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1 Introduction

Sterile neutrinos with mass in the keV range have long been discussed a dark matter

candidate [1]. Through their mixing with active neutrinos they can be produced from the

Standard Model (SM) plasma in the early universe. They are warm dark matter, giving rise

to less structure on small scales than cold dark matter, which may solve some problems

of the standard ΛCDM model. The detection of small scale structure in the Lyman-α

forest results in lower bounds on the mass of the sterile neutrinos [2]. The sterile neutrinos

can decay into an active neutrino and a photon, giving rise to monochromatic X-rays.

Non-observations of X-ray lines imposes upper limits to the active-sterile mixing angle

which depend on the sterile-neutrino mass. The original production scenario proposed by

Dodelson and Widrow [1], has already been ruled out as the sole source of dark matter

production by combining Lyman-α and X-ray constraints [3–5]. One way to circumvent

these constraints was suggested by Shi and Fuller [6]: They assume lepton asymmetries

much larger than the observed baryon asymmetry. They lead to resonant production,

resulting generally in a non-thermal spectrum, which can be colder than in the Dodelson-

Widrow scenario (see, however, [7]), and so evade Lyman-α constraints. Furthermore,

resonant enhancement makes the production much more efficient, requiring smaller mixing

angles and thus escaping the upper limits from X-ray constraints [8–10].

In order to calculate the final abundances, one has to track a set of coupled evolution

equations for the sterile-neutrino phase space densities and the lepton asymmetries, the

latter of which get depleted during the resonant conversion process. One difficulty in

solving these equations comes from high lepton asymmetries resulting in sharp resonances,
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which necessitate high numerical precision. Furthermore, the production process typically

starts at temperatures of a few GeV and ends at a few MeV prior to the onset of Big Bang

Nucleosynthesis (BBN), introducing uncertainties from the QCD epoch T ∼ 160 MeV,

when QCD interactions are strong and thus non-perturbative.

The cosmological expansion depends on the pressure-energy relation (equation of state)

of the matter in the universe. Lattice QCD results have been incorporated into an equation

of state [11] which is used to compute sterile neutrino production [12]. The sterile-neutrino

reaction rate depends both on the real and the imaginary part of the self-energy of the

active neutrinos. The latter receives contributions from interactions with leptons and with

quarks. The quark contribution is determined by susceptibilities of the QCD plasma’s

conserved charges. Lattice determinations of susceptibilities [13, 14] have been included

into sterile-neutrino evolution equations in [15]. The most difficult to compute are hadronic

contributions to the imaginary part of the active-neutrino self-energy, or opacity, which

can be written as a momentum integral over mesonic spectral functions [16]. Determining

these spectral functions on the lattice is challenging. Previous works on resonant sterile-

neutrino production [15, 17] have treated the opacity in different approximations, but

it still remains an open question how important the non-perturbative contributions are.

In this work we address it by computing the sterile-neutrino dark matter production for

various lepton asymmetries and by carefully treating the resonances which appear during

the time evolution.

After introducing our setup in section 2.1, we state in section 2.2 evolution equations

for the sterile-neutrino phase space densities and lepton asymmetries. We will include

various leptonic and hadronic active-neutrino self-energy contributions in section 2.3. We

solve the coupled system of equations for various values of initial lepton asymmetries in

section 3. Motivated by our findings we update the lower limit on the active-sterile mixing

angle in the two-flavor (one active and one sterile flavor) scenario by using maximal values

of lepton asymmetries allowed by BBN. Conclusions are in section 4. Appendix A con-

tains additional figures showing how the resonances emerge when the lepton asymmetry

is increased.

2 Non-equilibrium evolution equations

2.1 Setup

We consider the Standard Model augmented by one family of sterile Majorana neutrinos

N with Majorana mass M and non-zero Yukawa couplings hα to all active neutrino flavors,

L = LSM +
1

2
N̄(i/∂ −M)N −

∑
α

(
N̄ ϕ̃†hα`α + H.c.

)
(2.1)

where ϕ̃ = iσ2ϕ∗ is the conjugate Higgs doublet and `α = (νLα , eLα)> the left-handed

lepton doublet. The sterile-neutrino field in the interaction picture reads

N(x) =
∑
k,λ

1√
2k0V

[
e−ik·xukλakλ + eik·xvkλa

†
kλ

]
, (2.2)
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with the energy k0 = (k2 + M2)1/2. The spinors u and v satisfy the Majorana condition

u = vc, where c denotes charge conjugation. Furthermore, the creation-/annihilation

operators fulfill {akλ, a
†
qλ′} = δk,qδλλ′ with helicities λ = ±1/2. V denotes the volume

of our system. With these operators we define the sterile-neutrino phase space density

operators as

fkλ ≡ a
†
kλakλ. (2.3)

The number operator for left-handed leptons of flavor α reads

Lα =

∫
d3x `†α`α. (2.4)

We will start the time evolution at temperatures of a few GeV, where sphaleron processes

have long terminated. Then baryon number B is conserved, and its tiny value can be well

approximated by zero for our purposes. Furthermore electric charge Q is conserved and

exactly zero.

2.2 Equations of motion

The expectation values of the operators introduced above are conserved by Standard Model

interactions and thus evolve much more slowly than the other degrees of freedom. Their

deviations from equilibrium characterize the non-equilibrium state, and are assumed to be

small. We introduce chemical potentials µLα , µB and µQ and denote them collectively by

µ in the following. In the infinite volume limit the phase space densities and the lepton

number densities nLα ≡ Lα/V satisfy the evolution equations [18, 19]

ḟkλ = − 1

2k0

∑
α

{
ūkλρα(k, µ)ukλ

[
fkλ − fF(k0 − µLα)

]
+ v̄kλρα(−k, µ)vkλ

[
fkλ − fF(k0 + µLα)

]}
, (2.5)

and

ṅLα =
∑
λ

∫
d3k

(2π)32k0

{
ūkλρα(k, µ)ukλ

[
fkλ − fF(k0 − µLα)

]
− v̄kλρα(−k, µ)vkλ

[
fkλ − fF(k0 + µLα)

]}
, (2.6)

with the Fermi-Dirac distribution fF(x) = 1/(ex/T + 1) and the spinors u and v which

appear in (2.2). Furthermore,

ρα(k, µ) ≡ 1

i

[
∆ret
α (k, µ)−∆adv

α (k, µ)
]
, (2.7)

is the spectral function which is determined by the retarded and advanced 2-point function

∆ret,adv
α (k) = ±i

∫
d4xΘ(±t)eikx

〈{
Jα(x), J̄α(0)

}〉
(2.8)

of the operator Jα ≡ ϕ̃†hα`α, which couples to N̄ in (2.1).
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Oftentimes the kinetic equations are expanded in µ. However, for a proper treatment

of resonances, which show up in the spectral functions ρα, one has to include all orders in

µ, which will become more apparent below. The relation of the chemical potentials to the

charge densities, to be discussed in section 2.3, can still be assumed to be linear.

In the broken phase, where 〈ϕ̃〉 = (v/
√

2, 0)> with v = 246 GeV, the 2-point func-

tion (2.8) is proportional to the active-neutrino propagator,

∆α(k, µ) = θ2
αM

2PL
−1

/k − Σα(k, µ)
PR. (2.9)

Here we have factored the chiral projectors PR,L = 1
2(1 ± γ5) out of the propagator and

furthermore introduced the active-sterile mixing angle

θα ≡
|hα| v√

2M
. (2.10)

The active-neutrino self-energy in the plasma rest frame can be approximated as [17, 20]

Σret
α (±k, µ) = γ0

(
∓ bα + cα −

iΓα
2

)
(2.11)

with real bα, cα. Γα is the imaginary part of the refractive index for the active neutrinos [21],

and is also referred to as neutrino opacity. Γα/2 is the neutrino damping rate (see e.g. [22]).

The function cα is odd in µ. For the chemical potentials under consideration we only need

to keep the linear order in µ for cα, and we can neglect the µ-dependence of bα and Γα. The

advanced self-energy is obtained from (2.11) by replacing iΓα → −iΓα. Then one obtains

the spectral function

ρα(±k, µ) =
θ2
αΓαM

2

[M2 + 2k0(bα ∓ cα)]2 + (k0Γα)2
PL(2k0/k −M2γ0)PR. (2.12)

A quick calculation yields

ūk±ρα(k, µ)uk± =
θ2
αΓαM

4(k0 ∓ |k|)
[M2 + 2k0(bα − cα)]2 + (k0Γα)2

, (2.13)

v̄k±ρα(−k, µ)vk± =
θ2
αΓαM

4(k0 ± |k|)
[M2 + 2k0(bα + cα)]2 + (k0Γα)2

. (2.14)

Resonances occur when a square bracket in the denominator of (2.13) or (2.14) vanishes.

This can happen when cα is large enough and has the appropriate sign. For a given sign

of an initial lepton asymmetry, only one of the expressions (2.13) and (2.14) can lead to

resonances. Moreover, at leading order in M/|k| only the terms containing ūk−ραuk− or

v̄k+ραvk+ will contribute in the evolution equations. The subleading terms will be dropped

in the following.

Due to the isotropy of the universe the phase space density only depends on |k|. Then

the Hubble expansion is taken into account by replacing

ḟkλ →
(
∂t −H|k|∂|k|

)
fkλ. (2.15)
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The Hubble parameter is given by

H =

√
8πρ

3M2
Pl

, (2.16)

where ρ is the energy density and MPl ' 1.22 · 1019 GeV is the Planck mass. By using

K ≡ |k|a(t)/a(tend) as an independent variable, where a is the scale factor, (2.15) turns

into ∂tfKλ and the equation for f becomes an ordinary differential equation. a(tend) is

the scale factor at the time corresponding to the temperature Tend = 10 MeV at which we

compute the final abundances. For lepton number densities the Hubble expansion is taken

into account through the replacement

ṅLα →
(
∂t + 3H

)
nLα . (2.17)

The term proportional to H is eliminated by considering the differential equation for nLα/s

where s is the entropy density. Finally, the time derivatives are replaced by temperature

derivatives via dT/dt = −TH(T )3c2
s(T ), with the speed of sound cs.

2.3 Active-neutrino self-energy

For vanishing chemical potentials the real part of the active-neutrino self-energy arises at

O
(
GF /m

2
W

)
, where GF is the Fermi constant and mW is the W -boson mass [12, 21],

bα =
8
√

2GF
m2
W

k0

[
cos2 θW

7π2T 4

360
+

∫
d3p

(2π)3

fF(Eα)

Eα

(
4

3
p2 +m2

α

)]
, (2.18)

where θW is the weak mixing angle, Eα ≡ (p2 +m2
α)1/2, and mα is the mass of the charged

lepton of flavor α. We have neglected the masses of active neutrinos. bα is positive, which

corresponds to an index of refraction greater than 1, or a negative thermal mass squared.

The leading contribution due to non-zero chemical potentials can have either sign. It

arises at O
(
GF
)

[15, 17, 21],

cα =
√

2GF

[
2nνα +

∑
β 6=α

nνβ +

(
1

2
+ 2 sin2 θW

)
neα −

(
1

2
− 2 sin2 θW

)∑
β 6=α

neβ

− 1

2
nB +

(
1− 2 sin2 θW

)
nhad
Q

]
, (2.19)

without the 1/m2
W suppression of (2.18). Therefore it can be of similar size as (2.18) when

the chemical potentials are small. nνα , neα are particle minus anti-particle number densities

of neutrinos and charged leptons. They can be written in terms of the particle chemical

potentials µi,

ni = χiµi, (2.20)

where the lepton susceptibilities χi can be evaluated in the ideal gas limit,

χeα = −2geα

∫
d3p

(2π)3
f ′F(Eα), (2.21)

χνα = gνα
T 2

6
, (2.22)
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with gνα = 1, geα = 2. The hadronic contribution to the electric charge density nhad
Q can

be written as

nhad
Q = χhad

QQµQ + χQBµB, (2.23)

where χhad
QQ is the hadronic contribution to the electric-charge susceptibility. The particle

chemical potentials in (2.20) can be written in terms of the chemical potentials of the slowly

varying and of the conserved charges,

µeα = µLα − µQ, (2.24)

µνα = µLα . (2.25)

The latter can be expressed through the lepton number densities nLα by inverting

nB = χBBµB + χQBµQ, (2.26)

nQ =
(
χhad
QQ + χlep

QQ

)
µQ + χQBµB + χQLαµLα , (2.27)

nLα = χLαLαµLα + χQLαµQ, (2.28)

and assuming vanishing overall baryon and electric charge density, nB = nQ = 0. The

leptonic part of the electric charge susceptibility in (2.27) can be written in terms of (2.21),

χlep
QQ =

∑
α=e,µ,τ

χeα . (2.29)

The susceptibilities in (2.28) are related to (2.21), (2.22) by

χLαLα = χeα + χνα , (2.30)

χQLα = −χeα . (2.31)

The susceptibilities χhad
QQ, χBQ, and χBB have been determined on the lattice for tem-

peratures near the QCD crossover [13, 14]. Reference [15] has used a hadron resonance

gas model below and perturbation theory above and connected all three regions via spline

interpolations, which we are going to use.1

The dominant contribution to the active-neutrino opacity Γα appears at O
(
G2
F

)
since

the O
(
GF
)

contributions are suppressed by exp(−mW /T ). It can be split into a leptonic

and a hadronic piece,

Γα = Γlep
α + Γhad

α . (2.32)

Over a large part of the temperature range which is relevant for sterile-neutrino produc-

tion, Γhad
α is non-perturbative. Two different approaches have been taken to calculate this

function. In [12] the free-quark approximation is used for the whole temperature range,

but, in order to account for the strong interaction, the number of colors Nc is replaced by

a temperature dependent Nc,eff(T ) which vanishes at low temperatures, and equals 3 at

the highest temperature. In [15], on the other hand, the free-quark approximation at high

temperatures is connected to chiral perturbation theory at low temperatures via spline

interpolations. We refer to these two approximations for (2.32) as ΓNc,eff and Γspline. We

will also consider the approximation Γhad
α = 0 for which we write Γlep.

1Available at https://github.com/ntveem/sterile-dm/tree/master/data/tables.
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3 Numerical results

We integrate the coupled eqs. (2.5), (2.6) from T = 4 GeV down to 10 MeV, using the

parameterizations of the energy ρ(T ) and entropy density s(T ) as well as the speed of

sound cs(T ) from [12],2 based on calculations in [11].

Depending on the value of the lepton asymmetry, high numerical precision is needed

to handle sharp resonances. In practice, the numerical solution requires an implicit multi-

step method to deal with possible equation stiffness. We assume that at the starting

temperature there are no sterile neutrinos, i.e., fkλ = 0. We recast the mixing angles into

the total active-sterile mixing angle through

sin2(2θ) ≈ 4
∑
α

θ2
α, (3.1)

which is the quantity that one can constrain experimentally from X-ray observations.

3.1 Influence of the opacity on sterile-neutrino production

In this section we make the simplifying assumption that only one Yukawa coupling is non-

zero, namely hµ. This allows us to compare the effect of the opacities Γ
Nc,eff
α , which are

available for 3 lepton flavors, and Γspline
α , which is currently only available for α = µ. Then

only the term with α = µ contributes in (2.5), and only the muon-flavor asymmetry will

be dynamical. In principle, non-zero electron and tau-flavor asymmetries can influence

the evolution equations as they appear in the functions cα, but we assume these to be

zero. We choose M = 7.1 keV, motivated by the tentative signal reported in [23, 24], and

θ2
µ = 2.5 · 10−13 as a representative point in the available parameter space.

We compare the resulting sterile-neutrino phase space densities at T = 10 MeV ob-

tained with the different opacities Γspline
µ ,Γ

Nc,eff
µ , and Γlep

µ for a set of different positive

initial values for nLµ/s. The opacities Γspline
µ and Γlep

µ are available for momenta 10−4 ≤
|k|/T ≤ 20, whereas Γ

Nc,eff
µ is available for 0.03 ≤ |k|/T ≤ 12.5. We use the latter range

when solving the evolution equations, which is sufficient for our purposes. For positive

lepton asymmetries, resonances mainly contribute to the production of sterile neutrinos

with negative helicity, while for positive helicity the resonant contribution is suppressed

with M/|k|. If there are resonances, then there are usually two resonance frequencies for

each |k| [8, 15, 17]. For most of the relevant temperatures, the two resonances lie in the

momentum range we consider. In practice, the smaller resonance frequency dominates the

sterile-neutrino dark matter production, and the larger one plays a negligible role [15].

We show results for three different initial values of nLµ/s in figures 1, 2 and 3, additional

ones can be found in appendix A. Generally we observe that the higher the initial lepton

asymmetry, the larger the phase space densities become. In figure 1 the lepton asymmetry

is so low that resonances are outside the displayed momentum range (the dominant one

leads to the slight increase at small momenta) and only give a small contribution to the

production. In contrast, the initial lepton asymmetry in figure 2 is high enough so that each

momentum mode in the shown range passes through a resonance, giving much larger phase

2Available at www.laine.itp.unibe.ch/dmpheno/release 2016jun21.tar.gz.
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10-1 100 101

k/T= k̂

0

1

2

3

4

5

6

k̂
2
f k̂
−

×10 7

Γspline

ΓNc, eff

Γlep

101 102 103

T [MeV]

0. 995

0. 996

0. 997

0. 998

0. 999

1. 000

n
L
µ
/s

×10−6

Figure 1. Solutions to the kinetic equations for M = 7.1keV, θ2µ = 2.5 · 10−13. The different

curves are obtained with the different approximations for Γα. Left: Phase space densities of sterile

neutrinos with negative helicity at T = 10 MeV. The fraction of the dark matter energy density

is (Ωs/ΩDM)spline = 5.7 · 10−4, (Ωs/ΩDM)Nc,eff = 5.3 · 10−4, (Ωs/ΩDM)lep = 3.2 · 10−4 respectively.

Right: Evolution of the lepton asymmetry.

10-1 100 101

k/T= k̂

0

1

2

3

4

5

6

7

8

k̂
2
f k̂
−

×10 5

Γspline

ΓNc, eff

Γlep

101 102 103

T [MeV]

0. 85

0. 90

0. 95

1. 00

n
L
µ
/s

×10 5

Figure 2. Same as figure 1 but with a higher initial lepton asymmetry. The fraction of the dark

matter energy density in all three cases is roughly Ωs/ΩDM = 2.5 · 10−2.

space densities. The same is true for figure 3, where we chose the initial asymmetry such

that we obtain the complete dark matter abundance. In figure 1 we see how the different

approximations for the opacity influence the sterile-neutrino production and in parallel

the depletion of nLµ/s. The purely leptonic contribution is the smallest one, resulting

in the least efficient production. In figures 2 and 3 one can see that for a larger initial

lepton asymmetry, there is only a sub-percent difference in the final abundance of sterile

neutrinos between using the full opacity and using only the leptonic contribution. The

resulting phase space densities have become indistinguishable.

In the limit Γα → 0 (2.13) turns into a delta function [17]. This indicates that the

dominant resonance in figures 2 and 3 is so sharply peaked, that the differences in the

active-neutrino opacities become irrelevant. The same is true for the lepton asymmetry

evolution. No matter what opacity is used, the depletion is almost identical. We find that

this behavior occurs in all of the allowed (white) parameter space shown in figure 4, if we

– 8 –
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10-1 100 101

k/T= k̂

0. 0

0. 5

1. 0

1. 5

2. 0

k̂
2
f k̂
−

×10 3

Γspline

ΓNc, eff

Γlep

101 102 103

T [MeV]

2. 8

2. 9

3. 0

3. 1

3. 2

3. 3

3. 4

3. 5

3. 6

n
L
µ
/s

×10−4

Figure 3. Same as figure 1 but with an initial lepton asymmetry tuned such that the sterile

neutrino energy density gives the complete relic dark matter abundance, Ωs = ΩDM.

tune the lepton asymmetry such that the resulting sterile neutrino energy density gives

the correct dark matter abundance. The differences in energy densities obtained with the

different opacities are typically below the 2%-level, for very low masses and high mixing

angles at most 5%. The transition from quite different to basically equivalent solutions by

increasing the lepton asymmetry can be followed in smaller steps in appendix A.

We have used the publicly available code of [17] to check our calculation, and what we

find is mostly in agreement with our results described above. For very high asymmetries

we find that the resulting phase space densities suffer from sporadic kinks, hinting at

numerical instabilities which we could not get rid of by naively increasing the desired

precision. Nevertheless the resulting figures resemble ours quite well.

Our findings partly disagree with the ones in [15], which were calculated using sterile-

dm, a publicly available code created by the authors of [15]. It uses 1,000 momentum

bins as a default, which apparently misses parts of the resonances in the sterile-neutrino

production. While this problem is absent for non-resonant production, it becomes more

and more severe for increasing asymmetry. We have explicitly checked that increasing

the number of momentum bins to 30,000 gives results which mainly agree with ours. This

problem could be the cause of the rather large differences in the phase space densities using

either Γ
Nc,eff
α or Γspline

α which was observed in [15].

The lepton asymmetries needed to produce the complete dark matter abundance

(Ωs/ΩDM = 1) are quite large compared to the baryon asymmetry. Most baryogenesis

mechanisms produce comparable amounts of lepton and baryon asymmetries before elec-

troweak sphaleron freeze-out. In the νMSM [25], which contains two additional heavier

sterile neutrinos, a larger lepton asymmetry can be produced thereafter [9, 26]. However,

it turns out this can boost the lepton asymmetry by at most a factor 1,000 [27], and that

one can reach at most Ωs/ΩDM = 1/10 [18]. In this scenario, improving on calculations

for hadronic contributions to active-neutrino opacities can be important [18], as the lepton

asymmetries are even smaller than in figure 1.
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M/keV sin2(2θ) · 1013

1 30

2 11

5 2.8

10 1.03

15 0.61

20 0.39

30 0.23

40 0.17

M/keV sin2(2θ) · 1013

1 47

2 16

5 4.1

10 1.48

15 0.85

20 0.57

30 0.35

40 0.25

Table 1. Mixing angle that leads to the complete relic DM abundance for various masses, with

total initial asymmetry nL/s = 2.5 ·10−3. Left: asymmetry only in the muon flavor, right: all three

asymmetries initially equal, nLα/s = nL/3s.

3.2 Limits from Big Bang Nucleosynthesis

Measuring the helium abundances as a result of BBN one obtains the upper bound [4]

nL
s
≤ 2.5 · 10−3 (3.2)

on the total lepton asymmetry. We now compute the resulting lower limit on the mixing

angle, for which one can obtain Ωs/ΩDM = 1. For simplicity, we take the maximal value

in (3.2) as an initial condition at T = 4 GeV. The lepton asymmetry at times prior to

BBN could be higher, but the depletion turns out to be only on the level of a few percent

for the low mixing angles considered here.

We calculate, for various masses, the mixing angle that leads to the complete relic DM

abundance. The results are given in table 1, displaying the scenario where all asymmetry

is in the muon flavor (left) and the scenario where the asymmetry is split equally onto all

three flavors (right). The only non-zero neutrino Yukawa coupling is hµ.

Combining our lower limit on the mixing angle with current X-ray constraints closes

the parameter space for masses M & 40 keV. A lower mass limit of M & 1 keV can be

deduced from DM phase space density restrictions within dense galaxies [28, 29]. In the

low mass range, very high mixing angles in the Dodelson-Widrow scenario are excluded

because they result in dark matter overproduction [12]. Therefore the parameter space is

bounded from all sides. We show the combined constraints in figure 4. The applicability

of lower mass bounds from Milky Way satellite counts or Lyman-α methods in the case of

resonant production, which typically leads to colder than thermal spectra, is not clear at

this stage. Hence we did not include them in our parameter plot. Previous calculations of

such mass bounds have been performed e.g. in [7, 34] with the code sterile-dm. Generally

we find colder spectra than [7], with a mean momentum that is typically between 25% and

50% lower, depending on the region in the parameter space.

As we have seen in section 3.1, our calculations generally give larger phase space

densities than sterile-dm, if it is used for resonant production “as is” with 1,000 default

momentum bins. This code was used to calculate the BBN limit in [7, 33–35], giving
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Figure 4. Combined constraints for keV sterile-neutrino dark matter. The X-ray constraints are

taken from [30], see also [10, 31–33]. Phase space density constraints are from [29]. The BBN limit

given by the solid black line holds if all of the input lepton asymmetry is only in the muon flavor.

The dashed line corresponds to the BBN limit if the input lepton asymmetry is split equally onto

all three flavors.

much stronger limits than the ones we find, especially for the lower end of the mass range

shown in figure 4. Again, increasing the number of momentum bins, sterile-dm gives better

agreement with our results. On the other hand we note that our BBN limits are in closer

agreement with the only slightly lower ones in [4], which are also displayed in [32, 36], and

also with the ones shown in [37], which are based on [38].

One has to keep in mind that the BBN bound only applies to the total lepton asymme-

try. In fact, nLµ could be larger than (3.2) if it is partly compensated by the other lepton

flavor asymmetries. But the same compensation would not take place in (2.19) where the

different flavors enter with different coefficients. Therefore cµ would increase leading to a

larger production rate and to a weaker bound on sin2(2θ).

4 Summary and conclusions

In this work we have traced the evolution of keV sterile-neutrino phase space densities

and lepton number densities in the early universe. Lepton asymmetries much higher than

the baryon asymmetry significantly influence the active-neutrino spectral function and

resonantly boost sterile-neutrino production.

Standard Model input enters our calculation in several places: through susceptibilities,

which relate charges to chemical potentials, and through spectral functions of various cur-

rents, which determine the opacities of active neutrinos. The sterile-neutrino dark matter

production mainly happens during the cosmic QCD epoch when quarks and gluons are
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nLµ/s · 106 Ωs/ΩDM

1 0.00057

2 0.00066

4 0.0029

6 0.01

8 0.018

10 0.025

100 0.32

350 1

Table 2. Fraction of the relic DM abundance for the initial lepton asymmetries used in figures 1–3

and in the appendix. We show only the abundance for the case where Γspline is used.

strongly coupled. Then both the hadronic susceptibilities and hadronic spectral functions

are non-perturbative. For hadronic susceptibilities, lattice QCD results are available and

used in our calculation. Lattice calculations of hadronic spectral functions are notoriously

difficult, which in principle could lead to large theoretical uncertainties.

We have studied how different approximations for the hadronic contributions to the

active-neutrino opacity affect sterile-neutrino production. For initial conditions with van-

ishing sterile neutrino density, and lepton asymmetries large enough so that the produced

sterile neutrinos make up all of today’s dark matter, we find that the production is domi-

nated by very sharp resonances for which the effect of the hadronic opacities are negligible.

This implies that more precise, non-perturbative determinations will not be needed for

this scenario.

For such large lepton asymmetries we found much larger dark matter yields than

previous studies. Therefore we could weaken lower bounds for the mixing angle derived

from the upper bound on the total lepton asymmetry from BBN. This opens up the

available parameter space of this sterile-neutrino dark matter scenario.
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A Emergence of resonances with increasing lepton asymmetries

Here we show the negative helicity phase space densities and corresponding lepton asym-

metries like in figures 1–3, comparing the use of the three different opacities. From top to

bottom we gradually increase the initial lepton asymmetry, whereby the resonances extend

more towards higher momentum modes. When a mode passes through a resonance, it

becomes blind to the choice of the active-neutrino opacity. The relic DM abundance for

each considered case is given in table 2.
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