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Abstract: Circulating microRNAs (miRNA) are small noncoding RNA molecules that can be detected
in bodily fluids without the need for major invasive procedures on patients. miRNAs have shown
great promise as biomarkers for tumors to both assess their presence and to predict their type and
subtype. Recently, thanks to the availability of miRNAs datasets, machine learning techniques have
been successfully applied to tumor classification. The results, however, are difficult to assess and
interpret by medical experts because the algorithms exploit information from thousands of miRNAs.
In this work, we propose a novel technique that aims at reducing the necessary information to
the smallest possible set of circulating miRNAs. The dimensionality reduction achieved reflects
a very important first step in a potential, clinically actionable, circulating miRNA-based precision
medicine pipeline. While it is currently under discussion whether this first step can be taken, we
demonstrate here that it is possible to perform classification tasks by exploiting a recursive feature
elimination procedure that integrates a heterogeneous ensemble of high-quality, state-of-the-art
classifiers on circulating miRNAs. Heterogeneous ensembles can compensate inherent biases of
classifiers by using different classification algorithms. Selecting features then further eliminates
biases emerging from using data from different studies or batches, yielding more robust and reliable
outcomes. The proposed approach is first tested on a tumor classification problem in order to separate
10 different types of cancer, with samples collected over 10 different clinical trials, and later is assessed
on a cancer subtype classification task, with the aim to distinguish triple negative breast cancer from
other subtypes of breast cancer. Overall, the presented methodology proves to be effective and
compares favorably to other state-of-the-art feature selection methods.
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1. Introduction

MicroRNAs (miRNAs) are noncoding RNA molecules of 18–25 nucleotides in length that regulate
the expression of more than one third of human genes [1,2]. Since the discovery of the first miRNA in
Caenorhabditis elegans [3], these molecules have been found in many organisms and tissue types.
miRNAs have been shown to play an important role in cell biology, including differentiation,
proliferation and apoptosis [4]. To date, there is evidence that miRNAs regulate different aspects of
cancer development [5].

The biogenesis of miRNAs starts with a stem loop precursor created by RNA polymerase II,
called primary precursor miRNA (pri-miRNA), that is cleaved by Drosa and DGCR8 proteins to obtain
the precursor miRNAs (pre-miRNA) [6]. Finally, the pre-miRNA is cleaved by the Dicer/TRBP complex
to create miRNA that represses or degrades the target mRNAs [7,8]. This machinery is altered in cancer
cells, perturbing miRNA expression and accelerating the process of tumorigenesis. The discovery of
cell-free circulating miRNAs in body fluids (blood, plasma, serum, urine, and cerebrospinal liquid) has
put miRNAs in the focus of current research as promising cancer biomarkers [1,2,7,9–12]. Because the
histological examination of tissues is an invasive and comparatively risky procedure, studying miRNAs
in biological fluids offers a useful alternative for diagnosis, typing and management of cancer patients.

miRNA expression levels have proven to substantially vary relative to cell types. That makes it
possible to use miRNAs to distinguish between cell types [13]. Furthermore, molecular signatures
can be useful to differentiate between cancer types in general [14,15]. Another particularity is that
these molecules are stable in extracellular environments: for example, they are resistant to pH and
heat changes. Nowadays, the use of microarrays, real-time polymerase chain reaction (PCR) and
next generation sequencing (NGS) technologies and the creation of databases give us the opportunity
to study miRNAs as cancer biomarkers. Several studies have exploited the biomarker properties of
miRNAs for cancer detection and classification, using machine learning techniques [16–20].

These works typically analyze thousands of different miRNAs, amounts that would make it
impossible for medical experts to manually validate the results or to obtain novel insights. Furthermore,
employing thousands of miRNAs in machine learning approaches translates into operating in
feature spaces of thousands of dimensions, which nurtures the usual issues linked to the curse
of dimensionality. Therefore, in addition to enhancing the interpretability of results, determining
small, actionable subselections of features warrants approaches that are insensitive to biases emerging
from batch effects (due to processing data from multiple studies, for example), from the use of sets of
classifiers that vary in terms of their strengths and weaknesses or just from the nature of their technical
foundations. Finding the smallest subset of circulating miRNAs that can identify the presence of cancer
or the type of tumor is therefore of utmost practical importance.

In this work, we propose a new methodology to reduce the number of significant circulating
miRNAs needed by machine learning techniques to detect and identify cancer types using 16 miRNA
datasets from clinical trials. The technique relies on a heterogeneous ensemble of classifiers to provide
more robust results than single algorithms or even homogeneous ensembles. The presented approach is
first used to identify 10 different types of cancer, and then, in a second experiment, the same technique
is applied to separate tumor subtypes in breast cancer. The methodology not only is proven to be
effective but also compares favorably to current state-of-the-art techniques.

While a similar technique was presented in [21,22], the approach we propose features several
improvements and important innovations that set it apart from previous contributions: (i) previous
works did not select for circulating miRNAs, and thus, resulting signatures could not be easily
measured in clinical practice; (ii) previous techniques needed extra parameters to be defined by
the user (for example, a desired number of features), while the novel approach we propose does
not require users to arbitrarily set values for thresholds; and (iii) finally, the amount of data used
in the experimental verification greatly increased, getting a total of 16 gene expression omnibus
(GEO) datasets.
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2. Materials and Methods

First, we compiled a list of circulating miRNAs (mature sequence) based on 5 reviews of circulating
miRNAs from cancer studies [1,2,23–25]. Next, from this list, we consider only the miRNAs that
appear in blood, serum, urine, plasma and saliva. To narrow it further, we focus on the miRNAs
that can be detected by Affymetrix platforms Affy-1 (GPL8786), Affy-2 (GPL14613) and Affy-3
(GPL16384). Our choice of restricting to datasets from Affymetrix platforms GPL8786, GPL14613
and GPL16384 has the aim of avoiding the known issue of miRNA expression levels being platform-
and technology-dependent [26–28]. After this selection, a total of 253 miRNAs remain. The detailed
list is included in Appendix A.

2.1. Feature Selection

As our objective is to select the most meaningful miRNAs to correctly classify the cancer types,
we used a recursive ensemble feature selection algorithm where features in our datasets are expression
values of different miRNAs. The idea behind recursive feature selection is to score each feature
depending on its usefulness for the classification process, resorting to a classifier. Features with the
lowest scores are then removed, and the process is iterated with the remaining features until the overall
classification accuracy drops below a given threshold or when a user-defined number of features is
reached. While this technique is effective, it still relies on a classification algorithm to score the features,
and a single algorithm might be affected by bias when it assigns scores to the features. A way to reduce
the bias is to exploit an ensemble of classification algorithms with different topologies, an idea that is
proven to be effective for different problems [29–31].

For the ensemble, we selected 8 classifiers from the sci-kit learn toolbox [32] that all were proven
to be effective for cancer classification using miRNAs [18] and that are able to score features according
to their importance: Stochastic Gradient Descent (SGD), Support Vector Machine classifier (SVC),
gradient boosting, random forest, logistic regression, passive aggressive classifier, ridge classifier and
bagging. Parameters for each classifier, when different from the default, were taken from [18].

Different algorithms assess feature importance differently, as the scoring depends on the
computational particularities of the algorithms. Bagging, gradient boosting and random forest use
ensembles of classification trees. In these cases, we count the features that appear in the splits of the
trees and rank them by frequency. For SVC, SGD, passive aggressive, logistic regression and ridge,
the feature importance is given by the absolute value of the coefficients associated to each feature.
Therefore, the ranking is based on the value of these coefficients.

As the ranking of each classifier has a different meaning, it is necessary to aggregate this
information into an ensemble ranking. Each feature f is assigned a simple score s f = Nt/Nc, where Nt

is the number of times that feature appears among the top S over all classifier instances, while Nc

is the number of classifier instances used. Each classification algorithm has 10 instances, produced
by a 10-fold stratified cross-validation (Nc = 8 × 10 = 80). The cross-validation is used to increase
generality of the results. We selected a stratified cross-validation because it preserves the same ratio of
samples for each class in the training and test. Next, the recursive feature algorithm will reduce the
number of features S by 20% at each iteration. For our experiments, we decided to stop the procedure
when the global average accuracy among all classifiers drops to less than 90%. The complete procedure
is summarized by Algorithm 1.
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Algorithm 1: Recursive ensemble feature selection.

1 Divide dataset in N folds, Select K classifiers,2 while Accuracy > 0.90 do
Choose the number of features in the signature S;

3 for each fold n of N do
Learn normalization on all folds minus n ;
Normalize all folds on each of the F features ;

4 for each classifier k of K do
Train classifier kn on all folds minus n, using all features;
Test classifier kn on fold n;
Obtain sorted list lkn of features from kn;
Assign weight w f nk to each f of the F features;

5 for each feature f of F do
if f is among the top S features in lkn then

w f nk = 1
else

w f nk = 0

6 Nc = N · K;
7 for each miRNA feature f do

Nt = ∑N
n ∑K

k w f nk;
s f = Nt/Nc;

8 Select S-feature signature, from features with highest s f ;
9 for each fold n of N do

10 for each classifier k of K do
Train classifier kn on all folds minus n, using signature;
Test classifier kn on fold n;

11 Compare performance of classifiers using all features and signature;
12 S = 0.80 ∗ S;

2.2. Cancer Type Classification

From the gene expression omnibus (GEO) repository [33], we selected 16 datasets for 10
different types of cancer based on clinical studies: Breast (BRCA), esophageal (ESCA), head and
neck squamous cell (HNSC), liver hepatocellular (LIHC), prostate (PRCA), glioblastoma (GBM),
colorectal (CRC), non-small-cell lung (NSCLC), gastric (GC) and ovarian (OVC), as summarized
in Table 1. For each dataset, we downloaded the raw data and processed it using the function
Affyrma() from the Matlab bioinformatics toolboxTM. This function processes the probe intensity
values using RMA background adjustment, quantile normalization and summarizing procedures
and then outputs expression (nondimensional). The resulting aggregated dataset for our multi-class
classification problem presents 845 samples, 253 features and 10 different tumor classes. Next, we
applied Z-score normalization on the dataset to then run the feature selection algorithm in a 10-fold
stratified cross-validation scheme.



Cancers 2020, 12, 1785 5 of 26

Table 1. Gene expression omnibus (GEO) repository datasets of miRNA cancer studies used in the
project for platforms GPL8786, GPL14613 and GPL16384. BRCA: breast cancer; ESCA: esophageal
cancer; HSNC: head and neck squamous cell cancer; LIHC: liver hepatocellular cancer; PRCA: prostate
cancer; GBM: gliobastoma; CRC: colorectal cancer; NSCLC: non-small-cell lung cancer; GC: gastric
cancer; OVC: ovarian cancer.

Dataset Samples Type Reference Class Platform

GSE48088 33 BRCA [34] 0 GPL14613
GSE86277 72 BRCA [35] 0 GPL14613
GSE86278 49 BRCA [35] 0 GPL14613
GSE86281 50 BRCA [35] 0 GPL16384
GSE55856 108 ESCA [36] 1 GPL14613
GSE34496 44 HSNC - 2 GPL8786
GSE67138 57 LIHC - 3 GPL8786
GSE67139 115 LIHC - 3 GPL8786

GSE116182 64 LIHC - 3 GPL14613
GSE36802 21 PRCA [37] 4 GPL8786
GSE45604 50 PRCA [38] 4 GPL14613

GSE104554 38 GBM [39] 5 GPL14613
GSE110402 75 CRC [40] 6 GPL14613
GSE46729 24 NSCLC - 7 GPL8786
GSE63121 15 GC [41] 8 GPL8786
GSE47841 30 OVC [42] 9 GPL14613

Then, we compared our results against two current state-of-the-art feature selection methodologies:
a homogeneous ensemble classifier exploiting variations of SVC [29] and a feature selection tool based
on genetic algorithms, called GALGO [43]. Since each algorithm contains stochastic elements, we run
each algorithm 10 times and keep the set of features with the best average accuracy.

The homogeneous ensemble uses several runs of SVC to rank the features by weight and reduces
the number of features by a given percentage at each step. In this case, we used the same parameters
as for Algorithm 1: 20% step reduction and 90% accuracy as stop parameters. In contrast, for GALGO
to obtain a fair comparison, the requested number of features is set to the resulting number of features
from the heterogeneous ensemble feature selection classifier.

Finally, we analyzed the genes targeted by the candidate miRNAs using miRNet [44].
The parameters for the miRNet analysis are target genes as main function with a 0.05 betweenness filter
and pathway enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes [45] (KEGG)
and Gene Ontology-Biological Process [46] (GO:BP). Using a betweenness filter implies that the genes
must be targeted by at least 2 miRNAs.

2.3. Triple-Negative Breast Cancer Classification

Cancer tumors are divided into tumor subtypes, which can be treated by different strategies
depending on their classification. From the available data in the GEO repository, we were able
to compile a dataset to assess the possibility of classifying tumor subtypes (luminal A, luminal B,
HER2-enriched, triple-negative and normal [47]) in breast cancer (BRCA) using circulating miRNAs.
Then, we selected datasets GSE86277, GSE86278, GSE86281 and GSE46823, which are BRCA studies
with subtype information. From the BRCA subtypes, triple-negative has the worst prognosis, as it is
resistant to hormone therapies [48]. For this reason, we set the labels of the resulting dataset to separate
the triple-negative subtype from the rest. Although making an analysis of all the subtypes would
have been more interesting, the unbalance in the subtype samples found in the original data makes it
impossible; thus, more precisely, the resulting dataset has 139 triple-negative samples and only 44 from
the rest of the subtypes, for a total of 183 samples, 253 features and 2 classes (triple-negative/Other).

Next, we applied the function Affyrma from the Matlab bioinformatics toolboxTM. Then, we
applied Z-score normalization on the dataset to run the feature selection algorithm in a 10-fold stratified
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cross-validation scheme. As in the previous experiment, the feature selection algorithm was set to
identify the smallest miRNA subset sufficient to obtain a 90% accuracy. In addition, we compared our
results with the 31-miRNA signature proposed by Romero et al. [35] to separate Triple-Negative Breast
Cancer (TNBC) from other subtypes of BRCA using miRNA–mRNA integrative analysis in TNBC
tumors based on the differential expressed transcripts. It is important to take into consideration that
this 31-miRNA list considers noncirculating miRNAs that are not included in our method and could
potentially access more information. Finally, we ran miRNet using the candidate miRNAs, as in
Section 2.2.

3. Results

3.1. Cancer Type Classification

As mentioned in Section 2.1, each of the classifiers ranks the features differently. When applied
to the 253 circulating miRNAs, the top features obtained by each classifier appear as in Figure 1.
From visual inspection, it is easy to observe how each classifier ranks the features differently.
Nevertheless, the features where the classifiers concur are the most important. From the feature
selection algorithm, we reduced the original 253 miRNA to 5, while maintaining an average accuracy
of 90% over the selected classifiers (Figure 2).

Figure 1. Feature importance by classifier: On the horizontal axis, the top features are reported,
following their ensemble ranking. The intensity of the color in each square represents the frequency
of appearance of that particular feature in the 10 instances of the same classifier produced by
cross-validation; the darker the color, the more frequent the appearance of that feature among the most
important. It is noticeable how different classifiers rank features differently. For this figure, we report
the top 42 features only for visualization purposes.

Figure 2. The results of 10 runs of the recursive ensemble feature selection for cancer type classification:
The x axis cuts at 5 variables, where all runs cross the 90% average accuracy stop parameter (we
computed the subsequent values as a reference).
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The resulting most significant 5 features uncovered by the presented algorithm are hsa-let-7a,
hsa-miR-23b, hsa-miR-122, hsa-miR-708 and hsa-miR-200c, with seemingly different expression levels
for each cancer type (Figure 3). For more detailed expression values by cancer type, see Appendix B.
The classifiers gradient boosting, random forest, SVC and bagging seem to work in a satisfying way
for all tumor types using only 5 miRNAs, whereas the rest have issues classifying the types of cancer
HNSC, GC and OVC while having better performance when using the full 253 miRNAs, as shown in
Figure 4. Interestingly, hsa-let-7 and hsa-miR-200c were also discovered by the homogeneous ensemble
while GALGO’s performance seems to be less effective and has no miRNAs in common with our
approach. From the comparison with GALGO and the homogeneous ensemble classifier with SVC, we
can notice how the proposed heterogeneous ensemble classifier outperforms the other feature selection
techniques in Table 2.

Figure 3. Heatmap of average expression levels by cancer type for the 5 miRNAs identified by the
proposed approach. Cancer types: breat (BRCA); esophageal (ESCA); head and neck squamous
cell (HNSC); liver hepatocelluar (LIHC); prostate (PRCA); gliobastoma (GBM); colorectal (CRC);
non-small-cell lung (NSCLC); gastric (GC); ovarian (OVC).

Table 2. Comparison of the results of the different feature selection algorithms, reduced from the initial
253 to 5 features to differentiate cancer types.

Heterogeneous Homogeneous GALGO
Ens. 5 Feats. Ens. 5 Feats. 5 Feats. 253 Feats.
µ σ µ σ µ σ µ σ

Gradient Boosting 0.9751 0.0134 0.9797 0.0154 0.8374 0.0453 0.975 0.0128
Random Forest 0.9761 0.0192 0.9854 0.0155 0.8656 0.0383 1 0

Logistic Regression 0.8877 0.0239 0.8777 0.0281 0.4954 0.0416 1 0
Passive Aggressive 0.8239 0.0544 0.8144 0.0707 0.4545 0.0590 1 0

SGD 0.8937 0.0305 0.8632 0.0362 0.5204 0.0832 0.9941 0.0078
SVC 0.9620 0.0197 0.9499 0.0186 0.5308 0.0454 1 0

Ridge 0.8083 0.0272 0.6900 0.0173 0.5010 0.0451 0.9977 0.0045
Bagging 0.9702 0.0193 0.9643 0.0165 0.8418 0.0425 0.9894 0.0121
Global 0.9121 0.0260 0.8906 0.0273 0.6309 0.0500 0.9945 0.0047
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Figure 4. Comparison of accuracy by classifier and tumor type for all 253 features (top) and the 5
features identified by the proposed approach (bottom). Cancer types: breast (BRCA); esophageal
(ESCA); head and neck squamous cell (HNSC); liver hepatocellular (LIHC); prostate (PRCA);
gliobastoma (GBM); colorectal (CRC); non-small-cell lun g (NSCLC); gastric (GC); ovarian (OVC).

3.1.1. Numerical Validation

To further validate our methodology, we split the dataset described in Section 2.2 into a training
(90%) and a validation (10%) subsets. Then, we ran 10 instances of the recursive ensemble feature
selection algorithm with 90% of the data in a 10-fold cross-validation, which yields the curve in
Figure 5.

Next, we selected the smallest signature that provided an accuracy of 90% or above, having
as a result hsa-let-7a, hsa-mir-122, hsa-mir-200c, hsa-mir-708 and hsa-mir-23b, the same miRNAs
identified in the previous experiment described in Section 3.1. Then, we tested this signature on the
10% subset, comparing against signatures identified by other approaches: homogeneous ensemble
feature selection, GALGO, K-best univariate feature selection (using f-score) and 3 random selected
subsets. In addition, we shuffled the test set’s labels to verify the proper workings of the classifiers
(Table 3). Finally, we calculated the Matthews Correlation Coefficient (MCC) for all of the signatures
and classifiers [49] (Table 4).
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Figure 5. Ten runs of the heterogeneous ensemble recursive selection algorithm. From the 10 runs,
the minimum number of necessary miRNA to have an accuracy above 90% is 5: hsa-let-7a, hsa-miR-23b,
hsa-miR-122, hsa-miR-708, and hsa-miR-200c.

Table 3. Accuracy on the 10% data for testing the feature selection algorithm: Results for the signatures
found by the heterogenous recursive ensemble feature selection algorithm, the homogeneous recursive
ensemble feature selection algorithm, K-Best feature selection algorithm using f-score as selection
citeria, 3 random feature subsets and a random shuffle of the test labels.

Heterogeneous Homogeneous Univariate GALGO Random 1 Random 2 Random 3 Shuffle

Gradient Boosting (n_estimators = 300) 0.9412 0.9294 0.9412 0.9176 0.8824 0.8353 0.8000 0.2471
Random Forest (n_estimators = 300) 0.9412 0.9529 0.9412 0.9059 0.8941 0.8235 0.8235 0.2471

Logistic Regression 0.9059 0.8824 0.8588 0.8706 0.6353 0.5412 0.5882 0.2824
Passive Aggressive 0.8706 0.7765 0.7176 0.8471 0.4235 0.4118 0.5294 0.1765

SGD 0.8824 0.8588 0.7765 0.7882 0.5294 0.4235 0.3765 0.2353
SVC(linear) 0.9765 0.9176 0.8941 0.8588 0.6235 0.6235 0.5412 0.2824

Ridge 0.8118 0.7059 0.7412 0.7059 0.5882 0.4588 0.4000 0.2706
Bagging (n_estimators = 300) 0.9412 0.9294 0.9176 0.8824 0.8706 0.8471 0.8235 0.2118

Average 0.9089 0.8691 0.8485 0.8471 0.6809 0.6206 0.6103 0.2442

Table 4. Matthews correlation coefficient values for the 10% data left for testing the feature
selection algorithm: The results for the heterogenous recursive ensemble feature selection algorithm,
the homogeneous recursive ensemble feature selection algorithm, K-Best feature selection algorithm
using f-score as selection citeria, 3 random feature subsets and a random shuffle of the test labels.

Heterogeneous Homogeneous Univariate GALGO Random 1 Random 2 Random 3 Shuffle

Gradient Boosting (n_estimators = 300) 0.9346 0.9216 0.9346 0.9085 0.8693 0.8170 0.7778 0.1634
Random Forest (n_estimators = 300) 0.9346 0.9477 0.9346 0.8954 0.8824 0.8039 0.8039 0.1634

Logistic Regression 0.8954 0.8693 0.8431 0.8562 0.5948 0.4902 0.5425 0.2026
Passive Aggressive 0.8562 0.7516 0.6863 0.8301 0.3595 0.3464 0.4771 0.0850

SGD 0.8693 0.8431 0.7516 0.7647 0.4771 0.3595 0.3072 0.1503
SVC(linear) 0.9739 0.9085 0.8824 0.8431 0.5817 0.5817 0.4902 0.2026

Ridge 0.7908 0.6732 0.7124 0.6732 0.5425 0.3987 0.3333 0.1895
Bagging (n_estimators = 300) 0.9346 0.9216 0.9085 0.8693 0.8562 0.8301 0.8039 0.1242

Average 0.8987 0.8546 0.8317 0.8301 0.6454 0.5784 0.5670 0.1601

From the 10 instances, we then measured the frequency of appearance of miRNAs in the top
5 features for each run. From the original 253 features, only 10 features appear in the top 5 for the
heterogeneous recursive ensemble feature selection algorithm, with the frequencies presented in
Figure 6. We repeated the same procedure for 10 runs of the homogeneous ensemble feature selection
algorithm (feature frequency presented in Figure 7) and GALGO (feature frequency presented in
Figure 8). The variability of the output signature for each algorithm reflected that the average and
standard deviations for accuracy and MCC for the proposed heterogeneous recursive ensemble feature
selection algorithm are better than the homogeneous recursive ensemble feature selection algorithm
and GALGO (see Table 5).
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Figure 6. Ten recurrent features in the 5-feature signature for the heterogeneous ensemble feature
selection algorithm.

Figure 7. Twelve recurrent features in the 5-feature signature for the homogeneous ensemble feature
selection algorithm.

Figure 8. Nine recurrent features in the 5-feature signature for the GALGO.

Table 5. µ and σ for accuracy and MCC over 10 runs using the top 5 features, for each algorithm.

Accuracy MCC

µ σ µ σ

Heterogeneous 0.8840 0.0120 0.8691 0.0156
Homogeneous 0.8518 0.0183 0.8353 0.0204

GALGO 0.8227 0.0255 0.8132 0.0338

3.1.2. Pathway Analysis

Next, using the 5 candidate miRNAs identified by the proposed approach to separate the tumor
type, we ran miRNet to identify the targeted genes, obtaining a total of 1732 genes. After we apply
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a 0.05 betweenness filter, we reduced the list to 156 genes. From these genes, BCL2, CCNG1, COX1,
TUBB2A, CELF1 and FOXJ3 are targeted by at least 3 of the 5 miRNAs (Figure 9). Finally, using the
function explorer of miRNet, we performed a functional enrichment analysis with a hypergeometric
test of the genes from the KEGG database and GO:BP. In Tables 6 and 7, we show the results of the
top 10 functional enrichment analyses for KEGG and GO:BP respectively. The first result in KEGG
is the P53 signaling pathway. The P53 protein is a tumor suppressor protein, and it is involved in
several anticancer mechanisms [50]. In the GO:BP database, the first result is the cellular response to
stress, with 44 of the genes in the pathway; cellular stress is a component of the P53-mediated tumor
suppression [51].

Figure 9. miRNET targeted genes analysis, showing genes targeted by at least 3 of the 5 miRNAs to
classify cancer type: BCL2, CCNG1, COX1, TUBB2A, CELF1 and FOXJ3.

Table 6. Top 10 miRNet enrichment analyses in the Kyoto Encyclopedia of Genes and Genomes (KEGG)
dataset for miRNAs hsa-miR-122, hsa-let-7a, hsa-miR-23b, hsa-miR-708 and hsa-miR-200c.

Pathway Total Expected Hits Pval

p53 signaling pathway 68 1 10 3.70 × 10−6

Pathways in cancer 310 4.57 19 3.70 × 10−6

Prostate cancer 87 1.28 11 3.70 × 10−6

Glioma 65 0.958 8 0.000207
Melanoma 68 1 7 0.00196

Bladder cancer 29 0.428 5 0.00196
Colorectal cancer 49 0.722 6 0.00217

Chronic myeloid leukemia 73 1.08 7 0.00227
Focal adhesion 200 2.95 11 0.00327

Small cell lung cancer 80 1.18 7 0.00327
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Table 7. Top 10 miRNet enrichment analyses in the Gene Ontology-Biological Process (GO:BP) dataset
for miRNAs hsa-miR-122, hsa-let-7a, hsa-miR-23b, hsa-miR-708 and hsa-miR-200c.

Pathway Total Expected Hits Pval

Cellular response to stress 1620 15.4 44 3.03 × 10−8

Positive regulation of cell proliferation 786 7.43 27 1.66 × 10−6

Response to hypoxia 245 2.31 15 2.53 × 10−6

Regulation of cell cycle 886 8.37 28 2.53 × 10−6

Regulation of cell proliferation 1430 13.5 36 4.30 × 10−6

Response to abiotic stimulus 876 8.28 27 5.44 × 10−6

Negative regulation of cell cycle 520 4.91 20 1.04 × 10−5

Regulation of molecular function 2250 21.2 46 1.08 × 10−5

Regulation of cyclin-dependent protein kinase activity 89 0.841 9 1.40 × 10−5

Negative regulation of apoptotic process 679 6.42 22 2.56 × 10−5

3.2. Triple-Negative Breast Cancer Classification

We ran the heterogeneous ensemble algorithm 10 times, identifying 5 meaningful miRNA features
for separating triple-negative BRCA from the other subtypes (Figure 10). The resulting miRNAs
are hsa-miR-378*, hsa-miR-221, hsa-miR-342-3p, hsa-miR-630 and hsa-miR-145. The corresponding
expression levels for the identified miRNAs in TNBC and non-TNBC are reported in Figure 11.

Figure 10. Results of 10 runs of the recursive ensemble feature selection for the TNBC discrimination
example: The x axis cuts at 5 variables, which is where most evaluations cross the average 0.90 accuracy
stop parameter.

Figure 11. Boxplot for the expression levels between Triple Negative Breast Cancer (TNBC, cases) and
other subtypes (controls).
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Next, we compared the accuracy between classifiers using all 253 miRNAs in the dataset, our
5-miRNA signature, and the 31-miRNA signature proposed by Romero et al. for distinguishing
TNBC from other cancers (Table 8). From the results, our algorithm outperforms the 31-miRNA
signature. In addition, the area under the curve (AUC) of the results (Figure 12) calculated with
the gradient boosting classifier is above 90%. This is considered outstanding results following the
guidelines in [52,53] for clinical use of algorithmic methodologies.

Figure 12. ROC curve using the gradient boosting classifier to separate Triple Negative Breast Cancer
(TNBC) from the rest of the breast cancer subtypes.

Table 8. Accuracy comparison for all classifiers, using all 253 features, the 5-miRNA signature found by
the proposed approach, and the 31-miRNA signature from Romero et al. for separating triple-negative
from the rest of the BRCA subtypes.

5 Feats. 253 Feats. Romero et al. (31 Feats.)

Classifier µ σ µ σ µ σ

GradientBoosting 0.9345 0.0523 0.9134 0.0487 0.9239 0.0485
RandomForest 0.9354 0.0617 0.9459 0.0416 0.9184 0.0432

LogisticRegression 0.9243 0.0487 0.9406 0.0612 0.8958 0.0643
PassiveAggressive 0.9076 0.0550 0.9076 0.0778 0.8797 0.0637

SGDClassifier 0.9085 0.0628 0.8918 0.0770 0.8692 0.0700
SVC(linear) 0.9243 0.0487 0.9242 0.0655 0.8572 0.0400

Ridge 0.9079 0.0754 0.9085 0.0533 0.8856 0.0611
Bagging 0.9295 0.0411 0.9076 0.0544 0.9341 0.0412
Global 0.9215 0.0557 0.9175 0.0599 0.8955 0.0540

Finally, the results of miRNet found 1294 genes targeted by the 5 miRNAs, with 79 having at least
2 miRNAs in common. From those 79, metastasis gene metadherin-positive (MTDH) is targeted by 4
miRNAs, while type 1 insulin-like growth factor receptor-positive (IGF1R) and cyclin-dependent kinase
6-positive (CDK6) are targeted by 3; see Figure 13. From the enrichment analysis, the most important
functional pathway in the KEGG database (Table 9) is the p53 signaling pathway (the same identified in
the previous experiments for separating cancer types), and in GO:BP (Table 10), the negative regulation of
cell proliferation, with 12 of the 79 genes followed by regulation of cell proliferation and just cell proliferation.
These results show an important involvement of cell proliferation in TNBC.
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Figure 13. miRNET targeted genes analysis, showing genes targeted by at least 3 of the 5 miRNAs
to separate Triple Negative Breast Cancer (TNBC) from other breast cancer subtypes: metastasis
gene metadherin-positive (MTDH), type 1 insulin-like growth factor receptor-positive (IGF1R) and
cyclin-dependent kinase 6-positive (CDK6).

Table 9. Top 10 miRNet enrichment analysis results for miRNAs hsa-miR-378*, hsa-miR-221,
hsa-miR-342-3p, hsa-miR-630 and hsa-miR-145 using the KEGG database.

Pathway Total Expected Hits Pval

p53 signaling pathway 68 0.509 6 0.000518
Pancreatic cancer 69 0.516 6 0.000518

Glioma 65 0.486 6 0.000518
Melanoma 68 0.509 6 0.000518

Chronic myeloid leukemia 73 0.546 6 0.000576
Bladder cancer 29 0.217 4 0.00197

Cell cycle 124 0.927 6 0.00821
Pathways in cancer 310 2.32 9 0.009

Non-small cell lung cancer 52 0.389 4 0.0133
Adherens junction 70 0.524 4 0.0368

Table 10. Top 10 miRNet enrichment analysis results for miRNAs hsa-miR-378*, hsa-miR-221,
hsa-miR-342-3p, hsa-miR-630 and hsa-miR-145 using the GO:BP database.

Pathway Total Expected Hits Pval

negative regulation of cell proliferation 585 2.7 12 0.00631
regulation of cell proliferation 1430 6.6 19 0.00631

cell proliferation 1900 8.79 22 0.00674
G1 phase of mitotic cell cycle 47 0.217 4 0.00882

enzyme linked receptor protein signaling pathway 1180 5.43 16 0.00882
myeloid cell differentiation 296 1.37 8 0.00882

G1 phase 49 0.226 4 0.00882
response to endogenous stimulus 1360 6.3 17 0.0114

positive regulation of cell proliferation 786 3.63 12 0.0166
response to organic substance 2500 11.5 24 0.0166
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4. Discussion

In this section, we perform an analysis of the candidate miRNAs identified by the proposed
feature selection method, using the available literature in cancer studies.

4.1. miRNAs from Cancer Type Classification

The five circulating miRNAs identified by our method as the most informative for cancer type
classification are hsa-miR-122, hsa-let-7a, hsa-miR-23b, hsa-miR-708 and hsa-miR-200c.

hsa-miR-122 is a 22-nucleotide RNA molecule that plays an important role in liver functions [54].
It is related to regulation of cholesterol, fatty acid metabolism, and hepatocytes differentiation.
Evidence indicates that hsa-miR-122 acts like a tumor suppressor, and its depletion is related to
liver inflammation and hepatocellular cancer in mice [54,55]. In breast cancer, hsa-miR-122 has
different expression patterns according to the subtype [56]. In addition, miR-122 promotes aggression
and epithelial-mesenchymal transition in TNBC [57] and cell survival in radio-resistance cells [58].
High plasma miR-122 levels have been detected in AFP-producing gastric cancer [59].

The let-7 miRNAs show a high evolutionary conservation between organisms. Vertebrates have
multiple let-7 isoforms and play an important role in development and tumor suppression [60].
hsa-let-7a is a member of the family and shows a downregulated expression in many tumor types like
breast cancer [61,62], lung adenocarcinoma [63] and gastric cancer [64].

hsa-miR-23b is known to target tumor suppressor and cancer promoter genes. hsa-miR-23b
is dis-regulated in proliferation, invasion, migration, apoptosis, autophagy and cell survival [65].
As a circulating biomarker, hsa-miR-23b is downregulated in colon cancer measured in plasma [66].
In contrast, it is upregulated in gastric cancer [67], lung cancer [68] and pancreatic cancer [69].

hsa-miR-708, also known as miR-708-5p, is a microRNA encoded within an intron of the ODZ4
gene. It can be found in different tissues with varying expression patterns like reproductive, secretory,
muscle, gastrointestinal, nervous and lung [70]. hsa-miR-708 acts as a tumor suppressor or oncogene
according to the cancer type. It has been associated with poor prognosis in lung adenocarcinoma [71]
and carcinogenesis in colon [72] and bladder [73]. On the other hand, normal levels of hsa-miR-708
decrease cell growth and invasion and increase apoptosis in renal cancer cells [74].

hsa-miR-200c has been identified in lung, gastric, breast, ovarian and endometrial cancer
with different expression patterns related to prognosis, aggressiveness and chemoresistance [75,76].
Moreover, hsa-miR-200c is involved in signaling cascades such as TGF-β, PI3K/Akt, Notch, VEGF,
and NF-κB making it a candidate biomarker in cancer [77].

The result with the smallest p-value from the enrichment analysis in the KEGG dataset identified
a strong relationship between the P53 signaling pathway and hsa-miR-122, hsa-let-7a, hsa-miR-23b,
hsa-miR-708 and hsa-miR-200c. P53 is an important tumor suppressor that regulates the expression of
many genes and is one of the most common mutated genes in cancer. Many miRNAs work as direct and
indirect mediators of the P53 activity and the components of its pathway [78,79]. Moreover, the normal
function of this tumor suppressor helps the maturation of some miRNAs with growth-suppressing
function [80].

On the other hand, the first result in the enrichment analysis in the GO:BP dataset was cellular
stress response. In normal cells, there is a balance between the activation of survival and cell
death pathways, according to the type and duration of stress [81]. Cancer cells develop molecular
mechanisms that facilitate their adaptation to different conditions like oxidative, metabolic, mechanical
and genotoxic stresses, avoiding the restriction of the growth and increasing cell proliferation [82].
Importantly, miRNAs have the capacity to modify the stress response in cancer by making cells more
susceptible or resistant to chemotherapy [83]. These findings prove that miRNAs play an important role
in cancer biology and could be used as powerful circulating biomarkers for diagnosis and prognosis in
human malignancies.
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4.2. miRNAs from Triple-Negative Breast Cancer Classification

From our analysis, we selected 5 candidate miRNAs that are the most informative to separate
cancer TNBC from the other subtypes in BRCA: hsa-miR-378*, hsa-miR-221, hsa-miR-342-3p,
hsa-miR-630 and hsa-miR-145. All of them had already been shown to have potential as circulating
cancer biomarkers in cancer studies, e.g., [84–92].

hsa-miR-378* is considered an onco-miRNA for its relationship with tumor growth and cell
renewal. It is associated with the progression of breast cancer and the Warburg effect. Furthermore,
hsa-miR-378* is capable of discriminating between breast cancer patients and controls [84,85].

Evidence indicates that hsa-miR-221 is upregulated and that its expression is related to
proliferative pathways [93,94]. Several studies have linked the microRNA cluster 221/222 with
chemoresistance. The miR-221/222 expression participates in the clinically aggressive basal-like
subtype [95] and tamoxifen resistance in ER-positive breast cancer cells [87,88]. Furthermore, this
cluster interfers with ERα expression [87] and miR-221/222 knockdown induces growth arrest and
apoptosis in cells exposed to tamoxifen [88].

On the other hand, hsa-miR-342-3p expression correlates with ERα mRNA expression and its
downregulation is related to tamoxifen resistance. hsa-miR-342-3p plays an important role in the
therapy response of tamoxifen in ER-positive breast cancer [86,89]. Moreover, hsa-miR-342-3p activity
affects some metabolic pathways like lactate and glucose fluxes in TNBC [35].

hsa-miR-630 is considerably suppressed in BRCA [90]. From in vitro experiments in which
hsa-miR-630 mimics was transfected into MDA-MB-231 cells, it could be detected that the expression
of hsa-miR-630 was decreased. miR-630 was also capable in inhibiting MDA-MB-231 cell migration
and invasion targeting SOX4-3’-UT. Additionally, the SOX4 overexpression plasmid was transfected to
further confirm that hsa-miR-630 played its role by downregulation [96].

Finally, hsa-miR-145 acts as a tumor suppressor through the inhibition of different proteins like
ERBB3 and RTKN [91,92]. Additionally, hsa-miR-145 cooperates with P53 and has a proapoptotic effect
in patients with breast cancer [97].

The miRNet enrichment analysis yields that P53 and the negative regulation of cell proliferation
were the signaling pathways mostly involved with these miRNAs. Furthermore, the MTDH, IGF1R
and CDK6 genes are targeted by at least 3 of the 5 miRNAs used to identify TNBC. Zare et al. [98]
described the interplay of methilation patterns in miRNAs and the epithelial-mesenchymal transition.
They identified that some genes like MTDH, IGF1R and CDK6 can be affected by miRNAs and can
modify cellular processes in breast cancer.

5. Conclusions

miRNAs are known to play important roles in cellular biology processes such as differentiation,
proliferation and apoptosis. Several research lines suggest that miRNAs are involved in different
aspects of cancer, and recent studies indicate that there is potential in using their expression profiles as
molecular signatures in clinically relevant settings.

miRBase (v22.1) consists of 1917 stem-loop sequences and 2657 mature sequences for human
miRNAs [99]. Only some of these 2657 mature sequences are circulating miRNAs, and from that
quantity, only 253 can be measured in blood, urine, plasma, serum or saliva (excluding pancreatic juice
and cerebrospinal fluid). In this paper, our aim has been to reduce as much as possible the number
of miRNAs necessary to classify cancer tumor types and to identify TNBC in BRCA. Our proposed
approach consists in applying a recursive ensemble feature selection algorithm to reduce the original
253 miRNAs to 5 for each case study considered while, at the same time, ensuring high-quality
classification (>90% mean classification accuracy over all the ensemble). It is important to state that
our results are based on readily available clinical studies from the GEO repository.

Using the identified 5-miRNA signature for tumor classification, the classifier random forest
obtains a mean accuracy of 97.61% in a 10-fold cross-validation, providing both results of high quality
and a compact, human-interpretable list of miRNAs. When compared to the state-of-the-art in feature
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selection, our methodology was proven to be better than GALGO and ensemble-based approaches
with an homogeneous topology, with a significant statistical difference (p < 10−4 using a standard
Welch’s T-test). In the TNBC example, the signature obtained by our methodology outperforms the
31-miRNA signature from [35]. These remarkable results stem from the use of machine learning
algorithms which are able to consider the influence of groups of features (in this case miRNAs) at the
same time, while previous works only employed univariate statistics. Such an outcome is consistent
with Mootha et al. [100], which makes the case for considering gene sets instead of individual genes.
This methodology can be applied in other problems, such as differentiating between tumors with
and without metastasis (Appendix C), and it is not restricted to only miRNAs but can also be used in
mRNA data. In contrast to other methods such as Saha et al. [20], it is not limited by the number of
variables (Appendix D).

This analysis is a first step towards assembling new approaches for cancer detection using
circulating miRNAs, as measuring only 5 miRNAs levels is not only easier but also more resistant to
measurement errors than to try and measure all available miRNAs levels. This research line might
help the development of new concepts for prevention, secondary prevention and novel therapies.
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Appendix A. Circulating miRNAs

In Table A1, we present the list of all 253 circulating miRNAs identified in the dataset, using an
analysis of the available literature.

Table A1. List of all circulating miRNAs.

let-7a miR-140-3p miR-19b miR-335 miR-513a-3p
let-7a* miR-141 miR-200a miR-338-3p miR-516b
let-7b miR-142-3p miR-200b miR-338-5p miR-518b
let-7c miR-143 miR-200c miR-339-3p miR-520a-3p
let-7d miR-144 miR-202 miR-339-5p miR-548b-5p
let-7e miR-145 miR-203 miR-340* miR-557
let-7f miR-146a miR-205 miR-342-3p miR-564
let-7g miR-146b-3p miR-206 miR-345 miR-566
let-7i miR-146b-5p miR-20a miR-346 miR-571
miR-1 miR-148a miR-20b miR-34a miR-574-3p

miR-100 miR-148b miR-21 miR-34b miR-574-5p
miR-101 miR-150 miR-210 miR-361-3p miR-587

miR-106b miR-150* miR-212 miR-365 miR-589
miR-107 miR-151-5p miR-214 miR-371-5p miR-595
miR-10a miR-152 miR-215 miR-372 miR-601
miR-10b miR-155 miR-218 miR-373 miR-616*
miR-1182 miR-15a miR-22 miR-375 miR-618
miR-122 miR-15b miR-221 miR-376a miR-622
miR-122* miR-15b* miR-222 miR-376c miR-625

miR-1224-5p miR-16 miR-223 miR-377 miR-625*
miR-1229 miR-16-2* miR-23a miR-378 miR-628-3p

https://github.com/steppenwolf0/circulating
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Table A1. Cont.

miR-1231 miR-17 miR-23b miR-378* miR-629
miR-1245 miR-181a miR-24 miR-379 miR-630
miR-1246 miR-181a-2* miR-25 miR-382 miR-638
miR-1254 miR-181b miR-26a miR-409-3p miR-646
miR-125b miR-181d miR-26b miR-409-5p miR-650

miR-125b-2* miR-182 miR-27a miR-410 miR-652
miR-126 miR-1825 miR-27b miR-411 miR-654-3p

miR-1260 miR-183 miR-296-5p miR-421 miR-656
miR-1268 miR-184 miR-298 miR-423-5p miR-668

miR-127-3p miR-185 miR-299-5p miR-425 miR-675
miR-1275 miR-186 miR-29a miR-425* miR-7
miR-128 miR-187 miR-29b miR-429 miR-708

miR-1280 miR-187* miR-29c miR-431 miR-744
miR-1284 miR-18a miR-301a miR-431* miR-744*
miR-1285 miR-18b miR-302b miR-432 miR-760
miR-1288 miR-18b* miR-30a miR-451 miR-874
miR-1290 miR-190b miR-30b miR-452 miR-885-5p
miR-1295 miR-191 miR-30c miR-454 miR-922

miR-129-5p miR-192 miR-30c-1* miR-454* miR-92a
miR-1304 miR-193a-3p miR-30d miR-483-3p miR-92a-2*
miR-130a* miR-193b miR-30e miR-483-5p miR-92b
miR-130b miR-194 miR-31 miR-484 miR-93
miR-1323 miR-195 miR-32 miR-486-3p miR-93*
miR-133a miR-196a miR-320a miR-486-5p miR-936
miR-133b miR-196b miR-320c miR-487b miR-939
miR-134 miR-197 miR-320d miR-493 miR-942
miR-138 miR-198 miR-324-3p miR-494 miR-99a

miR-138-2* miR-199a-3p miR-326 miR-497 miR-99b
miR-139-3p miR-199a-5p miR-328 miR-502-5p
miR-139-5p miR-19a miR-331-3p miR-504

Appendix B. miRNA Levels

Figure A1. Cont.
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Figure A1. Expression levels by cancer type for the 5 miRNAs identified by the proposed approach.
Cancer types: breat (BRCA); esophageal (ESCA); head and neck squamous cell (HNSC); liver
hepatocelluar (LIHC); prostate (PRCA); gliobastoma (GBM); colorectal (CRC); non-small-cell lung
(NSCLC); gastric (GC); ovarian (OVC).

Appendix C. miRNA Levels in CRC with and without Metastasis

To provide evidence that the proposed methodology can be used not only to classify tumors
but also more in general to answer specific questions related to tumors, where miRNAs can be
informative, we applied our algorithm to dataset GSE53159 [101], separating metastasized tumors
from those which are not. This dataset is composed of 32 samples and 16 colorectal cancer (CRC)
samples with liver metastasis and 16 CRC samples without liver metastasis for platform GPL8786.
After applying our method, we obtain a 4-miRNA signature, with the differentially expressed
hsa-mir-486-3p, hsa-mir-21, hsa-mir-1285, hsa-miR-708 and hsa-mir-638. The final average accuracy is
0.9312, with 0.8625 MCC.
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Figure A2. Ten runs of the heterogeneous ensemble recursive selection algorithm: From the 10 runs,
the highest accuracy is given by 4 miRNAs: hsa-mir-486-3p, hsa-mir-21, hsa-mir-1285, hsa-miR-708
and hsa-mir-638.

Figure A3. Expression levels of selected miRNAs: hsa-mir-486-3p, hsa-mir-21, hsa-mir-1285, hsa-miR-708
and hsa-mir-638 in CRC samples with and without metastasis.

Appendix D. Recursive Ensemble Feature Selection in mRNA Data

While other techniques such as [20] can also be effective to identify signatures for bioinformatic
applications, they are usually limited to working with a few hundreds of features. In order to
show how our algorithm can be effective even with a large number of features, we apply it to
dataset GSE12452 [102] that contains 54,675 features related to messenger RNA (mRNA). This dataset
is composed of 41 samples: 31 samples are nasopharyngeal tumor tissue and 10 are normal
nasopharyngeal healthy controls for platform GPL570. After applying our methodology, we obtain a
signature composed of just one gene, MUC4, differentially expressed to separate tumor and healthy
tissue. This is consistent with studies that point out MUC4 as a cancer biomarker [103,104]. Overall,
the signature identified has a global accuracy of 1.0, with 1.0 MCC.
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Figure A4. Ten runs of the heterogeneous ensemble recursive selection algorithm: From the 10 runs,
the highest accuracy is given by MUC4 gene expression alone.

Figure A5. Expression levels of MUC4 and difference between tumor tissue and controls.
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