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Abstract

This thesis deals with development of an automatic mesh generator for dis-
cretization of materials with internal interfaces. The mesh generator developed
in this thesis can create triangular finite volume meshes. The user is required
to specify the signed distance function and mesh size function. The applied
algorithm is based on a conjunction between the Delaunay triangulation and
mechanical analogy. Extensions related to dealing with polygonal domains
and handling the internal boundaries were done. Obtained results shown re-
liability of the method.



Extended Abstract (Croatian)

Kako bi se sustav parcijalnih diferencijalnih jednadzbi mogao numericki rjesiti
potrebno je najprije zadanu domenu diskretizirati, odnosno podjeliti na konacan
broj kontrolnih volumena — mrezu. Prema navodu Versteega i Malalasekere
(Versteeg & Malalasekera, 2007) na projektima vezanim uz racunalnu di-
namiku fluida preko 50% vremena se utrosi na definiranje geometrije domene
i generiranje mreze. Ukoliko domena u sebi sadrzi unutarnje domene koje
takoder treba diskretizirati, primjerice materijal sa svojom mikrostrukturom,
generiranje mreze postaje znatno slozenije. Stoga se ovim radom razvija
automatski generator mreze konacnih volumena u svrhu izrade numerickih

studija vezanih uz materijale sa diskontinuitetima.

Metode automatskog generiranja numericke mreze svrstavaju se u tri glavne

skupine (Zienkiewicz et al., 2005):

e metoda Delaunayjeve triangulacije,
e metoda napredujuce fronte i
e metode stabla (kvartalno stablo u 2D i oktalno stablo u 3D).

Algoritam koji je koristen u radu najblizi je metodi Delaunayjeve triangulacije.
Rije¢ je o DISTMESH algoritmu, kojeg su razvili Persson i Strang (Persson &
Strang, 2004). Algoritam se temelji na kombinaciji analogije vla¢nih opruga
sa Delaunayjevom triangulacijom, i rezultira kvalitetnim trokutnim konacnim

volumenima.

Kako bi se diskretizirala domena €2 algoritam zahtjeva od korisnika definiranje:

e funkcije udaljenosti dg za definiranje geometrije domene

e funkcije velicine hg za definiranje gradacije mreze.
Za proizvoljnu tocku p; vrijedi:
min{d(p;,0Q)}  za p; ¢ Q

do(p;) =4 0 za p; € 0 (1)
—min{d(p,;,002)} zap, €}



gdje 0) oznacava vanjsku granicu domene. Iz navedenog slijedi da funkcija
udaljenosti vraca udaljenost izmedu bilo koje tocke u unaprijed definiranom
grani¢nom pravokutniku (engl. bounding box) i najblize vanjske granice domene.
Negativan predznak vrijedi za tocke unutar domene, dok pozitivan upucuje da
je tocka izvan domene. Pri do(p;) = 0 tocka se nalazi na vanjskoj granici

domene.

Dakle, najprije se distribuira N pocetnih tocaka unutar prethodno zadanog

grani¢nog pravokutnika, te se iste pohranjuju u dvodimenzijsko polje p:

p=[x Y] (2)

Tocke se pomicu, a nakon toga se provjerava funkcija udaljenosti dg, za svaku
tocku. Omne tocke koje imaju do(p,;) < 0 se zadrzavaju. Zatim se funkcija
velicine hq, ispituje za svaku od zadrzanih tocaka, te se odbacuju one tocke koje
pokazuju vjerojatnost proporcionalnu 1/hq(p;)?. Ovaj konacan skup tocaka
predaje se Delaunayjevom triangulacijskom algoritmu koji spaja zadrzane

tocke.

Delaunayjeva triangulacija jest triangulacija skupa tocaka pri ¢emu opisana
kruznica pojedinog trokuta prolazi jedino kroz tocke istog. Time Delaunay-
jeva triangulacija ujedno ostvaruje i maksimiziranje najmanjeg kuta na cijeloj
triangulaciji sto daje elemente visoke kvalitete. U sklopu procesa triangulacije,

tezista svih elemenata su ispitana, te oni sa dg > 0 bivaju izbrisanima.

Dobivena mreza fiktivno postaje mehanicka struktura. Pritom su tocke spojevi
a spojnice dviju tocaka (engl. edges) vlacne opruge. Kako su koordinate tocaka
zapravo nepoznanice, tako se iste dobivaju postizanjem staticke ravnoteze ovog

sustava.

U svakoj tocki mreze p;, moze se definirati polje sile F(p,) kao suma svih sila

koje djeluju na spomenutu tocku:

F(p;) = Fint(P;) + Feut(P;) (3)

gdje Fi 1 Fepy oznacavaju unutarnje i vanjske (reakcije na granicama) sile.
Unutarnje sile koje djeluju na pojedinu tocku se odnose na odbojne sile od
svih spojnica povezanih na tu tocku. Vanjske pak sile prisutne su jedino kod
tocaka na granicama domene, koje se nakon djelovanja unutarnjih sila nadu
izvan domene. Valja istaknuti da su kod unutarnjih tocaka ove sile jednake

nuli, a kod fiksnih tocaka su sve sile jednake nuli.



Ukupna unutarnja sila F;,; koja djeluje na tocku p, glasi:

Fini(p;) = Z f(le,lo) (4)

gdje e oznacCava sve spojnice povezane sa tockom p,, [y je Zeljena duljina

spojnice, a [, je duljina spojnice koja spaja susjedne tocke p; i p;:

le = [Ip; = Pyl ()

Clan pod znakom sumacije na desnoj strani jednadzbe (4) odnosi se na ranije
spomenutu odbojnu silu koja djeluje na krajevima spojnica (tj. djeluje na
tocke):

(lg — le)ni,j if le < l[)

leal = f7 = .
) = 1 {0 o

gdje je n; ; vektor normale:

P; —DP;
Nij =~ ! (7)

Sila f% koja djeluje na tocku p; jednaka je po iznosu, a suprotna po smjeru

sili koja djeluje na susjednu tocku p;:

fi=—p ®

Naglasak na odbojnim silama je u svrhu distribucije toc¢aka po cijeloj domeni.
U prilog tome, zeljena duljina spojnice dviju toc¢aka se postavlja na malo veé¢u

vrijednost od one koja je definirana funkcijom veli¢ine hg:

Pt

)Fscale - 9
Z hQ (pmid,e)

9)

lo = hQ(pmid,e

gdje P4 0znacava tocku na sredini spojnice, a Flqe je fiksni faktor. Persson

i Strang (Persson & Strang, 2004) preporucaju vrijednost 1,2 za Fiqe.

Kao sto je naglaseno ranije, koordinate tocaka mreze p se dobivaju postizanjem

staticke ravnoteze uvedenog fiktivnog mehanickog sustava koja glasi:



F(p)=0 (10)

U tu svrhu, definirana je pseudo-nestacionarnost:

dp

D —Foup) (1)
Stacionarno rjesenje jednadzbe (11) zadovoljava jednadzbu (10) i daje dobru
raspodjelu toc¢aka. Obic¢na diferencijalna jednadzba (11) se rjesava koristeéi

Eulerov eksplicitni algoritam:

p" =p" + AtF;u(p") (12)

1

gdje p"*! su nove, a p" poznate koordinate tocaka. Pseudo-vremenski korak

je At, a F;,; je ukupna unutarnja sila.

Nakon djelovanja unutarnjih sila, neke tocke zavrSavaju izvan granica domene.
Te tocke se vra¢aju na granicu domene postupkom projiciranja. Projiciranje

proizvoljne tocke p, na granicu glasi:

p, =P, — do(p;)
) 7 ‘VdQlQ

Vo (13)

te se postupak projiciranja ponavlja dok se ne postigne dq(p;) = 0.

Postupak Delaunayjeve triangulacije i djelovanja sila, ponavlja se sve dok po-

maci tocaka ne spuste ispod neke unaprijed zadane vrijednosti.

Ovaj bazni algoritam implementiran je u C+4 biblioteku OpenFOAM®.
Samom implementacijom postignuta je moguénost defniranja domena jedino
preko kontinuiranih funkcija poput jednadzbe kruznice ili elipse. Kako je
mikrosturuktura koju se zeli diskretizirati zapravo skup konveksnih polig-
ona, tako se javlja potreba za razvojem algoritma koji bi davao udaljenost
proizvoljne tocke od najblize granice. Izvorna MATLAB® implementacija u

tu svrhu koristi ugradenu ”inpolygon” funkciju.

Stoga je razvijen algoritam kvadratne vremenske slozenosti O(n?) koji ko-
riste¢i vektorski racun daje udaljenost tocke od najblize granice. Pritom se
podrazumijeva da je poligon konveksan, te da je definiran fiksnim tockama u

smjeru suprotnom od smjera kazaljke na satu.

Razvijeni algoritam dostupan je u sklopu drugog poglavlja zajedno sa pri-

padajué¢im skicama, jednadzbama i objasnjenjima.



Nadalje, bazni algoritam u stanju je diskretizirati domenu nacinjenu bez diskon-
tinuiteta. Kako kompozitni materijali sadrze vlakna, tako diskretizacija takvih
domena obvezuje na prosirivanje algoritma u tom smjeru. Algoritam za izradu

domene sa unutarnjim granicama dan je u ¢etvrtom odjeljku drugog poglavlja.

Na generiranim mrezama uocavaju se gotovo izotropni elementi:

SN

P AVAVAVAVAYN
VAVAVAVAVAVAVAVAN
NN NNN N NN
EAVAVAVAVAVAVANAN
AVAVAVAVAVAVAVAYA
VAVAVAVAVAVAVAVAY

XA

L

K

Figure 1: Diskretizirana kruzna domena.

Kvalitetni trokutni elementi posljedica su primjenjene Delaunayjeve triangu-
lacije, ali i djelovanja fiktivnih sila. Posebno se djelovanjem sila omogucava
kvalitetna mreza na granicama domene $to inace slovi kao problem Delaunay-

jeve triangulacije.

Algoritam podrzava i definiranje geometrije koriste¢i Booleove operacije:

o uniju:

do,ue, (P) = min(do, (p), do, (P)) (14)
o razliku:

da\0, (P) = maz(da, (), —da, (P)) (15)
o presjek:

do,ne, (P) = maz(da, (P), do, (P)) (16)

Domena definirana koriste¢i Booleove operacije prikazana je na sljedecoj slici:

NAVAVAVAVAVAVAVAVAV, v vt
YA A N AVAVAVAVAYaA v o Ara¥ay,
B T T erAa e
S RavATAVay, SYATA UAYAYAYS AvAYAYAYa
A OO RO AT RIIIID
KOS AAVA‘FHFNVA‘,AAAVAVAVAVAVAVAAA o
S YAYAVAVAVAVAVAVAV, O 8 SAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA
\VaVAVAYAVAVAVAVAVAVAVAVS DATAYAVAVAVAVAVAVAVAVAVAVAVAVAY, YN
AV YAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAN
TAYAYAYAVAVAVAVAVAVAVAVAVAVAVAVAVAY
PAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV( S
ROVAVAYAVAVAVAVAVAVAVAVAVAVAN 2 ¢
RAVAYAVAVANAVAVAVAVAVAVAVAVAS 2%
OKES AVAVAY S AYAVAVAVAVAVAVAVAVAVAVAYAN X
A OAVAVAVAVAVAVAVAVAVAN JAYAYAVAVAVAVAVAVAVAVAVAVAVAVAOL1
SVAVAVAVAVAVAVAVAVAVA N ST AYAVAVAVAVAVAVAVAVAVAVAVAVAV o
< AYAVAVAVAV,
NUSAVAVAVAVAVAVAVAVAV,N by Gy o Yo YAV AYAVAVAVAVAVAVAVAVAY vy
R TIRR AR
R el e
AR

4
A‘AVAVAVAVAVAVAVAVAVAAVV

Figure 2: Domena diskretizirana koriste¢i Booleove operacije.



Koristeci algoritam za generiranje poligona i njegovom kombinacijom sa funkci-
jom udaljenosti za kruznicu preko Booleovih operacija, omoguéeno je generi-

ranje domene koja se moze, primjerice, iskoristiti za analizu naprezanja:

AR E R
S3VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV A
pYAVAVAVAVAVAVAY,VAVAVAV)VAVAVAVAVAVAV
<VAVAVVAVAVQNAVAVA‘§VAVAVAVAVAVb
AVAVAV’} <¥'AVA

\WAVAVAYS

S 4
RIAVAVAVAVAVAN"AVAVAVS \VAVAVa v i<
WAVAVAAAVAVAYAVAVAVaY,
SR IRRIIOOOE:

Figure 3: Ploca s rupom.

Na prilozenim diskretiziranim domenama, uocava se gotovo uniformna mreza,
tj. ha(p) = 1 jest zadano. Kako funkcija veli¢ine hg opisuje relativni razmak

izmedu tocaka mreze, tako je omogucena rafinacija pojedinih zona.

(a) (b)

Figure 4: Mreza sa gradacijom.

Uvodenjem unutarnje funkcije udaljenost dlq i pritom primjenjujuéi pripadajuci
algoritam, omogucava se uskladenost domene sa unutarnjim granicama.
Sada je moguce automatsko generiranje dvodimenzijske jedni¢ne celije sa 6

vlakana konstantnog polumjera i volumnim udijelom vlakana od 19%. Vlakna

su poslozena u dva reda i u svakom od njih su jednako razmaknuta.
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(a) (b)

Figure 5: Geometrija (a) i diskretizacija (b) jedinicne celije sa 6 vlakana.

Koristedi isti princip, omogucena je triangulacija 20 slucajno raspodjeljenih

vlakana, razlicitih polumjera koji zauzimaju 15% domene.

DORIRR: v ORI ARIRR
AVAVA

Figure 6: Geometrija (a) i diskretizacija (b) celije sa 20 slucajno rasporedenih vlakana.

Razvijena metoda automatskog generiranja numericke mreze primjenjena je

na problem analize naprezanja kod materijala sa mikrostrukturom:.



(b)

Figure 7: Geometrija (a) i diskretizacija (b) sinteticke mikrostrukture.

Domena sa slike 7. diskretizirana je po principu ”poligon po poligon”. Takav

princip podrazumijeva primjenu razvijenog algoritma za konveksne poligone i
kontrolu kontinuiranosti raspodjele tocaka na unutarnjim granicama.

sigma XX
2.299+05-E
§29+5

1.6e+5

HMHHH

E 1.2e+5
8.63e+04

Figure 8: Raspodjela normalnog naprezanja o,, u materijalu sa mikrostrukturom.



Chapter 1

Introduction

1.1 Motivation

The mesh is the discrete structure on which the discrete representation of the governing
partial differential equations is made. This discrete representation may be finite element,
finite volume, or finite differences — in any case there is an underlying grid discretizing
the field into a collection of finite cells defined by associated grid points (Thompson
& Hamann, 1997). Within the finite volume method, the points are arranged so that
they can be grouped into a set of volumes and the partial differential equations can be
solved by equating various flux terms through the faces of the finite volumes (Shaw,
1992). Creating the compuational mesh is very time consuming task. As reported by
Versteeg and Malalasekera (Versteeg & Malalasekera, 2007) over 50% of the time spent
in industry on a computational fluid dynamics project is devoted to the definition of
the domain geometry and grid generation. If a domain is consisted of arbitrary shaped
internal structures, an effort to discretize a domain is even more pronounced.

Therefore, the aim of this thesis is to develop an automatic mesh generator for dis-
cretization of domains with an explicitly defined two-phases (material and its internal
structure). The main directions in the field of automatic mesh generation are given in the

next Section.

1.2 Automatic Mesh Generation

As outlined by (Zienkiewicz et al., 2005) the attempt to create a fully automatic mesh gen-
erator started from the early 1970s with the work of Zienkiewicz and Phillips (Zienkiewicz
& Phillips, 1971). According to George (George, 1996) a method is said automatic if it
requires no intervention from the user who only needs to provide the necessary data. A

large number of automatic unstructured mesh generation algorithms have been proposed



in the literature, but the most widely used algorithms are based on one or some kind
of combination of the three fundamentally distinctive methods, which are (Zienkiewicz
et al., 2005)

e the Delaunay triangulation method,

e the advancing front method and

e tree methods (the finite quadtree method in two dimensions and the finite octree

method in three dimensions).

These approaches are capable of automatically generating tetrahedral meshes for ar-
bitrary domains. In these methods crucial steps are the local connectivity modifications
(Roca Navarro, 2009). By observing the fact that a quadrilateral can be formed by two
triangles which share a common edge, the above-mentioned methods can be extended to
automatically generate unstructured quadrilateral meshes in two dimensions.

A brief information on these approaches is given in the remainder of the Section.

1.2.1 The Delaunay triangulation method

The Delaunay triangulation is a triangulation for which no circumcircle of a triangle
contains points in its interior. This property guarantees that the Delaunay triangulation
maximizes the minimum angle among all possible triangulations of the point set (Nguyen
et al., 2009).

One of the difficulties of the Delaunay approach is maintaining the integrity of the
boundary (Henshaw, 1996). Care must be taken to prevent the formation of triangles
whose edges cross the specified boundary. Another problem is that the Delaunay criteria
is not appropriate for creating very thin triangles in a boundary layer, some other condition
must be used (Henshaw, 1996).

The "empty circumcircle” geometrical criterion provides a mechanism for connecting
points. The task of point generation must be considered independently. Hence, grid
generation by Delaunay triangulation involves two distinct problems of point connection

and point creation (Thompson et al., 1999).

1.2.2 The Advancing Front Method

The advancing front method is a grid generation technique based on the simultaneous
point generation and connection (Thompson et al., 1999). The advancing front method
starts from the boundaries and progressively adds triangles. The triangulated region grows
into the interior, forming a propagating front (Henshaw, 1996). Since the procedure begins
at the boundary, the triangles near the boundary can be constructed to be of high quality,

this is an especially important feature for many PDEs (Henshaw, 1996).



1.2.3 Tree Methods — Quadtree (2D), Octree (3D)

The quadtree approach proceeds by dividing the region into four rectangles and then
recursively subdividing some of those rectangles into four additional rectangles (Henshaw,
1996). The cell size is reduced to meet certain criteria and so that the boundary is
represented to sufficient resolution. The cells intersecting the boundary are replaced by
polygons that follow the boundary (Henshaw, 1996). Octree is the three dimensional

analog of quadtree.

1.3 Outline of the Thesis

Among the algorithms presented in the last Section, here implemented method is closest
to Delaunay triangulation algorithms. It is about DISTMESH algorithm proposed by
Persson and Strang (Persson & Strang, 2004) which is described within the following
Chapter 2. In the paper of Nguyen and collaborators (Nguyen et al., 2009) DISTMESH is
compared with MESHGEN and TRIANGLE. The last two are well established adaptive
triangular mesh generators known for the high quality of the generated meshes (Fan et al.,
2011). The evaluation was done by considering the 12 quantitative quality measures
and DISTMESH algorithm has shown better performance. This algorithm utilizes an
implicit description of the domain through signed distance function. This is in contrary
to the usual explicit form. A common explicit form for describing geometries are Non-
Uniform Rational B-Splines (NURBS), which have become the standard in most popular
Computer Aided Design (CAD) and Computer Aided Engineering (CAE) systems (Cui,
2013). Furthermore, within Chapter 2, some extensions of the base algorithm are proposed
and explained. Chapter 3 presents generated meshes and shows some properties of the
algorithm. The algorithms introduced in Chapter 2 are utilized and their reliability is
shown. At the end, Chapter 4 summarizes the achievements of the work and offers

recommendations regarding future developments.



Chapter 2

An Automatic Mesh Generator

2.1 Introduction

A mesh generator which automatically generates two-dimensional triangular meshes is
described in this Chapter. The mesh generator is written in C++ and implemented within
OpenFOAM®), an open-source C++ library for Computational Continuum Mechanics.
The base algorithm is given in Section 2.2 and its contents are explained. Furthermore,
an extension of the base MATLAB® code was necessary to C++ implementation and
is discussed in Section 2.3. Since the application of this mesh generator is to discretize
the domains of discontinuous material, handling of internal boundaries is introduced and
described in Section 2.4. Important facts related to this Chapter are given in the last,
Section 2.5.

2.2 The Algorithm

A mechanical analogy based mesh generation algorithm proposed by (Persson & Strang,
2004) is used as a base for the automatic mesh generator presented here. In order to
discretize a domain €2, the algorithm requires the user the definition of:

e A signed distance function dg for the domain definition

e A mesh size function hq to specify the relative mesh resolution
As mentioned above, the computational domain € C R? is defined by the signed distance

function dg : R? — R where for an arbitrary point p; we have:

min{d(p;;0Q)} if p; ¢ Q
do(p;)) =< 0 if p; € 002 (2.1)
—min{d(p,;,00)} if p, €



where 0f) denotes domain’s boundary. This means that the signed distance function
gives the distance from any point in defined bounding box to the nearest boundary of the
domain. The sign is negative for points inside the domain and positive for points outside
the domain. Zero level set (dq(p;) = 0) defines the boundary of the domain. The size
function hq(p) specifies the mesh element sizes through the domain. For ho(p) = 1 an

uniform mesh is defined. Algorithm 1 shows the steps of the applied algorithm.

Algorithm 1 DISTMESH algorithm by Persson and Strang

Input: Desired mesh element size hg, bounding box [x1,11] X [z2,42] € Q , distance

function dgq, size function hgq.

1: An initial set of points p" = p(0) is distributed over the defined bounding box region
and a minimum spacing hy between them is ensured. Remove all points with dg > 0
as well as the points with a probability proportional to 1/h3;

2: Triangulate p™ by means of Delaunay triangulation algorithm and compute all edge
lengths [.;

3: Determine F;,;(p™) from ordinary linear springs model as the sum of forces applied
by its neighbouring points;

4: Move the points by using the forward Euler method p"™' = p™ + AtF,,.:(p");

5: Find the points which now are outside the domain (dg > 0) and project them on the
domain boundary applying first order approximate projection;

6: Break if every point has moved less than a predefined tolerance. Otherwise, set
n — n + 1 and repeat from step 2.

Output: point array p and triangles list m.

Firstly (line 1), N initial points are distributed within the bounding box region and
stored in an N-by-2 array p

p= [x y] (2.2)

A distance between the points is hg in 2- and V3 /2 in y direction. A minimum distance
ho between the points is created by displacing every even row for hy/2 in a-direction. The
signed distance function is checked for all points and the points with dq(p;) < 0 are kept.
Then, the size function hq(p,) is evaluated for the retained points and the points with a
probability proportional to 1/hq(p;)? are discarded. This final set of points is now passed
to a Delaunay triangulation routine (line 2) which connects those points. The Delaunay
triangulation is a triangulation of a point set p where the circumcircle of each triangle
passes only through its points as shown on Figure 2.1.

Also, the Delaunay triangulation maximizes the smallest angle over all triangulation

which leads to elements of high quality. Within the triangulation process, the centroids



Figure 2.1: Satisfied (a) and not satisfied (b) Delaunay criterion (Owen, 1998).

of all elements are examined. If the element’s centroid lies outside the geometry (dg > 0),
the element is deleted.

This formation is now considered to be a fictive mechanical structure. The element’s
points corresponds to joints and the edges correspond to elastic springs. Forcing this
mechanical structure to a static equilibrium gives the final positions of the points. In
every mesh point p, the force field F(p;) is defined as a sum of all forces acting on that

point (line 3):

F(p;) = Fini(p;) + Feui(py) (2.3)

where Fy,; and F.,; denote internal and external (reactions at boundaries) forces respec-
tively. The internal forces acting on each point refer to the repulsive forces from all the
edges connected to that point as depicted in the Figure 2.2 (a). The external forces are
existing only for boundary points which go outside the domain (Figure 2.2 (b)). Since
those points are going outside of the domain due to their moving induced by the internal
forces, the external forces are discussed later in this Section (line 5). The total force
acting at fixed points is equal to zero.

The total internal force F,; acting on point p, reads

ant(pz) = Z f(l67 lO) (24>

where e denotes all the edges connected with point p;, [y is the desired length of an
element’s edge and [, is the length of the edge connecting the neighbouring nodes p; and
p; which reads

le = [Ip; — Pyl (2.5)

The term under summation operator on the right hand side of equation (2.4) refers to

a linear repulsive force attached at edge endpoints



Figure 2.2: Forces: (a) internal forces and (b) external forces (Persson, 20006).

(lg — le)nm- if le < l()

2.6
0 it l. > 1y (2:6)

f(le,lo) :fij:{

where n; ; is the normal vector
P; —P;
le

The force f¥ acting on point p; is equal and of opposite sign to one acting on the neigh-

(2.7)

Nij =

bouring point p; (Figure 2.3)
fo=—f" (2.8)

Figure 2.3: Repulsive forces acting on the edge endpoints.

The emphasis on the repulsive forces enables the distribution of points across the
whole domain. This is also supported by choosing the value [y to be slightly larger than
the desired length defined by the size function hq



Pt
e Z hQ (pmid,e)2

where p,,;,. denotes an edge midpoint vector, and Fi.q. is a fixed factor. Persson and

lo = hQ(pmid,e)FS (29)

Strang (Persson & Strang, 2004) recommend the value of 1.2 for F.qe.
As outlined earlier, the locations of mesh points p are computed by forcing a truss

structure to its static equilibrium which reads
F(p)=0 (2.10)

To this end, a false transient is introduced as follows

dp

dt
The steady state solution of (2.11) satisfies (2.10) and provides well distributed points.
The ODE (2.11) is solved using the Euler explicit algorithm (line 4)

—Fiou(p), >0 (2.11)

p"Jrl =p" + AtF;.(p") (2.12)

"+l are new and p” are known points positions. Pseudo time step is At and

where p
F;..(p") is the total internal force.

Due to this update of points positions, some points can settle outside the domain €2.
Those points are than projected to the closest domain’s boundary. The projection of an

arbitrary point p, which crossed the boundary is defined as

. = p; — do(p;)
A (A ‘VdQ|2

and is repeated until dg(p;) = 0 is achieved.

Vg (2.13)

The steps 2 — 5 of Algorithm 1 are repeated until every point has moved less than a

predefined tolerance, i.e. the termination criterion is met.

2.3 The Level-set Function of a Convex Polygon

The base algorithm presented in former Section requires one user-defined function dg to
define the domain 2. For many simple geometries, such as circles and ellipses the signed
distance function can be expressed as a single function. On the other hand, in many real
applications domains are convex polygons. Since the convex polygon cannot be expressed
as a single function, an algorithm of quadratic time complexity O(n?) is proposed for

computing the distance to a polygon given by its Ny~ counter-clockwise defined fixed
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points. Algorithm 2 presents proposed method to compute the signed distance function

for a polygonal domain.

Algorithm 2 Signed distance function of a polygon

Input: point p

1: Initialize n, 1), e, do,dy, dy, Le

2: for ¢ + 0 to Np,,, —2do

3:  Compute n,r,, e, ,do,dy,dy, L. for all polygon’s edges except the last one
4: end for

5: Compute n,ry, e, ,do,dy, dy, L. for the last polygon’s edge
6: Initialize t, L, t, dows(Np,,, ), C0, doutrrin, daists ddistrrin
7: Check if the point is inside the polygon

8 if ¢y = Npﬁz then

9: for all dy do

10: if ||dn(c)|| < ||daistarin|| then

11 Aaist < daistirin

12: end if

13: end for

14: end if

15: for all dy do

16:  if dy(c2) > 0 then

17: Compute t, Lg, t

18: if t >0and t < L.(cz) then

19: Point is inside the edge zone — store dgy;s
20: break
21: else
22: Point is outside the edge zone — store dy;
23: break
24: end if
25:  end if
26: end for

27 do < dgist
Output: signed distance dg

Every point is passed once in Algorithm 2 and its distance to the nearest domain’s
boundary is returned. To determine the distance to the nearest boundary of the domain,
for all domain’s edges except the last one the following quantities are computed (lines
2-4, Figure 2.4):
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Pix,0 .0 Prix,1

Figure 2.4: Computing the signed distance to a convex polygon.

edge vector r, (c is the current value of the counter)

edge length L,
Le(c) = [Irp(c)]] (2.15)
edge unit vector e,
rp(c)
. =27 2.1

edge normal n (lAc is the unit vector pointing in the positive z direction)

~

n(c) = e, (c) x k (2.17)

distance vector dy from an arbitrary point p, to the edge’s rightmost fixed point.
The rightmost is defined with respect to outward pointing normal as shown on the
Figure 2.4

do(c) = p; — Pyir(c) (2.18)

point to boundary distance vector dy

dy(c) = (dole) - n(¢))n(c) (2.19)
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e distance value dy
dy(c) =n(c) - dy(c) (2.20)
The same procedure is applied on the last edge (line 5), only on the right hand side
of Equation (2.14) instead of next fixed point is the first fixed point which yields

rp(c) = Pi(0) = Pyiz(c) (2.21)

The distance between the point p, and all the polygon edges is calculated and stored
in Np,.. x 1 array dy. If the point is inside the polygon, the distances to all edges are

negative as one can see on the Figure 2.5

Prix,2

ng

Prix,1

g

Figure 2.5: Only the point which has all distances negative is inside the polygon.

According to Equation (2.1) the smallest of those distances is determined (lines 8 —
14), and passed to Algorithm 1.

Otherwise, if a point has any positive distance, the point is outside the domain (line
16). Outside the domain, one can recognize two zones. One is an edge zone characterized
by isolines of constant distance, and the other is a point zone where the isolines are circles
with common center in the nearest fixed point. Figure 2.6 shows the point p, which lies
inside the edge zone. The algorithm recognizes whether the point is inside or outside the

edge zone by computing an indicator value ¢ (line 17)

t=e ()L (2.22)
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where L; denotes the distance vector from an intersection point t to the rightmost edge’s

fixed point defined the same as in Equation (2.18). This vector reads

Ly =t — pyi,(c) (2.23)
where t is the intersection point’s vector defined as

t=p, —dn(c) (2.24)

If the indicator value t determined by Equation (2.22) is a value in range [0,1] the

point is inside the edge zone and distance dx(c) is returned (lines 18 — 20).

edge zone

edge zone

Figure 2.6: Points outside the polygon.

Let the point p; lies in the point zone. Than, the distance is calculated as follows

doutMin = ||P; - pfm(c)H (225)

The distance to the nearest fixed point is determined (lines 21 — 23) and returned to

mesh generation procedure given in Algorithm 1.
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2.4 Internal Boundaries

In order to handle an internal boundary, one should extend Algorithm 1. Here it is done
as proposed by Persson (Persson, 2005). The procedure presented as Algorithm 3 is added
between the lines 4 and 5 in Algorithm 1. Therefore, an internal distance function dlq
is introduced. The internal distance function is checked for all the element endpoints in
the domain (line 2 — 4). If for a two edge endpoints, dI has an opposite sign (line 5 or
line 12), the edge is crossing the internal boundary. For the edge which is crossing the
internal boundary, the distance magnitudes ||d[g|| are computed and the lower distance
magnitude ||dlq|| is determined (line 6 or line 13). The edge endpoint with lower distance
magnitude is than projected on internal boundary applying the same procedure as in line
5 of Algorithm 1.

Algorithm 3 Internal boundaries generation on an existing mesh

Input: Updated point set p"*! not aligned to internal boundaries
1: Initialize dlo(Nedges), d11(Nedges)
2: for all edges do

3. dly(c) + dIo(p™*tedge|c][0]])

4 dli(c) < dIo(p"[edgelc][1]])

5. if dly(c) > 0 and dI;(c) < 0 then

6: Din = min(||dlo(c)|], ||d(c)]])

7: if (||dL1(c)|| = Dpin) < 1E-15 then

8: Project the second edge point on an internal boundary
9: else

10: Project the first edge point on an internal boundary
11: end if

12:  else if dIy(c) < 0 and dI(c) > 0 then

13 Dyan < min(|ldlo(0)|], |1 (0)])

14: if (||dIo(c)|| = Dmin) < 1E-15 then

15: Project the first edge point on an internal boundary
16: else

17: Project the second edge point on an internal boundary
18: end if

19:  end if
20: end for

n+1

Output: Updated point set p aligned to internal boundaries

Figure 2.7 shows an edge which is crossing the internal boundary. Applied notation

corresponds to one used in Algorithm 3.
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d1g>0 d1,<0

pledge[c][0]] /5\ pledge[c][1]]

Internal boundary

Figure 2.7: An edge which crosses the internal boundary. Right edge endpoint is closer

to internal boundary and is thus projected.

2.5 Conclusion

Within this Chapter, the base algorithm is given and its main features are described. The
algorithm spreads the points into a defined bounding box, utilizes the signed distance
function to determine ones within domain and keep them. Those points are connected
(triangulated) by Delaunay algorithm. Now those element’s edges are considered to be
elastic springs which are allowed only to produce repulsive forces (internal forces) and
move the points. In such manner, the points fill the desired geometry. After the internal
forces move the points, some boundary points will probably settle outside the domain.
Those points are then projected (external forces) by using the distance function. The
interplay between force-equilibrium approach and Delaunay triangulation is over when
the termination criterion, based on points movement, is met. Since original MATLAB®
implementation has ”inpolygon” function to determine whether is point inside or outside
the polygonal domain, to make polygonal domains possible in C++ an algorithm based
on vector calculus is proposed. Finally, an algorithm which generates internal boundaries

is added to base algorithm in order to handle discontinuous domains.



Chapter 3

Examples

3.1 Introduction

In the automatic mesh generator developed here, the geometry is defined in an implicit
form. Such approach enables representing a domain by a continuous function or set of
fixed points on domain’s boundaries. Here, the both modes are presented as well as some
additional features and extensions of the base algorithm. At the end, an application in

meshing of material with discontinuities is given.

3.2 Discussion

An unit circle is meshed with triangular elements as shown on Figure 3.1.

VAVAV>
THKKATY
AN
NN NN NN NN
KOO
VAVAVAVAVAVAVAVAY
KK
Rayivitg

4
AN

Figure 3.1: Discretization of the unit circle.

This domain is defined by an implicit function

do(p) = [Ip|| — 1 (3.1)

Decreasing the initial spacing hg results in finer mesh (Figure 3.2).
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Figure 3.2: Refined discretization of the unit circle.

The parameters of both meshes are summarized in Table 3.1.

Table 3.1: Parameters of the unit circle meshes

Figure do(p) ha(p) ho BB Nt Ny tex [8]
31 |pll-1 1 02 [2-2x[22] 126 28 0.8
32 fp|l-1 1 01 [2-2x[22] 324 44 862

where BB denotes bounding box, n; is number of iterations, while n, and t., are

number of retriangulations and execution time respectively. Also, an ellipse can be defined

by a single function

do(p) = (p3/4+p/1)"* -1 (3.2)

and its triangular mesh is shown on Figure 3.3 while the characteristics are in Table 3.2.

VAVAVAVAVAVAV,

SR
ALOEOAARARAK A%X#'AVAVAVN;
‘Qﬁ‘%ﬁgﬁuvmuv@}%{éb
SRR

/N
/N
Figure 3.3: Discretized ellipse.

Furthermore, the algorithm allows domain definition via set operations such as union,

difference and intersection. The union is defined as follows

dQ1UQ2 (p) = mm(dgl (p>7 dQQ (p)) (33>

and is depicted on Figure 3.4.
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Table 3.2: Parameters of the ellipse mesh

Figure do(p) ha(p)  ho BB N Ny teg [8]
3.3  BEquation (3.2) 1 02 [3-2]x[32 137 19 185

VAN

Figure 3.4: Domain defined using union scheme.

The polygonal part of the domain is described through its counter-clockwise defined
fixed points. More on polygonal domains is given later in this Section. The level-set

function

do, = ((p, — 1,5)* + (p, — 1,5)))"/* = 0,5 (3.4)

determines the circular part of the domain.

The difference reads

dQl\Qz (p) = mafﬂ(dm (p)> _dQQ (p)) (3'5)

and enables meshing surfaces with holes as shown on Figure 3.5.
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YAVAVAVAVAVAVAVAVAVAVAYA

Figure 3.5: Discretized surface with hole.

Where the ellipse reads

do, = (p2/16 4+ p2/4)/* — 1 (3.6)
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and the subtracted circle is

do, = ((p, +0,5)° +p;)"/* — 1 (3.7)

In this case, Equation (3.4) turns the signed distance of interior circle’s points to
positive. In this manner inner points are deleted (line 1 of Algorithm 1).

The intersection is given by

da,no, (p> = max(dﬂl (p)7 da, (p)) (38)

and gives

Figure 3.6: Domain created by intersecting two circles of constant radii.

where both domains are circles with constant radii

dQ1 = ((pm - 3)2 + (py - 3)2>1/2 - 17 5 (39>
do, = ((p, — 5,5 + (p, = 3)°)"* = 1,5 (3.10)
The parameters of the meshes created by set operations are summarized in Table 3.3.

Table 3.3: Characteristics of the meshes defined by set operations

Figure do(p) ha(p) ho BB N Ny tex [S]

a4 dg, - Algorithm 2 ) 1 00 Bsa 1000 S0 1098
' dg, - Equation (3.4 1 [00]x [3,5 3] 7

)
dg, - Equation (3.6)
: 1 2 -0 - 4 1
39 4, - Equation (3.7) 0,2 [-5-3]x[53] 435 38 1997
)

26 dg, - Equation (3.9 1 0,1 [00]x[856] 293 46 1,16
' dg, - Equation (3.10) 1 [00] x (8,5 6] 7
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When a polygonal domain is considered, the user specifies its fixed points. To deter-
mine the signed distance, Algorithm 2 utilizes vector calculus on the defined set of fixed

points.

NANANNNN

A A

¥ VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAS
‘%ﬁﬁmVAVAVAVAVAVAvAVAVAVAvﬁA%EA

ORI IR
RIS LLINIIR
S vavavs ¥

Figure 3.7: Polygonal domains.

Combining polygonal and circular domain by means of previously introduced subtrac-
tion operation (Equation 3.5), one can obtain a square plate with a circular hole (Figure

3.8) which can, for example, serve in stress analysis.
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Figure 3.8: Square plate with a circular hole.

Note that all the meshes presented so far were almost uniform, i.e. hq(p) = 1 is
applied. Since the size function hq describes the relative spacing between the mesh
points, refinement of specific zones is thus enabled.

On Figure 3.9 (a) one can recognize a square with a hole which is refined at hole. Such

refinement is achieved by introducing space-dependent size function

ha(p) = min(4][p| - 1,2) (3.11)
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(a) (b)

Figure 3.9: Graded mesh at specific zones.

Also, Figure 3.9 (b) represents a domain with size function defined as

ha(p) = 1= 1.5||p|| (3.12)

Introducing the internal distance function dlg and utilizing Algorithm 3, a mesh align-
ment with the internal boundaries is ensured. The basic mesh which contains internal
boundaries given on Figure 3.10 (b). For easier recognizing the internal boundary, a
domain without triangulation is depicted on Figure 3.10 (a).

Now one can automatically generate a mesh of a two-dimensional unit cell with 6
fibres and volume content of fibres 19%. On Figure 3.11 (a) the fibres in the unit cell are
placed in two rows and equally spaced in each row. The problem discretization is given
on Figure 3.11 (b). Furthermore, a triangulation of 20 randomly distributed fibres with
different radii is created (Figure 3.12). The volume content of fibres is 15%.

The finte volume numerical stress analysis is carried out on the two-phase synthetic
microstructure using OpenFOAM 3.1-ext®. A 3um x 1.7pum two dimensional periodic
microstructure cell is considered (Figure 3.13). The domain is discretized in a polygon-
by-polygon manner. Such approach utilizes Algorithm 2 and demands continuity control
of the internal boundary points distribution. The Young’s modulus and Poisson’s ratio
of both particulates and matrix are shown in Table 3.4.

Microstructure is loaded by applying fixed normal displacement (0.001 pgm) at the right
boundary. The symmetry boundary condition is used on the remaining boundaries. Plane
strain linear elastic model is assumed and numerical solution is obtained using the finite

volume solver described in (Tukovié¢ et al., 2013). Figures 3.14 and 3.15 show distribution
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of normal stresses 0,5, 0y, shear stress 7., and displacements along the microstructure

domain.

Table 3.4: Material properties

E [GPa] v
Particulates (red contour) 800 0,1
Matrix (blue contour) 300 0,1

3.3 Conclusion

The automatically generated finite volume meshes are presented in this Chapter. Result-
ing meshes are well shaped which is due to conjunction between the force-balance analogy
and Delaunay triangulation. The geometries are defined by a continuous function (circles
and ellipses), fixed points on boundaries (polygons) or combination of those two (polygons
with holes). An extension of the base algorithm is done with respect to internal bound-
aries. This leads to quality fitting the interface between the exterior and interior domain.
Therefore, the algorithm is applied to discretize discontinuous materials. Finally, finite
volume based stress analysis was performed on a synthetic microstructure. The synthetic

microstructure is discretized with the mesh generator proposed in this thesis.
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Figure 3.10: The geometry (a) and the discretization (b) of the basic case with internal

interface.
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Figure 3.11: The geometry (a) and the discretization (b) of the unit square with 6 fibres.
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Figure 3.12: The geometry (a) and the discretization (b) of the cell with 20 randomly
distributed fibres.
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Figure 3.13: The geometry (a) and the discretization (b) of the two-phase synthetic

microstructure.



26

sigma XX
2.29e+05+

8.63e+04-

sigma YY
5.48e+04+
Se+4

M

—de+d

3e+d
2e+4

le+d

1.46e+03-

(b)

Figure 3.14: Normal stresses 0,, (a) and oy, (b) distribution in the numerical microstruc-
ture.
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Figure 3.15: Shear stress 7,, (a) and displacement (b) distribution in the numerical mi-
crostructure.



Chapter 4

Conclusion and Perspectives

4.1 Conclusion

This thesis has presented an automatic finite volume mesh generator based on the conjunc-
tion between the Delaunay triangulation in a plane and mechanical analogy. This work
actually implements the base algorithm described in Chapter 2 within the framework
of OpenFOAM® an open-source C++ library for computational continuum mechanics.
Notably, the issue of generating polygonal domains has been solved since the original
MATLAB® version works with embedded ”inpolygon” function for such purpose. Fur-
thermore, the extension to internal interfaces handling has been done.

As expected, the Delaunay triangulation method gave the meshes of high quality.
A mesh smoothing trough internal and external forces, compensate the problem of the
Delaunay method related to boundary cells. An application in discretizing the two-phase

materials has shown very good results.

4.2 Perspectives

Whereas the base algorithm is very effective and simple, a wide variety of perspective is
achievable.

The first is an extension to three dimension makes possible discretization of complex
domains with internal boundaries such as sphere packing.

Another interesting perspective is to replace the Delaunay algorithm with its dual,
Voronoi diagram, and generate polygonal cells which posses better quality than triangular

cells. Also, on this way it is expected to have smaller amount of cells in the domain.
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