
Autoencoders: A Low Cost Anomaly Detection Method for
Computer Network Data Streams

Christopher Nixon
Staffordshire University
Stoke-on-Trent, UK

nr106584@student.staffs.ac.uk

Mohamed Sedky
Staffordshire University
Stoke-on-Trent, UK

M.H.Sedky@staffs.ac.uk

Mohamed Hassan
Staffordshire University
Stoke-on-Trent, UK

Mohamed.Hassan@staffs.ac.uk

ABSTRACT
Computer networks are vulnerable to cyber attacks that can affect
the confidentiality, integrity and availability of mission critical data.
Intrusion detectionmethods can be employed to detect these attacks
in real-time. Anomaly detection offers the advantage of detecting
unknown attacks in a semi-supervised fashion. This paper aims to
answer the question if autoencoders, a type of semi-supervised feed-
forward neural network, can provide a low cost anomaly detector
method for computer network data streams. Autoencoder methods
were evaluated online with well known KDD Cup 1999 and UNSW-
NB15 data sets, and it was demonstrated that running time and
labeling cost is significantly reduced compared to traditional online
classification techniques for similar detection performance. Further
research would consider the trade-off between single vs stacked
networks, multi-label classification, concept drift detection and
active learning.

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.

KEYWORDS
anomaly detection, intrusion detection, autoencoders, online learn-
ing
ACM Reference Format:
Christopher Nixon, Mohamed Sedky, and Mohamed Hassan. 2018. Autoen-
coders: A Low Cost Anomaly Detection Method for Computer Network
Data Streams. In Proceedings of 2020 4th International Conference on Cloud
and Big Data Computing (ICCBDC 2020). ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Computer networks are vulnerable to cyber attacks that threaten
the confidentiality, integrity and availability of mission critical data.
Networks are comprised of diverse typologies, protocols and devices
that are open to a wide range of vulnerabilities across relevant use
cases including, but not limited to: industrial control systems, public
cloud and Internet of Things (IoT) networks.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICCBDC 2020, June 03–05, 2018, Liverpool, UK
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/1122445.1122456

Intrusion detection systems (IDS) allow for both known (misuse)
and unknown (anomaly) detection of cyber attacks [4]. IDS can use
machine learning (ML) methods to automatically map the posterior
probability of a normal or attack class 𝑦 given an observation 𝑋 :
𝑝 (𝑦 |𝑋). A common challenge is that computer networks can be con-
sidered to be a continuous, infinite, data stream. Over time, the data
stream will change due to changes in the underlying network or
new attack types, affecting the posterior probability, this is known
as real concept drift [17]. Other applications of ML rely on batch or
offline training of the model, whereby the model is trained and vali-
dated on the whole data set, potentially more than once. This is not
possible with data streams whereby each data observation should
be processed only once in order to conserve memory. Additionally
when processing a data stream in real-time, the running time of
the model is important to provide timely detection. Processing of
data streams is broadly known as online learning [6], and requires
new methods to evaluate performance.

Anomaly detection offers advantages over misuse detection in
both the ability to detect unknown attacks and to operate in a semi-
supervised fashion, whereby only normal examples are required
to train the model. Autoencoders are a type of feed-forward neu-
ral network that can be arranged to perform anomaly detection
by learning a stochastic representation of the input ‘normal’ sam-
ples and further detecting abnormal samples by monitoring the
reconstruction error : 𝑥 − 𝑥 , compared to a predetermined anomaly
threshold [2].

The aim of this research is to evaluate Autoencoders as anomaly
detectors with well-known IDS data sets, comparing performance to
well documented online classification methods, in order to answer
the question: do autoencoders provide a low cost anomaly detection
method for computer network data streams? Here low cost refers
to the running time and labeling effort required to effectively detect
attacks within a stream of network data. The primary contribution
of this research is the demonstration of autoencoder methods as a
low cost anomaly detector for data streams.

The remainder of this paper is organised as follows: section 2,
introduces autoencoder anomaly detection core concepts; section
3, summarises related autoencoder IDS studies; section 4, describes
the autoencoder methods that were evaluated; section 5, presents
the evaluation results for KDD Cup ’99 and UNSW-NB15 data sets;
section 6, discusses how autoencoders provide a low cost anomaly
detector for network data streams; and section 7, presents conclu-
sions.

2 AUTOENCODER ANOMALY DETECTION
An autoencoder is a type of unsupervised feed-forward neural
network that aims to produce a stochastic representation of its

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by STORE - Staffordshire Online Repository

https://core.ac.uk/display/340077287?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

ICCBDC 2020, June 03–05, 2018, Liverpool, UK Christopher Nixon, Mohamed Sedky, and Mohamed Hassan

input data. Typically the network layout is symmetric consisting of
an encoding function:ℎ = 𝑓 (𝑥) that encodes the input 𝑥 into its code
representation ℎ, and a decoding function: 𝑥 = 𝑔(ℎ) that decodes ℎ
into the approximate reconstructed output 𝑥 [7]. Figure 1 shows
both an undercomplete network (a), whereby the hidden nodes are
fewer than the visible ones to provide a compressed version of the
input, and a stacked network (b), whereby there are multiple hidden
layers, the bottleneck layer representing the encoded form of the
input, in order to provide a better approximation. The network can
be trained using back-propagation optimisation methods such as
Stochastic Gradient Descent (SGD), or adaptive methods such as
Adagrad.

Figure 1: (a) Undercomplete Autoencoder. (b) Stacked Au-
toencoder

.

The network can be useful for both feature reduction and anom-
aly detection. Anomaly detection involves calculating the recon-
struction error (RE) for a given observation 𝑥 and comparing to a
pre-determined anomaly threshold to determine if the observation
belongs to the ‘normal’ or ‘anomaly’ class. Typically RE can be
calculated as the Mean Squared Error (MSE) of the output nodes
from the original input, given in equation 1.

RE =
1
𝑛

𝑛∑
𝑗=1
(𝑥 𝑗 − 𝑥 𝑗)2 (1)

An anomaly detection function 𝑎, (equation 2), compares the RE
to the anomaly threshold 𝜙 and a sensitivity parameter 𝛽 to deter-
mine whether to signal an anomaly [11]. In this paper sensitivity 𝛽

was set to 1.18, in order to reduce false positives.

𝑎(RE) =
{
1, if RE ≥ 𝜙𝛽

0, otherwise
(2)

3 RELATEDWORK
Aygun and Yavuz [2] utilised a single layer Denoising Autoencoder
(DAE) whereby the input data is partially corrupted to achieve a
better stochastic representation. The anomaly threshold was deter-
mined using a novel Stochastic Anomaly Threshold (SAT) method,
described in section 4.2.2 of this paper. The model was evaluated
offline with the NSL-KDD data set, with an accuracy of 88.65% with
10% corruption of the input data.

Nicolau and McDermott [14] combined an autoencoder with the
Kernel Density Estimation (KDE) method to provide an anomaly
threshold based on the density model, comparing performance to
an arbitrary threshold based on RE, with NSL-KDD multi-class
ROC-AUC performance of 0.974, 0.891, 0.945 and 0.987 (DoS, R2L,
USR and Probe) compared to 0.459 with the RE method.

Mirza and Cosan [12] built an autoencoder network with Long
Short Term Memory (LSTM) layers, allowing for network packets
represented as hexadecimal sequences to be evaluated. Testing on
the ISCX IDS 2012 data set yielded an f1-score of 0.854.

Mirsky et al. [11] proposed Kitsune for online anomaly detec-
tion, an ensemble of autoencoders, bagging the feature space by
clustering based on correlation distance. The network is stacked so
that the output RE of each member is provided as an input to the
output autoencoder to discriminate differences in the member RE
values to detect an anomaly. Performance was evaluated using a
novel data set, reporting ROC-AUC ranging from 0.58 to 0.99.

Chen et al. [5] developed RandNet, an ensemble of sparsely
connected autoencoder networks in order to introduce variance
between members. KDD Cup 1999 data set ROC-AUC performance
was between 0.9 to 1.0.

Kieu et al. [8] expanded on the sparsity method of Chen et al. [5],
incorporating sparsely connected Recurrent Neural Network (RNN)
layers with each member to represent series learning. This was
not evaluated using an IDS data set but was compared to RandNet
across a number of alternate data sets, where greater performance
is reported.

Li et al. [9] expanded on the Kitsune online ensemble method
[11], using random forest for feature selection and GMM/K-Means
to normalise the output RE which is calculated based on the Root
Mean Squared Error (RMSE). The claim is that using random forest
for feature selection is more efficient than the clustering approach
used with Kitsune. The method was evaluated with the CSE-CIC-
IDS 2018 data set, with ROC-AUC ranging from 0.538 to 1.0.

Alam et al. [1] combined online autoencoder with memristors to
provide a power efficient anomaly detector at the cost of a reduction
in accuracy, evaluated with the NSL-KDD dataset, achieving an
accuracy of 92.91%.

4 EVALUATION METHODS
The aim of this paper was to evaluate the autoencoder method
as a low cost anomaly detector for online computer network data
streams. An objective was to achieve a simplistic, low cost, method
that can easily fit into further online frameworks as required. There-
fore the following aspects were evaluated: hidden node size and
dropout probability, anomaly detection threshold determination
methods, and single vs stacked networks. For comparison the re-
sults were further compared to well documented online learning
classification methods: Naïve Bayes and Hoeffding Adaptive Tree,
using the KDD Cup 1999 10% and UNSW-NB15 IDS data sets [15].

4.1 Dropout Probability
Dropout can be used within the network to reduce over fitting
and allow a better stochastic representation to be achieved. During
training the input of a hidden unit ℎ for layer 𝑙 + 1 is included based
on a Bernoulli distribution, as shown in equation 3, where parameter

Autoencoders: A Low Cost Anomaly Detection Method for Computer Network Data Streams ICCBDC 2020, June 03–05, 2018, Liverpool, UK

𝑝 determines the probability of the output 𝑦 of the current layer
being thinned [16].

𝑟
(𝑙)
𝑗
∼ Bernoulli(𝑝)

𝑦 (𝑙) = 𝑟 (𝑙) ∗ 𝑦𝑙

ℎ
(𝑙+1)
𝑖

= 𝑤
(𝑙+1)
𝑖

𝑦𝑙 + 𝑏 (𝑙+1)
𝑖

𝑦
(𝑙+1)
𝑖

= 𝑓 (ℎ (𝑙+1)
𝑖
)

(3)

The optimal dropout probability 𝑝 and hidden units factor ℎ
were found using an exhaustive search, observing ROC-AUC on
the NSL-KDD data set. A value of 𝑝 = 0.1, ℎ = 0.6 were selected,
based on a ROC-AUC of 0.956

4.2 Anomaly Thresholds
4.2.1 Naïve Threshold Method with Decay. Naïve Anomaly Thresh-
old (NAT) method [11] selects the maximum observed RE dur-
ing training as the anomaly threshold. When evaluated with data
streams, the initial RE is high and reduces overtime with train-
ing, this can incorrectly fix the threshold as high compared to the
remaining distribution of RE samples, affecting performance. To
correct this a decay factor 𝛼 is used to gradually reduce the thresh-
old overtime, given in algorithm 1. During evaluation 𝛼 was set to
0.9.

Algorithm 1: Naïve Anomaly Threshold with Decay
Input :model𝑚, 𝑋 , 𝑦, threshold 𝜙 , decay 𝛼 ← [0, 1]
Output :𝜙

1 𝑋𝑦←0 ⊆ 𝑋 ;
2 RE← predictRE(m, 𝑋𝑦←0);
3 if MAX(RE) > 𝜙 then
4 𝜙 ← MAX(RE);
5 else
6 𝜙 ← 𝜙𝛼

7 end

4.2.2 Stochastic Anomaly Threshold. Stochastic Anomaly Thresh-
old (SAT) [2] finds the threshold between the mean and 3 * standard
deviation of the normal sample distribution based on the observed
accuracy. The method has been improved slightly from [2] to avoid
storing all candidate thresholds by comparing against the previous
highest accuracy 𝑎𝑐𝑐𝑤 during each iteration, given in algorithm
2. Note this method requires full labels. The step size 𝑣 was set to
0.001 for this evaluation.

4.3 Single vs Stacked Network
A single layer network consists of one hidden layer, providing a
shallow representation of the input data. This should mean fewer
parameter updates and faster running times. A stacked network of 3
and 5 hidden layers was also compared, this should be able to better
approximate the input data [7] to improve detection performance at
the cost of memory and running time. For the single layer network
the non-linear Sigmoid activation was used. For stacked networks,
the linear ReLU function was used for the inner-most layers and

Algorithm 2: Stochastic Anomaly Threshold
Input :model𝑚, 𝑋 , 𝑦, threshold 𝜙 , step size 𝑣 ← (> 0)
Output :𝜙

1 𝑋𝑦←0 ⊆ 𝑋 ;
2 RE← predictRE(m, 𝑋𝑦←0);
3 𝜙 ← `RE + 3𝜎RE;
4 𝜙𝑤 ← 𝜙 ;
5 acc𝑤 ← −1;
6 while 𝜙 > `RE do
7 𝑦 ← predict(m,𝜙 ,X);
8 acc← calcAccuracy(𝑦,y);
9 if acc > acc𝑤 then
10 𝜙𝑤 ← 𝜙 ;
11 acc𝑤 ← acc;
12 end
13 𝜙 ← 𝜙 − 𝑣 ;
14 end
15 𝜙 ← 𝜙𝑤 ;

Sigmoid for the outer layers in order to balance their individual
large and small gradient update weaknesses [5].

All networks were trained using the Adagrad optimiser.

4.4 Prequential Evaluation
To better assess the performance of online learning methods on
data streams, a prequential evaluation can be used whereby the
model is first tested on a new, previously unseen, data sample, or
chunk of data samples, before then training on that sample [6].
The models were pre-trained on a number of samples prior to
commencing prequential evaluation, whereby the data stream was
then presented in ‘chunks’ of 100 samples at a time. Each chunk
resulted in a network parameter update.

Both KDD Cup 1999 and UNSW-NB15 data sets were prepro-
cessed using nominal to binary andmin-max normalisation filtering.
UNSW-NB15 training and test data sets were concatenated into one
unshuffled data stream.

The Keras1 neural networking, version 2.3.1, and Scikit-Multiflow2

stream learning [13], version 0.4.1, frameworks for Python were
used for this evaluation. Evaluations were ran on a Windows 10
64bit PC with Intel i7 1.8GHz processor and 8GB RAM.

Observed metrics during evaluation included: accuracy, f1-score
and total running time. For prequential evaluation the scikit-multiflow
default of updating evaluation metrics every 200 samples was used.

5 EVALUATION RESULTS
5.1 KDD Cup 1999
Autoencoder (AE) anomaly methods using both the Naïve Anomaly
Threshold with Decay (NATD) and Stochastic Anomaly Threshold
(SAT) were evaluated against the KDD Cup 1999 data set, along

1https://keras.io/
2https://scikit-multiflow.github.io/

ICCBDC 2020, June 03–05, 2018, Liverpool, UK Christopher Nixon, Mohamed Sedky, and Mohamed Hassan

with Naïve Bayes (NB) and Hoeffding Adaptive Tree (HAT) on-
line classifiers. The results are provided in table 1, and the rolling
average accuracy and F1 plotted for the data stream in figure 2.

The results of the AE SAT algorithm are comparable with HAT
for both accuracy and F1 measures. The total running time for AE
is significantly shorter than either NB and HAT, offering a much
lower cost method for comparable detection performance, with a
throughput of 19,368 samples per second. Note that the running
time is highly dependent on the underlying system architecture
and the algortithm implementation. For this evaluation all models
were ran on the same architecture and NB and HAT algorithms
using the scikit-multiflow default algorithms.

KDDCup 1999 10% consists of 97,277 normal samples and 396,743
anomaly samples. AE only needs to train on the normal samples,
representing 19.7% of the total data set, thus lowering the cost for
equivalent performance.

Table 1: KDD Cup 1999 Results

Algorithm Accuracy F1 Score Run Time (s)

AE SAT 0.980 0.812 25.3
AE NATD 0.954 0.776 23.4
NB 0.933 0.810 510.9
HAT 0.986 0.811 794.8

5.2 UNSW-NB15
AE SAT was further evaluated with the UNSW-NB15 data set. This
data set proved to be more challenging, with normal and anomaly
samples bearing closer similarities, evidenced by the overlapping
RE distributions shown in figure 4. To better separate normal and
anomaly samples, stacked autoencoders were evaluated, (table 2),
with a 3-layer network and dropout probability of 0.2 providing
better results. Running time was increased by 70% compared to a
singler layer network, although this is still much lower than NB
and HAT methods. The sample rate of the single layer network was
21,289/s and 12,505/s for the 3-layer network. The rolling average
accuracy and F1 scores are plotted in figure 3.

Table 2: UNSW-NB15 Results

Algorithm Accuracy F1 Score Run Time (s)

AE SAT L=1 0.739 0.613 12.1
AE SAT L=3 0.783 0.697 18.9
AE SAT L=5 0.736 0.644 20.1
AE SAT L=3, 𝑝=0.2 0.791 0.703 20.6

NB 0.837 0.832 350.4
HAT 0.929 0.813 610.9

6 DISCUSSION
Autoencoders can provide a low cost anomaly detection method for
computer network data streams, and this has been demonstrated
with the well known KDD Cup 1999 and UNSW-NB15 data sets.

(a) Mean Accuracy

(b) Mean F1 Score

Figure 2: KDD Cup 1999 Evaluation

Running time is significantly improved compared to traditional
online classification methods and labeling requirements lowered to
that of the proportion of normal samples within the data stream.
The memory size of the AE will also be constant as the shape of
the weight matrices will be unchanged throughout the data stream,
which is an advantage over a decision tree method such as HAT,
that can grow with the stream [3].

This paper has focused solely on the autoencoder, whereas other
studies [9, 11, 14] have augmented the model with various pre and
post processing stages, that could be unnecessary when considering
the raw performance of the AE itself.

The following areas should be further considered when imple-
menting the AE method:
• Single vs Stacked AE, represents a trade-off between detection
performance and throughput speeds.
• Multi-Label Classification, combining the AE with a misuse
classifier or unsupervised clustering in order to identify mul-
tiple classes.
• Concept Drift and Active Learning, labeling cost could be
further reduced and performance improved by pro-actively
monitoring the data stream for suspected concept drift [6]
and enforcing a labeling budget to confirm drift [10].

Autoencoders: A Low Cost Anomaly Detection Method for Computer Network Data Streams ICCBDC 2020, June 03–05, 2018, Liverpool, UK

(a) Mean Accuracy

(b) Mean F1 Score

Figure 3: UNSW-NB15 Evaluation

Figure 4: UNSW-NB15 RE Distribution
.

7 CONCLUSION
This paper has answered the question if autoencoders can provide a
low cost anomaly detection method for computer data streams, and
demonstrated that the total running time and labeling cost is much

lower than traditional online learning classification approaches.
Data streams with similarities between anomaly and normal sam-
ples present a challenge, which can be answered in part with a
trade-off of AE network complexity, but further enhancements
should be considered such as hybrid detection, ensemble methods,
concept drift detection and active learning.

The following contributions have been made by this paper: the
use of dropout with an AE network for computer network data
streams; Naïve Anomaly Threshold with Decay approach to im-
prove performance for data streams; improvement to the efficiency
of the Stochastic Anomaly Threshold method introduced by Aygun
and Yavuz [2]; and a demonstration of the raw performance of the
AE for computer network data streams, allowing for further areas
of enhancement to be better appreciated.

REFERENCES
[1] Md Shahanur Alam, B. Rasitha Fernando, Yassine Jaoudi, Chris Yakopcic, Raqibul

Hasan, Tarek M. Taha, and Guru Subramanyam. 2019. Memristor Based Autoen-
coder for Unsupervised Real-Time Network Intrusion and Anomaly Detection.
In Proceedings of the International Conference on Neuromorphic Systems. 1–8.

[2] R. Can Aygun and A. Gokhan Yavuz. 2017. Network anomaly detection with
stochastically improved autoencoder based models. In 2017 IEEE 4th International
Conference on Cyber Security and Cloud Computing (CSCloud). IEEE, 193–198.

[3] Albert Bifet, Ricard Gavaldà, Geoff Holmes, and Bernhard Pfahringer. 2018. Ma-
chine Learning for Data Streams with Practical Examples in MOA. MIT Press.
https://moa.cms.waikato.ac.nz/book/.

[4] Anna L. Buczak and Erhan Guven. 2016. A survey of data mining and machine
learning methods for cyber security intrusion detection. IEEE Communications
Surveys & Tutorials 18, 2 (2016), 1153–1176.

[5] Jinghui Chen, Saket Sathe, Charu Aggarwal, and Deepak Turaga. 2017. Outlier de-
tection with autoencoder ensembles. In Proceedings of the 2017 SIAM International
Conference on Data Mining. SIAM, 90–98.

[6] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid
Bouchachia. 2014. A survey on concept drift adaptation. ACM computing surveys
(CSUR) 46, 4 (2014), 44.

[7] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press. http://www.deeplearningbook.org.

[8] Tung Kieu, Bin Yang, Chenjuan Guo, and Christian S. Jensen. 2019. Outlier detec-
tion for time series with recurrent autoencoder ensembles. In 28th international
joint conference on artificial intelligence.

[9] XuKui Li, Wei Chen, Qianru Zhang, and Lifa Wu. 2020. Building Auto-Encoder
IntrusionDetection SystemBased on Random Forest Feature Selection. Computers
& Security (2020), 101851.

[10] Indrė Žliobaitė, Albert Bifet, Bernhard Pfahringer, and Geoffrey Holmes. 2013.
Active learning with drifting streaming data. IEEE transactions on neural networks
and learning systems 25, 1 (2013), 27–39.

[11] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. 2018. Kitsune:
an ensemble of autoencoders for online network intrusion detection. arXiv
preprint arXiv:1802.09089 (2018).

[12] Ali H. Mirza and Selin Cosan. 2018. Computer network intrusion detection using
sequential LSTM Neural Networks autoencoders. In 2018 26th Signal Processing
and Communications Applications Conference (SIU). IEEE, 1–4.

[13] Jacob Montiel, Jesse Read, Albert Bifet, and Talel Abdessalem. 2018. Scikit-
multiflow: a multi-output streaming framework. The Journal of Machine Learning
Research 19, 1 (2018), 2915–2914.

[14] Miguel Nicolau and James McDermott. 2016. A hybrid autoencoder and density
estimation model for anomaly detection. In International Conference on Parallel
Problem Solving from Nature. Springer, 717–726.

[15] Christopher Nixon, Mohamed Sedky, and Mohamed Hassan. 2019. Practical
Application of Machine Learning based Online Intrusion Detection to Internet of
Things Networks. In 2019 IEEE Global Conference on Internet of Things (GCIoT).
IEEE, 1–5.

[16] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research 15, 1 (2014), 1929–1958.

[17] Xiaoming Yuan, Ran Wang, Yi Zhuang, Kun Zhu, and Jie Hao. 2018. A Concept
Drift Based Ensemble Incremental Learning Approach for Intrusion Detection. In
2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green
Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData). IEEE, 350–357.

https://moa.cms.waikato.ac.nz/book/
http://www.deeplearningbook.org

	Abstract
	1 Introduction
	2 Autoencoder Anomaly Detection
	3 Related Work
	4 Evaluation Methods
	4.1 Dropout Probability
	4.2 Anomaly Thresholds
	4.3 Single vs Stacked Network
	4.4 Prequential Evaluation

	5 Evaluation Results
	5.1 KDD Cup 1999
	5.2 UNSW-NB15

	6 Discussion
	7 Conclusion
	References

