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Abstract: The chemical investigation of the anti-yeast methanol extract from the stem bark of 

Terminalia mantaly led to the isolation of seven compounds: 3-O-methyl-4-O-α-

rhamnopyranoside ellagic acid (1), 3-O-mehylellagic acid (2), arjungenin or 2,3,19,23-

tetrahydroxyolean-12-en-28-oïc acid (3), arjunglucoside or 2,3,19,23-tetrahydroxyolean-12-en-

28-oïc acid glucopyranoside (4), 2α,3α,24-trihydroxyolean-11,13(18)-dien-28-oïc acid (5), 

stigmasterol (6), stigmasterol 3-O-β-D-glucopyranoside (7). Their structures were established 

by means of spectroscopic analysis and comparison with published data. Compounds 1-5 were 
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tested in vitro for activity against three pathogenic yeast isolates, Candida albicans, Candida 

parapsilosis and Candida krusei. The activity of compounds 1, 2 and 4 were comparable to that 

of the reference compound fluconazole (MIC values below 32 µg/ml) against the three tested 

yeast isolates. They were also tested for inhibitory properties against four enzymes of metabolic 

significance: Glucose-6-Phosphate Deshydrogenase (G6PD), human erythrocyte Carbonic 

anhydrase I and II (hCA I and hCA II), Glutathione S-transferase (GST). Compound 4 showed 

highly potent inhibitory property against the four tested enzymes with overall IC50 values 

below 4 µM and inhibitory constant (Ki) <3 µM. 

 

Keywords: Anti-yeast; Enzyme inhibitors; Terminalia mantaly; Combretaceae 

 

 

 

1. Introduction 

Fungal diseases affect every year 3-4 million people worldwide. Of particular 

importance, the increasing resistance of pathogenic opportunistic yeasts to current drugs is a 

serious concern and has attracted the attention of the scientific community. New, safe, and cost-

effective drugs of natural or synthetic origin are therefore actively being searched [1]. Recent 

epidemiological data highlight the increasing burden of pathogenic yeasts on people in poor 

settings [2,3,4]. Candida species and Cryptococcus neoformans are the major pathogenic yeasts 

and only few antifungal drugs have been developed so far to treat the invasive infections they 

cause [5,6]. Medicinal plants have shown credibility as sources of treatment for infectious 

diseases [7]. In Cameroon, extracts from medicinal plants such as Terminalia mantaly 

(Combretaceae) are widely used by traditional healers to control diverse infections or 

associated symptoms, including but not limited to dysentery, gastroenteritis, hypertension, 

diabetes, and oral, dental, cutaneous and genital affections [8]. Previous studies on the extracts 

of this plant have indicated antibacterial and antifungal properties, but their chemical 

compositions have not yet been determined. However, phytochemical studies of other species 

of the genus Terminalia have reported the presence of flavonoids, terpenoids and their 

glycosides derivatives, tannins, flavonones and chalcones [9-18]. Besides, in spite of the work 

done on Terminalia species, no investigation has been attempted yet on the enzyme inhibition 

properties of their extracts and constituents targeting Glucose-6-phosphate dehydrogenase, 

Carbonic anhydrase and Glutathione S-transferase. 
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 Glucose-6-phosphate dehydrogenase (G6PD; E.C. 1.1.1.49) enzyme catalyzes the reaction 

of glucose-6-phosphate into phosphogluconate, which is the first step of rate-limiting of 

pentose phosphate pathway. The end products of this pathway are ribose-5-phosphate and 

NADPH. Ribose-5-phosphate is used in DNA or RNA synthesis in cell reproduction, and 

NADPH is used as coenzyme for the enzymes participating in the production of reduced 

glutathione. Given its role in cell growth, this enzyme is of high importance to mammal cells 

[19,20]. However, several studies have shown that this enzyme takes an important role in the 

pathology of some diseases like cancer, hypertension, heart failure and type 2 diabetes. G6PD 

activity increases in cancer cells and its inhibition results in decrease of cell proliferation and 

induction of apoptosis. For example, 6-aminonicotinamide which is an inhibitor of G6PD has 

found use in the therapy of various tumors in the past [21].  

 Carbonic anhydrase (CA; carbonate hydro-lyase, EC 4.2.1.1) enzyme exists commonly 

in living organisms, and has various isoenzymes according to conditions and necessities of the 

medium. It is one of the most studied enzymes and CA-I and CA-II are the most common 

isoenzymes [22]. In many physiological and pathological processes, CAs catalyze the 

conversion of CO2 to HCO3
- and H+. In addition, CA inhibitors may be used in the treatment of 

various diseases such as oedema, glaucoma, obesity, cancer, epilepsy and osteoporosis [23].  

 In living cells, the deleterious effects of free radicals and their intermediates are 

eliminated or minimized by various enzymatic and non-enzymatic defense systems. Enzymatic 

defense is provided by several enzymes such as glutathione S-transferase (GST), glutathione 

reductase, glutathione peroxidase, superoxide dismutase, and catalase [24]. The GSTs (EC 

2.5.1.18) are a group of multifunctional enzymes that play an important role in the metabolism 

[25]. GSTs are important for the fight against cancer because of their interactions with 

carcinogens and chemotherapeutic agents. They are the target of antiasthmatic and antitumor 

drugs [26]. Production of excessive amounts of GST in mammalian tumor cells leads to 

resistance to some anticancer drugs and chemical carcinogens [27]. 

 The reduction of drugs effects in tumor cells is an important factor limiting the 

therapeutic efficacy of an antineoplastic agent. The development of this resistance was 

associated with glutathione (GSH) and glutathione S-transferase (GST) levels in cells and 

changes in permeability to the drug. In this regards, G6PD, CA I, II or GST inhibitors may be 

useful because of their several applications, in particular for the treatment of glaucoma, 

epilepsy, cancer and as diuretics. 

 In our search for bioactive secondary metabolites from Cameroonian medicinal plants, 

we have investigated the MeOH extract of the stem bark of Terminalia mantaly L. 
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(Combretaceae) that previously showed anti-yeast activity. We report in this paper the 

inhibitory potential of compounds isolated from this extract against some pathogenic yeasts and 

some enzymes of metabolic significance. 

 

2. Materials and methods.  

2.1. General Experimental Procedures 

Optical rotations were measured on a JASCO digital polarimeter (model DIP-3600). UV 

spectra were determined on a Spectronic Unicam spectrophotometer. IR spectra were 

determined on a JASCO Fourier transform IR-420 spectrometer. 1H and 13C NMR spectra were 

run on a Bruker spectrometer equipped with 5 mm 1H and 13C probes operating at 500 and 125 

MHz, respectively, with TMS as internal standard. Silica gel 230-400 mesh (Merck) and silica 

gel 70-230 mesh (Merck) were used for flash and column chromatography while precoated 

aluminum backed silica gel 60 F254 sheets were used for TLC. Spots were visualized under 

UV light (254 and 365 nm) or using MeOH-H2SO4 reagent. 

 

2.2. Plant Material 

The stem bark of Terminalia mantaly (Combretaceae) was collected in Yaoundé in May 

2012 and identified at the Cameroon National Herbarium where a voucher specimen is 

deposited under the reference N° 64212/HNC (Terminalia mantaly H. Perrier). 

  

2.3. Microbial isolates  

Yeast isolates were generously provided by the Laboratory of Clinical Biology, 

Yaoundé Central Hospital and consisted of clinical isolates of Candida albicans, Candida 

krusei and Candida parapsilosis. These yeasts were maintained at room temperature and 

cultured at 37 °C for 24 hours on Sabouraud Dextrose Agar (Oxoid) slants prior to use. 

2.4. Plant extraction and screening of anti-yeast activity 

The harvested T. mantaly stem bark was dried at room temperature and ground using a 

blender. The powdered stem bark (7 kg) was extracted at r.t. with MeOH (48 h). The extract 

was concentrated under vacuum to afford a dark residue (250 g). Minimal Inhibitory 

Concentration (MIC) of the extract was determined according to the CLSI M27-A3 [6] protocol 

with little modifications. The RPMI 1640 supplemented with 2% glucose was used as culture 

medium. Briefly for the fungal susceptibility tests, 50 µL of serially 2-fold diluted 

concentrations of the crude extract were added in triplicate wells of a 96-wells microtiter plate. 
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Fifty µL of fungal inocula standardized to a final concentration of 0.5-2.5x103 CFU/mL were 

then individually added in each well of the plate. Plant crude extract and the positive control 

(fluconazole) at concentrations of 0.12 to 64 µg/mL were tested in a final volume of 100 µL. 

So-prepared plates were incubated at 37 °C for 48 hours. MIC value was subsequently 

determined through macroscopic observation of plate wells, and was defined as the lowest 

concentration of the inhibitor that allowed no visible growth of the microorganism. 

 

2.5. Isolation of compounds and screening for activity 

A portion of 180 g of the extract was subjected to medium pressure flash 

chromatography over silica gel (Merck, 70 – 230 mesh) using mixtures n-hexane-EtOAc of 

increasing polarity [(70:30) – (0:100)] and EtOAc-MeOH [(95:5) – (50:50)], resulting in the 

collection of 75 fractions of 500 mL each, which were combined on the basis of TLC analysis 

to afforded 4 fractions labeled T1-T4. Fraction T1 (m = 14,4 g) obtained from the mixtures of n-

hexane-EtOAc (100:0 to 70:30) was subjected to silica gel column chromatography eluted with 

n-hexane-EtOAc and yielded oils, stigmasterol (6, 23 mg) and arjungenin (3, 7 mg). From 

fraction T2 (m = 60,3 g), eluted with n-hexane-EtOAc [(50:50) – (25:75)], stigmasterol 3-O-β-

D-glucopyranoside (7, 12 mg), arjungenin (3, 17 mg), 2α,3α,24-trihydroxyolean-11,13(18)-

dien-28-oic acid (5, 5.0 mg) and arjunglucoside (4, 6 mg) were isolated. Column 

chromatography of fraction T3 (m= 55.0 g) on silica gel and eluted with the mixtures of EtOAc-

MeOH [(100:0) – (85:15)], yielded 3-O- methylellagic acid 4׳-O-α-rhamnopyranoside (1, 32 

mg), arjungenin (3, 12.0 mg), arjunglucoside (4, 3,5mg), 2α,3α,24-trihydroxyolean-11,13(18)-

dien-28-oic acid (5, 3.5mg) and a dark mixture that was subjected to column chromatography 

on Sephadex LH-20 with MeOH as isocratic eluent and yielded 3-O-methyl ellagic acid (2, 

12,5 mg). Fraction T4 (m= 81.8 g) obtained with the mixtures of EtOAc-MeOH (85:15 to 

65:35) was a complex mixture and thus were not studied. All the isolated compounds were 

screened as described above for anti-yeast activity, and as described below for enzyme 

inhibition activities.  

 

2.6. Purification of Glucose 6-Phosphate Dehydrogenase and activity determination  

G6PD was purified from the gill tissue of Lake Van fish according to Kuzu et al. [28], 

and the enzyme activity was determined spectrophotometrically using a Shimadzu 

spectrophotometer (UV-1800) at 25 °C, according to the method described by Beutler [29] and 

based on the principle of the reduction of NADP+ to NADPH in the presence of glucose 6-

phosphate and absorbance recorded at 340 nm. 
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2.7. Purification of carbonic anhydrase isoenzymes by affinity chromatography and 

activity determination 

The purification of hCA I and II isozymes was performed with a simple one step 

method by a Sepharose-4B anilinesulfanilamide affinity column chromatography as previously 

described [30]. 

The esterase activity was assessed following the change in absorbance of 4-

nitrophenylacetate (NPA) to 4-nitrophenylate ion at 348 nm over a period of 3 min at 25 ᵒC 

using a spectrophotometer (Beckman Coulter UV-VIS) according to the method described by 

Verpoorte et al. [31].  

 

2.8. Purification of Glutathione -S Transferase enzyme and activity determination 

  

Firstly, heamolysate from human erythrocytes was prepared according to the method of 

Hunaiti et.al. [32]. The prepared heamolysate was directly applied to the glutathione-agarose 

affinity column and washed with 10 mM KH2PO4 and 0.1 M KCl (pH 8.0). The washing 

procedure was monitored on a spectrophotometer through equal-to-blind absorbance values. 

After the column was stabilized, the enzyme was purified by gradient elution at +4°C [24, 33]. 

Elution solvent was prepared from a solvent gradient containing 50 mM Tris–HCl and (1.25– 

10 mM GSH, pH 9.5). Thereafter, 1-chloro-2,4-dinitrobenzene was used to determine GST 

enzyme activity. In fact the product obtained using this substrate, dinitrobenzene S-glutathione 

(DNB-SG) displays maximum absorbance at 340 nm. Activity measurements were thus carried 

out using the absorbance increment at this wavelength. [34]. 

 

2.9. In vitro inhibition and Kinetic studies  

To determine the effects of compounds on enzymes, enzymes activities were measured 

with saturated substrate concentration and five different inhibitor concentrations. The 50% 

inhibitory concentrations (IC50) were determined by plotting curves of % inhibition versus 

compound concentration. Results are reported as IC50 values. Ki constants were calculated 

using the Cheng-Prusoff equation [35]. 

 

3. Results and Discussion 

 The methanol extract of the stem bark of Terminalia mantaly was screened for anti-

yeast activity in vitro against three clinical isolates consisting of Candida albicans, Candida 
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krusei and Candida parapsilosis. The crude extract exhibited good activity with MIC values of 

24 µg/mL against C. parapsilosis and 39 µg/mL against C. albicans and C. krusei (Table 1).  

Table 1: Anti-yeast activity of Terminalia mantaly extract and isolates 

 C. parapsilosis C. albicans C. krusei 

 *MIC (µg/mL± SD) 

MeOH Extract 24.00± 0.21 39.00± 0.33 39.00± 0.30 

Fraction T1 1250.00± 1.23 2500.00± 0.98 2500.00± 1.03 

Fraction T2 39.00± 0.38 >5000 >5000 

Fraction T3 0.16 ± 0.02 0.64 ± 0.12 0.02 ± 0.09 

Fraction T4 >5000 >5000 >5000 

1 
39.00± 0.88 (80.4 

µM) 
9.70± 0.72 (20 µM) >5 (10.30 µM) 

2 
78.00± 0.92 (247.6 

µM) 

156.00± 1.00 (495 

µM) 
19.50± 0.57 (61.9 µM) 

3 >5000(9487 µM) >5000 (9487 µM] >5000 (9487 µM) 

4 
39.00± 0.13 (56.60 

µM)  

9.70± 0.36 (14.07 

µM) 
312.00± 1.04 (452 µM) 

5 >5000 (9823 µM) >5000 (9823 µM) >5000 (9823 µM) 

**Fluconazole 
2.00± 0.01 (6.53 

µM) 

8.00± 0.25 (26.14 

µM) 
32.00± 0.42 (10.45 µM) 

*Plant extracts were tested using the CLSI M27-A3 [6] protocol. Activity was expressed as minimal inhibitory 

concentration at which there were no visible fungal growth; **Reference used as positive control. 

 

The flash chromatography of the crude extract generated 4 fractions exhibiting varying 

antifungal activities. As shown in table 1, fraction T3 was the most active, with  activity 

magnification over 100 times against C. parapsilosis and C. krusei (MIC: 0.16 µg/mL and 0.02 

µg/mL respectively) and over 60 times against C. albicans (0.64 µg/mL). C. krusei was the 

most susceptible isolate to fraction T3. Compounds 1, 2, 3, 4, and 5 that were isolated from 

fractions T1-T3 and were also tested for biological activity (Table 1; Figure 1). Compounds 6 

and 7 were not tested due to reduced solubility in the culture medium. From the results 

achieved, compounds 1 and 4 showed the best potency against C. albicans with MIC of 9.7 

µg/ml. They also moderately inhibited C. parapsilosis with an MIC of 39 µg/ml. Besides, 

compound 2 inhibited C. krusei with an MIC of 19.5 µg/ml.  
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Fig.1. Structures of the isolated compounds 1-7 from Terminalia mantaly (Combretaceae) 
The isolated compounds were tested against pathogenic yeast isolates and enzymes of metabolic significance. 1: IC50= 39 
µg/mL C. parapsilosis; 9.7 µg/mL C. albicans; >5 µg/mL C. krusei; CAI: IC50= 53.31 µM, Ki= 44.11 µM; CAII: IC50= 69.11 
µM, Ki= 55.78 µM; GST: IC50= 63.01 µM, Ki= 42.00 µM. 2: IC50= 78 µg/mL C. parapsilosis; 156 µg/mL C. albicans; 19.5 
µg/mL C. krusei. 3: C. parapsilosis, C. albicans, krusei: IC50> 5000 µg/mL; CAI: IC50= 86.64 µM, Ki= 71.68 µM; GST: IC50= 
1.51 µM, Ki= 1.00 µM. 4: IC50= 39 µg/mL C. parapsilosis; 9.7 µg/mL C. albicans; 312 µg/mL C. krusei; G6PD: IC50= 1.84 
µM, Ki= 0.19 µM; CAI: IC50= 3.28 µM, Ki= 2.72 µM; CAII: IC50= 1.28 µM, Ki= 1.03 µM; GST: IC50= 1.84 µM, Ki= 1.23 
µM. 

 
 
3. NMR spectral data of compounds 1-5 

3-O- methylellagic acid 4׳-O-α-rhamnopyranoside (1) [36] 

Yellowish powder; molecular formula C21H18O12; ESI-MS: [M+Na]+ m/z 485,049 1H NMR 

(300 MHz, DMSO-d6): δH 1.13 (3H, d, CH3, H-6״), 3.54 (1H, q, J = 8,0 and 12,0 Hz, H-5״), 

4.01 (1H, t, H-4״), 4.04 (3H, s, OMe-3), 4.72 (1H, brd, J = 8,0 Hz, H-3״), 1) 4.94H, brd, J = 4,0 

Hz, H-25.47 ,(״ (1H, brs, H-1״), 7.52 (1H, s, H-5), 7.73 (1H, s, H-5׳); 13C NMR (125 MHz, 
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DMSO-d6), aglycone moiety: δC 113.4 (C-1), 140.5 (C-2), 141.8 (C-3), 153.1 (C-4), 111.9 (C-

5), 113.4 (C-6), 159.1 (C-7), 114.7 (C-1׳), 136.6 (C-2׳), 142.2 (C-3׳), 146.9 (C-4׳), 112.0 (C-5׳), 

107.4 (C-6׳), 159.1 (C-7׳); rhamnose moiety: 100.5 (C-1״), 70.4 (C-2״), 70.5 (C-3״), 72.2 (C-

  .and 61.4 (C-3, OMe) (״C-6) 18.3 ,(״C-5) 70.3 ,(״4

 

3-O-methyl ellagic acid (2) [36] 

Yellowish powder; molecular formula C15H8O8; ESI-MS: [M-H]- m/z 315, 

1H NMR (DMSO-d6): δ 7.50 (1H, s,H-5), 7.44 (1H, s, H-5′), 4.02 (3H, s, 3-OMe). 13C NMR 

(DMSO-d6): δ 158.9 (C-7), 158.6 (C-7′), 152.2 (C-4), 148.2 (C-4′), 141.7 (C-2), 140.0 (C-3), 

139.8 (C-3′), 136.1 (C-2′), 112.4(C-1′), 112.1 (C-6), 111.7 (C-1), 111.3 (C-5), 110.1 (C-5′), 

107.2 (C-6′), 60.8 (3-OMe).  

Arjungenin or 2,3,19,23-tetrahydroxyolean-12-en-28-oic acid (3) [37]  

White powder; molecular formula C30H48O6; ESI-MS: [M+Na]+ m/z 527,322. 1H NMR (300 

MHz, DMSO-d6): δH 1.23, 1.09, 0.90, 0.88, 0.84 and 0.65 (each 3H, s); 2.92 (1H, brs, H-18); 

2.86 (1H, d, J = 8 Hz, H-3) and 3.57 (1H, m, H-2); 5.23 (1H, brs, H-12); 13C NMR (125 MHz; 

DMSO-d6): δC 16.8, 17.1, 23.9, 24.9, 28.9 and 24.5; 64.3 (C-23), 80.5 (C-3), 179.6 (C-28), 

122.6 (C-12); 143.9 (C-13).  

 

2,3,19,23-tetrahydroxyolean-12-en-28-oic acid (4) [38] 

White powder; molecular formula C36H58O11; ESI-MS: [M+Na]+ m/z 689,396;  1H NMR (300 

MHz, DMSO-d6): δ 1.23, 1.08, 0.89, 0.86, 0.84 and 0.63 (each 3H, s); between 2.90 and 3.80: 

glucose moiety with anomeric proton at 5,20 (1H, d, J = 6.9 Hz, H-1׳); 13C NMR (125 MHz; 

DMSO-d6): δ 16.9, 24.5, 24.9 and 28.5; glucose moiety: 61.0, 69.9, 72.8, 77.1, 78.2, 94.5; 64.3 

(C-23), 67.4 (C-2), 80.4 (C-3), 176.3 (C-28), 122.6 (C-12), 143.7 (C-13). 

 

2α,3α,24-trihydroxyolean-11,13 (18)-dien-28-oic acid (5) [39] 

Yellowish powder; molecular formula C30H46O5; ESI-MS: [M+Na]+ m/z 509,375 (calc. 

509,324) for C30H46NaO5); 1H NMR(400 MHz; pyridin-d5): δ 1.58; 1.06; 1.05; 1.03; 0.90 and 

0.87 (each 3H, s); 6.62 (1H, d, J = 8.0 Hz, H-11) and 5.81 (1H, d, J = 8.0 Hz, H-12);  4.38 (1H, 

ddd, J =2.2 ;7.6 and 8.9 Hz, H-2); 3.59 (1H, d, J = 7.5 Hz, H-3); 4.43 (1H, d, J = 8.7 Hz, H-24) 

and 3.75 (1H, d, J = 8,76 Hz, H-24);  2.69 (1H, d, J = 12.4 Hz, H-19) and 2.15 (1H, d, J = 12.4 

Hz, H-19); 13C NMR (125 MHz; pyridin-d5): δC 16.6, 19.5, 19.8, 23.7, 24.0 and 32.1; 65.1 (C-
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24), 68.4 (C-2), 85.5 (C-3), 178,6 (C-28) ;136,1 (C-13); 133,3 (C-18) ; 126,4 (C-12) et 125,9 

(C-11). 

 

Apart from the activity profile described above, MIC values for the other tested fractions 

and compounds were above 39 µg/ml. The activity of compounds 1 and 4 was comparable to 

that of the reference drug fuconazole against C. albicans and, compound 2 showed to be over 

1.5 times more active than the same reference drug against C. krusei. Based on basic skeleton 

of the tested compounds, it is important to notice that one of the most active derivatives, 4 and 

the less active compounds, 3 and 5 are all triterpenoids. Preliminary structure-activity 

relationship (SAR) study clearly indicated that the glycosylation of the acidic function of 

compound 3 at C-28 is important for activity improvement. The other active compounds 1 and 

2 are ellagic acid derivatives. Previous studies have reported the antifungal activity of ellagic 

acid (1a) against fungal strains Trichophyton rubrum, T. verrucosum, T. mentagrophytes, T. 

violaceum, T. schoenleinii, Microsporum canis, C. glabrata, C. albicans and C. tropicalis [40]. 

Also, the observed antifungal potency of compounds 1 and 2, respectively glycosylated and 

methylated derivatives of 1a highlights the potency of this class of secondary metabolites [40]. 

 Overall, it was observed that fraction T3 exerted the more potent effect against the 

tested yeasts, far better than the derived compounds. This is an indication that fractionation has 

declined the anti-yeast activity, emphasizing the relevance of potential synergistic interactions 

among the components of fraction T3. Moreover, these results indicate future directions in the 

progression of this fraction to develop a phytodrug against yeasts infections.  

Selected isolated compounds were further tested against G6PD, Carbonic anhydrase I, II 

and GST enzymes. The results achieved are shown in table 2. 

Table 2: Inhibitory parameters of isolated compounds against G6PD, CAI, CAII, and GST 

 G6PD CAI CAII GST 
 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 
aIC50(µM) n.a na na 1.84± 

0.31 
53.31± 
1.09 

 86.64± 
0.93 

3.28± 
0.13 

69.31± 
1.13 

na na 1.03± 
0.01 

63.01± 
1.15 

na 1.51± 
0.78 

1.84± 
0.73 

bKi (µM) n.a na na 0.19± 
0.03 

44.11± 
1,12 

 71.68± 
0.96 

2.72± 
0.64 

55.78± 
0.97 

na na 1.84± 
0.11 

42.00± 
1.39 

na 1.00± 
0.03 

0.19± 
0.77 

                 
Enzymes were expressed and purified, and subsequently assessed for in vitro susceptibility to inhibitors. aSerially 

diluted triplicate concentrations were tested and activity expressed as 50% inhibitory concentration. bInhibitory 

constant which is reflective of the binding affinity; the smaller the Ki, the greater the binding affinity and the 

smaller amount of medication needed in order to inhibit the activity of that enzyme.n.a= non active. 

 The G6PD enzyme was strongly inhibited by the triterpenoid arjunglucoside (4) with 

IC50 value of 1.84 µM and Ki (the inhibitor constant indicating how potent an inhibitor is; or 
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the concentration required to produce half maximum inhibition) value of 0.19 µM. It has been 

shown that this key metabolic enzyme which catalyzes the first step of pentose phosphate 

pathway is expressed abundantly and very active in human tumors [21]. In contrast, G6PD-

deficient tumor cell lines showed relatively slow growth and enhanced apoptosis [41]. Previous 

studies also reported G6PD inhibitory properties for few compounds such as steroids and 

derivatives [42, 43], chalcones [28], catechin gallates [44], and some phenolic molecules [45]. 

In this study, the substituted ellagic acid derived compound 1 did not show any effect on the 

G6PD enzyme activity, although Adem et al [45] reported that ellagic acid inhibited the 

enzyme with an IC50 value of 0.072 mM. The methoxy group in compound 1 may hindrance 

the enzyme-inhibitor interaction. Based on the skeletal features of the tested triterpenoids 3, 4, 

5, the presence of hydroxyl group at C-19 and the glycosylation of C-28 carboxylic group may 

be both factors of activity improvement. The G6PD inhibitory potential of a terpenoid is 

reported here for the first time.  

 Compound 4 exhibited very good potency against both hCAI and hCA II enzymes with 

respective activity parameters of IC50= 3.28 µM and Ki= 2.72 µM; and IC50= 1.28 µM and Ki= 

1.03 µM respectively. The other tested compounds including 3-O-methyl-4-O-α-

rhamnopyranoside ellagic acid (1) and arjungenin (3) were found to be moderately active 

against hCAI and hCA II (compound 1) with IC50 and Ki values globally above 44 µM. 

Previous studies by Sarıkaya et al [46] have indicated that ellagic acid inhibited hCA I and hCA 

II with Ki values of 0.207 and 0.146 mM respectively. In the present study, compound 1, a 

substituted derivative of ellagic acid (1a) has exhibited moderate, however highly improved 

potency toward hCA I (Ki= 44.11 µM) and hCA II (55.78 µM) enzymes. However, this 

substitution has also considerably decreased the activity as observed against the G6PD enzyme. 

In addition to the established role of CA inhibitors (CAIs) as diuretics and antiglaucoma drugs, 

it has recently emerged that they could have potential as novel anti-obesity, anticancer and anti-

infective drugs [47]. The high inhibitory potency of the triterpenoid 4 against CAs indicates 

that it is a promising compound that might be progressed for the formulation of drugs against 

CAIs-related diseases.  

 The screening of 3-O-methyl-4-O-α-rhamnopyranoside ellagic acid (1), arjungenin (3), 

and arjunglucoside (4) against GST enzyme showed inhibitory effects. However, the 

triterpenoids 3 and 4 exhibited highly potent inhibitory effects (IC50s of 1.57 and 1.84 µM 

respectively; and Ki of 1.00 and 1.23 µM respectively). Compound 1 only exerted a moderate 

inhibitory effect on the enzyme (IC50= 63.01 µM; Ki= 42.00 µM). These results are of higher 

significance as GST inhibitors are anti-cancer agents [25, 26]. Ellagic acid (1a) was recently 
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shown to inhibit GSTs A1-1, A2-2, M1-1, M2-2 and P1-1 with IC50 values ranging from 0.04 

to 5 µM [48]. Preliminary SAR studies indicate that the substitution of ellagic acid at C-3 and 

C-4´ gave derivative 1 which showed an IC50 value of 63.01 μM), thus therefore considerably 

decreased the activity. The inhibitory effect of this class of secondary metabolite derivatives is 

reported here for the first time. 

  

Concluding remarks 

The results obtained from the investigation of the methanolic extract of Terminalia 

mantaly stem bark have identified a highly potent anti-yeast fraction T3 that showed to be more 

promising than subsequently isolated compounds. This promising fraction deserves to be 

further investigated with the ultimate aim of formulating a plant-based drug against yeasts 

infections. Compounds 1 and 4 showed anti-yeast activity close to that of the reference drug 

fuconazole against C. albicans. Moreover, compound 2 was over 1.5 times more active than 

fuconazole against C. krusei. Besides, two of the islotated compounds, arjungenin (3) and 

arjunglucoside (4) were found to be very active against enzymes of metabolic significance, 

including G6PD (compound 4) and GST (compounds 3 and 4). Finally, given the anti-yeast 

potency of these compounds, and also the implication of the tested enzymes in some metabolic 

dysfunctions of public health significance (cancer, obesity, epilepsy), we envisage further SAR 

studies to identified potent hit derivatives that should subsequently enter drug development 

pipeline.  
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