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Well-Posedness for a System of Quadratic
Derivative Nonlinear Schrodinger Equations
with Radial Initial Data

Hiroyuki Hirayama, Shinya Kinoshita and Mamoru Okamoto

Abstract. In the present paper, we consider the Cauchy problem of the
system of quadratic derivative nonlinear Schrédinger equations. This sys-
tem was introduced by Colin and Colin (Differ Integral Equ 17:297-330,
2004). The first and second authors obtained some well-posedness results
in the Sobolev space H*(R%). We improve these results for conditional
radial initial data by rewriting the system radial form.

1. Introduction
We consider the Cauchy problem of the system of nonlinear Schrédinger equa-
tions:

(10 + aA)u = —(V -w)v, t>0, 2 € RY

(i0; + AW = —(V -W)u, t>0, z € R,

(i0y +yA)w = V(u-7), t>0, 2 € R,

(1 0,100 = (110, 09, w) € (H*(RY))® x (H* (R x (H*(RA))1,

(1.1)

where «, 3, v € R\{0} and the unknown functions u, v, w are d-dimensional
complex vector-valued. System (1.1) was introduced by Colin and Colin in [6]
as a model of laser—plasma interaction. (See also [7,8].) They also showed that
the local existence of the solution of (1.1) in H*(R?) for s > % + 3. System
(1.1) is invariant under the following scaling transformation:

Axt,z) = X TANTH AT ) (A = (u,0,w)), (1.2)
and the scaling critical regularity is s, = g — 1. We put
1 1 1
:=afy|l———=—— , k= (a—pP)(a— + 7). 1.3
r(5-5-7) mm@-Ma-NE+) 03
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TABLE 1. Well-posedness (WP for short) for (1.1) proved in [15]

d=1 d=2,3 d>4
0>0 ‘WP for s >0 WP for s > s¢ WP for s > s¢
0=0 WP for s > 1 WP for s > 1

Kk#0and 6 <0 WPforsZ%

We note that k£ = 0 does not occur when 6 > 0 for «, 3, v € R\{0}.

First, we introduce some known results for related problems. System (1.1)
has quadratic nonlinear terms which contain a derivative. A derivative loss
arising from the nonlinearity makes the problem difficult. In fact, Mizohata
[21] considered the Schrédinger equation

i0u — Au= (by(z)-V)u, teR, xR
u(0,7) = ug(z), z€R?

and proved that the uniform bound

sup
zER™ ,wEST 1, R>0

R
Re/ bi(z +rw) - wdr| < oo
0

is a necessary condition for the L?(R?) well-posedness. Furthermore, Christ [5]
proved that the flow map of the nonlinear Schrédinger equation

{i@tu — 0%u=ud,u, teER, z€R,

u(0,2) = up(z), zeR (1.4)

is not continuous on H*(R?) for any s € R. From these results, it is difficult
to obtain the well-posedness for quadratic derivative nonlinear Schrodinger
equation in general. For the system of quadratic derivative nonlinear equations,
it is known that the well-posedness holds. In [15], the first author proved the
well-posedness of (1.1) in H*(R?), where s is given in Table 1.

Recently, in [16], the first and second authors have improved this result
by using the generalization of the Loomis—Whitney inequality introduced in
[2] and [3]. They proved the well-posedness of (1.1) in H*(R?) for s > 3 if
d=2and s > $ if d = 3, under the condition x 0 and § < 0. In [15], the
first author also proved that the flow map is not C? for s < 1 if § = 0 and for
s < 3 if 0 < 0 and k # 0. Therefore, the well-posedness obtained in [15] and
[16] is optimal except the case d = 3 and s = % (which is scaling critical) as
far as we use the iteration argument. In particular, the optimal regularity is
far from the scaling critical regularity if d < 3 and 6 < 0.

We point out that the results in [15,16] do not contain the scattering of
the solution for d < 3 under the condition § = 0 (and also 8 < 0). In [17],
Ikeda, Katayama, and Sunagawa considered the system of quadratic nonlinear
Schrodinger equations

1
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under the mass resonance condition my + mg = mgs (which corresponds to
the condition § = 0 for (1.1)), where u = (uy,us,us) is C3>-valued, my, ma,
mg € R\{0}, and F} is defined by

F1 (u,@lu) = Z|a|;|3|§1 017%5((90"112)(8511,3),
Fy(u, 05u) = 3210 1511 C1,08(07us) (0%un), (1.6)
Fg(u,(?wu) = Z|a|a|/3|§1 C17a75(6°‘u1)(85uQ)

with some constants C 4,8, C2,a,8, C3,a,3 € C. They obtained the small data
global existence and the scattering of the solution to (1.5) in the weighted
Sobolev space for d = 2 under the mass resonance condition and the null
condition for the nonlinear terms (1.6). They also proved the same result for
d > 3 without the null condition. In [18], Tkeda, Kishimoto, and Okamoto
proved the small data global well-posedness and the scattering of the solution
to (1.5) in H*(R%) for d > 3 and s > s. under the mass resonance condition
and the null condition for the nonlinear terms (1.6). They also proved the local
well-posedness in H*(R?%) ford = 1 and s > 0, d = 2 and s > s., and d = 3 and
s > s. under the same conditions. (The results in [15] for d < 3 and 6 = 0 say
that if the nonlinear terms do not have null condition, then s = 1 is optimal
regularity to obtain the well-posedness by using the iteration argument.)

Recently, in [23], Sakoda and Sunagawa have considered (1.5) for d = 2
and j =1,..., N with

Fi(w,0pu) = > Y Coposuf) @], (1.7)

la],|B|<1 1<k, I<2N

where u” = w; if j = 1,...,N, and v/ =% if j = N +1,...,2N. They
obtained the small data global existence and the time decay estimate for the
solution under some conditions for myq,---my and the nonlinear terms (1.7),
where the conditions contain (1.1) with § = 0. There exists the blow-up solu-
tions for the system of nonlinear Schrodinger equations. Ozawa and Sunagawa
[22] gave the examples of the derivative nonlinearity which causes the small
data blow-up for a system of Schrédinger equations. There are also some known
results for a system of nonlinear Schrodinger equations with no derivative non-
linearity [12-14].

The aim in the present paper is to improve the results in [15,16] for
conditional radial initial data in R? and R3. The radial solution to (1.1) is
only trivial solution since the nonlinear terms of (1.1) are not radial form.
Therefore, we rewrite (1.1) into a radial form. Here, we focus on d = 2. Let
S(R?) denote the Schwartz class. If w = (w1, ws) € (S(R?))? satisfies

EH-B(8) = Lwa () — LUi(E) =0, ™ - w(x) = zrws(z) — wow () =0
(1.8)

for any & = (£1,&) € R? and © = (z1,72) € R?, then there exists a scalar
potential W € C'(R?) satisfying

VW (z) = w(z), "zeR? (1.9)
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and

%W(rcosﬁ,rsinﬁ) =0, Y(r,9)€0,00) x [0,27). (1.10)

Indeed, if we put

W(x) 12/ wl(yl,$2)dyl+/ wa (a1, y2)dys

1 az
for some a1, az € R, then W satisfies (1.9) by the first equality in (1.8).
Furthermore, W also satisfies (1.10) by the second equality in (1.8). We note
that the first equality in (1.8) is equivalent to

VE - w(z) = 01wy (x) — daws () = 0,
which is the irrotational condition.

Remark 1.1. If d = 3, we can also obtain the radial scalar potential W €
CHR3) of w = (w1, ws,w3) € (S(R?))3 by assuming the conditions

Exw(E) =0, x xw(x)=0 (1.11)
instead of (1.8).
Definition 1. We say f € S’'(R?) is radial if it holds that
<f,poR>=< f,p>
for any ¢ € S(R?) and rotation R : R? — R
Remark 1.2. If f € LL _(R?), then Definition 1 is equivalent to

loc
Fg:R — Cs.t. f(z) =g(Jz|), ae xzecR%
Now, we consider the system of nonlinear Schrédinger equations:
(i0; + aA)u = —(AW)v, t>0, 2 € RY,
(i0; + AW = —(AW)u, t>0, x € R?,
(10 + YA)VW =V (u-7), t>0, € RY,
(u, v, [W])|i=0 = (uo, vo, [Wo]) € H*(RY)
instead of (1.1), where d = 2 or 3, and
H*(RY) 1= (Hipa(RY)? x (Hpa(RY)? x HGH(RY),
5o (RY) = {f € H*(RY)| f is radial},
HP(RY) = {f € S'(RY)| V€ (H*(RY)"}/No,
No = {feS'RY)| Vf=0},
HEHRY) == {[f] € HH(RY)]| f is radial}.

The norm for an equivalent class [f] € H*t1(R?) is defined by
I M zzers == WV Fllcareya ~ I f e + 11F g

which is well defined since H¥71(R?) is a quotient space. System (1.12) is
obtained by substituting w = VW and wg = VWWy in (1.1).

(1.12)
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Definition 2. We say (u,v, [W]) € C([0,T]; H*(R?)) is a solution to (1.12) if

t
u(t) _ eitaAuo +i/ ei(tft')aA(AW(t/))U(t/)dt/ in (Hs(Rd))d,
0

t
o(t) = €53y + i / =B ATT@)o(#)dt in (H*(RY),
0
t —_—
VW (t) = e"AVW, — i / =AY (u(t') - o(t))dt’ in H*(RY)
0
hold for any ¢ € [0,T]. This definition does not depend on how we choose a
representative W.

Now, we give the main results in this paper.

Theorem 1.1. Assume k # 0.

(i) Let d = 2. Assume that s > % if 6 =0 and s > 0 if 0 < 0. Then, (1.12)
is locally well posed in H*(R?).

(i) Let d = 3. Assume that 0 < 0 and s > 5. Then, (1.12) is locally well
posed in H*(R3).

(iii) Let d = 3. Assume that 0 < 0 and s > 3. Then, (1.12) is globally well
posed in H*(R3) for small data. Furthermore, the solution scatters in
HE(R3).

Remark 1.3. s =0ford=2,and s = % for d = 3 are scaling critical regularity

for (1.1).

We obtain the following.

Theorem 1.2. Let d =2 and 6 = 0. Then, the flow map of (1.12) is not C? in
H*(R?) for s < 3.

Remark 1.4. Theorem 1.2 says that the well-posedness in Theorem 1.1 for
0 = 0 is optimal as far as we use the iteration argument.

Remark 1.5. 1t is interesting that the result for 2D radial initial data is better
than that for 1D initial data. Actually, the optimal regularity for 1D initial
datais s=1if 0 =0, and s = % if # < 0 and k # 0, which are larger than the
optimal regularity for 2D radial initial data. The reason is the following. We
use the angular decomposition, and each angular localized term has a better
property. For radial functions, the angular localized bound leads to an estimate
for the original functions. (See (2.15).)

We note that if VIWy = wp holds and (u, v, [W]) is a solution to (1.12)

with (u, v, [W])|t=0 = (uo,v0, [Wo]) € H*(RY), then (u,v, VW) is a solution to
(1.1) with (u, v, VW)|i=0 = (ug,vo, wo) € (HE4(R?))¥x (HE 4(R?))?x H*(RY).
The existence of a scalar potential Wy € HH!(R?) will be proved for wy €

A*(R?) with s > 1 (see Proposition 3.2), where
A*(R?) == {f = (f1, fo) € (H*(R?))?| f satisfies (1.8) a.e.z,& € R?*},
A*(R?) == {f = (f1, fo, f3) € (H*(R®))®| [ satisfies(1.11) a.e.z,§ € R*}.

Therefore, we obtain the following.
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Theorem 1.3. Let d = 2 or 3. Assume that @ = 0 and s > %. Then, (1.1) is
locally well posed in (HE,;(RY))? x (HE 4(RT))? x A%(RY).

rad

Remark 1.6. For d = 3, Theorem 1.1 can be obtained by almost the same
way as in [15]. In Proposition 4.4 (i) of [15], the author used the Strichartz
estimate

l€"2 Pyl Loy mxray S | Pvtol|z2

and

T 3
Nmax/ / (Prvyun) (Pryuz)(Pryus)dedt| S Nigo [T 1w usllcc
0 R4 S ’

Jj=1

with an admissible pair (¢, r) = (3, 33%4) for d > 4. But this trilinear estimate

does not hold for d = 3. This is the reason why the well-posedness in H*(R3)
could not be obtained in [15]. For the radial function ug € L?(R?), it is known
that the improved Strichartz estimate ([24], Corollary 6.2)

e Prvuoll s iy S N 76| Pyvuol| -

It holds that

T 1 3 1
Mm//UWM%mWMWMSMmHWWWmL
0 R3 !

j=1

for Ny ~ Ny ~ N3 > 1. Therefore, for d = 3, we can obtain the same estimate
in Proposition 4.4 (i). Because of such reason, we omit more detail of the proof
for d = 3 and only consider d = 2 in the following sections.

Notation. We denote the spatial Fourier transform by = or F,, the Fourier
transform in time by F; and the Fourier transform in all variables by ~ or
Fio. For o € R, the free evolution e*“® on L? is given as a Fourier multiplier

Fale*211(€) = e " H 1 (e).

We will use A < B to denote an estimate of the form A < C'B for some constant
C and write A ~ Btomean A < B and B < A. We will use the convention that
capital letters denote dyadic numbers, e.g. N = 2" for n € Ny := NU{0}, and
for a dyadic summation, we write >y any = >, oy, @20 and Y ys an =
> neNg.an> s @2 for brevity. Let x € C§°((—2,2)) be an even, non-negative
function such that x(¢) = 1 for [{] < 1. We define 9(t) = x(t) — x(2t),
P1(t) == x(t), and ¥y (t) := (N ~'t) for N > 2. Then, Yy n(t) = 1. We
define frequency and modulation projections

Pru(€) == ¥ (E)a(€), QFu(r,€) == br(r + ole[)a(r, ).

Furthermore, we define QZ,, :=>",+,, Q7 and Qcar := Id — Q> -

The rest of this paper is planned as follows. In Section 2, we will give the
bilinear estimates which will be used to prove the well-posedness. In Sect. 3,
we will give the proof of Theorems 1.1 and 1.3. In Sect.4, we will give the
proof of Theorem 1.2.
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2. Bilinear Estimates

In this section, we prove the bilinear estimates. First, we define the radial
condition for time-space function.

Definition 3. We say u € S’(R; x R2) is radial with respect to x if it holds
that

<u,pr >=<u,p >

for any ¢ € S(R; x R2) and rotation R : R? — R? where pr € S(R; x R2) is
defined by pgr(t,x) = o(t, R(z)).

Next, we define the Fourier restriction norm, which was introduced by
Bourgain in [4].
Definition 4. Let s € R, b € R, 0 € R\{0}.
(i) We define X3 := {u € 8'(Ry x R2)| [[ufl g0 < 00}, where

lull gz := 146)° (7 + o€ a(r, )l 2, ~ | D D N*L*|QF Pyulie

N>1L>1
(i) We define X341 = {u € S'(R, x R2)| Vu € X5}/A’ with the norm
Nl = 190l gz,

where N := {u € §'(R; x R2)| Vu = 0}.
(iii) We define

s,b
arad

orad ={[u] € X§+1’b| w is radial with respect to x}

‘We put

- 1 1 1 -
0 := 010903 ( + — + ) , k:=(01+02)(02+03)(03+ 071).

g9 g3
We note tkla‘t if (0'15 g2, 03) € {(ﬁv Vs —Oé), (_7a a, _ﬁ)v (Oé, _ﬁy _7)}7 then it
hold that 8 = 0 and || = ||
The following bilinear estimate plays a central role to show Theorem 1.1.

Proposition 2.1. Let 01, 02, 035 € R\{0} satisfy k # 0. Let s > 3 if0=0 and
5> 0if 6 < 0. Then there exists b’ € (0,3) and C > 0 such that

V1) v < Cllll g ol (2.1)

||<AU>v||X5_.,<u < C(H&UIIX;.]V 0T ool (22)

and [U] € X510

oi,rad *

UEX’

o1, rad ’ og,rad’

hold for any u € X%
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Remark 2.1. Since ||31(uv)||Xi,_b/ + ||82(uv)|\Xi_,_b/ ~ |||V\(uv)||Xi,_,,/, (2.1)
implies ’ ’ ’

101 (u)]|

/ .
X5

+ ”82(11’/0)”)(57’;3’3’ < CHU’”)(?IV ||’U||

X
Dy
To prove Proposition 2.1, we first give the Strichartz estimate.

Proposition 2.2. (Strichartz estimate (cf. [11,19])). Let o € R\{0} and (p,q)
be an admissible pair of exponents for the 2D Schrddinger equation, i.e. p > 2,
% + % = % Then, we have

le* 72 oll Lprarxrz) S lollzz g2)-

for any ¢ € L*(R?).

The Strichartz estimate implies the following. (See the proof of Lemma
2.3 in [10].)

Corollary 2.3. Let L € 2% o € R\{0}, and (p,q) be an admissible pair of
exponents for the Schrodinger equation. Then, we have

1
1QTullrrry S L2 QT ullzz, - (2.3)
for any u € L*(R x R?).
Next, we give the bilinear Strichartz estimate.

Proposition 2.4. We assume that o1, oo € R\{0} satisfy o1 + o2 # 0. For any
dyadic numbers N1, Ny, N3 € 2No and Ly, Ly € 2N, we have

1PN, (QF) Py un - QT Pryuz) | 12, rxre)
Nuin \? 1 1 ) (2.4)
S <N> L} L3 QT Prnyutll 2, (rxr2) |Q7% Pryuz|l 12, (rxr2),

where Nmin = minlgigg Ni, Nmax = MaxXj<i<3 Nz

Proposition 2.4 can be obtained by the same way as Lemma 1 in [9]. (See
also Lemma 3.1 in [15].)
Corollary 2.5. Let b € (1,1), and o1, 02 € R\{0} satisfy o1+ 02 # 0, We put
6= % — . For any dyadic numbers N1, Na, N3 € 2No gnd Ly, Ly € 2V, we
have

||PN3(QEPN1U1 : QZZPN2u2)”L?m(RxR2)
(2.5)

125
N i 2 ’ /7
SN, (Nmm ) LY LY QT Pryuall 2, (mxre) |QT2 Pryuallr2, (rxi2)-
max

The proof is given in Corollary 2.5 in [16].
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2.1. The Estimates for Low Modulation

In this subsection, we assume that L. < N2

Lemma 2.6. We assume that o1, 0a, 03 € R\ {0} satisfy K # 0 and (11,&1),
(12,62), (13,€3) € R X R? satisfy 1 + 72+ 713 = 0, & + & + & = 0. If
maxi<;<3 ‘Tj + Jj|€j|2| < maxi<;<3 |§j|2, then we have

€1] ~ [&2] ~ |€3]-

Since the above lemma is the contrapositive of the following lemma which
was utilized in [15], we omit the proof.

Lemma 2.7. (Lemma 4.1 in [15]) We assume that o1, 02, o3 € R\{0} satisfy
R #0and (11,61), (12,&2), (73,83) € RXR? satisfy Ti4+724+73 = 0, &1+Ea+E3 =
0. If there exist 1 < 1,5 < 3 such that |§;| < |&;], then we have

o 7 + o3l 2 max 6% (26

Lemma 2.6 suggests that if max;<;<s |7; +(fj|£j|2| < maxi<;<3|&;|* then
we can assume

2
. 2.
lrilax |75 +UJ|§J| | < r<nn<13|§j| (2.7)

We first introduce the angular frequency localization operators which were
utilized in [1].

Definition 5 [1]. We define the angular decomposition of R? in frequency. We
define a partition of unity in R,

1:ij, w;(s) =Y(s —j) (Zws— ) .

JEZL keZ

For a dyadic number A > 64, we also define a partition of unity on the unit

circle,
A—-1
A A9
1= wi wf)=w; (50) +ura (2).
j=0

We observe that w]A is supported in
A_ [T 9y T s }{f Ty _pa T }
6} =[50-2 FU+D|U[-r+ 5 (-2, —m+ 2 (+2)].
We now define the angular frequency localization operators RJA,

Fo(RA)(E) = wi(9)Fof(€),  where & = [¢[(cos ), sind)).

For any function u : R x R? — C, (t,z) — u(t,x), we set (R;-‘u)(t,x) =
(R;‘u(t, -))(z). This operator localizes function in frequency to the set

D = {(7,[¢] cos ¥, [¢| sin)) € R x R?* [ € ©7'}.



2620 H. Hirayama et al. Ann. Henri Poincaré

Immediately, we can see

The next lemma will be used to obtain Proposition 2.1 for the case 6=0.

Lemma 2.8. Let N, Ly, Lo, Lz, A € 2. We assume that o1, 02, 03 € R\{0}
satisfy 0 = 0 and (11,61), (72,&), (73,&3) € R x R? satisfy 71 + 72 + 73 = 0,
E1+&+E =0, 5] ~ N, |Ti+0'¢‘fi|2| ~ L;, and (14,&;) € @ﬁ (i=1,2,3) for
some ji, j2, j3 € {0, 1,. —1}. If Ny ~ Ny ~ N3, Lyax = maxi<ij<3 L; <
N2, A2 and A > 1 hold then we have min{|j; — jo|,|A — (j1 — j2)|} < 1,
min{|jz — js|,[A = (j2 = j3)[} S 1, and min{|j1 —js[,[A — (j1 — Ja)[} S 1.

Proof. Because 0 = 9—010203( -+ 2 —|— )— 0109 + 0203 + 03071, we have
(0'1 +O’3)(O’2 +0’3) = 0102 + 09203 + 0301 +O’§ = O'% > 0.

We put p := sgn(oy + 03) = sgn(os + 03), ¢ := sgn(os). Let £(&1,&) € [0,7]
denote the smaller angle between & and &;. Since

loy + 03|%|02 + 03|% o090 (1 1 1
oa LR TR

we have
maxA > Lm&x

2 lo1lé|® + o2&l + o5lé1 + &
= |(o1 + 03)|&1]* + (02 + 03)|&|* + 203]&1[|€2] cos £(£1, &)
= [p(jo1 + 03]2 |&1| — |02 + 03] &)
+ 2161 ||| (ploy + 03] 2|02 + 03]% + glos| cos £(&1,£2))]
=[(lo1 + 03]2 |&1] — |02 + 03] [€2])? + 2|os]€1]|€2 (1 + pg cos £(¢1, &)
> 2|os||&1]|€2](1 + pg cos £(&1,&2)).

Therefore, we obtain
1 —cosZ(&1,&) S A2 if (01 4 03)03 < 0,
1+cosZ(&1,&) S A2 if (o1 + 03)o3 > 0.
This implies
L(&,6) S A b orm— £(&,86) S AL
Therefore, we get min{|j; — ja|, |4 — (j1 — j2)|} < 1. By the same argument,
v<ve1also get min{|ja — js|, |A— (j2 — J3)|} < 1 and min{|j; — js|, |[A — (j1 *jg)g

Now we introduce the necessary bilinear estimates to obtain Proposi-
tion 2.1 for the case 6 < 0.
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Theorem 2.1. (Theorem 2.8 in [16]) We assume that o1, 02, o5 € R\{0} satisfy

% #0 and 0 < 0. Let Lyay := maxy<j<s(Ly, Ly, L3) < ||N2,., A > 64, and
|71 — J2| S 1. Then the following estimates hold:
1QLT Py, (R QT Prnyus - R, Q72 Pyus)| 2.
R o o
S AL LR QT Pryual s, | R, QT2 Pryusl ., (2.8)
IR} QL7 P, (R, QT2 Pryug - Q7 Pyus) |1z,
_i1,+ 1 p p
S A2 L3 L3||IR;, Q7 Pryuz e, Q7 Pryusllrz, (2.9)
IR, QL7 Pry (QT, Pyus - Ry, Q7 Prvyua)llrs,
_i1,.+ L 5 p
S AL L QT Pryusl 12, | RA Q7 Prvyuallzz, - (2.10)

Proposition 2.9. (Proposition 2.9 in [16]) We assume that o1, 02, 03 € R\{0}
satisfy & # 0 and 0 < 0. Let Lyax < [0]N2,, and 64 < A < Nyay, 16 <
|71 — Jo| < 32. Then the following estimate holds:

1QLT Prn, (R QT Prnyus - R, Q72 Pyus)| 2,

PRSP DU DU SR A (2.11)
S AINy LT L3 L3 || R, QT Pnyuallzz, [R5, QT Pryuzllrs, -

2.2. Proof of Proposition 2.1
By the duality argument, we have

[VI(uo)]| yormwr S sup [V |(uv)wdzdt
—93

=1
Il o0

)

AUl S sup

—o3

/ (AU)vwdxdt‘

=1
Il

< s (' / 61(61U)vwdxdt‘ 4 ‘ / 82(32U)vwdzdt‘> ,

< P
ol

where we used (Qr7°f,9)r2. = (f,Q7%9) 12, - Since |V|(uv) and (AU)v are
radial with respect to x, we can assume w is also radial with respect to x.
Therefore, to obtain (2.1), it suffices to show that

> D MNum

N1,N2,N3>1L1,L2,L3>1

/UNl,leNz,LQwNS,Lsdxdt‘
(2.12)

< Nl o 10l o
for the radial functions u, v, and w, where we put

R g1 P o2 R o3
UNy,Ly = QL1PN1u7 UNg,Ly = QLQPNzuv WN3,Ls *= QL3PN3w
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and used (Q7° f,9)r2, = (f, Q7 9) 2, . By Plancherel’s theorem, we have

’/uNl,leNg,LWNg,Lsdxdt'

~ Ali&igg_gFtw[’Ule,Ll](Tla51)]:tz['UN2,L2](7—27f2)ftz[wN3,L3](7—37£3) .
T1 T2TT3=

We only consider the case N3 < Ny ~ N3, because the remaining cases Ny <
N3 ~ Ny and N3 < Nj ~ Ny can be shown similarly. It suffices to show that

N,

/ uleLl’UNz,szNS,Ldedt’
(2.13)

N\
N (Nz) NY(LaLaLs)®lluny, il 22, 10Ny, 2o |l 22, 1w, s |l p2,

for some b’ € (0,1), c € (0,), and € > 0. Indeed, from (2.13) and the Cauchy—
Schwarz inequality, we obtain

> >, M

Ny SNy~Ng Ly, Lo, Lz >1

Ni\°
S Y X (§) Mtaremlun, e low. e low, o e
N, <Ny~ Ny Ly, Ly, Lg>1 V72

/uNl,leNz,szNa,Ladwdt'

<SSO S NN Y LSluwy oz e,

N3 Na~N3z \N; <N, Ly>1

— (b’ — ’ _ — (b’ — ’
) (N5 ST Ly LY oy pallze | [ Vst Y. La T LY lwny nyllze,
Ly>1 L3z>1

S el s vl xs o 1wl -
= o o3

We put Lmax = max1§j§3(L1, L27L3).
Case 1 High modulation, L. > N2

~ max

In this case, the radial condition is not needed. We assume L; > N2~
N2. By the Cauchy—Schwarz inequality and (2.5), we have

’/ uNl,leNz’L2wN37L3dxdt’

S lluny 2y ez, 1PNy (UNy, 2, WiNg, g) [ 12,

N 326
)
S (5)7 Esslom sl Toxa sl o i,

where § := % — ¢. Therefore, we obtain

N,

/uNl,L1’UN2,L2wN3,L3dxdt’

1426 2 —2c426
5 le 1\722 ‘ (L1L2L3)C||UN1,L1”Lfl,HUNz:Lz”wa||wN3,L3||L?1,-
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Thus, it suffices to show that
. L, N €

Since § = % — ¢, we have

1
1425 L _2c425
N 2

1

N = N2 N

Therefore, by choosing &’ and ¢ as max{ 3g37 3} <e< b < §fors>0, we get
(2.14).

Case 2: Low modulation, L.y, < N2

max
By Lemma 2.6, we can assume Nj ~ Ny ~ N3 thanks to Ly.x < Nfﬂax
We assume Lmax = L3 for simplicity. The other cases can be treated similarly.
o The case § = 0
Let A := LmameaX ~ L2 N1 We decompose R3 x R? x R? as follows:
3 3 A A A
R x R3 x R® = U 24 x24 <25

0<j1,j2,43<A—-1

1
Since Lax < N2, (LmZxNmax) "2 = N2, A72 by Lemma 2.8, we can write

/ uN17leN2,L2wN37L3dxdt'

A-1
< E : E E : ‘/uNl,L1,j1UN27L27j2wN37L3,j3dxdt

71=0j2€J(j1) js€J(j1)
with UN,,Ly,j, = RﬁuNl,Ll, UNy,Lo,ja = R2UN27L2 and WN3,L3,j3 = Rﬁ,’fUN&Lga
where
J() ={j €{0,1,..., A= 1}|min{[j1 — j|. |A = (j» — j)I} S 1}.
We note that #.J(j1) < 1. By using the Holder inequality and Corollary 2.3
Withp:q:4 we get

E E E ‘/UNl,Ll,ﬁUNZ,Lz,jszs,La,jsdIdt

J1= 072€J(J1)]36J Ji)

SZ S0 unsg iz 1one Lo ol ns lwng. Lol 22,

j1:0j2€J(j1)j3€J(j1)
< ALY LS suplun, .., L2, SUp [|UN, Ly g2 [l 22, SUP Wy, La sl 22, -
J1 J2 Js
Since u, v, and w are radial respect to x, we have

_1
luny,pygillzz, S A 2 luny ooz, [vNs L llzz, S A™ 2||UN2,L2||LM(2 15)

_1
lwWNs, L5 12, S A2 |lwng, gl 2, -
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Therefore, we obtain

Ny

/ uN17L1UN2,L2wN3,L3dxdt

111
S NoAT2 L7 L3 |luny oyl 22, 1vNs Lo 22, 10ns sl 22,
1 1 1 1
~ N7 L7 L3 L |luny, o |l p2, [|ons, 2ol n2, [ wng, os [l 22,
1 5
S NP (LiLaLs) ' |lun, zy |22, 1N, o Ml 22, 10N, 25l 2, -

This estimate gives the desired estimate (2.13) for s > % by choosing b and ¢
as S <c<lV <1
o The case < 0

We decompose R? x R? as follows:

N N
e U apenp|o[ U U opee
0<j1,j2<N1-1 64<A<N; 0<jy1.,52<A-1
li1—jz2l<16 - 16<|j1 —j2|<32

We can write

‘/ uN17L1UN2,L2wN3,L3dxdt‘

< E E ‘/uNl,Ll7j1UN27L27j2wN3,L3,jsdxdt‘

A=N; i ;
0<j1,j2<N1—-1 da€J (i)

li1—d21<16

+ E E E ‘/UN1,Ll,jlsz,LQ,jzwzv:;,Lg,jadIdt’

64<A<N; 0<i1.72<A—1 jse ()
SASN 2 e 12€ 7 01)

For the former term, by using the Holder inequality, Theorem 2.1, and (2.15),
we get

E E ’/uNlﬁLlujl/UN2»L21j2wNS:L?Hde'rdt‘

A=N ; i
0<i1 139 < by 172712

li1—J21<16
’S Z ”QZ;SPNS(uN17L17jlvN2,L2,j2)||L$z Z Hng,Lg,ngL%m
Oéjléy‘zg}\ﬁ—l Jja€J(j1)
li1—j2|<16
11
SNU'LELE |wngnollzz, Y. luwyiog ez, 08e Laall 22,
Uﬁ.flljszg}vl—l
[j1—3d21<16

1 1
SNT'LELS uwy ool ez, 1ong, o 2 lwns Lol r2,

— 1
S Ny 1(L1L2L3) 3 ||uN17L1 ”L%l HUN27L2 ”Lfl ||wN3,L3 HL%x
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For the latter term, by using Proposition 2.9, (2.15), and LiLyLs < NY that
we get

E E E ‘/uN1,L1,jlsz,Lz,jsz:;,L:;,jgdﬂEdt‘

64<A<N,; 0<j1,j2<A—1 j3€J(j5;)
16<[j1 —Jj2]<32

S Z Z HQI_,;YsPNs(uNl,L17j1UN27L27.72)|‘Lf1 Z ”wN:;,L:hszsz
64< AN, 0<jj,ja<A-1 Js€J(j1)
16<]j1 —j21<32
1 1
Sllwng, gl Y. Ny H(LaLaLs): > lluny, Ly llze lvn,, Lo g2,
64<A<N, 0<j1,j2<A—1

1621 ~Ja | <32
— 1

S (IOg Nl)Nl 1(L1L2L3)2 HuNl’Ll||L?m||UN2«L2HL?T”wNSvLSHL?m

< (log N1 )NT~°(L1La L) |lun, L, |22 [on,, 1, |2, wng, 2yl 2 -

The above two estimates give the desired estimate (2.13) for s > 0 by choosing

3—s 1 1
b and ¢ as max{“z*, 3} <c<b < 3. O

3. Proof of the Well-Posedness

In this section, we prove Theorems 1.1 and 1.3. For a Banach space H and
r >0, we define B,(H) := {f € H|| f|z < r}. Furthermore, we define ;"

as
s . s,b 2 s,b 2 vs+1,b
XT T (Xoc,rad,T) X (Xﬁ,rad,T) X ‘Xr'y,rad,T7

where Xi’l;ad o and Xg’l;ad o are the time localized spaces defined by

s,b o s,b
XJ,rad,T T {U/'[O,T” u € Xcr,rad}
with the norm

. s,b
e, 1= inf {0l o | v € X3 vlor) = uliorr } -

Also, X 'jt;:ibT is defined by the same way. Now, we restate Theorem 1.1 for
d = 2 more precisely.

Theorem 3.1. Let s > % if0 =0and s >0 if 0 <0. For any v > 0 and for
all initial data (ug,vo, [Wo]) € B.(H*(R?)), there exist T = T(r) > 0 and a
solution (u,v,[W]) € X;’b to system (1.12) on [0,T] for suitable b > 1. Such
solution is unique in Br(X3) for some R > 0. Moreover, the flow map

S B, (H*(R?)) > (ug, vo, [Wo]) — (u,v, [W]) € X7
18 Lipschitz continuous.

Remark 3.1. Since X 5" — C([0, T]; H*(R?)) holds for b > %, we have X3l
C([0, T]; H* (R?)).

To prove Theorem 3.1, we give the linear estimate.

Proposition 3.1. Let s € R, 0 € R\{0}, b€ (3,1], % €[0,1-b] and 0 < T < 1.
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(1) There exists Cy > 0 such that for any ¢ € H*(R?), we have
HeitoA

el < Callele.

(2) There exists Cy > 0 such that for any F € Xj’;b’, we have

(3) There exists C3 > 0 such that for any u € Xj’;, we have

t
/ €i(t7t,)0AF(t/)dt/
0

< TP o
Xs,b o, T
o, T

_n
”uHX;bT’ <Gyt ”uHXabT

For the proof of Proposition 3.1, see Lemma 2.1 and 3.1 in [10].

We define the map ®(u, v, [W]) = (@SLO (W], v), <I>(ﬂl72)0 (W], u), [@E{Q’fwo] (u,v))])
as

t
SO ([f] 9)(8) = 7B — i / ST (A () gtV

t
B2, (£.9)(t) = " i [ B (et
0

To prove the existence of the solution of (1.1), we prove that ® is a contraction
map on Bgr(X3) for some R > 0 and T > 0. For a vector-valued function f =

(1. £2). |- and || e denote || fulle + | follz and [/l oo + | fell o
respectively.

Proof of Theorem 3.1. We choose b > 1 as b =1—1/, where b’ is as in Propo-
sition 2.1. Let (ug, vo, [Wo]) € B,(H*(R?)) be given. By Proposition 2.1
with (01,09,03) € {(8,7, —a), (=, «, —f), (o, =3, —7)} and Proposition 3.1
with o € {«, 3,7}, there exist constants Cy, Cq, C5 > 0 such that for any
(u,v, [W]) € BR(X}), we have

||‘I>S,Lo([W]>U)HX;bT < Chlluol|ms + CCQC§T4b_2||[W]H;?ierl‘b”UHX;:bT
< Cyir + CCLO2T* 2R
1 T —
1260, (W), 0)ll 0, < Calloolle + CCO2CET 2 |[W]ll zosaallull oo,
< Cir+ CC,C3T 2 R?,
()20 < CrllWolllgzein + COLCET 2 full o 0] s,

< Cyir + CCLC3T* 2R

2)
112 ey
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Similarly,
1) (1) n o
1960 (W], 0) = e (W], )l x5t

a,ug a,uQ

< COCETY 2R (W] = W]l g + lo =l s )
1 T 1 TT77"
1260, (7], w) = @0, (77, 4) 2,
< COGTY R (W) = W g0+ llu =l xzs )
2 _
12y (D)) = [y (' )l 20
< CCLC3T 2R (Hu — ||y + v — v'||X§,bT) .
Therefore, if we choose R > 0 and T > 0 as
1
R =6C,r, CCoC2T* 2R < 1

then @ is a contraction map on Bgr(X7). This implies the existence of the
solution of system (1.1) and the uniqueness in the ball Br(X3). The Lipschitz
continuity of the flow map is also proved by similar argument. O

Next, to prove Theorem 1.3, we justify the existence of a scalar potential
of w € (H*(R?))2. Let F; and F, denote the Fourier transform with respect
to the first component and the second component, respectively. We note that
Frrr b =7y A = F7U (and also FiFy = FoFy = F,) holds on L2(R?).

Proposition 3.2. Let s > 1 and w = (w1,ws) € (H*(R?))% If wy and wo
satisfy

&WI(E) —&w2(§) =0 a.ef=(&,6) €R?,
then there exists W € Li (R?) (C 8'(R?)) such that

VW (z) = w(z) a.e.x = (z1,12) € R2.

To obtain Proposition 3.2, we use the next lemma.

Lemma 3.3. Let s > 1. If f € H*(R?), then it hold that
Filf]( 20) € LY(R) ae. z2 € R,  Folf](x1,-) € L*(R) ae. z; €R.

Proof. By the Cauchy—Schwarz inequality and Plancherel’s theorem, we have

[ 2l ||, < 1€z, e Al 22) 2
S ) Fier, &)z

S llEs < oo

2 2
Lz, vilzz,

for s > % Therefore, we obtain
IFLfIE, wa)llry, <00 ae zp €R.
Similarly, we have

||-7'—2[f](I1,§2)||Lé2 <oo ae z; €R.
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O

Proof of Proposition 3.2. We put

W(x) 1:/ w1 (y1, x2)dy: +/ wa(a1,y2)dys =: Wi (z) + Wa(x)

1

for some ay, az € R. By w € L*(R?), we have W € L{ (R?). Hence, it remains
to show that VI = w. Since

Wy (z) = wyi(z), O Wa(x)=0, 0eWa(z)=wsa(ar,xs)
hold for almost all z = (z1, z2) € R?, it suffices to show
0oWi(2) = wa(z) — walay, x9) ae. x = (x1,20) € RZ. (3.1)
Let h € R. Since Fi[wi](+, 72) € LY(R) a.e. 22 € R by Lemma 3.3, we have
Wi(x1, 22 + h) — Wi(x1, 22)

h
= %/ 1 (w1 (y1, 22 + h) —wi(y1,x2)) dys
= %/Il (/]R (.7:1[101](5171'2 +h)— ]:1[w1](£1,x2)) €i£1y1d§1> dy;
1

— [ toEa + 1) - Alwnle) ( / fdy) a6,

1 - . ) eté1z1 _ pil1a1
= E/ </ ’(1)1(51,52)6152m2 (ezﬁgh — 1)d§2) e dfl = Ih
R \J/R i&1

by Fubini’s theorem. We put Fp,' = F, 'Fy 1, Fol o= Fy 'F . By using
&y = &5 and Fpp' = Fyy', we have

_ eif?h -1 . . .
Iy = / (/ wy (&1, 62)——— eZEQsz&) (1o — 1) dg
R \J/R i§oh

'L&gh 1 zfgh 1
=Fr [U/Q(fuﬁz) i6h } (z1,22) — Frg' {w2(§17§2) iEh ] (a1,22)
- zfgh -1 zggh 1
=Fn [w2(€1»§2)i§2h} (21,22) — For' |:w2(€17£2) i6h ] (a1,22)
eié2h _ 1
= / (Falwa](w1, &) — Folws(ar, &) —————e272d&,.
R ’ngh

Since Fa|ws](w1,-) € L (R) a.e. 21 € R by Lemma 3.3, we have

}lli,l}) In= /R(f2 [w2](l’1,€2> - ‘7:2[1'02](0/1’§2)) ei£2$2d£2

= w2(931,$2) - w2(al,$2)

by Lebesgue’s dominant convergence theorem. Therefore, we obtain (3.1). O
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Remark 3.2. In the proof of Proposition 3.2, we also used

eie2h 1 cosz — 1 sin z
—— | <sup < 00.
1&2h z€R z z
This implies
Zggh _ 2
, G Lz(R
w3 (& 52) iEh {(R?)
and
eté2h 1

Folwe](z1, &2) € L%Q (R) ae. z; €R.

Cibh
Remark 3.5. If w = (wy, w2) € (H*(R?))? for s > 1 satisfies

rowy (x) — Tywe(x) =0, ae. x € R
additionally in Proposition 3.2, then W ¢ LIOC(RQ) given in the proof of Propo-
sition 3.2 is radial. Indeed, this condition with VW (z) = w(z) yields (1.10).

Remark 3.4. For s < %, we do not know whether there exists a scalar poten-
tial of w € (H*(R?))? or not. But we point out that if s < 3, then the 1D
delta function appears in dow; — dywy for some w € (H*(R?))2. Then, the

irrotational condition does not make sense for pointwise.
Next, we prove that A°*(R?) is a Banach space.

Proposition 3.4. For s > 0, A*(R?) is a closed subspace of (H*(R?))2.

Proof. Let f(") = (fl(n),fzn)) € AR?) (n =1,2,3,...) and f = (f1, f2) €
(H*(R?))2. Assume that f() convergences to f in (H*(R?))? as n — oco. We
prove f € A%(R?); namely, f satisfies (1.8). By the triangle inequality, we have
€2

<7f1_

T

(z)
(n) (n) 21 ,(n) (n) M
H e B Tt ol R Tt ot

SHﬁ—h"hHWmhm—mﬁmMPWbm—bhz
Since f(™ satisfies (1.8) and f(™) — f in (L?*(R?))? as n — oo, we obtain
o =i e =00 i = A7z + 15 = fallzz — 0 (n — o0).

Therefore, we get

f2

L2

L2

i) T
@@
It implies zafi(z) — x1f2(x) = 0 a.e. x € R%. Similarly, we obtain 52]?1(5) -
&1f2(6) =0 ae. £ € R O

fo =0.

L2
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Proof of Theorem 1.3. Let (ug,vo, wo) € By ((HE 4(R?))?x (HE,4(R?))?x.A%(R?))

be given. We first prove the existence of solution to (1.1). Since wy satisfies
(1.8), by Proposition 3.2, there exists [Wy] € f]f;gl such that VIV, = wy. From
Theorem 1.1, there exists T' > 0 and a solution (u,v, [W]) € X3 to (1.12) with
(u, v, [W])|t=0 = (ug, vo, [Wp]). Since

IWolllze4+1 = llwollm= <,
the existence time 7' is decided by r. We put w = VW. Then, w € X'jll)“
satisfying

where R is as in the proof of Theorem 1.1, and (u,v,w) satisfies (1.1) since
AW = V - w. Furthermore, we have

(9111)2 - 8211}1 = 81(82W) - 62(81W) =0
and
T1Wo — TW1 = (11182 — xgal)W =0

because W is radial with respect to z. Therefore, w(t) € A%(R?) for any
te0,77.
Next, we prove the uniqueness of the solution in BR()JQSJZ’), where

s,b P— s,b s,b s,b
yT T (Xa,rad,T)2 X (‘Xvﬁ,rad,T)2 X Y'y,T’
YWS”; = {w = (w1, ws) € (Xigﬂ)zhu(t) satisfies (1.8)for any t € [0,7]}.

Let (uM, oM w®) (u® 0@ w®) e BR(y;’b) are solution to (1.1) with
initial data (ug,vo,wo). Then by Proposition 3.2, there exists [W 1], W3] €
Xf;;&liT such that w™ = VWM w® = YW@, By substituting w?) =

VW) in both sides of the integral form of (1.1), (u(), v W) (j = 1,2)
satisfy

t
u(g)(t) — eitaAu0+i/ ei(t—t/)aA(AW(j)(t/))u(j)(t/)dt/ in (HS(RQ))Q’
0

t —_— .
09 (1) = ePPyg + i / =B AW O ()W) (#)dt' in (H*(R?))?,
0

t [

VWO (1) = ety — z/ AT (WD (1) o) (¢)) At in H(R?).
0

Therefore, by the same argument as in the proof of Theorem 1.1, we have

1
1 _ @2 - 1 _,,2) (1) _ ,,(2)
[|lu u ngbT < (Hw w ”Xjf; + [Jv v ”X;:i})

1) _ @)
[ — 0@ e

IA
N N LS

1) _,,(2) ) _ (@2
(o ® = @l gen + ™ = u® e )

lw® = w® e < 5 (1D =u@llgen + 0@ =0l )
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since w) — w2 = V(W(l) — W®). This implies
(D, 0™ wMy = W@ @ w®) on [0,T].

The continuous dependence on initial data can be obtained by the similar
argument. O

4. The Lack of the Twice Differentiability of the Flow Map

The following proposition implies Theorem 1.2.

Proposition 4.1. Let d = 2 and 0 < T <« 1. Assume § = 0 and s < % For
every C > 0, there exist f, g € HS, 4(R?) such that

/t ei(tft’)yAv (( it’ OtAf)(ezt’ﬁA )) dat’

0

sup
0<t<T

> Cl|f]lae

gz (4.1)

Proof. Let N > 1 and p : (7& 0). We note that p is well defined since
0 = 0 implies x # 0 for «, ﬁ, 7 € R\{O} For simplicity, we assume p > 0. Put

Dy :={(cR} N<|(|<N+1}, Dy:={(cR?p'N<|f|<p 'N+1},
D:={eR|(14+p HUN+1< || <(1+p HN+1+27"}
We define the functions f and g as
F&) ==N"""21p,(¢), §&):=N"""71p,(¢).

Clearly, we have || f||zs ~ ||g|lzs ~ 1 and f, g are radial. For £ = (£1,&;) € R?
and 1 = (11,72) € R?, we define

®(&,n) == alnl* = BlE —nl> —[¢)?
= (a =)l —pE—n)?
= (=) {m = pl&s = m))* + (2~ pl&2 —m))* |

because 6 = 0 implies g—fl =— (Oﬁ ) We will show
t
sup || [ sy (@l g ) ar| 2 Nerh,
0<t<T ||Jo e

We calculate that

/t ei(tft’)yAv (( it’ OtAf)(ezt/ﬁA )) dt’

0

Hs

t
2N 1D(§)/ / e ED T, (n)1p, (€ —n)dn
0 R2

2
Lg

> N7 10(6) [ [ cos(tB(en) 1o, ()1, (€~ n)dn

= N~ [F©)ll:

2
LE
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Let R : R? — R? be a rotation operator. Since ®(£,7n) = ®(RE, Rn) and 1p,
1p,, 1p, are radial, we can see

PO =100 [ TS

—1p(re) [ TSR (R, (e - Ro)ay

—1o(re) [ LRSI, ()1, (RE - )

= F(RE).

1p, (77)1D2 (5 - ﬂ)dn

It implies that F' is radial. Therefore, there exists G : R — R such that
F(&) = G(|¢]). We note that

IF@©)lrz = G lzaoen 2 N il (GO = NP inf | |F(6,0)]

since suppG C [(1+p )N +1,(1 +p~1)N + 1 + 2710]. Hence, it suffices to
show that

[F(&)] 2t (4.2)

for any ¢ € [0,2719] and some 0 < ¢t < T, where &, := (£.1,0) € R2, &, :=
(1+p~1)N + 1+ c. Simple calculation gives

D(ge,n) = (0 =N {(L+p)0m = N) = p(L+))* + (1 +p)n3 ). (43)
We also observe that

1D1(77)1D2(fc—77) 7&0
= m<N+1land &y —m Sp_lN—i—l
= N+4+c<m<N+1.

Let € > 0 be small. We define a new set E as
E:=Din{n=(n,n) ER*) N+c<m <N+1},

and we decompose FE into four sets:

B, = {gcl — VO IN +1)2 - N2 <1y < /(N +1)2— N2, || < NE} ,

By ={N+c<m <=V N1 - N, | < N} E,

Es={y/(N+12-N2<np <N+1, || <N}INE,

Ey = {N° < ||} N E.

We can easily show that F; N E; = 0 if i # j. Furthermore, we can obtain
FEy C F and

1D1 (77)1D2 (fc - 77) =1
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for any n € E;. We observe that
4

/Rz sm(tzfa) ))1}51 dn‘ ;/RZ
I — le.

We first consider ;. Let
d=p IN+1-/(p~'N+12-N2, " :=N+1—+/(N+1)2— N2,
Obviously, it holds ¢/ ~ ¢’ ~ N~112¢, We calculate that

N (N sin(19 (&, m)
/N+c’+c” </0 ®(&esm) dnz | dm

, N+L=c" [ QDN sin (7 (q(m) + 1))
3 dng | dm
Ne'+e’ \Jo a(m) + 11z

(Lt p)a—1]
where 7 := | — 7|t and q(n1) := (1 +p)(m — N) — p(1 4 ¢))*. Therefore, if
we obtain

sin(t® (e, m))

|F(&)] > Y

‘ 1g,(n)dn

I =2

)

inf
me[N+c' +c" ,N+1—c

(PN gin (1 2 1
]/O (T(g(m) +n3)) 1 (4.4)

d 72 N 2
q(m) +n3

then we get I; > t2. Let ¢ > 0 be small. We fix ; € [N 4+¢ +¢’, N +1—¢"]
and write g(11) = ¢ for simplicity. Clearly, we have 0 < ¢ < 1. We easily verify

that if we restrict 12 as 0 < 1y < /771 — ¢, then we have sin(7(q + n3)) >
0 and w is monotone decreasing. Similarly, if /771 —¢ < 7y <
V2r7=1 — g, then we see sin(7(q +n3)) < 0. We calculate
Tr—1— .
/V T sin(r(g +13))
0 q+n;
N /m sin(r(q + 1)) | /\/m 1 iy
= - .2 - 2
0 Q+77§ VT l—q q+772
207 \Vm(2T)"1—q . \2rT—1—¢q
> — dnz — */ dipa
™ Jo ™ nr—1—gq
27(2\/7r (27)~ —q—\/27r7'_1—q+\/7r7'—1—q)
™
>3,

The last estimate is verified by the smallness of 7 = |a — 7|t. We also see
/« Lnﬂ)ﬂ“_q sin(r(g +13)) - 2
2nwr—1—q q-+ 77%

~ n2
for any n € N. Therefore, we obtain (4.4).
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Next, we consider Iz, I3, and I,. Since |Es|, |E3| < N3¢ we easily
observe that

Iy + I3 StN 13
For I, we observe that

sin(t® (&, N+l <1
]4:/ ((é.?m‘df’],g/ (/ an2)d7]1,§N6-
Ey

D(&esm) N+ec Ne T2
By the above argument, we obtain

4
|F(€c)| >1 — ZI] Z t% _ tN—1+3e + N
=2
If we choose N > 1 satisfying N~¢ < T, then for any ¢ € [0, T] with N7¢ <,
we have (4.2). b
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