boundary

16: else

17: Project the second edge point on an internal boundary

18: end if

19: end if

20: end for

Output: Updated point set pn+1 aligned to internal boundaries

Figure 2.7 shows an edge which is crossing the internal boundary. Applied notation

corresponds to one used in Algorithm 3.
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Figure 2.7: An edge which crosses the internal boundary. Right edge endpoint is closer

to internal boundary and is thus projected.

2.5 Conclusion

Within this Chapter, the base algorithm is given and its main features are described. The

algorithm spreads the points into a defined bounding box, utilizes the signed distance

function to determine ones within domain and keep them. Those points are connected

(triangulated) by Delaunay algorithm. Now those element’s edges are considered to be

elastic springs which are allowed only to produce repulsive forces (internal forces) and

move the points. In such manner, the points fill the desired geometry. After the internal

forces move the points, some boundary points will probably settle outside the domain.

Those points are then projected (external forces) by using the distance function. The

interplay between force-equilibrium approach and Delaunay triangulation is over when

the termination criterion, based on points movement, is met. Since original MATLAB�
implementation has ”inpolygon” function to determine whether is point inside or outside

the polygonal domain, to make polygonal domains possible in C++ an algorithm based

on vector calculus is proposed. Finally, an algorithm which generates internal boundaries

is added to base algorithm in order to handle discontinuous domains.



Chapter 3

Examples

3.1 Introduction

In the automatic mesh generator developed here, the geometry is defined in an implicit

form. Such approach enables representing a domain by a continuous function or set of

fixed points on domain’s boundaries. Here, the both modes are presented as well as some

additional features and extensions of the base algorithm. At the end, an application in

meshing of material with discontinuities is given.

3.2 Discussion

An unit circle is meshed with triangular elements as shown on Figure 3.1.

Figure 3.1: Discretization of the unit circle.

This domain is defined by an implicit function

dΩ(p) = ||p|| − 1 (3.1)

Decreasing the initial spacing h0 results in finer mesh (Figure 3.2).
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Figure 3.2: Refined discretization of the unit circle.

The parameters of both meshes are summarized in Table 3.1.

Table 3.1: Parameters of the unit circle meshes

Figure dΩ(p) hΩ(p) h0 BB nit nr tex [s]

3.1 ||p|| - 1 1 0,2 [-2 -2] x [2 2] 126 28 0,8

3.2 ||p|| - 1 1 0,1 [-2 -2] x [2 2] 324 44 8,62

where BB denotes bounding box, nit is number of iterations, while nr and tex are

number of retriangulations and execution time respectively. Also, an ellipse can be defined

by a single function

dΩ(p) = (p2
x/4 + p2

y/1)
1/2 − 1 (3.2)

and its triangular mesh is shown on Figure 3.3 while the characteristics are in Table 3.2.

Figure 3.3: Discretized ellipse.

Furthermore, the algorithm allows domain definition via set operations such as union,

difference and intersection. The union is defined as follows

dΩ1∪Ω2(p) = min(dΩ1(p), dΩ2(p)) (3.3)

and is depicted on Figure 3.4.
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Table 3.2: Parameters of the ellipse mesh

Figure dΩ(p) hΩ(p) h0 BB nit nr tex [s]

3.3 Equation (3.2) 1 0,2 [-3 -2] x [3 2] 137 19 1,85

Figure 3.4: Domain defined using union scheme.

The polygonal part of the domain is described through its counter-clockwise defined

fixed points. More on polygonal domains is given later in this Section. The level-set

function

dΩ2 = ((px − 1, 5)2 + (py − 1, 5)2)1/2 − 0, 5 (3.4)

determines the circular part of the domain.

The difference reads

dΩ1\Ω2(p) = max(dΩ1(p),−dΩ2(p)) (3.5)

and enables meshing surfaces with holes as shown on Figure 3.5.

Figure 3.5: Discretized surface with hole.

Where the ellipse reads

dΩ1 = (p2
x/16 + p2

y/4)
1/2 − 1 (3.6)
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and the subtracted circle is

dΩ2 = ((px + 0, 5)2 + p2
y)

1/2 − 1 (3.7)

In this case, Equation (3.4) turns the signed distance of interior circle’s points to

positive. In this manner inner points are deleted (line 1 of Algorithm 1).

The intersection is given by

dΩ1∩Ω2(p) = max(dΩ1(p), dΩ2(p)) (3.8)

and gives

Figure 3.6: Domain created by intersecting two circles of constant radii.

where both domains are circles with constant radii

dΩ1 = ((px − 3)2 + (py − 3)2)1/2 − 1, 5 (3.9)

dΩ2 = ((px − 5, 5)2 + (py − 3)2)1/2 − 1, 5 (3.10)

The parameters of the meshes created by set operations are summarized in Table 3.3.

Table 3.3: Characteristics of the meshes defined by set operations

Figure dΩ(p) hΩ(p) h0 BB nit nr tex [s]

dΩ1 - Algorithm 2
3.4

dΩ2 - Equation (3.4)
1 0,1 [0 0] x [3,5 3] 1000 80 10,28

dΩ1 - Equation (3.6)
3.5

dΩ2 - Equation (3.7)
1 0,2 [-5 -3] x [5 3] 435 38 19,97

dΩ1 - Equation (3.9)
3.6

dΩ2 - Equation (3.10)
1 0,1 [0 0] x [8,5 6] 293 46 1,16
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When a polygonal domain is considered, the user specifies its fixed points. To deter-

mine the signed distance, Algorithm 2 utilizes vector calculus on the defined set of fixed

points.

(a) (b)

Figure 3.7: Polygonal domains.

Combining polygonal and circular domain by means of previously introduced subtrac-

tion operation (Equation 3.5), one can obtain a square plate with a circular hole (Figure

3.8) which can, for example, serve in stress analysis.

Figure 3.8: Square plate with a circular hole.

Note that all the meshes presented so far were almost uniform, i.e. hΩ(p) = 1 is

applied. Since the size function hΩ describes the relative spacing between the mesh

points, refinement of specific zones is thus enabled.

On Figure 3.9 (a) one can recognize a square with a hole which is refined at hole. Such

refinement is achieved by introducing space-dependent size function

hΩ(p) = min(4||p|| − 1, 2) (3.11)
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(a) (b)

Figure 3.9: Graded mesh at specific zones.

Also, Figure 3.9 (b) represents a domain with size function defined as

hΩ(p) = 1− 1.5||p|| (3.12)

Introducing the internal distance function dIΩ and utilizing Algorithm 3, a mesh align-

ment with the internal boundaries is ensured. The basic mesh which contains internal

boundaries given on Figure 3.10 (b). For easier recognizing the internal boundary, a

domain without triangulation is depicted on Figure 3.10 (a).

Now one can automatically generate a mesh of a two-dimensional unit cell with 6

fibres and volume content of fibres 19%. On Figure 3.11 (a) the fibres in the unit cell are

placed in two rows and equally spaced in each row. The problem discretization is given

on Figure 3.11 (b). Furthermore, a triangulation of 20 randomly distributed fibres with

different radii is created (Figure 3.12). The volume content of fibres is 15%.

The finte volume numerical stress analysis is carried out on the two-phase synthetic

microstructure using OpenFOAM 3.1-ext�. A 3µm x 1.7µm two dimensional periodic

microstructure cell is considered (Figure 3.13). The domain is discretized in a polygon-

by-polygon manner. Such approach utilizes Algorithm 2 and demands continuity control

of the internal boundary points distribution. The Young’s modulus and Poisson’s ratio

of both particulates and matrix are shown in Table 3.4.

Microstructure is loaded by applying fixed normal displacement (0.001 µm) at the right

boundary. The symmetry boundary condition is used on the remaining boundaries. Plane

strain linear elastic model is assumed and numerical solution is obtained using the finite

volume solver described in (Tuković et al., 2013). Figures 3.14 and 3.15 show distribution
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of normal stresses σxx, σyy, shear stress τxy and displacements along the microstructure

domain.

Table 3.4: Material properties

E [GPa] ν

Particulates (red contour) 800 0,1

Matrix (blue contour) 300 0,1

3.3 Conclusion

The automatically generated finite volume meshes are presented in this Chapter. Result-

ing meshes are well shaped which is due to conjunction between the force-balance analogy

and Delaunay triangulation. The geometries are defined by a continuous function (circles

and ellipses), fixed points on boundaries (polygons) or combination of those two (polygons

with holes). An extension of the base algorithm is done with respect to internal bound-

aries. This leads to quality fitting the interface between the exterior and interior domain.

Therefore, the algorithm is applied to discretize discontinuous materials. Finally, finite

volume based stress analysis was performed on a synthetic microstructure. The synthetic

microstructure is discretized with the mesh generator proposed in this thesis.
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(a)

(b)

Figure 3.10: The geometry (a) and the discretization (b) of the basic case with internal

interface.
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(a)

(b)

Figure 3.11: The geometry (a) and the discretization (b) of the unit square with 6 fibres.
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(a)

(b)

Figure 3.12: The geometry (a) and the discretization (b) of the cell with 20 randomly

distributed fibres.
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(a)

(b)

Figure 3.13: The geometry (a) and the discretization (b) of the two-phase synthetic

microstructure.
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(a)

(b)

Figure 3.14: Normal stresses σxx (a) and σyy (b) distribution in the numerical microstruc-

ture.
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(a)

(b)

Figure 3.15: Shear stress τxy (a) and displacement (b) distribution in the numerical mi-

crostructure.



Chapter 4

Conclusion and Perspectives

4.1 Conclusion

This thesis has presented an automatic finite volume mesh generator based on the conjunc-

tion between the Delaunay triangulation in a plane and mechanical analogy. This work

actually implements the base algorithm described in Chapter 2 within the framework

of OpenFOAM� an open-source C++ library for computational continuum mechanics.

Notably, the issue of generating polygonal domains has been solved since the original

MATLAB� version works with embedded ”inpolygon” function for such purpose. Fur-

thermore, the extension to internal interfaces handling has been done.

As expected, the Delaunay triangulation method gave the meshes of high quality.

A mesh smoothing trough internal and external forces, compensate the problem of the

Delaunay method related to boundary cells. An application in discretizing the two-phase

materials has shown very good results.

4.2 Perspectives

Whereas the base algorithm is very effective and simple, a wide variety of perspective is

achievable.

The first is an extension to three dimension makes possible discretization of complex

domains with internal boundaries such as sphere packing.

Another interesting perspective is to replace the Delaunay algorithm with its dual,

Voronoi diagram, and generate polygonal cells which posses better quality than triangular

cells. Also, on this way it is expected to have smaller amount of cells in the domain.
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Tuković, Z., Ivanković, A. & Karač, A. (2013). Finite-volume stress analysis in

multi-material linear elastic body. International Journal for Numerical Methods in En-

gineering , 93, 400–419.

Versteeg, H. & Malalasekera, W. (2007). An Introduction to Computational Fluid

Dynamics . Pearson Education Limited, 2nd edn.

Zienkiewicz, O. & Phillips, D. (1971). An automatic mesh generation scheme for

plane and curved surfaces by isoparametric co-ordinates. International Journal for Nu-

merical Methods in Engineering , 3, 519–528.

Zienkiewicz, O., Taylor, R. & J.Z., Z. (2005). The Finite Element Method: Its

Basis and Fundamentals . Elsevier, 6th edn.


