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Abstract In N = 1 supersymmetric Yang–Mills theory,
regularised on a space-time lattice, in addition to the break-
ing by the gluino mass term, supersymmetry is broken explic-
itly by the lattice regulator. In addition to the parameter tun-
ing in the theory, the supersymmetric Ward identities can be
used as a tool to investigate lattice artefacts as well as to
check whether supersymmetry can be recovered in the chiral
and continuum limits. In this paper we present the numerical
results of an analysis of the supersymmetric Ward identities
for our available gauge ensembles at different values of the
inverse gauge coupling β and of the hopping parameter κ .
The results clearly indicate that the lattice artefacts vanish in
the continuum limit, confirming the restoration of supersym-
metry.

1 Introduction

Supersymmetry (SUSY) is an elegant idea which relates
fermions and bosons, whose spin differs by 1/2, through
supercharges [1]. SUSY provides dark matter candidates,
arising from the lightest supersymmetric particles [2]. In
addition to that, supersymmetric extensions of the Standard
Model would resolve the hierarchy problem [3]. N = 1
supersymmetric Yang–Mills (SYM) theory, which is being
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considered in this article, provides an extension of the pure
gluonic part of the Standard Model [4]. It describes the strong
interactions between gluons and gluinos, the superpartners
of the gluons. Gluinos are Majorana particles that transform
under the adjoint representation of the gauge group. The on-
shell Lagrangian of N = 1 SYM theory, which consists of
the gluon fields Aa

μ(x) and the gluino fields λa(x), where
a = 1, . . . , N 2

c − 1, can be written in Minkowski space as

LSYM = −1

4
Fa

μνF
a,μν + i

2
λ̄aγ μ(Dμλ)a − mg̃

2
λ̄aλa, (1)

where the first term, containing the field strength tensor Fa
μν ,

is the gauge part, and Dμ in the second term is the covariant
derivative in the adjoint representation of the gauge group
SU(Nc), Nc being the number of colors. The last part of the
above Lagrangian is a gluino mass term which breaks SUSY
softly for mg̃ �= 0, which means that it does not affect the
renormalisation properties of the theory and that the spectrum
of the theory depends on the gluino mass in a continuous
way. The physical spectrum of this theory is expected to
consist of bound states of gluons and gluinos, arranged in
mass degenerate supermultiplets if SUSY is not broken [5,6].

In order to perform Monte-Carlo simulations of the theory,
we discretise the Euclidean action and put it onto a four-
dimensional hypercubic lattice. We use the Curci–Veneziano
version [7] of the lattice action S = Sg+S f , where the gauge
part Sg is defined by the usual plaquette action

Sg = − β

Nc

∑

p

Re[tr(Up)], (2)
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with the inverse gauge coupling given by β = 2Nc/g2, and
the fermionic part

S f = 1

2

∑

x

⎧
⎨

⎩λ̄axλ
a
x − κ

4∑

μ=1

[λ̄ax+μ̂
Vab,xμ(1 + γμ)λbx

+λ̄ax V
T
ab,xμ(1 − γμ)λbx+μ̂

]
⎫
⎬

⎭ (3)

implements the gluinos as Wilson fermions. Here the adjoint
link variables are defined by Vab,xμ = 2 tr (U †

xμTaUxμTb),
where Ta are the generators of the gauge group, and the hop-
ping parameter κ is related to the bare gluino mass mg̃ by
κ = 1/(2mg̃ + 8). In order to approach the limit of van-
ishing gluino mass, the hopping parameter has to be tuned
properly. In our numerical investigations the fermionic part
is additionally O(a) improved by adding the clover term
−(csw/4) λ̄(x)σμνFμνλ(x) [8].

In our previous investigations we have determined the
low-lying mass spectrum of the theory with gauge group
SU(2) and SU(3) non-perturbatively from first principles
using Monte Carlo techniques [4,9–11], and obtained mass
degenerate supermultiplets [12].

2 SUSY Ward identities

In classical physics, Noether’s theorem provides a relation
between symmetries and conservation laws. In the case of
quantum field theories, symmetries are translated to Ward
identities, representing quantum versions of Noether’s theo-
rem. In N = 1 supersymmetric Yang–Mills theory a gluino
mass term breaks SUSY softly. The soft breaking effects van-
ish in the chiral limit, a limit where theory is characterised by
massless gluinos. In order to analyse this breaking of super-
symmetry and to identify the chiral limit, we employ the
Ward identities for supersymmetry. Moreover, on the lattice
supersymmetry is broken explicitly due to the introduction
of the discretisation of space-time lattice as a regulator of the
theory. SUSY Ward identities can be used to check whether
supersymmetry is restored in the continuum limit.

In the Euclidean continuum, on-shell supersymmetry
transformations of the gauge and gluino fields are given by

δAa
μ = −2 i λ

a
γμ ε, δλa = −σμνF

a
μν ε, (4)

where the transformation parameter ε is an anticommuting
Majorana spinor. From the variation of the action under a
supersymmetry transformation with a space-time-dependent
parameter ε(x) one derives the SUSY Ward identities. For
any suitable gauge invariant local operator Q(y), they read

〈
∂μSμ(x)Q(y)

〉 = mg̃ 〈χ(x)Q(y)〉 −
〈
δQ(y)

δε̄(x)

〉
, (5)

where Sμ(x) = (Sα
μ(x)) is the supercurrent of spin 3/2, and

the term mg̃ 〈χ(x)Q(y)〉 is due to the gluino mass in the
action of the theory. In the continuum the supercurrent Sμ(x)
and the operator χ(x) are given by

Sμ(x) = −2 i

g
tr[Fνρ(x)σνργμλ(x)], (6)

χ(x) = +2 i

g
tr[Fμν(x)σμνλ(x)]. (7)

The last term of Eq. (5) is a contact term, which contributes
only if x = y, and it can be avoided if Q(y) is not localised
at x . Therefore the contact term is ignored in the following
discussions.

The four-dimensional space-time lattice breaks SUSY
explicitly. As a consequence, the lattice versions of the Ward
identities differ from their continuum counter parts by an
additional term 〈XS(x)Q(y)〉. The explicit form of this term
is known, but need not be displayed here. At tree level this
term is proportional to the lattice spacing a and vanishes in
the limit of zero lattice spacing. At higher orders in perturba-
tion theory, nevertheless, the contribution of this term is finite
in the continuum limit due to divergences proportional to 1/a
that multiply the factor a. This plays a role for the renormal-
isation of the supercurrent and of the gluino mass [7,13]. In
the renormalisation of SUSY Ward identities, operators of
dimensions ≤ 11/2 have to be taken into account. They lead
to a modification of the gluino mass, and in addition a current
Tμ, mixing with the supercurrent, appears, corresponding to
an operator of dimension 9/2. Consequently, on the lattice
the following Ward identities are obtained

ZS
〈∇μSμ(x)Q(y)

〉 + ZT
〈∇μTμ(x)Q(y)

〉

= mS 〈χ(x)Q(y)〉 + O(a), (8)

where ZS and ZT are renormalisation coefficients. The sub-
tracted gluino mass is defined as mS = mg̃ − m̄, where m̄ is
the mass subtraction coming from the operators of dimension
7/2. The mixing current is defined as

Tμ(x) = 2 i

g
tr[Fμν(x)γνλ(x)]. (9)

Regarding the local insertion operator Q(y), our choice is
the spinor Q(y) = χ(sp)(y), with

χ(sp)(y) =
∑

i< j

tr[Fi j (y)σi jλ(y)], (10)

where the indices i, j ∈ {1, 2, 3}. The reason behind this
choice is that it gives the best signal [13].
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3 Numerical analysis of SUSY Ward identities

We have analysed the SUSY Ward identities numerically,
employing the configurations produced in our project on
N = 1 supersymmetric Yang–Mills theory with gauge group
SU(3). Numerically it is convenient to use integrated Ward
identities where integration or sum is performed over all three
spatial coordinates. The resulting identities will then hold
for every time-slice distance t . In the analysis the data from
all time-slice distances in an interval tmin ≤ t ≤ tmax are
included. The lower limit tmin is always taken to be larger
or equal than 3 in order to avoid contamination from contact
terms. The choice of tmin for the different ensembles of con-
figurations is discussed below. Since the correlation functions
are symmetric or antisymmetric in t , the upper limit tmax is
chosen to be half of the time extent of the lattice. Each term
in Eq. (8) is a 4×4 matrix in spin-space and can be expanded
in the basis of 16 Dirac matrices, i. e.

{
1, γ5, γμ, γμγ5, iσμν

}
.

It can be shown, with the help of discrete symmetries, that
only the following two contributions are non-zero [13]:

x̂b,t,1 + Ax̂b,t,2 = Bx̂b,t,3, with b = 1, 2, (11)

where A = ZT Z
−1
S , B = amS Z

−1
S , and

x̂1,t,1 ≡
∑

x
〈∇4S4(x)Q(0)〉 , x̂2,t,1 ≡

∑

x
〈∇4S4(x)γ4Q(0)〉 ,

x̂1,t,2 ≡
∑

x
〈∇4T4(x)Q(0)〉 , x̂2,t,2 ≡

∑

x
〈∇4T4(x)γ4Q(0)〉 ,

x̂1,t,3 ≡
∑

x
〈χ(x)Q(0)〉 , x̂2,t,3 ≡

∑

x
〈χ(x)γ4Q(0)〉 . (12)

In these equations the Dirac indices of S4(x), T4(x), χ(x)
and of the insertion operator Q(0) are not written, and sums
over repeated (hidden) Dirac indices are implied. Also, O(a)

terms that vanish in the continuum limit are not written
explicitly in these equations. Introducing a double index
i = (b, t), running over 2T values, where T is the time extent
of the lattice, and denoting A1 = 1, A2 = A, A3 = −B,
Eq. (11) is written compactly

3∑

α=1

Aα x̂iα = 0. (13)

In these equations the x̂iα = 〈xiα〉 are the expectation values
of random variables xiα , which themselves are considered
to be the results of a finite Markov chain. We compute the
estimators xiα for the correlation functions x̂iα numerically
using high performance facilities. The Eq. (13), including all
time-slice distances t from tmin to tmax , are solved simulta-
neously for Aα by means of minimal chi-squared methods.
Two methods, namely the so-called local method and global
method, have been used in the past by our collaboration
[4,13]. These methods, however, do not take properly into

account correlations between the different quantities appear-
ing in Eq. (13). For this purpose we have developed a new
method based on a generalised least squares fit, the so-called
GLS method [14], based on the maximum likelihood. For
fixed Aα (α = 1, 2, 3) and given numerical data xiα , the
probability distribution P ∼ exp(−L) of the quantities x̂iα ,
subject to the constraints (13), has its maximum at a point
where L = Lmin , with

Lmin = 1

2

∑

i,α, j,β

(Aαxiα)(D−1)i j (Aβx jβ), (14)

where

Di j =
∑

α,β

AαAβ(〈xiαx jβ〉 − 〈xiα〉〈x jβ〉). (15)

Next, the desired coefficients Aα have to be found such that
Lmin as a function of A2 and A3 is minimised. This cannot
be solved analytically, and we find Aα numerically such that
the global minimum of Lmin(A2, A3) is reached; for details
see Ref. [15]. In particular, owing to A3 = −amS Z

−1
S this

provides us with the subtracted gluino mass mS up to the
renormalisation factor. To estimate the statistical uncertain-
ties we employ the standard Jackknife procedure.

3.1 Discretisation effects

All terms in the Ward identity (8), including the O(a) term
〈XS(x)Q(y)〉, are correlation functions of gauge invariant
operators. In the corresponding Eq. (11) they are correlation
functions of operators localised on time slices or pairs of
adjacent time slices at distance t . As for any gauge invariant
correlation function of this type, they decay exponentially in
t , with a decay rate given by the mass gap of the theory. For
very small t the contributions of higher masses will affect the
impact of the O(a) term on the Ward identities. Therefore
we expect that the value of the obtained gluino mass will
depend on the minimal time slice distance tmin . This effect
should become negligible at sufficiently large tmin . On the
other hand, if tmin is chosen too large, noise in the data will
dominate. The behaviour that can be observed in Fig. 1 is
compatible with these expectations.

An adequate choice of tmin is therefore important for the
quality of the results. We cope with this in two ways.

In order to avoid perturbing effects at too small tmin and a
poor signal-to-noise ratio at too large tmin , for each hopping
parameter and inverse gauge coupling, the value of tmin is
selected by finding an optimal starting point where a plateau
in the subtracted gluino mass begins. The results are pre-
sented in Table 1.

In the second approach, we consider that our simulations
of the theory are done at different values of the lattice spacing
a, which leads to different O(a) terms in the Ward identities.
A fixed value of tmin in lattice units would mean a lower
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Fig. 1 The subtracted gluino mass amS Z
−1
S as a function of tmin calculated with the GLS Method at β = 5.6. At small values of tmin the subtracted

gluino mass is affected by contact terms and by O(a) terms. Data from tmin = 2 and tmin = 3 are shown, but do not enter our final analysis

Table 1 The values of tmin for
all available gauge ensembles,
chosen such that a plateau is
formed

β = 5.4 β = 5.4 β = 5.45 β = 5.5 β = 5.6

V = 123 × 24 V = 163 × 32 V = 163 × 32 V = 163 × 32 V = 243 × 48

κ tmin κ tmin κ tmin κ tmin κ tmin

0.1695 4 0.1692 4 0.1685 5 0.1667 5 0.1645 7

0.1700 4 0.1695 4 0.1687 5 0.1673 5 0.1650 7

0.1703 4 0.1697 4 0.1690 5 0.1678 5 0.1655 6

0.1705 4 0.1700 4 0.1692 5 0.1680 5 0.1660 7

– – 0.1703 4 0.1693 4 0.1683 5 – –

– – 0.1705 4 – – – – – –

limit on the time-slice distances in physical units, that is on
the cutoff-scale and shrinks to zero in the continuum limit.
Instead it would be more appropriate to consider tmin at con-
stant physical distance for all gauge ensembles. This is done
in the following way.

At the coarsest lattice spacing, at inverse gauge coupling
β0, the value of tmin is selected according to the plateau cri-
terion explained above. For finer lattice spacings at inverse
gauge couplings βi the corresponding tmin are then obtained
by scaling with a physical scale. In order to determine the
physical scale we use the mass mgg̃ of the gluino-glue parti-

cle and the Wilson flow parameter w0. Correspondingly, tmin

is scaled according to

tmin,βi = tmin,β0

mgg̃,β0

mgg̃,βi
, (16)

or tmin,βi = tmin,β0

w0,βi

w0,β0

, (17)

where β0 = 5.4, β1 = 5.45, β2 = 5.5, and β3 = 5.6. The
resulting tmin is rounded to the nearest integer value. The
values obtained by this method are collected in Table 2. In
most points they are equal or almost equal to those in Table 1.
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Table 2 The values of tmin at fixed physical temporal distance from
scaling with the gluino-glue mass mgg̃ and with the Wilson flow param-
eter w0

β tmin from mgg̃ tmin from w0

5.4 4 4

5.45 5 5

5.5 5 6

5.6 7 7

3.2 Adjoint pion and remnant gluino mass

The chiral limit is defined by the vanishing of the subtracted
gluino mass. Its measured values can therefore be employed
for the tuning of the hopping parameter κ to the chiral limit.
On the other hand, we can also use the vanishing of the adjoint
pion mass ma-π for the tuning [16]. The adjoint pion a-π is
an unphysical particle in the SYM theory, that can be defined
in partially quenched chiral perturbation theory [17]. In the
numerical simulations its correlation function can be com-
puted as the connected piece of the correlation function of the
a-η′ particle. Similar to the Gell-Mann-Oakes-Renner rela-
tion of QCD [5], in the continuum limit there is a linear rela-
tion between the adjoint pion mass squared and the gluino
mass: m2

a-π ∝ mg̃ .
The numerical results for the subtracted gluino mass from

the Ward identities and the adjoint pion mass squared in lat-
tice units are shown for β = 5.6 in Fig. 2 together with their
extrapolations towards the chiral limit.

In the continuum the subtracted gluino mass and the
adjoint pion mass should vanish at the same point. On the
lattice, however, this is not the case due to lattice artefacts.
As an estimate for this discrepancy we determine the value
of the subtracted gluino mass at vanishing adjoint pion mass.
This quantity is called the remnant gluino mass �(amSZ

−1
S ),

and it is expected to vanish in the continuum limit. The values
of the remnant gluino mass, obtained by taking an average of
the values calculated using the procedures explained above,
are presented in Table 3.

3.3 Continuum limit

The remnant gluino mass is a lattice artefact and should van-
ish in the continuum limit a → 0. It is therefore a quan-
tity to check on whether supersymmetry is recovered or not.
Concerning the dependence of the remnant gluino mass on
the lattice spacing, arguments based on partially quenched
chiral perturbation theory suggest that the remnant gluino
mass is of order a2 at m2

a-π = 0 [13]. In order to investigate
this relation, the remnant gluino mass has to be expressed in
physical units. Our choice for the scale is the Wilson flow
parameter w0, which is defined through the gradient flow
[10]. We use its values extrapolated to the chiral limit, w0,χ .
Similarly the lattice spacing is represented by a/w0,χ . Our
numerical results for the remnant gluino mass as a function
of the lattice spacing and its extrapolation towards the con-
tinuum limit are shown in Fig. 3. The data points in Fig. 3a
show the results from separate chiral extrapolations for each

(a) (b)

Fig. 2 Chiral limit and determination of the remnant gluino mass at β = 5.6. All quantities are in lattice units

Table 3 The values of the
remnant gluino mass
�(amS Z

−1
S ) obtained at four

different values of the inverse
gauge coupling

β 5.4 5.45 5.5 5.6

�(amS Z
−1
S ) 0.0334(48) 0.019(12) 0.0099(88) 0.0103(33)
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(a) (b)

Fig. 3 The remnant gluino mass �(w0mS Z
−1
S ) in physical units w0 as a function of the lattice spacing squared, and its linear extrapolation towards

the continuum limit

lattice spacing and the corresponding extrapolation to the
continuum limit. The extrapolation to the continuum and the
error of this extrapolation are obtained by means of paramet-
ric bootstrap with linear fits. On the other hand, Fig. 3b is
obtained by means of a simultaneous fit of the dependence
on the hopping parameter and the lattice spacing [18].

The remnant gluino mass in the continuum limit is com-
patible with zero within one standard-deviation, confirming
the preliminary results present in Ref. [15] with only two
data points. Lattice artefacts vanish in the continuum limit as
expected, and supersymmetry is recovered in the chiral and
continuum limits, in agreement with our findings from the
mass spectrum [12].

4 Conclusion

In this paper we have presented numerical results of an anal-
ysis of SUSY Ward identities in N = 1 supersymmetric
Yang–Mills theory on the lattice with gauge group SU(3).
Contact terms and O(a) lattice artefacts in the Ward iden-
tities have been controlled by suitable choices of time-slice
distances. Ensembles of gauge configurations at four differ-
ent values of the lattice spacing and various hopping param-
eters have been analysed, allowing us for the first time to
perform an extrapolation to the continuum limit, where the
lattice artefacts vanish. The remnant gluino mass has been
extrapolated in two alternative ways, on the one hand by
extrapolating to the chiral limit at each lattice spacing sepa-
rately and then to the continuum limit, and on the other hand
by means of a simultaneous extrapolation to the chiral and
continuum limit. With both extrapolations the lattice artefacts
in the subtracted gluino mass appear to scale to zero as of
order a2 in agreement with the theoretical expectations. Our

findings support the validity of SUSY Ward identities and
the restoration of supersymmetry in the continuum limit.
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