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Well-Posedness for a System of Quadratic
Derivative Nonlinear Schrödinger Equations
with Radial Initial Data

Hiroyuki Hirayama, Shinya Kinoshita and Mamoru Okamoto

Abstract. In the present paper, we consider the Cauchy problem of the
system of quadratic derivative nonlinear Schrödinger equations. This sys-
tem was introduced by Colin and Colin (Differ Integral Equ 17:297–330,
2004). The first and second authors obtained some well-posedness results
in the Sobolev space Hs(Rd). We improve these results for conditional
radial initial data by rewriting the system radial form.

1. Introduction

We consider the Cauchy problem of the system of nonlinear Schrödinger equa-
tions:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(i∂t + αΔ)u = −(∇ · w)v, t > 0, x ∈ R
d,

(i∂t + βΔ)v = −(∇ · w)u, t > 0, x ∈ R
d,

(i∂t + γΔ)w = ∇(u · v), t > 0, x ∈ R
d,

(u, v, w)|t=0 = (u0, v0, w0) ∈ (Hs(Rd))d × (Hs(Rd))d × (Hs(Rd))d,

(1.1)

where α, β, γ ∈ R\{0} and the unknown functions u, v, w are d-dimensional
complex vector-valued. System (1.1) was introduced by Colin and Colin in [6]
as a model of laser–plasma interaction. (See also [7,8].) They also showed that
the local existence of the solution of (1.1) in Hs(Rd) for s > d

2 + 3. System
(1.1) is invariant under the following scaling transformation:

Aλ(t, x) = λ−1A(λ−2t, λ−1x) (A = (u, v, w)), (1.2)

and the scaling critical regularity is sc = d
2 − 1. We put

θ := αβγ

(
1
α

− 1
β

− 1
γ

)

, κ := (α − β)(α − γ)(β + γ). (1.3)
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Table 1. Well-posedness (WP for short) for (1.1) proved in [15]

d = 1 d = 2, 3 d ≥ 4

θ > 0 WP for s ≥ 0 WP for s ≥ sc WP for s ≥ sc
θ = 0 WP for s ≥ 1 WP for s ≥ 1

κ �= 0 and θ < 0 WP for s ≥ 1
2

We note that κ = 0 does not occur when θ ≥ 0 for α, β, γ ∈ R\{0}.
First, we introduce some known results for related problems. System (1.1)

has quadratic nonlinear terms which contain a derivative. A derivative loss
arising from the nonlinearity makes the problem difficult. In fact, Mizohata
[21] considered the Schrödinger equation

{
i∂tu − Δu = (b1(x) · ∇)u, t ∈ R, x ∈ R

d,

u(0, x) = u0(x), x ∈ R
d

and proved that the uniform bound

sup
x∈Rn,ω∈Sn−1,R>0

∣
∣
∣
∣
∣
Re
∫ R

0

b1(x + rω) · ωdr

∣
∣
∣
∣
∣
< ∞

is a necessary condition for the L2(Rd) well-posedness. Furthermore, Christ [5]
proved that the flow map of the nonlinear Schrödinger equation

{
i∂tu − ∂2

xu = u∂xu, t ∈ R, x ∈ R,

u(0, x) = u0(x), x ∈ R
(1.4)

is not continuous on Hs(Rd) for any s ∈ R. From these results, it is difficult
to obtain the well-posedness for quadratic derivative nonlinear Schrödinger
equation in general. For the system of quadratic derivative nonlinear equations,
it is known that the well-posedness holds. In [15], the first author proved the
well-posedness of (1.1) in Hs(Rd), where s is given in Table 1.

Recently, in [16], the first and second authors have improved this result
by using the generalization of the Loomis–Whitney inequality introduced in
[2] and [3]. They proved the well-posedness of (1.1) in Hs(Rd) for s ≥ 1

2 if
d = 2 and s > 1

2 if d = 3, under the condition κ �= 0 and θ < 0. In [15], the
first author also proved that the flow map is not C2 for s < 1 if θ = 0 and for
s < 1

2 if θ < 0 and κ �= 0. Therefore, the well-posedness obtained in [15] and
[16] is optimal except the case d = 3 and s = 1

2 (which is scaling critical) as
far as we use the iteration argument. In particular, the optimal regularity is
far from the scaling critical regularity if d ≤ 3 and θ ≤ 0.

We point out that the results in [15,16] do not contain the scattering of
the solution for d ≤ 3 under the condition θ = 0 (and also θ < 0). In [17],
Ikeda, Katayama, and Sunagawa considered the system of quadratic nonlinear
Schrödinger equations

(

i∂t +
1

2mj
Δ
)

uj = Fj(u, ∂xu), t > 0, x ∈ R
d, j = 1, 2, 3, (1.5)
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under the mass resonance condition m1 + m2 = m3 (which corresponds to
the condition θ = 0 for (1.1)), where u = (u1, u2, u3) is C

3-valued, m1, m2,
m3 ∈ R\{0}, and Fj is defined by

⎧
⎪⎨

⎪⎩

F1(u, ∂xu) =
∑

|α|,|β|≤1 C1,α,β(∂αu2)(∂βu3),
F2(u, ∂xu) =

∑
|α|,|β|≤1 C1,α,β(∂βu3)(∂αu1),

F3(u, ∂xu) =
∑

|α|,|β|≤1 C1,α,β(∂αu1)(∂βu2)
(1.6)

with some constants C1,α,β , C2,α,β , C3,α,β ∈ C. They obtained the small data
global existence and the scattering of the solution to (1.5) in the weighted
Sobolev space for d = 2 under the mass resonance condition and the null
condition for the nonlinear terms (1.6). They also proved the same result for
d ≥ 3 without the null condition. In [18], Ikeda, Kishimoto, and Okamoto
proved the small data global well-posedness and the scattering of the solution
to (1.5) in Hs(Rd) for d ≥ 3 and s ≥ sc under the mass resonance condition
and the null condition for the nonlinear terms (1.6). They also proved the local
well-posedness in Hs(Rd) for d = 1 and s ≥ 0, d = 2 and s > sc, and d = 3 and
s ≥ sc under the same conditions. (The results in [15] for d ≤ 3 and θ = 0 say
that if the nonlinear terms do not have null condition, then s = 1 is optimal
regularity to obtain the well-posedness by using the iteration argument.)

Recently, in [23], Sakoda and Sunagawa have considered (1.5) for d = 2
and j = 1, . . . , N with

Fj(u, ∂xu) =
∑

|α|,|β|≤1

∑

1≤k,l≤2N

Cα,β
j,k,l(∂

α
x u#

k )(∂β
x u#

l ), (1.7)

where u#
j = uj if j = 1, . . . , N , and u#

j = uj if j = N + 1, . . . , 2N . They
obtained the small data global existence and the time decay estimate for the
solution under some conditions for m1, · · · mN and the nonlinear terms (1.7),
where the conditions contain (1.1) with θ = 0. There exists the blow-up solu-
tions for the system of nonlinear Schrödinger equations. Ozawa and Sunagawa
[22] gave the examples of the derivative nonlinearity which causes the small
data blow-up for a system of Schrödinger equations. There are also some known
results for a system of nonlinear Schrödinger equations with no derivative non-
linearity [12–14].

The aim in the present paper is to improve the results in [15,16] for
conditional radial initial data in R

2 and R
3. The radial solution to (1.1) is

only trivial solution since the nonlinear terms of (1.1) are not radial form.
Therefore, we rewrite (1.1) into a radial form. Here, we focus on d = 2. Let
S(R2) denote the Schwartz class. If w = (w1, w2) ∈ (S(R2))2 satisfies

ξ⊥ · ŵ(ξ) = ξ1ŵ2(ξ) − ξ2ŵ1(ξ) = 0, x⊥ · w(x) = x1w2(x) − x2w1(x) = 0
(1.8)

for any ξ = (ξ1, ξ2) ∈ R
2 and x = (x1, x2) ∈ R

2, then there exists a scalar
potential W ∈ C1(R2) satisfying

∇W (x) = w(x), ∀x ∈ R
2 (1.9)
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and
∂

∂ϑ
W (r cos ϑ, r sin ϑ) = 0, ∀(r, ϑ) ∈ [0,∞) × [0, 2π). (1.10)

Indeed, if we put

W (x) :=
∫ x1

a1

w1(y1, x2)dy1 +
∫ x2

a2

w2(a1, y2)dy2

for some a1, a2 ∈ R, then W satisfies (1.9) by the first equality in (1.8).
Furthermore, W also satisfies (1.10) by the second equality in (1.8). We note
that the first equality in (1.8) is equivalent to

∇⊥ · w(x) = ∂1w2(x) − ∂2w1(x) = 0,

which is the irrotational condition.

Remark 1.1. If d = 3, we can also obtain the radial scalar potential W ∈
C1(R3) of w = (w1, w2, w3) ∈ (S(R3))3 by assuming the conditions

ξ × ŵ(ξ) = 0, x × w(x) = 0 (1.11)

instead of (1.8).

Definition 1. We say f ∈ S ′(Rd) is radial if it holds that

< f,ϕ ◦ R > =< f,ϕ >

for any ϕ ∈ S(Rd) and rotation R : Rd → R
d.

Remark 1.2. If f ∈ L1
loc(R

d), then Definition 1 is equivalent to
∃g : R → C s.t. f(x) = g(|x|), a.e. x ∈ R

d.

Now, we consider the system of nonlinear Schrödinger equations:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(i∂t + αΔ)u = −(ΔW )v, t > 0, x ∈ R
d,

(i∂t + βΔ)v = −(ΔW )u, t > 0, x ∈ R
d,

(i∂t + γΔ)∇W = ∇(u · v), t > 0, x ∈ R
d,

(u, v, [W ])|t=0 = (u0, v0, [W0]) ∈ Hs(Rd)

(1.12)

instead of (1.1), where d = 2 or 3, and

Hs(Rd) := (Hs
rad(Rd))d × (Hs

rad(Rd))d × H̃s+1
rad (Rd),

Hs
rad(Rd) := {f ∈ Hs(Rd)| f is radial},

H̃s+1(Rd) := {f ∈ S ′(Rd)| ∇f ∈ (Hs(Rd))d}/N0,

N0 := {f ∈ S ′(Rd)| ∇f = 0},

H̃s+1
rad (Rd) := {[f ] ∈ H̃s+1(Rd)| f is radial}.

The norm for an equivalent class [f ] ∈ H̃s+1(Rd) is defined by

‖[f ]‖
H̃s+1 := ‖∇f‖(Hs)d ∼ ‖f‖Ḣs+1 + ‖f‖Ḣ1 ,

which is well defined since H̃s+1(Rd) is a quotient space. System (1.12) is
obtained by substituting w = ∇W and w0 = ∇W0 in (1.1).
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Definition 2. We say (u, v, [W ]) ∈ C([0, T ];Hs(Rd)) is a solution to (1.12) if

u(t) = eitαΔu0 + i

∫ t

0

ei(t−t′)αΔ(ΔW (t′))v(t′)dt′ in (Hs(Rd))d,

v(t) = eitβΔv0 + i

∫ t

0

ei(t−t′)βΔ(ΔW (t′))v(t′)dt′ in (Hs(Rd))d,

∇W (t) = eitγΔ∇W0 − i

∫ t

0

ei(t−t′)γΔ∇(u(t′) · v(t′))dt′ in Hs(Rd)

hold for any t ∈ [0, T ]. This definition does not depend on how we choose a
representative W .

Now, we give the main results in this paper.

Theorem 1.1. Assume κ �= 0.
(i) Let d = 2. Assume that s ≥ 1

2 if θ = 0 and s > 0 if θ < 0. Then, (1.12)
is locally well posed in Hs(R2).

(ii) Let d = 3. Assume that θ ≤ 0 and s ≥ 1
2 . Then, (1.12) is locally well

posed in Hs(R3).
(iii) Let d = 3. Assume that θ ≤ 0 and s ≥ 1

2 . Then, (1.12) is globally well
posed in Hs(R3) for small data. Furthermore, the solution scatters in
Hs(R3).

Remark 1.3. s = 0 for d = 2, and s = 1
2 for d = 3 are scaling critical regularity

for (1.1).

We obtain the following.

Theorem 1.2. Let d = 2 and θ = 0. Then, the flow map of (1.12) is not C2 in
Hs(R2) for s < 1

2 .

Remark 1.4. Theorem 1.2 says that the well-posedness in Theorem 1.1 for
θ = 0 is optimal as far as we use the iteration argument.

Remark 1.5. It is interesting that the result for 2D radial initial data is better
than that for 1D initial data. Actually, the optimal regularity for 1D initial
data is s = 1 if θ = 0, and s = 1

2 if θ < 0 and κ �= 0, which are larger than the
optimal regularity for 2D radial initial data. The reason is the following. We
use the angular decomposition, and each angular localized term has a better
property. For radial functions, the angular localized bound leads to an estimate
for the original functions. (See (2.15).)

We note that if ∇W0 = w0 holds and (u, v, [W ]) is a solution to (1.12)
with (u, v, [W ])|t=0 = (u0, v0, [W0]) ∈ Hs(Rd), then (u, v,∇W ) is a solution to
(1.1) with (u, v,∇W )|t=0 = (u0, v0, w0) ∈ (Hs

rad(Rd))d×(Hs
rad(Rd))d×Hs(Rd).

The existence of a scalar potential W0 ∈ H̃s+1
rad (Rd) will be proved for w0 ∈

As(Rd) with s > 1
2 (see Proposition 3.2), where

As(R2) :=
{
f = (f1, f2) ∈ (Hs(R2))2| f satisfies (1.8) a.e.x, ξ ∈ R

2
}

,

As(R3) :=
{
f = (f1, f2, f3) ∈ (Hs(R3))3| f satisfies(1.11) a.e.x, ξ ∈ R

3
}

.

Therefore, we obtain the following.
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Theorem 1.3. Let d = 2 or 3. Assume that θ = 0 and s > 1
2 . Then, (1.1) is

locally well posed in (Hs
rad(Rd))d × (Hs

rad(Rd))d × As(Rd).

Remark 1.6. For d = 3, Theorem 1.1 can be obtained by almost the same
way as in [15]. In Proposition 4.4 (i) of [15], the author used the Strichartz
estimate

‖eitΔPNu0‖Lq
t Lr

x(R×Rd) � ‖PNu0‖L2

and
∣
∣
∣
∣
∣
Nmax

∫ T

0

∫

Rd

(PN1u1)(PN2u2)(PN3u3)dxdt

∣
∣
∣
∣
∣
� Nsc

max

3∏

j=1

‖PNj
uj‖Lq

t Lr
x

with an admissible pair (q, r) = (3, 6d
3d−4 ) for d ≥ 4. But this trilinear estimate

does not hold for d = 3. This is the reason why the well-posedness in Hsc(R3)
could not be obtained in [15]. For the radial function u0 ∈ L2(R3), it is known
that the improved Strichartz estimate ([24], Corollary 6.2)

‖eitΔPNu0‖L3
t,x(R×R3) � N− 1

6 ‖PNu0‖L2 .

It holds that
∣
∣
∣
∣
∣
Nmax

∫ T

0

∫

R3
(PN1u1)(PN2u2)(PN3u3)dxdt

∣
∣
∣
∣
∣
� N

1
2
max

3∏

j=1

N
1
6
j ‖PNj

uj‖L3
t,x

for N1 ∼ N2 ∼ N3 ≥ 1. Therefore, for d = 3, we can obtain the same estimate
in Proposition 4.4 (i). Because of such reason, we omit more detail of the proof
for d = 3 and only consider d = 2 in the following sections.

Notation. We denote the spatial Fourier transform by ·̂ or Fx, the Fourier
transform in time by Ft and the Fourier transform in all variables by ·̃ or
Ftx. For σ ∈ R, the free evolution eitσΔ on L2 is given as a Fourier multiplier

Fx[eitσΔf ](ξ) = e−itσ|ξ|2 f̂(ξ).

We will use A � B to denote an estimate of the form A ≤ CB for some constant
C and write A ∼ B to mean A � B and B � A. We will use the convention that
capital letters denote dyadic numbers, e.g. N = 2n for n ∈ N0 := N∪ {0}, and
for a dyadic summation, we write

∑
N aN :=

∑
n∈N0

a2n and
∑

N≥M aN :=
∑

n∈N0,2n≥M a2n for brevity. Let χ ∈ C∞
0 ((−2, 2)) be an even, non-negative

function such that χ(t) = 1 for |t| ≤ 1. We define ψ(t) := χ(t) − χ(2t),
ψ1(t) := χ(t), and ψN (t) := ψ(N−1t) for N ≥ 2. Then,

∑
N ψN (t) = 1. We

define frequency and modulation projections

P̂Nu(ξ) := ψN (ξ)û(ξ), Q̃σ
Lu(τ, ξ) := ψL(τ + σ|ξ|2)ũ(τ, ξ).

Furthermore, we define Qσ
≥M :=

∑
L≥M Qσ

L and Q<M := Id − Q≥M .
The rest of this paper is planned as follows. In Section 2, we will give the

bilinear estimates which will be used to prove the well-posedness. In Sect. 3,
we will give the proof of Theorems 1.1 and 1.3. In Sect. 4, we will give the
proof of Theorem 1.2.
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2. Bilinear Estimates

In this section, we prove the bilinear estimates. First, we define the radial
condition for time–space function.

Definition 3. We say u ∈ S ′(Rt × R
2
x) is radial with respect to x if it holds

that

< u,ϕR >=< u,ϕ >

for any ϕ ∈ S(Rt × R
2
x) and rotation R : R2 → R

2, where ϕR ∈ S(Rt × R
2
x) is

defined by ϕR(t, x) = ϕ(t, R(x)).

Next, we define the Fourier restriction norm, which was introduced by
Bourgain in [4].

Definition 4. Let s ∈ R, b ∈ R, σ ∈ R\{0}.

(i) We define Xs,b
σ := {u ∈ S ′(Rt × R

2
x)| ‖u‖Xs,b

σ
< ∞}, where

‖u‖Xs,b
σ

:= ‖〈ξ〉s〈τ + σ|ξ|2〉bũ(τ, ξ)‖L2
τξ

∼
⎛

⎝
∑

N≥1

∑

L≥1

N2sL2b‖Qσ
LPNu‖2

L2

⎞

⎠

1
2

.

(ii) We define X̃s+1,b
σ := {u ∈ S ′(Rt × R

2
x)| ∇u ∈ Xs,b

σ }/N with the norm

‖[u]‖
X̃s+1,b

σ
:= ‖∇u‖Xs,b

σ
,

where N := {u ∈ S ′(Rt × R
2
x)| ∇u = 0}.

(iii) We define

Xs,b
σ,rad := {u ∈ Xs,b

σ | u is radial with respect to x},

X̃s,b
σ,rad := {[u] ∈ X̃s+1,b

σ | u is radial with respect to x}.

We put

θ̃ := σ1σ2σ3

(
1
σ1

+
1
σ2

+
1
σ3

)

, κ̃ := (σ1 + σ2)(σ2 + σ3)(σ3 + σ1).

We note that if (σ1, σ2, σ3) ∈ {(β, γ,−α), (−γ, α,−β), (α,−β,−γ)}, then it
hold that θ̃ = θ and |κ̃| = |κ|.

The following bilinear estimate plays a central role to show Theorem 1.1.

Proposition 2.1. Let σ1, σ2, σ3 ∈ R\{0} satisfy κ̃ �= 0. Let s ≥ 1
2 if θ̃ = 0 and

s > 0 if θ̃ < 0. Then there exists b′ ∈ (0, 1
2 ) and C > 0 such that

‖|∇|(uv)‖
Xs,−b′

−σ3

≤ C‖u‖
Xs,b′

σ1
‖v‖

Xs,b′
σ2

, (2.1)

‖(ΔU)v‖
Xs,−b′

−σ3

≤ C(‖∂1U‖
Xs,b′

σ1
+ ‖∂2U‖

Xs,b′
σ1

)‖v‖
Xs,b′

σ2
(2.2)

hold for any u ∈ Xs,b′
σ1,rad, v ∈ Xs,b′

σ2,rad, and [U ] ∈ X̃s+1,b′
σ1,rad .
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Remark 2.1. Since ‖∂1(uv)‖
Xs,−b′

−σ3

+ ‖∂2(uv)‖
Xs,−b′

−σ3

∼ ‖|∇|(uv)‖
Xs,−b′

−σ3

, (2.1)

implies

‖∂1(uv)‖
Xs,−b′

−σ3

+ ‖∂2(uv)‖
Xs,−b′

−σ3

≤ C‖u‖
Xs,b′

σ1
‖v‖

Xs,b′
σ2

.

To prove Proposition 2.1, we first give the Strichartz estimate.

Proposition 2.2. (Strichartz estimate (cf. [11,19])). Let σ ∈ R\{0} and (p, q)
be an admissible pair of exponents for the 2D Schrödinger equation, i.e. p > 2,
1
p + 1

q = 1
2 . Then, we have

‖eitσΔϕ‖Lp
t Lq

x(R×R2) � ‖ϕ‖L2
x(R2).

for any ϕ ∈ L2(R2).

The Strichartz estimate implies the following. (See the proof of Lemma
2.3 in [10].)

Corollary 2.3. Let L ∈ 2N0 , σ ∈ R\{0}, and (p, q) be an admissible pair of
exponents for the Schrödinger equation. Then, we have

‖Qσ
Lu‖Lp

t Lq
x

� L
1
2 ‖Qσ

Lu‖L2
tx

. (2.3)

for any u ∈ L2(R × R
2).

Next, we give the bilinear Strichartz estimate.

Proposition 2.4. We assume that σ1, σ2 ∈ R\{0} satisfy σ1 + σ2 �= 0. For any
dyadic numbers N1, N2, N3 ∈ 2N0 and L1, L2 ∈ 2N0 , we have

‖PN3(Q
σ1
L1

PN1u1 · Qσ2
L2

PN2u2)‖L2
tx(R×R2)

�
(

Nmin

Nmax

) 1
2

L
1
2
1 L

1
2
2 ‖Qσ1

L1
PN1u1‖L2

tx(R×R2)‖Qσ2
L2

PN2u2‖L2
tx(R×R2),

(2.4)

where Nmin = min1≤i≤3 Ni, Nmax = max1≤i≤3 Ni.

Proposition 2.4 can be obtained by the same way as Lemma 1 in [9]. (See
also Lemma 3.1 in [15].)

Corollary 2.5. Let b′ ∈ ( 1
4 , 1

2 ), and σ1, σ2 ∈ R\{0} satisfy σ1 +σ2 �= 0, We put
δ = 1

2 − b′. For any dyadic numbers N1, N2, N3 ∈ 2N0 and L1, L2 ∈ 2N0 , we
have

‖PN3(Q
σ1
L1

PN1u1 · Qσ2
L2

PN2u2)‖L2
tx(R×R2)

� N4δ
min

(
Nmin

Nmax

) 1
2−2δ

Lb′
1 Lb′

2 ‖Qσ1
L1

PN1u1‖L2
tx(R×R2)‖Qσ2

L2
PN2u2‖L2

tx(R×R2).
(2.5)

The proof is given in Corollary 2.5 in [16].
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2.1. The Estimates for Low Modulation

In this subsection, we assume that Lmax � N2
max.

Lemma 2.6. We assume that σ1, σ2, σ3 ∈ R \ {0} satisfy κ̃ �= 0 and (τ1, ξ1),
(τ2, ξ2), (τ3, ξ3) ∈ R × R

2 satisfy τ1 + τ2 + τ3 = 0, ξ1 + ξ2 + ξ3 = 0. If
max1≤j≤3 |τj + σj |ξj |2| � max1≤j≤3 |ξj |2, then we have

|ξ1| ∼ |ξ2| ∼ |ξ3|.
Since the above lemma is the contrapositive of the following lemma which

was utilized in [15], we omit the proof.

Lemma 2.7. (Lemma 4.1 in [15]) We assume that σ1, σ2, σ3 ∈ R\{0} satisfy
κ̃ �= 0 and (τ1, ξ1), (τ2, ξ2), (τ3, ξ3) ∈ R×R

2 satisfy τ1+τ2+τ3 = 0, ξ1+ξ2+ξ3 =
0. If there exist 1 ≤ i, j ≤ 3 such that |ξi| � |ξj |, then we have

max
1≤j≤3

|τj + σj |ξj |2| � max
1≤j≤3

|ξj |2. (2.6)

Lemma 2.6 suggests that if max1≤j≤3 |τj +σj |ξj |2| � max1≤j≤3 |ξj |2 then
we can assume

max
1≤j≤3

|τj + σj |ξj |2| � min
1≤j≤3

|ξj |2. (2.7)

We first introduce the angular frequency localization operators which were
utilized in [1].

Definition 5 [1]. We define the angular decomposition of R2 in frequency. We
define a partition of unity in R,

1 =
∑

j∈Z

ωj , ωj(s) = ψ(s − j)

(
∑

k∈Z

ψ(s − k)

)−1

.

For a dyadic number A ≥ 64, we also define a partition of unity on the unit
circle,

1 =
A−1∑

j=0

ωA
j , ωA

j (ϑ) = ωj

(
Aϑ

π

)

+ ωj−A

(
Aϑ

π

)

.

We observe that ωA
j is supported in

ΘA
j =

[ π

A
(j − 2),

π

A
(j + 2)

]
∪
[
−π +

π

A
(j − 2), −π +

π

A
(j + 2)

]
.

We now define the angular frequency localization operators RA
j ,

Fx(RA
j f)(ξ) = ωA

j (ϑ)Fxf(ξ), where ξ = |ξ|(cos ϑ, sin ϑ).

For any function u : R × R
2 → C, (t, x) �→ u(t, x), we set (RA

j u)(t, x) =
(RA

j u(t, ·))(x). This operator localizes function in frequency to the set

DA
j =

{
(τ, |ξ| cos ϑ, |ξ| sin ϑ) ∈ R × R

2 |ϑ ∈ ΘA
j

}
.
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Immediately, we can see

u =
A−1∑

j=0

RA
j u.

The next lemma will be used to obtain Proposition 2.1 for the case θ̃ = 0.

Lemma 2.8. Let N , L1, L2, L3, A ∈ 2N0 . We assume that σ1, σ2, σ3 ∈ R\{0}
satisfy θ̃ = 0 and (τ1, ξ1), (τ2, ξ2), (τ3, ξ3) ∈ R × R

2 satisfy τ1 + τ2 + τ3 = 0,
ξ1 + ξ2 + ξ3 = 0, |ξi| ∼ Ni, |τi +σi|ξi|2| ∼ Li, and (τi, ξi) ∈ DA

ji
(i = 1, 2, 3) for

some j1, j2, j3 ∈ {0, 1, . . . , A − 1}. If N1 ∼ N2 ∼ N3, Lmax := max1≤i≤3 Li ≤
N2

maxA
−2, and A � 1 hold, then we have min{|j1 − j2|, |A − (j1 − j2)|} � 1,

min{|j2 − j3|, |A − (j2 − j3)|} � 1, and min{|j1 − j3|, |A − (j1 − j3)|} � 1.

Proof. Because 0 = θ̃ = σ1σ2σ3( 1
σ1

+ 1
σ2

+ 1
σ3

) = σ1σ2 +σ2σ3 +σ3σ1, we have

(σ1 + σ3)(σ2 + σ3) = σ1σ2 + σ2σ3 + σ3σ1 + σ2
3 = σ2

3 > 0.

We put p := sgn(σ1 + σ3) = sgn(σ2 + σ3), q := sgn(σ3). Let ∠(ξ1, ξ2) ∈ [0, π]
denote the smaller angle between ξ1 and ξ2. Since

|σ1 + σ3| 1
2 |σ2 + σ3| 1

2

|σ3| =

√

1 +
σ1σ2σ3

σ2
3

(
1
σ1

+
1
σ2

+
1
σ3

)

= 1,

we have
N2

maxA
−2 ≥ Lmax

� |σ1|ξ1|2 + σ2|ξ2|2 + σ3|ξ1 + ξ2|2|
= |(σ1 + σ3)|ξ1|2 + (σ2 + σ3)|ξ2|2 + 2σ3|ξ1||ξ2| cos ∠(ξ1, ξ2)|
= |p(|σ1 + σ3| 1

2 |ξ1| − |σ2 + σ3| 1
2 |ξ2|)2

+ 2|ξ1||ξ2|(p|σ1 + σ3| 1
2 |σ2 + σ3| 1

2 + q|σ3| cos ∠(ξ1, ξ2))|
= |(|σ1 + σ3| 1

2 |ξ1| − |σ2 + σ3| 1
2 |ξ2|)2 + 2|σ3||ξ1||ξ2|(1 + pq cos ∠(ξ1, ξ2))|

≥ 2|σ3||ξ1||ξ2|(1 + pq cos ∠(ξ1, ξ2)).

Therefore, we obtain

1 − cos ∠(ξ1, ξ2) � A−2 if (σ1 + σ3)σ3 < 0,

1 + cos ∠(ξ1, ξ2) � A−2 if (σ1 + σ3)σ3 > 0.

This implies

∠(ξ1, ξ2) � A−1 or π − ∠(ξ1, ξ2) � A−1.

Therefore, we get min{|j1 − j2|, |A − (j1 − j2)|} � 1. By the same argument,
we also get min{|j2 − j3|, |A− (j2 − j3)|} � 1 and min{|j1 − j3|, |A− (j1 − j3)|}
� 1. �

Now we introduce the necessary bilinear estimates to obtain Proposi-
tion 2.1 for the case θ̃ < 0.
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Theorem 2.1. (Theorem 2.8 in [16]) We assume that σ1, σ2, σ3 ∈ R\{0} satisfy
κ̃ �= 0 and θ̃ < 0. Let Lmax := max1≤j≤3(L1, L2, L3) � |θ̃|N2

min, A ≥ 64, and
|j1 − j2| � 1. Then the following estimates hold:

‖Q−σ3
L3

PN3(R
A
j1Q

σ1
L1

PN1u1 · RA
j2Q

σ2
L2

PN2u2)‖L2
tx

� A− 1
2 L

1
2
1 L

1
2
2 ‖RA

j1Q
σ1
L1

PN1u1‖L2
tx

‖RA
j2Q

σ2
L2

PN2u2‖L2
tx

, (2.8)

‖RA
j1Q

−σ1
L1

PN1(R
A
j2Q

σ2
L2

PN2u2 · Qσ3
L3

PN3u3)‖L2
tx

� A− 1
2 L

1
2
2 L

1
2
3 ‖RA

j2Q
σ2
L2

PN2u2‖L2
tx

‖Qσ3
L3

PN3u3‖L2
tx

, (2.9)

‖RA
j2Q

−σ2
L2

PN2(Q
σ3
L3

PN3u3 · RA
j1Q

σ1
L1

PN1u1)‖L2
tx

� A− 1
2 L

1
2
3 L

1
2
1 ‖Qσ3

L3
PN3u3‖L2

tx
‖RA

j1Q
σ1
L1

PN1u1‖L2
tx

. (2.10)

Proposition 2.9. (Proposition 2.9 in [16]) We assume that σ1, σ2, σ3 ∈ R\{0}
satisfy κ̃ �= 0 and θ̃ < 0. Let Lmax � |θ̃|N2

min and 64 ≤ A ≤ Nmax, 16 ≤
|j1 − j2| ≤ 32. Then the following estimate holds:

‖Q−σ3
L3

PN3(R
A
j1Q

σ1
L1

PN1u1 · RA
j2Q

σ2
L2

PN2u2)‖L2
tx

� A
1
2 N−1

1 L
1
2
1 L

1
2
2 L

1
2
3 ‖RA

j1Q
σ1
L1

PN1u1‖L2
tx

‖RA
j2Q

σ2
L2

PN2u2‖L2
tx

.
(2.11)

2.2. Proof of Proposition 2.1

By the duality argument, we have

‖|∇|(uv)‖
Xs,−b′

−σ3

� sup
‖w‖

X
−s,b′
σ3

=1

∣
∣
∣
∣

∫

|∇|(uv)wdxdt

∣
∣
∣
∣ ,

‖(ΔU)v‖
Xs,−b′

−σ3

� sup
‖w‖

X
−s,b′
σ3

=1

∣
∣
∣
∣

∫

(ΔU)vwdxdt

∣
∣
∣
∣

≤ sup
‖w‖

X
−s,b′
σ3

=1

(∣
∣
∣
∣

∫

∂1(∂1U)vwdxdt

∣
∣
∣
∣+
∣
∣
∣
∣

∫

∂2(∂2U)vwdxdt

∣
∣
∣
∣

)

,

where we used (Q−σ3
L3

f, g)L2
tx

= (f,Qσ3
L3

g)L2
tx

. Since |∇|(uv) and (ΔU)v are
radial with respect to x, we can assume w is also radial with respect to x.
Therefore, to obtain (2.1), it suffices to show that

∑

N1,N2,N3≥1

∑

L1,L2,L3≥1

Nmax

∣
∣
∣
∣

∫

uN1,L1vN2,L2wN3,L3dxdt

∣
∣
∣
∣

� ‖u‖
Xs,b′

σ1
‖v‖

Xs,b′
σ2

‖w‖
X−s,b′

σ3

(2.12)

for the radial functions u, v, and w, where we put

uN1,L1 := Qσ1
L1

PN1u, vN2,L2 := Qσ2
L2

PN2v, wN3,L3 := Qσ3
L3

PN3w



2622 H. Hirayama et al. Ann. Henri Poincaré

and used (Q−σ3
L3

f, g)L2
tx

= (f,Qσ3
L3

g)L2
tx

. By Plancherel’s theorem, we have
∣
∣
∣
∣

∫

uN1,L1vN2,L2wN3,L3dxdt

∣
∣
∣
∣

∼
∣
∣
∣
∣
∣

∫

ξ1+ξ2+ξ3=0
τ1+τ2+τ3=0

Ftx[uN1,L1 ](τ1, ξ1)Ftx[vN2,L2 ](τ2, ξ2)Ftx[wN3,L3 ](τ3, ξ3)

∣
∣
∣
∣
∣
.

We only consider the case N1 � N2 ∼ N3, because the remaining cases N2 �
N3 ∼ N1 and N3 � N1 ∼ N2 can be shown similarly. It suffices to show that

N2

∣
∣
∣
∣

∫

uN1,L1vN2,L2wN3,L3dxdt

∣
∣
∣
∣

�
(

N1

N2

)ε

Ns
1 (L1L2L3)c‖uN1,L1‖L2

tx
‖vN2,L2‖L2

tx
‖wN3,L3‖L2

tx

(2.13)

for some b′ ∈ (0, 1
2 ), c ∈ (0, b′), and ε > 0. Indeed, from (2.13) and the Cauchy–

Schwarz inequality, we obtain
∑

N1�N2∼N3

∑

L1,L2,L3≥1

N2

∣
∣
∣
∣

∫

uN1,L1vN2,L2wN3,L3dxdt

∣
∣
∣
∣

�
∑

N1�N2∼N3

∑

L1,L2,L3≥1

(
N1

N2

)ε

Ns
1 (L1L2L3)

c‖uN1,L1‖L2
tx

‖vN2,L2‖L2
tx

‖wN3,L3‖L2
tx

�
∑

N3

∑

N2∼N3

⎛

⎝
∑

N1�N2

Ns+ε
1 N−ε

2

∑

L1≥1

Lc
1‖uN1,L1‖L2

tx

⎞

⎠

×
⎛

⎝Ns
2

∑

L2≥1

L
−(b′−c)
2 Lb′

2 ‖vN2,L2‖L2
tx

⎞

⎠

⎛

⎝N−s
3

∑

L3≥1

L
−(b′−c)
3 Lb′

3 ‖wN3,L3‖L2
tx

⎞

⎠

� ‖u‖Xs,b′
σ1

‖v‖Xs,b′
σ2

‖w‖X−s,b′
σ3

.

We put Lmax := max1≤j≤3(L1, L2, L3).
Case 1 High modulation, Lmax � N2

max

In this case, the radial condition is not needed. We assume L1 � N2
max ∼

N2
2 . By the Cauchy–Schwarz inequality and (2.5), we have

∣
∣
∣
∣

∫

uN1,L1vN2,L2wN3,L3dxdt

∣
∣
∣
∣

� ‖uN1,L1‖L2
tx

‖PN1(vN2,L2wN3,L3)‖L2
tx

� N4δ
1

(
N1

N2

) 1
2−2δ

Lc
2L

c
3‖uN1,L1‖L2

tx
‖vN2,L2‖L2

tx
‖wN3,L3‖L2

tx
,

where δ := 1
2 − c. Therefore, we obtain

N2

∣
∣
∣
∣

∫

uN1,L1vN2,L2wN3,L3dxdt

∣
∣
∣
∣

� N
1
2+2δ
1 N

1
2−2c+2δ
2 (L1L2L3)c‖uN1,L1‖L2

tx
‖vN2,L2‖L2

tx
‖wN3,L3‖L2

tx
.
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Thus, it suffices to show that

N
1
2+2δ
1 N

1
2−2c+2δ
2 �

(
N1

N2

)ε

Ns
1 . (2.14)

Since δ = 1
2 − c, we have

N
1
2+2δ
1 N

1
2−2c+2δ
2 = N

3
2−2c
1 N

3
2−4c
2

∼ N3−6c−s
1

(
N1

N2

)4c− 3
2

Ns
1 .

Therefore, by choosing b′ and c as max{ 3−s
6 , 3

8} < c < b′ < 1
2 for s > 0, we get

(2.14).

Case 2 : Low modulation, Lmax � N2
max

By Lemma 2.6, we can assume N1 ∼ N2 ∼ N3 thanks to Lmax � N2
max.

We assume Lmax = L3 for simplicity. The other cases can be treated similarly.
◦ The case θ̃ = 0

Let A := L
− 1

2
maxNmax ∼ L

− 1
2

3 N1. We decompose R
3 × R

3 × R
3 as follows:

R
3 × R

3 × R
3 =

⋃

0≤j1,j2,j3≤A−1

DA
j1 × DA

j2 × DA
j3 .

Since Lmax ≤ N2
max(L

− 1
2

maxNmax)−2 = N2
maxA

−2, by Lemma 2.8, we can write
∣
∣
∣
∣

∫

uN1,L1vN2,L2wN3,L3dxdt

∣
∣
∣
∣

≤
A−1∑

j1=0

∑

j2∈J(j1)

∑

j3∈J(j1)

∣
∣
∣
∣

∫

uN1,L1,j1vN2,L2,j2wN3,L3,j3dxdt

∣
∣
∣
∣

with uN1,L1,j1 := RA
j1

uN1,L1 , vN2,L2,j2 := RA
j2

vN2,L2 and wN3,L3,j3 := RA
j3

vN3,L3 ,
where

J(j1) := {j ∈ {0, 1, . . . , A − 1}|min{|j1 − j|, |A − (j1 − j)|} � 1}.

We note that #J(j1) � 1. By using the Hölder inequality and Corollary 2.3
with p = q = 4, we get

A−1∑

j1=0

∑

j2∈J(j1)

∑

j3∈J(j1)

∣
∣
∣
∣

∫

uN1,L1,j1vN2,L2,j2wN3,L3,j3dxdt

∣
∣
∣
∣

�
A−1∑

j1=0

∑

j2∈J(j1)

∑

j3∈J(j1)

‖uN1,L1,j1‖L4
tx

‖vN2,L2,j2‖L4
tx

‖wN3,L3,j3‖L2
tx

� AL
1
2
1 L

1
2
2 sup

j1

‖uN1,L1,j1‖L2
tx

sup
j2

‖vN2,L2,j2‖L2
tx

sup
j3

‖wN3,L3,j3‖L2
tx

.

Since u, v, and w are radial respect to x, we have

‖uN1,L1,j1‖L2
tx

� A− 1
2 ‖uN1,L1‖L2

tx
, ‖vN2,L2,j2‖L2

tx
� A− 1

2 ‖vN2,L2‖L2
tx

,

‖wN3,L3,j3‖L2
tx

� A− 1
2 ‖wN3,L3‖L2

tx
.

(2.15)
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Therefore, we obtain

N2

∣
∣
∣
∣

∫

uN1,L1vN2,L2wN3,L3dxdt

∣
∣
∣
∣

� N2A
− 1

2 L
1
2
1 L

1
2
2 ‖uN1,L1‖L2

tx
‖vN2,L2‖L2

tx
‖wN3,L3‖L2

tx

∼ N
1
2
1 L

1
2
1 L

1
2
2 L

1
4
3 ‖uN1,L1‖L2

tx
‖vN2,L2‖L2

tx
‖wN3,L3‖L2

tx

� N
1
2
1 (L1L2L3)

5
12 ‖uN1,L1‖L2

tx
‖vN2,L2‖L2

tx
‖wN3,L3‖L2

tx
.

This estimate gives the desired estimate (2.13) for s ≥ 1
2 by choosing b′ and c

as 5
12 ≤ c < b′ < 1

2 .

◦ The case θ̃ < 0
We decompose R

3 × R
3 as follows:

R
3 × R

3 =

⎛

⎜
⎝

⋃

0≤j1,j2≤N1−1
|j1−j2|≤16

DN1
j1

× DN1
j2

⎞

⎟
⎠ ∪

⎛

⎜
⎝

⋃

64≤A≤N1

⋃

0≤j1,j2≤A−1
16≤|j1−j2|≤32

DA
j1 × DA

j2

⎞

⎟
⎠ .

We can write
∣
∣
∣
∣

∫

uN1,L1vN2,L2wN3,L3dxdt

∣
∣
∣
∣

≤
∑

A=N1
0≤j1,j2≤N1−1

|j1−j2|≤16

∑

j3∈J(j1)

∣
∣
∣
∣

∫

uN1,L1,j1vN2,L2,j2wN3,L3,j3dxdt

∣
∣
∣
∣

+
∑

64≤A≤N1

∑

0≤j1,j2≤A−1
16≤|j1−j2|≤32

∑

j3∈J(j1)

∣
∣
∣
∣

∫

uN1,L1,j1vN2,L2,j2wN3,L3,j3dxdt

∣
∣
∣
∣ .

For the former term, by using the Hölder inequality, Theorem 2.1, and (2.15),
we get

∑

A=N1
0≤j1,j2≤N1−1

|j1−j2|≤16

∑

j3∈J(j1)

∣
∣
∣
∣

∫

uN1,L1,j1vN2,L2,j2wN3,L3,j3dxdt

∣
∣
∣
∣

�
∑

A=N1
0≤j1,j2≤N1−1

|j1−j2|≤16

‖Q−σ3
L3

PN3(uN1,L1,j1vN2,L2,j2)‖L2
tx

∑

j3∈J(j1)

‖wN3,L3,j3‖L2
tx

� N−1
1 L

1
2
1 L

1
2
2 ‖wN3,L3‖L2

tx

∑

A=N1
0≤j1,j2≤N1−1

|j1−j2|≤16

‖uN1,L1,j1‖L2
tx

‖vN2,L2,j2‖L2
tx

� N−1
1 L

1
2
1 L

1
2
2 ‖uN1,L1‖L2

tx
‖vN2,L2‖L2

tx
‖wN3,L3‖L2

tx

� N−1
1 (L1L2L3)

1
3 ‖uN1,L1‖L2

tx
‖vN2,L2‖L2

tx
‖wN3,L3‖L2

tx
.
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For the latter term, by using Proposition 2.9, (2.15), and L1L2L3 � N6
1 that

we get
∑

64≤A≤N1

∑

0≤j1,j2≤A−1
16≤|j1−j2|≤32

∑

j3∈J(j1)

∣
∣
∣
∣

∫

uN1,L1,j1vN2,L2,j2wN3,L3,j3dxdt

∣
∣
∣
∣

�
∑

64≤A≤N1

∑

0≤j1,j2≤A−1
16≤|j1−j2|≤32

‖Q−σ3
L3

PN3(uN1,L1,j1vN2,L2,j2)‖L2
tx

∑

j3∈J(j1)

‖wN3,L3,j3‖L2
tx

� ‖wN3,L3‖L2
tx

∑

64≤A≤N1

N−1
1 (L1L2L3)

1
2

∑

0≤j1,j2≤A−1
16≤|j1−j2|≤32

‖uN1,L1,j1‖L2
tx

‖vN2,L2,j2‖L2
tx

� (logN1)N
−1
1 (L1L2L3)

1
2 ‖uN1,L1‖L2

tx
‖vN2,L2‖L2

tx
‖wN3,L3‖L2

tx

� (logN1)N
2−6c
1 (L1L2L3)

c‖uN1,L1‖L2
tx

‖vN2,L2‖L2
tx

‖wN3,L3‖L2
tx

.

The above two estimates give the desired estimate (2.13) for s > 0 by choosing
b′ and c as max{ 3−s

6 , 1
3} < c < b′ < 1

2 . �

3. Proof of the Well-Posedness

In this section, we prove Theorems 1.1 and 1.3. For a Banach space H and
r > 0, we define Br(H) := {f ∈ H | ‖f‖H ≤ r}. Furthermore, we define X s,b

T

as

X s
T := (Xs,b

α,rad,T )2 × (Xs,b
β,rad,T )2 × X̃s+1,b

γ,rad,T ,

where Xs,b
α,rad,T and Xs,b

β,rad,T are the time localized spaces defined by

Xs,b
σ,rad,T :=

{
u|[0,T ]| u ∈ Xs,b

σ,rad

}

with the norm

‖u‖Xs,b
σ,T

:= inf
{

‖v‖Xs,b
σ,T

| v ∈ Xs,b
σ,rad, v|[0,T ] = u|[0,T ]

}
.

Also, X̃s+1,b
γ,rad,T is defined by the same way. Now, we restate Theorem 1.1 for

d = 2 more precisely.

Theorem 3.1. Let s ≥ 1
2 if θ = 0 and s > 0 if θ < 0. For any r > 0 and for

all initial data (u0, v0, [W0]) ∈ Br(Hs(R2)), there exist T = T (r) > 0 and a
solution (u, v, [W ]) ∈ X s,b

T to system (1.12) on [0, T ] for suitable b > 1
2 . Such

solution is unique in BR(X s
T ) for some R > 0. Moreover, the flow map

S : Br(Hs(R2)) � (u0, v0, [W0]) �→ (u, v, [W ]) ∈ X s
T

is Lipschitz continuous.

Remark 3.1. Since Xs,b
T ↪→ C([0, T ];Hs(R2)) holds for b > 1

2 , we have X s,b
T ↪→

C([0, T ];Hs(R2)).

To prove Theorem 3.1, we give the linear estimate.

Proposition 3.1. Let s ∈ R, σ ∈ R\{0}, b ∈ ( 1
2 , 1], b′ ∈ [0, 1−b] and 0 < T ≤ 1.
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(1) There exists C1 > 0 such that for any ϕ ∈ Hs(R2), we have

‖eitσΔϕ‖Xs,b
σ,T

≤ C1‖ϕ‖Hs .

(2) There exists C2 > 0 such that for any F ∈ Xs,−b′
σ,T , we have

∥
∥
∥
∥

∫ t

0

ei(t−t′)σΔF (t′)dt′
∥
∥
∥
∥

Xs,b
σ,T

≤ C2T
1−b′−b‖F‖

Xs,−b′
σ,T

.

(3) There exists C3 > 0 such that for any u ∈ Xs,b
σ,T , we have

‖u‖
Xs,b′

σ,T

≤ C3T
b−b′‖u‖Xs,b

σ,T
.

For the proof of Proposition 3.1, see Lemma 2.1 and 3.1 in [10].

We define the map Φ(u, v, [W ]) = (Φ(1)
α,u0([W ], v),Φ(1)

β,v0
([W ], u), [Φ(2)

γ,[W0]
(u, v))])

as

Φ(1)
σ,ϕ([f ], g)(t) := eitσΔϕ − i

∫ t

0

ei(t−t′)σΔ(Δf(t′))g(t′)dt′,

Φ(2)
σ,[ϕ](f, g)(t) := eitσΔϕ + i

∫ t

0

ei(t−t′)σΔ(f(t′) · g(t′))dt′.

To prove the existence of the solution of (1.1), we prove that Φ is a contraction
map on BR(X s

T ) for some R > 0 and T > 0. For a vector-valued function f =
(f1, f2), ‖f‖Hs and ‖f‖Xs,b

T
denote ‖f1‖Hs + ‖f2‖Hs and ‖f1‖Xs,b

T
+ ‖f2‖Xs,b

T
,

respectively.

Proof of Theorem 3.1. We choose b > 1
2 as b = 1 − b′, where b′ is as in Propo-

sition 2.1. Let (u0, v0, [W0]) ∈ Br(Hs(R2)) be given. By Proposition 2.1
with (σ1, σ2, σ3) ∈ {(β, γ,−α), (−γ, α,−β), (α,−β,−γ)} and Proposition 3.1
with σ ∈ {α, β, γ}, there exist constants C1, C2, C3 > 0 such that for any
(u, v, [W ]) ∈ BR(X s

T ), we have

‖Φ(1)
α,u0

([W ], v)‖Xs,b
α,T

≤ C1‖u0‖Hs + CC2C
2
3T 4b−2‖[W ]‖

X̃s+1,b
γ,T

‖v‖Xs,b
β,T

≤ C1r + CC2C
2
3T 4b−2R2,

‖Φ(1)
β,v0

([W ], u)‖Xs,b
β,T

≤ C1‖v0‖Hs + CC2C
2
3T 4b−2‖[W ]‖

X̃s+1,b
γ,T

‖u‖Xs,b
α,T

≤ C1r + CC2C
2
3T 4b−2R2,

‖[Φ(2)
γ,[W0]

(u, v)]‖
X̃s+1,b

γ,T
≤ C1‖[W0]‖H̃s+1 + CC2C

2
3T 4b−2‖u‖Xs,b

α,T
‖v‖Xs,b

β,T

≤ C1r + CC2C
2
3T 4b−2R2.
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Similarly,

‖Φ(1)
α,u0

([W ], v) − Φ(1)
α,u0

([W ′], v′)‖Xs,b
α,T

≤ CC2C
2
3T 4b−2R

(
‖[W ] − [W ′]‖

X̃s+1,b
γ,T

+ ‖v − v′‖Xs,b
β,T

)
,

‖Φ(1)
β,v0

([W ], u) − Φ(1)
β,v0

([W ′], u′)‖Xs,b
β,T

≤ CC2C
2
3T 4b−2R

(
‖[W ] − [W ′]‖

X̃s+1,b
γ,T

+ ‖u − u′‖Xs,b
α,T

)
,

‖[Φ(2)
γ,[W0]

(u, v)] − [Φ(2)
γ,[W0]

(u′, v′)]‖
X̃s+1,b

γ,T

≤ CC2C
2
3T 4b−2R

(
‖u − u′‖Xs,b

α,T
+ ‖v − v′‖Xs,b

β,T

)
.

Therefore, if we choose R > 0 and T > 0 as

R = 6C1r, CC2C
2
3T 4b−2R ≤ 1

4
then Φ is a contraction map on BR(X s

T ). This implies the existence of the
solution of system (1.1) and the uniqueness in the ball BR(X s

T ). The Lipschitz
continuity of the flow map is also proved by similar argument. �

Next, to prove Theorem 1.3, we justify the existence of a scalar potential
of w ∈ (Hs(R2))2. Let F1 and F2 denote the Fourier transform with respect
to the first component and the second component, respectively. We note that
F−1

1 F−1
2 = F−1

2 F−1
1 = F−1

x (and also F1F2 = F2F1 = Fx) holds on L2(R2).

Proposition 3.2. Let s > 1
2 and w = (w1, w2) ∈ (Hs(R2))2. If w1 and w2

satisfy

ξ2ŵ1(ξ) − ξ1ŵ2(ξ) = 0 a.e.ξ = (ξ1, ξ2) ∈ R
2,

then there exists W ∈ L1
loc(R

2) (⊂ S ′(R2)) such that

∇W (x) = w(x) a.e.x = (x1, x2) ∈ R
2.

To obtain Proposition 3.2, we use the next lemma.

Lemma 3.3. Let s > 1
2 . If f ∈ Hs(R2), then it hold that

F1[f ](·, x2) ∈ L1(R) a.e. x2 ∈ R, F2[f ](x1, ·) ∈ L1(R) a.e. x1 ∈ R.

Proof. By the Cauchy–Schwarz inequality and Plancherel’s theorem, we have
∥
∥
∥‖F1[f ](ξ1, x2)‖L1

ξ1

∥
∥
∥

L2
x2

≤
∥
∥
∥‖〈ξ1〉−s‖L2

ξ1
‖〈ξ1〉sF1[f ](ξ1, x2)‖L2

ξ1

∥
∥
∥

L2
x2

� ‖〈ξ1〉sf̂(ξ1, ξ2)‖L2
ξ

� ‖f‖Hs < ∞
for s > 1

2 . Therefore, we obtain

‖F1[f ](ξ1, x2)‖L1
ξ1

< ∞ a.e. x2 ∈ R.

Similarly, we have

‖F2[f ](x1, ξ2)‖L1
ξ2

< ∞ a.e. x1 ∈ R.



2628 H. Hirayama et al. Ann. Henri Poincaré

�

Proof of Proposition 3.2. We put

W (x) :=
∫ x1

a1

w1(y1, x2)dy1 +
∫ x2

a2

w2(a1, y2)dy2 =: W1(x) + W2(x)

for some a1, a2 ∈ R. By w ∈ L2(R2), we have W ∈ L1
loc(R

2). Hence, it remains
to show that ∇W = w. Since

∂1W1(x) = w1(x), ∂1W2(x) = 0, ∂2W2(x) = w2(a1, x2)

hold for almost all x = (x1, x2) ∈ R
2, it suffices to show

∂2W1(x) = w2(x) − w2(a1, x2) a.e. x = (x1, x2) ∈ R
2. (3.1)

Let h ∈ R. Since F1[w1](·, x2) ∈ L1(R) a.e. x2 ∈ R by Lemma 3.3, we have

W1(x1, x2 + h) − W1(x1, x2)
h

=
1
h

∫ x1

a1

(w1(y1, x2 + h) − w1(y1, x2)) dy1

=
1
h

∫ x1

a1

(∫

R

(F1[w1](ξ1, x2 + h) − F1[w1](ξ1, x2)) eiξ1y1dξ1

)

dy1

=
1
h

∫

R

(F1[w1](ξ1, x2 + h) − F1[w1](ξ1, x2))
(∫ x1

a1

eiξ1y1dy1

)

dξ1

=
1
h

∫

R

(∫

R

ŵ1(ξ1, ξ2)eiξ2x2(eiξ2h − 1)dξ2

)
eiξ1x1 − eiξ1a1

iξ1
dξ1 =: Ih

by Fubini’s theorem. We put F−1
12 := F−1

1 F−1
2 , F−1

21 := F−1
2 F−1

1 . By using
ξ2ŵ1 = ξ1ŵ2 and F−1

12 = F−1
21 , we have

Ih =
∫

R

(∫

R

ŵ2(ξ1, ξ2)
eiξ2h − 1

iξ2h
eiξ2x2dξ2

)

(eiξ1x1 − eiξ1a1)dξ1

= F−1
12

[

ŵ2(ξ1, ξ2)
eiξ2h − 1

iξ2h

]

(x1, x2) − F−1
12

[

ŵ2(ξ1, ξ2)
eiξ2h − 1

iξ2h

]

(a1, x2)

= F−1
21

[

ŵ2(ξ1, ξ2)
eiξ2h − 1

iξ2h

]

(x1, x2) − F−1
21

[

ŵ2(ξ1, ξ2)
eiξ2h − 1

iξ2h

]

(a1, x2)

=
∫

R

(F2[w2](x1, ξ2) − F2[w2](a1, ξ2))
eiξ2h − 1

iξ2h
eiξ2x2dξ2.

Since F2[w2](x1, ·) ∈ L1(R) a.e. x1 ∈ R by Lemma 3.3, we have

lim
h→0

Ih =
∫

R

(F2[w2](x1, ξ2) − F2[w2](a1, ξ2)) eiξ2x2dξ2

= w2(x1, x2) − w2(a1, x2)

by Lebesgue’s dominant convergence theorem. Therefore, we obtain (3.1). �
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Remark 3.2. In the proof of Proposition 3.2, we also used
∣
∣
∣
∣
eiξ2h − 1

iξ2h

∣
∣
∣
∣ ≤ sup

z∈R

(∣
∣
∣
∣
cos z − 1

z

∣
∣
∣
∣+
∣
∣
∣
∣
sin z

z

∣
∣
∣
∣

)

< ∞.

This implies

ŵ2(ξ1, ξ2)
eiξ2h − 1

iξ2h
∈ L2

ξ(R
2)

and

F2[w2](x1, ξ2)
eiξ2h − 1

iξ2h
∈ L1

ξ2(R) a.e. x1 ∈ R.

Remark 3.3. If w = (w1, w2) ∈ (Hs(R2))2 for s > 1
2 satisfies

x2w1(x) − x1w2(x) = 0, a.e. x ∈ R
2

additionally in Proposition 3.2, then W ∈ L1
loc(R

2) given in the proof of Propo-
sition 3.2 is radial. Indeed, this condition with ∇W (x) = w(x) yields (1.10).

Remark 3.4. For s ≤ 1
2 , we do not know whether there exists a scalar poten-

tial of w ∈ (Hs(R2))2 or not. But we point out that if s < 1
2 , then the 1D

delta function appears in ∂2w1 − ∂1w2 for some w ∈ (Hs(R2))2. Then, the
irrotational condition does not make sense for pointwise.

Next, we prove that As(R2) is a Banach space.

Proposition 3.4. For s ≥ 0, As(R2) is a closed subspace of (Hs(R2))2.

Proof. Let f (n) = (f (n)
1 , f

(n)
2 ) ∈ As(R2) (n = 1, 2, 3, . . .) and f = (f1, f2) ∈

(Hs(R2))2. Assume that f (n) convergences to f in (Hs(R2))2 as n → ∞. We
prove f ∈ As(R2); namely, f satisfies (1.8). By the triangle inequality, we have
∥
∥
∥
∥

x2

〈x〉f1 − x1

〈x〉f2

∥
∥
∥
∥

L2

≤
∥
∥
∥
∥

x2

〈x〉f1 − x2

〈x〉f
(n)
1

∥
∥
∥
∥

L2

+
∥
∥
∥
∥

x2

〈x〉f
(n)
1 − x1

〈x〉f
(n)
2

∥
∥
∥
∥

L2

+
∥
∥
∥
∥

x1

〈x〉f
(n)
2 − x1

〈x〉f2

∥
∥
∥
∥

L2

≤ ‖f1 − f
(n)
1 ‖L2 + ‖x2f

(n)
1 − x1f

(n)
2 ‖L2 + ‖f

(n)
2 − f2‖L2 .

Since f (n) satisfies (1.8) and f (n) → f in (L2(R2))2 as n → ∞, we obtain

‖x2f
(n)
1 − x1f

(n)
2 ‖L2 = 0, ‖f1 − f

(n)
1 ‖L2 + ‖f

(n)
2 − f2‖L2 → 0 (n → ∞).

Therefore, we get
∥
∥
∥
∥

x2

〈x〉f1 − x1

〈x〉f2

∥
∥
∥
∥

L2

= 0.

It implies x2f1(x) − x1f2(x) = 0 a.e. x ∈ R
2. Similarly, we obtain ξ2f̂1(ξ) −

ξ1f̂2(ξ) = 0 a.e. ξ ∈ R
2. �
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Proof of Theorem 1.3. Let (u0, v0, w0) ∈ Br((Hs
rad(R2))2×(Hs

rad(R2))2×As(R2))
be given. We first prove the existence of solution to (1.1). Since w0 satisfies
(1.8), by Proposition 3.2, there exists [W0] ∈ H̃s+1

rad such that ∇W0 = w0. From
Theorem 1.1, there exists T > 0 and a solution (u, v, [W ]) ∈ X s

T to (1.12) with
(u, v, [W ])|t=0 = (u0, v0, [W0]). Since

‖[W0]‖H̃s+1 = ‖w0‖Hs ≤ r,

the existence time T is decided by r. We put w = ∇W . Then, w ∈ Xs,b
γ,T

satisfying

‖w‖Xs,b
γ,T

= ‖[W ]‖
X̃s+1,b

γ,T
≤ R,

where R is as in the proof of Theorem 1.1, and (u, v, w) satisfies (1.1) since
ΔW = ∇ · w. Furthermore, we have

∂1w2 − ∂2w1 = ∂1(∂2W ) − ∂2(∂1W ) = 0

and

x1w2 − x2w1 = (x1∂2 − x2∂1)W = 0

because W is radial with respect to x. Therefore, w(t) ∈ As(R2) for any
t ∈ [0, T ].

Next, we prove the uniqueness of the solution in BR(Ys,b
T ), where

Ys,b
T := (Xs,b

α,rad,T )2 × (Xs,b
β,rad,T )2 × Y s,b

γ,T ,

Y s,b
γ,T := {w = (w1, w2) ∈ (Xs,b

γ,T )2|w(t) satisfies (1.8)for any t ∈ [0, T ]}.

Let (u(1), v(1), w(1)), (u(2), v(2), w(2)) ∈ BR(Ys,b
T ) are solution to (1.1) with

initial data (u0, v0, w0). Then by Proposition 3.2, there exists [W (1)], [W (2)] ∈
X̃s+1,b

γ,rad,T such that w(1) = ∇W (1), w(2) = ∇W (2). By substituting w(j) =
∇W (j) in both sides of the integral form of (1.1), (u(j), v(j),W (j)) (j = 1, 2)
satisfy

u(j)(t) = eitαΔu0 + i

∫ t

0

ei(t−t′)αΔ(ΔW (j)(t′))u(j)(t′)dt′ in (Hs(R2))2,

v(j)(t) = eitβΔv0 + i

∫ t

0

ei(t−t′)βΔ(ΔW (j)(t′))v(j)(t′)dt′ in (Hs(R2))2,

∇W (j)(t) = eitγΔw0 − i

∫ t

0

ei(t−t′)γΔ∇(u(j)(t′) · v(j)(t′))dt′ in Hs(R2).

Therefore, by the same argument as in the proof of Theorem 1.1, we have

‖u(1) − u(2)‖Xs,b
α,T

≤ 1
4

(
‖w(1) − w(2)‖Xs,b

γ,T
+ ‖v(1) − v(2)‖Xs,b

β,T

)

‖v(1) − v(2)‖Xs,b
β,T

≤ 1
4

(
‖w(1) − w(2)‖Xs,b

γ,T
+ ‖u(1) − u(2)‖Xs,b

α,T

)

‖w(1) − w(2)‖Xs,b
γ,T

≤ 1
4

(
‖u(1) − u(2)‖Xs,b

α,T
+ ‖v(1) − v(2)‖Xs,b

β,T

)
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since w(1) − w(2) = ∇(W (1) − W (2)). This implies

(u(1), v(1), w(1)) = (u(2), v(2), w(2)) on [0, T ].

The continuous dependence on initial data can be obtained by the similar
argument. �

4. The Lack of the Twice Differentiability of the Flow Map

The following proposition implies Theorem 1.2.

Proposition 4.1. Let d = 2 and 0 < T � 1. Assume θ = 0 and s < 1
2 . For

every C > 0, there exist f , g ∈ Hs
rad(R2) such that

sup
0≤t≤T

∥
∥
∥
∥

∫ t

0

ei(t−t′)γΔ∇
(
(eit′αΔf)(eit′βΔg)

)
dt′
∥
∥
∥
∥

Hs

≥ C‖f‖Hs‖g‖Hs . (4.1)

Proof. Let N � 1 and p := γ
α−γ (�= 0). We note that p is well defined since

θ = 0 implies κ �= 0 for α, β, γ ∈ R\{0}. For simplicity, we assume p > 0. Put

D1 := {ξ ∈ R
2| N ≤ |ξ| ≤ N + 1}, D2 := {ξ ∈ R

2| p−1N ≤ |ξ| ≤ p−1N + 1},

D := {ξ ∈ R
2| (1 + p−1)N + 1 ≤ |ξ| ≤ (1 + p−1)N + 1 + 2−10}.

We define the functions f and g as

f̂(ξ) := N−s− 1
21D1(ξ), ĝ(ξ) := N−s− 1

21D2(ξ).

Clearly, we have ‖f‖Hs ∼ ‖g‖Hs ∼ 1 and f , g are radial. For ξ = (ξ1, ξ2) ∈ R
2

and η = (η1, η2) ∈ R
2, we define

Φ(ξ, η) := α|η|2 − β|ξ − η|2 − γ|ξ|2
= (α − γ)|η − p(ξ − η)|2

= (α − γ)
{

(η1 − p(ξ1 − η1))
2 + (η2 − p(ξ2 − η2))

2
}

because θ = 0 implies β+γ
α−γ = −

(
γ

α−γ

)2

. We will show

sup
0≤t≤T

∥
∥
∥
∥

∫ t

0

ei(t−t′)γΔ∇
(
(eit′αΔf)(eit′βΔg)

)
dt′
∥
∥
∥
∥

Hs

� N−s+ 1
2 .

We calculate that
∥
∥
∥
∥

∫ t

0

ei(t−t′)γΔ∇
(
(eit′αΔf)(eit′βΔg)

)
dt′
∥
∥
∥
∥

Hs

� N−s

∥
∥
∥
∥1D(ξ)

∫ t

0

∫

R2
e−it′Φ(ξ,η)1D1(η)1D2(ξ − η)dη

∥
∥
∥
∥

L2
ξ

≥ N−s

∥
∥
∥
∥1D(ξ)

∫ t

0

∫

R2
cos(t′Φ(ξ, η))1D1(η)1D2(ξ − η)dη

∥
∥
∥
∥

L2
ξ

=: N−s ‖F (ξ)‖L2
ξ
.
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Let R : R2 → R
2 be a rotation operator. Since Φ(ξ, η) = Φ(Rξ,Rη) and 1D,

1D1 , 1D2 are radial, we can see

F (ξ) = 1D(ξ)
∫

R2

sin(tΦ(ξ, η))
Φ(ξ, η)

1D1(η)1D2(ξ − η)dη

= 1D(Rξ)
∫

R2

sin(tΦ(Rξ,Rη))
Φ(Rξ,Rη)

1D1(Rη)1D2(Rξ − Rη)dη

= 1D(Rξ)
∫

R2

sin(tΦ(Rξ, η))
Φ(Rξ, η)

1D1(η)1D2(Rξ − η)dη

= F (Rξ).

It implies that F is radial. Therefore, there exists G : R → R such that
F (ξ) = G(|ξ|). We note that

‖F (ξ)‖L2
ξ

= ‖G(r)r
1
2 ‖L2((0,∞)) � N

1
2 inf

r>0
|G(r)| = N

1
2 inf

(ξ1,0)∈D
|F (ξ1, 0)|

since suppG ⊂ [(1 + p−1)N + 1, (1 + p−1)N + 1 + 2−10]. Hence, it suffices to
show that

|F (ξc)| � t
1
2 (4.2)

for any c ∈ [0, 2−10] and some 0 ≤ t ≤ T , where ξc := (ξc1, 0) ∈ R
2, ξc1 :=

(1 + p−1)N + 1 + c. Simple calculation gives

Φ(ξc, η) = (α − γ)
{

((1 + p)(η1 − N) − p(1 + c))2 + (1 + p)2η2
2

}
. (4.3)

We also observe that

1D1(η)1D2(ξc − η) �= 0

=⇒ η1 ≤ N + 1 and ξc1 − η1 ≤ p−1N + 1
=⇒ N + c ≤ η1 ≤ N + 1.

Let ε > 0 be small. We define a new set E as

E := D1 ∩ {η = (η1, η2) ∈ R
2| N + c ≤ η1 ≤ N + 1},

and we decompose E into four sets:

E1 =
{

ξc1 −
√

(p−1N + 1)2 − N2ε ≤ η1 <
√

(N + 1)2 − N2ε, |η2| ≤ N ε
}

,

E2 = {N + c ≤ η1 < ξc1 −
√

(p−1N + 1)2 − N2ε, |η2| ≤ N ε} ∩ E,

E3 = {
√

(N + 1)2 − N2ε ≤ η1 ≤ N + 1, |η2| ≤ N ε} ∩ E,

E4 = {N ε < |η2|} ∩ E.

We can easily show that Ei ∩ Ej = ∅ if i �= j. Furthermore, we can obtain
E1 ⊂ E and

1D1(η)1D2(ξc − η) = 1
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for any η ∈ E1. We observe that

|F (ξc)| ≥
∣
∣
∣
∣

∫

R2

sin(tΦ(ξc, η))
Φ(ξc, η)

1E1(η)dη

∣
∣
∣
∣−

4∑

j=2

∫

R2

∣
∣
∣
∣
sin(tΦ(ξc, η))

Φ(ξc, η)

∣
∣
∣
∣1Ej

(η)dη

=: I1 −
4∑

j=2

Ij .

We first consider I1. Let

c′ := p−1N + 1 −
√

(p−1N + 1)2 − N2ε, c′′ := N + 1 −
√

(N + 1)2 − N2ε.

Obviously, it holds c′ ∼ c′′ ∼ N−1+2ε. We calculate that

I1 = 2

∣
∣
∣
∣
∣

∫ N+1−c′′

N+c′+c′′

(∫ Nε

0

sin(tΦ(ξc, η))
Φ(ξc, η)

dη2

)

dη1

∣
∣
∣
∣
∣

=
2

(1 + p)|α − γ|

∣
∣
∣
∣
∣

∫ N+1−c′′

N+c′+c′′

(∫ (1+p)Nε

0

sin(τ(q(η1) + η2
2))

q(η1) + η2
2

dη2

)

dη1

∣
∣
∣
∣
∣
,

where τ := |α − γ|t and q(η1) := ((1 + p)(η1 − N) − p(1 + c))2. Therefore, if
we obtain

inf
η1∈[N+c′+c′′,N+1−c′′]

∫ (1+p)Nε

0

sin(τ(q(η1) + η2
2))

q(η1) + η2
2

dη2 � t
1
2 , (4.4)

then we get I1 � t
1
2 . Let t > 0 be small. We fix η1 ∈ [N + c′ + c′′, N + 1 − c′′]

and write q(η1) = q for simplicity. Clearly, we have 0 ≤ q � 1. We easily verify
that if we restrict η2 as 0 ≤ η2 ≤

√
πτ−1 − q, then we have sin(τ(q + η2

2)) ≥
0 and sin(τ(q+η2

2))

q+η2
2

is monotone decreasing. Similarly, if
√

πτ−1 − q ≤ η2 ≤
√

2πτ−1 − q, then we see sin(τ(q + η2
2)) ≤ 0. We calculate

∫ √
2πτ−1−q

0

sin(τ(q + η2
2))

q + η2
2

dη2

≥
∫ √

πτ−1−q

0

sin(τ(q + η2
2))

q + η2
2

dη2 −
∫ √

2πτ−1−q

√
πτ−1−q

1
q + η2

2

dη2

≥ 2τ

π

∫ √
π(2τ)−1−q

0

dη2 − τ

π

∫ √
2πτ−1−q

√
πτ−1−q

dη2

=
τ

π

(
2
√

π(2τ)−1 − q −
√

2πτ−1 − q +
√

πτ−1 − q
)

� t
1
2 .

The last estimate is verified by the smallness of τ = |α − γ|t. We also see
∫ √

2(n+1)πτ−1−q

√
2nπτ−1−q

sin(τ(q + η2
2))

q + η2
2

dη2 � t
1
2

n2

for any n ∈ N. Therefore, we obtain (4.4).
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Next, we consider I2, I3, and I4. Since |E2|, |E3| � N−1+3ε, we easily
observe that

I2 + I3 � tN−1+3ε.

For I4, we observe that

I4 =
∫

E4

∣
∣
∣
∣
sin(tΦ(ξc, η))

Φ(ξc, η)

∣
∣
∣
∣ dη �

∫ N+1

N+c

(∫ ∞

Nε

1
η2
2

dη2

)

dη1 � N−ε.

By the above argument, we obtain

|F (ξc)| ≥ I1 −
4∑

j=2

Ij � t
1
2 − tN−1+3ε + N−ε.

If we choose N � 1 satisfying N−ε � T , then for any t ∈ [0, T ] with N−ε � t,
we have (4.2). �
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[15] Hirayama, H.: Well-posedness and scattering for a system of quadratic derivative
nonlinear Schrödinger equations with low regularity initial data. Commun. Pure
Appl. Anal. 13, 1563–1591 (2014)

[16] Hirayama, H., Kinoshita, S.: Sharp bilinear estimates and its application to a
system of quadratic derivative nonlinear Schrödinger equations. Nonlinear Anal.
178, 205–226 (2019)

[17] Ikeda, M., Katayama, S., Sunagawa, H.: Null structure in a system of quadratic
derivative nonlinear Schrödinger equations. Ann. Inst. Henri Poincaré 16, 535–
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