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Abstract

Everyday, vast amounts of unstructured, textual data are shared online in digital
form. Websites such as forums, social media sites, review sites, blogs, and comment
sections offer platforms to express and discuss opinions and experiences. Under-
standing the opinions in these resources is valuable for e.g. businesses to support
market research and customer service but also individuals, who can benefit from
the experiences and expertise of others.

In this thesis, we approach the topic of opinion extraction and classification
with neural network models. We regard this area of sentiment analysis as a relation
extraction problem in which the sentiment of some opinion holder towards a certain
aspect of a product, theme, or event needs to be extracted. In accordance with
this framework, our main contributions are the following:

i) We propose a full system addressing all subtasks of relational sentiment
analysis.

ii) We investigate how semantic web resources can be leveraged in a neural-
network-based model for the extraction of opinion targets and the classifi-
cation of sentiment labels. Specifically, we experiment with enhancing pre-
trained word embeddings using the lexical resource WordNet. Furthermore,
we enrich a purely text-based model with SenticNet concepts and observe an
improvement for sentiment classification.

iii) We examine how opinion targets can be automatically identified in noisy
texts. Customer reviews, for instance, are prone to contain misspelled words
and are difficult to process due to their domain-specific language. We inte-
grate information about the character structure of a word into a sequence
labeling system using character-level word embeddings and show their pos-
itive impact on the system’s performance. We reveal encoded character
patterns of the learned embeddings and give a nuanced view of the obtained
performance differences.

iv) Opinion target extraction usually relies on supervised learning approaches.
We address the lack of available annotated data for specific languages by
proposing a zero-shot cross-lingual approach for the extraction of opinion
target expressions. We leverage multilingual word embeddings that share a
common vector space across various languages and incorporate these into a
convolutional neural network architecture. Our experiments with 5 languages
give promising results: We can successfully train a model on annotated data
of a source language and perform accurate prediction on a target language
without ever using any annotated samples in that target language.
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“If you give a man an answer, all he gains is a little fact. But give him
a question and he’ll look for his own answers.”

— Patrick Rothfuss, The Wise Man’s Fear
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Chapter 1

Introduction

Chapter Overview This chapter provides an introduction into Aspect-based Sen-
timent Analysis which constitutes a central research topic of this thesis. We moti-
vate the importance of this particular branch of sentiment analysis and demonstrate
its challenges with tangible real-world examples. These lead us to our research
questions and consequently to the contributions of this thesis.

1.1 Motivation

The technological advances of information technologies in recent decades opened
up new communication ways over the internet. These new formats of communi-
cation allow vast amounts of people to exchange ideas, experiences, opinions, and
more about every conceivable topic. A large number of websites and platforms
support and rely on this exchange between people. Nowadays, anyone can share
a story in online forums, talk to friends and strangers on social media sites, write
an opinion piece, news article, commentary, or review. The quantity of available
information is plainly staggering and making use of it to its fullest extent is prac-
tically impossible with manual effort alone. In fact, the travel website TripAdvisor
alone reached an amount of roughly 730 million shared reviews in 20181. For the
business-review website Yelp, the number of gathered reviews reached 192 million
in 20192.

Being able to automatically understand and summarize the masses of infor-
mation is clearly valuable for many interest groups. Businesses can profit from
customer feedback by understanding the customer needs more clearly. Recogniz-
ing genuine criticism about e.g. a product allows a business to address these issues
quickly and in turn increase customer satisfaction. Furthermore, the diversity of

1Retrieved 7 November 2019: https://www.statista.com/topics/3443/tripadvisor/
2Retrieved 7 November 2019: https://www.yelp-press.com/company/fast-facts/
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2 Chapter 1. Introduction

the available information can aid in market research to identify unmet needs that
are otherwise hard to uncover. While the commercial interest of understanding
opinions is obvious, consumers benefit from the experiences and opinions of others
as well. The emergence of review sites such as Yelp, TripAdvisor, IMDb, Glassdoor,
Goodreads, Jameda, or StreetAdvisor underline the important role that reviews
play in the decision making of consumers. These sites allow to share experiences
relating to a broad spectrum of topics. Consumers often rely on such reviews when
forming a decision about a product. In many cases, the decision making process
is influenced by only a handful of reviews [Askalidis and Malthouse, 2016] with
only few people taking the time to browse beyond ten reviews3. Lackermair et al.
[2013] confirm that customer reviews are an important source of information for
customers. However, they find that the unstructured nature of textual reviews
reduces their perceived helpfulness. This is due to the fact that comparing these
reviews is a laborious process for the customer. This clearly shows the need for a
concise representation or summarization of large amounts of customer reviews in
order to inform about the expressed opinions.

While opinions can be expressed through various modalities, be it visually or
auditory [Pérez-Rosas et al., 2013; Poria et al., 2016b], a large part of the openly
shared experiences are in textual form. These texts are often semi- or unstruc-
tured, that is, they consist of free text and are sometimes supplemented by other
information such as user ratings. Given the example of user reviews, the provided
ratings are often coarse-grained in that they represent an overall rating of the
product, service, or experience. For instance, the e-commerce platform Amazon
provides a 5-star rating scale to summarize the entirety of the customer’s satisfac-
tion with a product. However, the expressed opinions in reviews are often more
nuanced and touch upon several aspects of an experience which are not accurately
represented by the overall rating. Many potential applications for customers and
businesses require a more fine-grained view on the given information beyond the
document-level. This need is addressed by the growing research field of Aspect-
based Sentiment Analysis.

1.1.1 Aspect-Based Sentiment Analysis

Aspect-based Sentiment Analysis (ABSA) is concerned with the detection of opin-
ions, evaluations, or emotions towards entities of interest. The range of possible
entities is diverse and highly dependent on the considered domain. Among others,
targeted entities can be political topics, products, services, places, events, or parts
thereof. An entity, can be associated with different aspects i.e. a collection of parts

3Retrieved 7 November 2019: https://www.vendasta.com/blog/50-stats-you-need-to-

know-about-online-reviews

https://www.vendasta.com/blog/50-stats-you-need-to-know-about-online-reviews
https://www.vendasta.com/blog/50-stats-you-need-to-know-about-online-reviews
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or attributes of the entity. As an example, an opinion holder who is reviewing a
restaurant might not refer to it as a whole but rather to individual aspects that
were particularly important to his experience:

Example:

“the food and drinks were tasty
pos

but the menu was limited
neg

.”

In the above example, an opinion holder expresses three distinct opinions. A
positive sentiment is expressed towards the two aspect phrases food and drinks ,

indicated by the opinion phrase tasty . A third, negative opinion is expressed

through the term limited and targets the menu . Breaking down the review into
individual opinions with a clear target is of particular value especially when the
opinion holder has conflicting opinions about different aspects that cannot simply
be subsumed by an overall sentiment label.

The importance of automatically finding fine-grained opinions targeted at in-
dividual aspects of an entity is apparent. ABSA makes it possible to group, classify,
and sort experiences automatically by various domain-specific aspects depending
on the particular information need. As an example, a person looking for an apart-
ment might be interested in neighborhoods that are well connected to the public
transportation system while nearby nightlife and dining opportunities are irrele-
vant. Yet, the opposite might be true for others. The possibility to filter reviews
by what is relevant to an individual greatly reduces the effort of the exploration
process. For businesses, the analysis of reviews and customer feedback in general
allows to identify problematic aspects of a product or service. ABSA offers a way
to alleviate manual effort in analyzing this feedback. It helps to discover previ-
ously unknown themes in the expressed opinions and allows to access them in a
structured manner. We summarize that ABSA is a valuable means for addressing
the strong demand of structuring large collections of freely expressed opinions and
making them semantically searchable. Before we consider typical challenges that
arise for ABSA, we briefly introduce the relevant terminology that is used in this
thesis.

1.2 Terminology

Throughout this thesis, we support the view that opinions are often expressed in
complex ways that elude an accurate summarization by a simple rating scale such
as a positive or negative sentiment label. Rather, opinions are composed of several
contributing parts. In the following, we describe these parts as we use them in
this thesis:
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Aspect An aspect usually refers to a part of a product, service, event on a
conceptual level. It can be a concrete part of a product e.g. the display of a phone,
but also more abstract things such as the ambience of a restaurant.

Aspect Phrase In a text, the aspect ambience can be referred to with different
aspect phrases, e.g. “decor”, “interior design”, or “atmosphere”. These are the
actual terms that are used to speak of a particular aspect.

Opinion Holder The opinion holder is the person that expresses an opinion.
As we are focusing on customer reviews in this thesis, the opinion holder is im-
plicitly the writer of the review. Therefore, we usually assume the opinion holder
to be already identified and irrelevant to our analysis. We omit it from further
discussions.

Opinion We refer to an opinion as a complex structure that usually defines
i) what the target of the opinion is e.g. the “food”, ii) what its sentiment la-
bel is (i.e. positive, negative, etc.), and iii) what the reason for the sentiment is
e.g. “tasty”.

Sentiment Label An opinion usually expresses a positive or negative attitude
towards an aspect and the sentiment label (or sentiment polarity) is a discrete
representation of this. In our examples, we visualize this as a superscript.

Opinion Phrase The phrases in a text that explicitly carry subjective informa-
tion are referred to as opinion phrases, also called opinion expressions or subjective
expressions. In many cases, these play an important role in identifying the polarity
of an opinion as they may convey its reason. Where relevant, we mark these with
red boxes in our examples.

Opinion Target Expression An opinion target expression is an aspect phrase
towards which an opinion holder expresses an opinion. It is thus the target of the
opinion. For clarification, consider the following examples:

Example:

“I ordered the chicken fajita.”

“I ordered the chicken fajita and enjoyed
pos

it.”

In both sentences, the chicken fajita is an aspect phrase that is potentially rate-
able. However, only in the second example is it also the target of an opinion
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and thus an opinion target expression. We mark these with blue boxes in our
examples.

Opinion Target Relation In subsequent parts of this thesis, we are concerned
with sentiment analysis as a relation extraction problem. In short, we advocate to
subdivide ABSA into smaller subtasks, one of which is the identification of opinion
target relations. Such a relation connects an opinion phrase to an opinion target
expression and indicates that the expressed sentiment refers to the targeted aspect.
Relations are visualized as arrows connecting the respective phrases.

Aspect Category Some formalizations of ABSA assign every aspect to one of
several predefined categories which provide a further abstraction from the textual
expressions. The SemEval 2016 workshop [Pontiki et al., 2015], defines aspect cat-
egories as pairs of Entities (e.g. Laptop, Keyboard, Customer Support, Restaurant,
Food) and Attributes (e.g. Usability, Quality, Price). As the classification of aspect
categories is out of scope of this thesis, we merely mention these here for the sake
of completeness.

1.3 Challenges

Automatically extracting complex opinions from customer reviews is decidedly
valuable given the wealth of available information. It is, however, challenging for
several reasons. At the core of all challenges resides the fact that natural language
is complicated and evolving and has, in general, a high variability. This affects
Natural Language Processing (NLP) in general and fuels the continuous growth
of NLP research. For ABSA, we highlight the following challenges that are of
particular importance to this thesis:

Multiple Opinions As we already saw before, an opinion holder can state sev-
eral opinions with conflicting polarities for the same entity, such as a restaurant,
in a single sentence:

Example:

“the food and drinks were tasty
pos

but the menu was limited
neg

.”

Document-level classification approaches are unsuited for this problem as they lack
the required granularity. Among these, Bag-of-Words approaches are particularly
unsuited for inferring the sentiment towards an aspect as they are oblivious to the
sentence structure. To address this issue, further steps need to be taken to enable
aspect-specific inference (see Chapters 3 and 4).
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Variation of Aspects For most domains and applications, an ontology is not
available so that the exact set of potential target entities and their aspects is usually
unknown. This is complicated even further since an aspect such as ambience can be
referenced in a multitude of ways, including, but not limited to the aspect phrases
“decor”, “vibe”, and “atmosphere”. Furthermore, the evolving nature of the web
leads to the emergence of new entities and aspects as new services or products
become available or events take place. Another form of variation is expressed
through very specific, and in some cases long aspect phrases:

Example:

“I fell in love
pos

with the egg noodles in the beef broth with shrimp dumplings

and slices of BBQ roast pork .”

This examples makes clear, that it is infeasible to collect a finite set aspect phrases
as they can be strongly compositional. Rather, it is necessary to infer targeted
aspect phrases from the text itself.

Ambiguities For ABSA, ambiguous words, phrases, and sentences complicate
the extraction of opinions. Adjectives like “cold” or “small” often carry an indi-
cation of a sentiment polarity, however, this can only be accurately determined in
conjunction with the modified aspect. As an example, a “cold beer” is generally
considered a good thing whereas “cold food” tends to be perceived negatively.

Implicit Opinions Moreover, it is not unusual for an opinion to be expressed
in an implicit way. For instance, an opinion phrase which explicitly indicates the
polarity of an opinion can be omitted while the expressed sentiment remains clearly
discernable for a human reader:

Example:

“Please take my advice, go and try this place .”

“There is something about their atmosphere that makes me come back
nearly every week.”

Other times, the opinion target is unspecified as well, such that the only part of
an opinion that can be identified is an overall sentiment:

Example:

“And I hate to say this but I doubt I’ll ever go back.”
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Background Knowledge Going further, some statements are only clear in a
larger context or require a fair amount of background knowledge to understand
them correctly:

Example:

“Well, I guess maybe it might be beneficial for the management to pay
a visit to Tutta Bella in Columbia City for some tips.”

Domain-Specific Language While the manner in which an opinion holder ex-
presses an opinion can pose challenges for automatic extraction systems, the same
is true for the source domain of the texts. Each domain has its peculiarities that
affect how opinions are expressed and what constitutes a valid target aspect. Tar-
get aspects are heavily domain dependent and make use of terms and phrases that
are specific to that domain. The following excerpt from a laptop review illustrates
this:

Example:

“ [...] and its radeon 5850 would have DDR5 instead of DDR3 .”

Besides the target aspect, opinion expressions and other sentiment indicators vary
from domain to domain:

Example:

“ [...] the mozzarella en Carozza is mmmmmmmm
pos

..... [...]”

The onomatopoetic expression “mmmmmmmm”, while understandable in the restau-
rant domain, would usually not be used as such in e.g. a laptop review.

Writing Style Customer reviews are particularly challenging as they often fea-
ture an informal writing style. Among common phenomena are elongated words
that emphasize a sentiment:

Example:

“i love
pos

their chicken pasta cant remember the name but is sooo

good
pos

”

“ [...] service was so slowwwww
neg

[...]”

Besides these deliberate peculiarities, customer reviews frequently contain spelling
errors:

Example:
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“The pizza is yummy
pos

and I like
pos

the atmoshpere .”

These characteristics impede many traditional, token-based machine learning ap-
proaches and require extensive preprocessing and normalization.

Cost of Annotation The aforementioned challenges are mostly rooted in the
complexity of natural language itself. Besides these challenges, there are more
technical hurdles as well. Most existing approaches for ABSA rely on supervised
machine learning methods. For these, manually annotated training data is needed
to optimize a model for the specific task. The annotation process itself is labori-
ous due to the intricate structure of opinions. And as the performance of these
approaches often depends on the quality and quantity of these annotations, the
generation of such a training set can be quite costly. This issue has not been
addressed to a satisfactory extent by previous research efforts.

1.4 Research Questions

The key research questions of this thesis concern the automatic extraction of opin-
ions from natural language texts. We are concerned with four major questions that
correspond to the core chapters of this thesis. We approach these research ques-
tions through more nuanced sub-questions which each focus on different facets. To
give the reader an overview of the focus of this thesis, we summarize each research
question briefly:

RQ1 How can fine-grained sentiment analysis be addressed in its complexity?

Sentiment analysis is traditionally addressed in a strongly simplified way that
cannot model the intricacies of naturally expressed opinions. We advocate
the framework of relational sentiment analysis and propose solutions for all
its subtasks.

RQ1.1 How can relevant phrases be identified?

Key tasks within relational sentiment analysis are the identification of
aspects and opinion phrases. These phrases are classified and linked in
later steps to represent expressed opinions. We offer solutions capable of
the automatic extraction of these phrases.

RQ1.2 What is the impact of domain-specific word embeddings on the task?

A central method to represent texts is through the use of word embed-
dings. These are usually pretrained on a large unlabeled dataset and fine
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tuned on specific downstream tasks. We experiment with domain-specific
word embeddings and assess their contribution to the extraction of target
phrases.

RQ1.3 How can dependencies between aspect and opinion phrases be lever-
aged?

Aspect and opinion phrases often co-occur as they are semantically linked.
We show that jointly extracting these phrases is beneficial for aspects and
opinion phrases alike.

RQ1.4 How can we infer the sentiment pertaining to a particular expression
in a document?

It is not unusual that a single document contains multiple opinion ex-
pressions with contrasting polarities. Classifying the subjective content
of a phrase is difficult as it heavily depends on its context. We propose
a novel model capable of opinion-phrase specific sentiment classification
using learned distance embeddings.

RQ1.5 How can we identify corresponding targets for an opinion phrase?

Opinion phrases usually refer to one or more explicit target phrases. To
determine the opinion towards a specific target aspect, we perform rela-
tion extraction between identified aspect and opinion phrases and surpass
prior approaches.

RQ2 How can external, structured knowledge be incorporated into a model for
ABSA?

Structured knowledge bases have the potential to support machine learning
models for ABSA. We evaluate two approaches to leverage this knowledge.

RQ2.1 What is the benefit of lexical knowledge?

Word embeddings are often computed in a purely data-driven fashion and
lack explicit lexical knowledge. We experiment with existing techniques
to introduce such external knowledge into precomputed word embed-
dings.

RQ2.2 What improvements can be expected when including semantic knowl-
edge?
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While word embeddings can encode semantic information to some extent,
this knowledge is not explicit. Learning this from a training corpus might
not always be possible. We measure the impact of explicit, concept-level
information on the task of ABSA.

RQ3 How can we alleviate the difficulty of opinion target extraction for noisy
textual data?

ABSA is often performed on user-generated texts. As such, the documents
are noisy and feature an informal writing style that complicate an automated
analysis. We propose a solution to mitigate these effects.

RQ3.1 How can a model learn relevant morphological information?

Our solution leverages character-level word embeddings that we opti-
mized for the extraction of opinion target expressions. The learned em-
beddings show a desirable clustering according to word suffixes.

RQ3.2 Which challenges are alleviated with subword information?

We hypothesize that the learned embeddings help to disambiguate Out-
of-Vocabulary words and multi-word expressions. We evaluate these ideas
and show an improvement for multi-word expressions.

RQ4 How can we reduce the annotation effort for the creation of training data for
under-resourced languages?

Most of the proposed approaches throughout this thesis make use of very
few task-specific features and instead rely on annotated training datasets for
supervised learning. These annotations can be costly to produce, especially
so for multiple domains and languages. We explore an approach to mitigate
the reliance on annotated data for a specific language.

RQ4.1 To what degree is a multilingual model capable of performing OTE
extraction for unseen languages?

Being able to perform Opinion Target Expression (OTE) extraction with-
out any target language annotations is very valuable. We propose an ap-
proach capable of zero-shot prediction for unseen languages and compare
it across language pairs.

RQ4.2 What is the benefit of training a model on more than one source lan-
guage?
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Our approach can leverage multiple source languages at once and thus
make use of more available training data. We show in how far such a
model improves over using a single language.

RQ4.3 How much annotation effort can be saved by harnessing cross-lingual
learning?

Having training samples for the target language is still a valuable source of
information for opinion target extraction. We show how much annotation
effort can be saved by our approach.

RQ4.4 How big is the impact of the used alignment method on the OTE
extraction performance?

The alignment of word embeddings across languages plays a central role
in the proposed transfer learning. We compare two methods for obtaining
such embeddings.

1.5 Contributions and Structure of the Thesis

This thesis comprises 7 chapters. Chapters 1 and 2 lay the groundwork of the thesis
and motivate the overall goal and research questions. The core chapters (Chapter 3
- Chapter 6) follow a similar, overall structure and i) start with an introduction
to a particular research problem, including motivations, related work, research
questions, and our contributions, ii) proceed with a description of our approaches,
iii) evaluate the approaches by carrying out experiments, iv) discuss the results,
and finally v) conclude the chapter with a brief summary and an outlook on future
work. The thesis finally concludes with a summary of the main findings and general
future research directions in Chapter 7. The remainder of this thesis is organized
as follows:

Chapter 2 Background

This chapter lays the groundwork for this thesis as it introduces the
fundamentals of natural language processing with neural networks. We
give a brief introduction into artificial neural networks and its modern
variants and introduce word embeddings as a method for representing
textual data. We briefly describe span representations as a means
to sequence tagging. The chapter is concluded with the definition of
frequently used evaluation metrics.
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Chapter 3 Relational Sentiment Analysis

We introduce the framework of relational sentiment analysis in an ef-
fort to adequately model the complexity of sentiment analysis in a
modular way. Each such module is implemented and evaluated. In
this chapter, we address the following research questions:

RQ1 How can fine-grained sentiment analysis be addressed in its
complexity?

RQ1.1 How can relevant phrases be identified?

RQ1.2 What is the impact of domain-specific word embeddings on the
task?

RQ1.3 How can dependencies between aspect and opinion phrases be
leveraged?

RQ1.4 How can we infer the sentiment pertaining to a particular ex-
pression in a document?

RQ1.5 How can we identify corresponding targets for an opinion phrase?

Chapter 4 Aspect-Based Sentiment Analysis and Structured Resources

In this chapter, we follow a simplified formulation of the problem of
sentiment analysis that reduces it to two subtasks: i) the extraction of
opinion target phrases, and ii) the classification of sentiment labels for
specific target phrases. We provide a focused look on the benefits of
external, structured resources and evaluate their contribution for the
task. We address the following research questions:

RQ2 How can external, structured knowledge be incorporated into a
model for ABSA?

RQ2.1 What is the benefit of lexical knowledge?

RQ2.2 What improvements can be expected when including semantic
knowledge?

Chapter 5 Subword Information for Opinion Target Extraction

This chapter concerns the extraction of opinion targets in particular as
it poses an important early step in our sentiment analysis framework.
We focus on the effects of noisy, user-generated data and present an
approach to mitigate these issues. We address the following research
questions:
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RQ3 How can we alleviate the difficulty of opinion target extraction
for noisy textual data?

RQ3.1 How can a model learn relevant morphological information?

RQ3.2 Which challenges are alleviated with subword information?

Chapter 6 Zero-Shot Cross-Lingual Opinion Target Extraction

This chapter addresses opinion target extraction with regard to the
lack of available annotated data for under-resourced languages. We
reduce the gap between high-resource languages (e.g. English) and
low-resource languages (e.g. Russian) for this task by harnessing NLP
techniques for cross-lingual learning. We address the following research
questions:

RQ4 How can we reduce the annotation effort for the creation of
training data for under-resourced languages?

RQ4.1 To what degree is a multilingual model capable of performing
OTE extraction for unseen languages?

RQ4.2 What is the benefit of training a model on more than one source
language?

RQ4.3 How much annotation effort can be saved by harnessing cross-
lingual learning?

RQ4.4 How big is the impact of the used alignment method on the
OTE extraction performance?

Chapter 7 Conclusion

In this final chapter, we summarize our results and discuss the main
findings with respect to the posed research questions. We conclude
this thesis with open questions and an outlook on potential research
opportunities.
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Chapter 2

Background

Chapter Overview This chapter introduces the foundations of this thesis. We
give a brief introduction into artificial neural networks in general and some of
their underlying principles. We present modern concepts of neural computation
that are relevant for this thesis and show how these can be applied to NLP. In
particular, we introduce the concept of word embeddings that forms an important
part of many modern NLP applications. We then introduce the concept of sequence
labeling and related ideas. Finally, the chapter is concluded with the definition of
relevant evaluation metrics.

2.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are a type of computational processing systems
that are loosely motivated by biological neural networks [McCulloch and Pitts,
1943]. Similar to their biological counterparts, ANNs are a capable of learning
patterns and functions from input-output pairs and are thus a popular machine
learning approach. As ANNs play an important role in this thesis, we give a brief
introduction into the inner workings of ANNs and the core concepts surrounding
their usage.

An ANN consists of a number of interconnected neurons, also called units.
The connections between the neurons are weighted and usually one-way connec-
tions. Each neuron in the network acts as a small computation unit that receives
input signals and, dependent on the connection weights, computes a corresponding
output signal. Traditionally, the computation of a single neuron can be separated
into the pre-activation z, i.e. the weighted sum of its inputs, and the activation
a, i.e. the non-linear transformation of the pre-activation. Using a succinct vector

17
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Figure 2.1: A schematic visualization of a neural network. A neuron (left) com-
putes an activation based on an input vector. Its output is passed to a subsequent
neuron (right) as an input value.

notation, this can be written as:

z = w>x+ b (2.1)

a = f(z) (2.2)

where x is the input for this neuron, w is the vector of connection weights, b a bias
weight that shifts the pre-activation independently from the received input, and f
a non-linear activation function. The connection weights w together with the bias
b form the weights of the neuron. The neurons of a network are connected such
that the output of one neuron acts as an input for another neuron. The network
thus forms a complex function, parameterized by the weights. In fact, it has been
shown that sufficiently complex networks with adequate topology, i.e. arrangement
of neurons, are universal function approximators [Hornik, 1991]. Figure 2.1 shows
a schematic visualization of interconnected neurons.

Optimization The connection weights of a neural network substantially influ-
ence the network’s internal computations and with that, its outputs. For a network
to approximate a desired behavior, its weights need to be configured accordingly.
The optimization process is called the training of the network. It is characterized
by a forward pass and a backward pass. At the beginning of the optimization pro-
cess, the network weights are set randomly. In the forward pass, we present inputs
to the network and successively compute outputs for all following neurons, until
we reach the output neurons. Given the current network weights, we thus obtain a
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predicted output vector. We compare the predicted output to an expected output
and compute the loss (also called the error) with a loss function.

Since our goal is to reduce the error of the network, and thus obtain more ac-
curate predictions, we adapt the network weights accordingly. A popular approach
to update the weights is a method called gradient descent. Gradient descent it-
eratively updates the weights of a network by following the gradient of the loss
function such that the computed error is reduced. The efficient calculation of gra-
dients is performed in a backwards pass through the network using a procedure
called backpropagation [Werbos, 1974] that leverages the chain-rule for differen-
tiating composed functions. In practice, the weight updates are averaged over
mini-batches of data samples to obtain a more stable gradient and to improve the
overall training speed [Dekel et al., 2012]. Additionally, the training procedure may
require several iterations over the training dataset, called epochs. The training is
stopped when the updates of the weights converge or the error on a validation
set stops decreasing. The latter is a regularization technique called early stopping
[Caruana et al., 2000]. Popular variations of gradient descent are RMSProp [Tiele-
man and Hinton, 2012] and Adam [Kingma and Ba, 2014] that track the evolution
of weights over time and adjust their update rates accordingly. Especially Adam
is established as a robust optimization strategy for neural networks.

Activation Functions The activation functions of a neural network greatly
influence its behavior during the training and prediction process. The sigmoid
function has been a long-standing candidate for the activation function of hidden
and output units:

σ(x) =
1

1 + e−x
(2.3)

The sigmoid function bounds the neurons activation between 0 and 1 which is
particular desirable for output neurons where the activation can be interpreted as
a probability. The shape of the activation function is depicted in Figure 2.2a.

The Hyperbolic Tangent (tanh) has a similar shape as the sigmoid function
but ranges from -1 to 1:

tanh(x) = 2σ(2x)− 1 (2.4)

Its shape is depicted in Figure 2.2b.
Both the tanh and sigmoid function suffer from vanishing gradients during the

training procedure of deep networks [Hochreiter, 1998] as their gradients approach
0 towards either ends. The Rectified Linear Unit (ReLU) [Nair and Hinton, 2010]
alleviates this problem with its piece-wise linear nature:

ReLU(x) =

{
0 x ≤ 0

x x > x
(2.5)
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The ReLU has been a key in training deeper neural networks as it has a constant
gradient of 1 for x > 0 and thus allows the backpropagation of errors to continue
through several neurons. It is one of the most widely used activation functions in
modern neural networks. The ReLU is depicted in Figure 2.2c.

However, as the ReLU has a gradient of 0 for x ≤ 0, neurons can get stuck
after a large gradient update that pushes their activation below 0 for all x. Thus,
these neurons cease to activate again. The Exponential Linear Unit (ELU) [Clev-
ert et al., 2016] addresses this as it has the same linear piece for x > 0, but a
modification for x ≤ 0 that has a non-zero gradient:

ELU(x) =

{
α(ex − 1) x ≤ 0

x x > x
(2.6)

Besides introducing a valuable non-linearity into the computation process of
the network, activation functions are commonly used in output units to map their
output (pre-activation) to the desired range. As we briefly mentioned, the sigmoid
function maps the input values to a range of (0, 1). Sigmoid units are commonly
used to realize learnable and differentiable gates in modern networks. For an
example, see the Gated Recurrent Unit (GRU) network introduced in Section 2.1.3.
Furthermore, a network with a single sigmoid output unit could be used to predict
a probability that corresponds to a binary class label. A network with n such
sigmoid output units can produce n probability values and can thus be used to
address multi-label classification. In many cases, however, we are interested in
predicting a single class of n possible classes, i.e. multi-class classification. To
enforce that the network output conforms to a probability distribution over all
classes, we can employ the softmax activation function:

softmax(o) =
eoi∑n
j=1 e

oj
(2.7)

where o = (o1, . . . , on) denotes the vector of pre-activations of the n output units.
The softmax functions normalizes the pre-activations such that softmax(o)i ∈
(0, 1) for all i = 1 . . . n and

∑n
i=1 softmax(o)i = 1. The softmax therefore always

produces a valid distribution over the n classes and lends itself very well for multi-
class classification problems. The normalization of an example input vector with
the softmax function is depicted in Figure 2.2e.

Loss Functions We established that neural networks are trained by predicting
an output for an input sample and then update the weights to better match a
target output. The direction and step size of the weight updates is, determined by
the error of the prediction as compared to the target output. The exact error is
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Figure 2.2: An overview of common activation functions employed in this work.
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computed with a differentiable loss function. A common choice for the loss func-
tion is the categorical cross-entropy that is used in conjunction with the softmax
activation function for multi-class classification problems. For a single training
sample it is defined as:

L(q, p) = −
C∑
i=1

qilog(pi) (2.8)

where q is the target distribution across all C classes and p is the predicted dis-
tribution. In most multi-class classification scenarios, the target distribution is in
fact a one-hot vector with a probability of 1 for the target class c and probabilities
of 0 for all other classes. In this case, the formulation can be simplified to:

L(c, p) = −log(pc) (2.9)

The theoretical capabilities and versatility of artificial neural networks lead
to their application to wide variety of research problems. In recent decades, the
original design of the ANN has been developed further and new network topologies,
unit types, and activation functions have been proposed to suit individual problems
even further. In the following, we describe the main types of networks that are
relevant to this thesis.

2.1.1 Feed-Forward Neural Networks

Feed-Forward Neural Networks (FFNNs) are a special case of Artificial Neural
Networks with a constrained topology. In a FFNN, the computation flows in one
direction, i.e. from the network input to the network output. The network features
no feedback connections and contains no loops in general.

Layers Traditionally, these networks are separated into three types of layers:

1. the input layer,

2. several hidden layers, and

3. the output layer.

Each node in these layers is only connected to the nodes in the previous and the
following layer. A network with this topology is also called a Multilayer Perceptron
(MLP). Figure 2.3 depicts an instance of such a network.

When an input vector is passed to the input layer of an MLP, the vector
is “passed through” the following network layers which each compute their own
output vector using their connection weights and activation functions. At last,
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Figure 2.3: A feed-forward neural network with 3 input units, two layers with each
4 hidden units, and a final layer with 2 output units.

the output layer produces the overall network output: the prediction of the model
given the input. The computation of a single layer can be formalized as follows:

h = f(Wx+ b) (2.10)

where x is the layer input, W the weight matrix, b the bias vector, f an activation
function, and h the layer output. We refer to such a layer as a feed-forward or
dense layer.

In the areas of Computer Vision and Natural Language Processing, more
advanced types of neural networks are commonly used that are better suited to deal
with images and sequential data. In the following, we give a brief introduction to
Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs)
which are a common ingredient of modern neural-network-based models.

2.1.2 Convolutional Neural Networks

Convolutional Neural Network (CNN) are a variant of feed-forward neural networks
that originated in the field of computer vision [Fukushima, 1980]. These networks
are specifically designed to process 2nd and 3rd order tensors (i.e. pixel grids)
of different shapes. Inspired by the visual system, CNNs modify the standard,
fully-connected topology of layers by restricting it to local connections for each
neuron. Contrary to standard MLPs, each neuron in a CNN layer is connected
only to a small set of input units of the previous layer. This set of input units is
sometimes called the receptive field [Luo et al., 2016] of that neuron and is usually
characterized by a kernel size, that specifies the width and height of the receptive
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(a) The kernel of a CNN layer is applied
to a window of the input centered around
a pixel. The resulting response value de-
termines the value of the feature map at
that position.

(b) The application of a convolution layer
can be interpreted as a sliding window op-
eration applied to the entire input. The
example above shows a 2-dimensional ker-
nel of size 3× 3 (blue area) that is applied
to a 5× 5 input matrix.

Figure 2.4: The application of the convolution operation.

field. In practice, the connection weights of a neuron to its receptive field are
usually called a kernel or filter and are shared between all neurons of the same
layer. This reduces the number of parameters of the network and introduces a
measure of shift invariance into the network. With this formulation, CNNs can be
interpreted as a regular feed-forward layer that is applied to a sliding window over
the input. For an image that is represented as the matrix x, the computation for
one such window around pixel xij can be written as:

zij =
m∑
a=1

m∑
b=1

wabx(i+a−c)(j+b−c) with c =
m− 1

2
(2.11)

Here, w ∈ Rm×m is the square kernel of the convolution layer1. The result of
the convolution operation z over the entire input is called a feature map that
corresponds to the size of the input. Figure 2.4a shows the application of the kernel
to a single patch of an input image. The application of the sliding window over the
image is depicted in Figure 2.4b. As with feed-forward layers, the feature map can
be transformed by a non-linear activation function before passing it to following
layers in order to increase the networks representational power. The convolution
operation is commonly combined with pooling operations such as the maximum
or average over a small window of the feature map. The pooling operations reduce

1For simplicity, we define the convolution layer only for square kernels with odd kernel sizes.
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Figure 2.5: Stacking convolution layers enables to learn feature detectors of in-
creasing complexity that correspond with intuitive concepts. The kernel weights
learned from images from the categories faces, cars, airplanes, and motorbikes are
shown above. The learned weights of the second layer (left) correspond to parts of
faces and objects while the third layer (right) can be visualized to reveal full faces
and vehicles. Images from Lee et al. [2009].

the dimensionality of an input and make the overall network invariant to small
translations of input features [Weng et al., 1993].

A single convolution layer can be seen as a feature detector for an input. Since
the convolution weights are part of the trainable network parameters, this feature
detector can be optimized for a specific objective. It is possible to learn feature
detectors with increasing complexity by stacking several convolution layers on top
of each other. For a CNN network trained to classify images, it can be shown that
the feature detectors in each layer correspond to an intuitive hierarchy of concepts
such as edges → shapes → parts → faces [Zeiler and Fergus, 2014]. Figure 2.5
shows a visualization of learned feature weights for the second and third layers of
a convolutional deep belief network [Lee et al., 2009].

CNNs for NLP Though originally designed for computer vision applications,
CNNs can be applied to sequential data (e.g. texts) by using 1D kernels instead of
2D kernels2. Since a CNN layer slides its kernel over the input, it can be applied to
inputs of varying size. This makes it especially suitable for NLP applications where
the inputs are usually documents of varying lengths. When classifying texts of
variable lengths, a common approach is to learn several layers of feature detectors
using CNN layers and then produce a fixed length vector using pooling operations
over the entire feature representation sequence. This pooling operation in text
application is often called pooling over time alluding to the sequential nature

2Since each word in a text is represented by a vector, the kernel is in fact 2-dimensional. It
is generalized to include several input channels that correspond to the input vector dimensions.
However, the entire kernel is moved only along one axis and is hence referred to as 1D.
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4 embedding dimensions
(sentence matrix)
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(1st convolution layer)
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(2nd convolution layer)
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Figure 2.6: A simple CNN for text classification. The blue segment visualizes
the application of a single kernel of the first convolution layer that slides over the
input sequence and which outputs a single corresponding feature map. Two more
kernels (not visualized here) separately produce the remaining feature maps of the
first layer. The yellow segment depicts a kernel of the second convolution layer
that receives the three feature maps of the first convolution layer as its input and
outputs its own feature map.

of the text. By reducing the text sequences to a fixed length vector, the final
classification can be carried out using regular feed-forward layers. In subsequent
chapters, we refer to the computation of a single CNN layer with a shorthand
notation: CNN(x) = h.

2.1.3 Recurrent Neural Networks

In the previous section, we introduced the CNN as a type of neural network that
can be conveniently applied to texts due to a sliding window approach. The locally
restricted connections of the CNN make it an efficient way to learn and compute a
feature representation for e.g. a word by considering its immediate context. How-
ever, a more intuitive approach to processing sequential data such as texts is given
by Recurrent Neural Networks (RNNs). RNNs process a sequence step by step
(also called timesteps) and keep an internal state for each step. Additionally, RNNs
extend the idea of feed-forward networks by introducing feedback connections into
the network topology [Elman, 1990; Jordan, 1997]. A simple recurrent network
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Figure 2.7: An RNN layer showing feed-forward and feedback connections. The
timesteps of an RNN can be unrolled. The weights of each unrolled step are shared.

can be formalized as:

hi = fh(Whxi + Uhi−1 + bh)

yi = f y(Wyhi + by)

where x = (x1, . . . , xn) is a sequence of input vectors and i denotes the current
timestep. Wh, U, bh, Wy, and by are trainable parameters of the model. fh and
f y are activation functions. With these feedback connections, a unit does not only
receive its input from the previous layer but also from its own previous state. By
including the previous state in the computation for the output of the current step,
the network has access to the (transformed) history of the entire sequence that
was processed so far. Figure 2.7 depicts an RNN that reads in a input sequence
and produces a corresponding out put sequence. For the purpose of visualization,
we unroll the individual timesteps of the RNN.

RNNs are naturally applicable to textual data by reading in a text word
for word and producing a sequence of output vectors accordingly. The sequence
of output vectors can be processed in further steps to address problems such as
sequence labeling. RNNs are also capable of encoding an entire text as a single
vector. This is usually done in one of three ways:

1. The text is processed word for word and the final output yn of the RNN is
selected as a summary that represents the entire text (cf. Sutskever et al.
[2014]).

s = yn (2.12)

This is an intuitive approach, since the output of the final state can, in
theory, incorporate features from the entire input text and thus provide a
task-relevant summary.

2. Alternatively, a pooling operation (usually maximum or average) is applied
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on the entire sequence of output vectors that aggregates the information in
a single vector. This closely resembles the pooling operations in CNNs.

3. A weighted average of the output sequence is computed where the compu-
tation of the individual weights are optimized alongside the entire network.
This is commonly referred to as an attention mechanism [Bahdanau et al.,
2015].

Gated Recurrent Units

Standard recurrent neural networks are difficult to train in that they suffer from
vanishing and exploding gradients during the backpropagation step [Hochreiter,
1991, 1998]. The result is that long-range dependencies between inputs and out-
puts are rarely modeled in the inner workings of an RNN. These issues can be
alleviated by introducing gated connections. The introduction of gates allows
to retain information in the memory for longer steps and thus learn tasks with
long-range dependencies [Hochreiter et al., 2001]. The most famous RNN variants
using gated connections are the Long Short-Term Memory (LSTM) [Hochreiter
and Schmidhuber, 1997] and GRU [Cho et al., 2014]. In this work we focus on
GRUs due to their lower complexity in terms of computation and parameters but
competitive performance [Chung et al., 2014a] with respect to LSTMs.

The GRU uses a combination of update and reset gates to improve its ability
to learn long-range information comparable to Long Short-Term Memory cells
[Chung et al., 2014a]. The computation of a single GRU layer at timestep i is
defined as follows:

ri = σ(Wrxi + Urgi−1 + br)

zi = σ(Wzxi + Uzgi−1 + bz)

hi = f(Whxi + Uh(ri � gi−1) + bh)

gi = (1− zi)� gi−1 + zi � hi

where xi is an element of an input sequence and gi the computed output. σ is
the sigmoid activation function and f is a non-linear activation function, origi-
nally the element-wise tanh function. The operator � denotes the element-wise
multiplication. The forget gate ri regulates how much of the past output gi−1 can
influence the current internal state hi. A value close to 0 effectively blocks out
past information. zi is the update gate that controls how the past output gi−1
and the current internal state hi should be combined for the final output. Here,
a gate value close to 1 entirely exposes the current internal state at the output,
while a value of 0 effectively copies over the last output. The flow of information
for the GRU is visualized in Figure 2.8. In subsequent chapters, we refer to the
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Figure 2.8: The Gated Recurrent Unit (GRU) uses a combination of update and
reset gates to control the flow of information through between steps.

computation of a single GRU layer with a shorthand notation: GRU(x) = g.

Bidirectional RNNs

As we have seen before, RNNs process sequences in one direction. For text, this
is usually the reading direction. This entails that information appearing later
in the input text does not contribute to earlier steps of the RNN computations
and can thus not influence the predicted output for these earlier steps. This is
a problem for many sequence labeling tasks such as Named Entity Recognition
(NER) that are more accurately modeled with contextual information from both
directions. This problem can be mitigated with Bidirectional Recurrent Neural
Networks (BiRNNs) [Schuster and Paliwal, 1997]. A BiRNN is a combination of

two separate RNNs: a forward RNN and a backward RNN, denoted as
−−−→
RNN and←−−−

RNN , respectively. The forward RNN processes the input text from start to end
while the backward RNNs reads in the text in reverse order. The outputs of the
two RNNs are then concatenated whereby the combination procedure depends on
the required output.

If a single summary vector for a text is required, the output of the forward
RNN for the last word is concatenated with the output of the backward RNN for
the first word:

−−−→
RNN(x) = −→y (2.13)
←−−−
RNN(x) =←−y (2.14)

s = −→y n ⊕←−y 1 (2.15)
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(a) A bidirectional summary vector for
a text that combines the final output of
a forward-directed RNN with that of a
backward-directed RNN.
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(b) A bidirectional output sequence for
a text that combines the individual out-
puts of a forward-directed RNN with
a backward-directed RNN for every ele-
ment in the sequence.

Figure 2.9: A BiRNN can (a) summarize an entire sequence, or (b) encode the
individual elements of a sequence.

By doing so, both output vectors −→y n and ←−y 1 correspond to the last step in the
processing order of the respective RNNs. This procedure is often used in text
classification models. Figure 2.9a illustrates this scenario.

In applications such as Part-of-Speech (POS) tagging or NER, an output
sequence of vectors is required so that each input word has a corresponding output
representation. In this case, the output vectors of the forward and backward RNN
for each word are combined in separation:

−−−→
RNN(x) = (−→y1 , . . . ,−→yn) (2.16)
←−−−
RNN(x) = (←−y1 , . . . ,←−yn) (2.17)

y = (−→y1 ⊕←−y1 , . . . ,−→yn ⊕←−yn) (2.18)

(2.19)

This way, the produced output vectors for every word are a function of the entire
text to its left and its right allowing complete information flow from every input
step to every output step. Figure 2.9b illustrates this idea.
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2.2 Representing Textual Data

Many machine learning algorithms, and especially so neural networks, ultimately
process data in vectorized form. To translate data into such a vector form is not
always trivial and, in many ways, influences the performance of the algorithms.
As an example, images are usually represented as matrices that reflect pixels in
terms of colors and intensities. However, representing textual data in an adequate
vectorized form is difficult. A common approach to represent a text is as a sequence
of discrete tokens.

Each token is represented by a one-hot vector: a large, sparse vector with a
single dimension with value 1 that corresponds to a specific word in a vocabulary
V of possible words. While this representation is intuitive for categorical data in
general, it has major drawbacks: Firstly, the one-hot vector is very large since it
has a separate dimension for every single word in V . For English, this vocabu-
lary comprises tens of thousands of words. This is especially problematic when
materializing the representation for a large document of hundreds or thousands of
words. For some NLP problems it is adequate to reduce the sequential represen-
tation of a document to a single fixed-sized Bag-of-Words vector by adding the
individual one-hot vectors. The resulting Bag-of-Words representation comprises
a dimension for each word in V with the value being the frequency of the word in
the document. While this reduces the size of the document representation, it also
discards the order of the words and thus omits most syntactic information. For
many NLP tasks, such as Dependency Parsing, this is a poor representation that
does not provide the necessary information for the task.

Another problem of representing words as independent dimensions is that this
does not reflect the similarity of words. The one-hot vectors of any two words are
orthogonal regardless of the similarity of words. As a result, a similarity in the
vector space generally does not represent a similarity in the meaning space of words.
A favorable representation would embed words with similar meanings or functions
close to each other in the vector space to facilitate learning and generalization.

2.2.1 Word embeddings

Word embeddings (and sometimes called word vectors) address some of these issues
by representing words with dense vectors in a latent space that better captures the
meaning and functions of words. Some of the established approaches for computing
word embeddings are inspired by the distributional hypothesis which states: ”A
word is characterized by the company it keeps.” [Firth, 1957]. In recent years,
a variety of word embedding methods have been put forth that are capable of
leveraging large amounts of unlabeled textual data to compute general purpose
word representations [Mikolov et al., 2013b; Pennington et al., 2014; Bojanowski
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et al., 2017]. In the following, we introduce a prominent and efficient approach to
compute word embeddings that plays an important role throughout this thesis.

Continuous Skip-Gram

The Continuous Skip-Gram model [Mikolov et al., 2013b], often just called Skip-
Gram model, is a word embedding algorithm based on a shallow neural network
architecture. The algorithm leverages unlabeled text datasets by constructing a
simple language modeling tasks. Following the notation of Mikolov et al. [2013b]
closely, the general objective of the algorithm is to maximize the average log prob-
ability of surrounding context words:

1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j | wt) (2.20)

where w1, . . . , wT is a sequence of words, and c the size of the training context.
The probability of a context word wc given a word wi is defined as:

exp
(
v′wc

>vwi

)∑W
w=1 exp

(
v′w
>vwi

) (2.21)

where vw and v′w are the vector representations for w as a center word and a context
word, respectively.

Due to the large size of the vocabulary, a naive implementation of the algo-
rithm is intractable for large datasets. Each single classification would require the
computation of the full probability distribution over the entire vocabulary at the
output layer [Mikolov et al., 2013b]. The issue can be addressed in two ways:

1. Hierarchical softmax, or

2. Negative Sampling.

For 1, the full softmax function is approximated with a binary tree with words
in its leaves. Each word is reachable via a distinct path through the tree. For
2, a modification of the Noise Contrastive Estimation [Gutmann and Hyvärinen,
2012] is employed. For each context word that is to be predicted, k negative
samples are drawn from the vocabulary in accordance to a noise distribution.
The modified objective is then to distinguish the correct context word from the
randomly sampled noise words:

log σ(v′wc

>
vwi

) +
k∑

c′=1

Ewc′∼Pn(w)

[
log σ(v′wc′

>
vwi

)
]

(2.22)
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By performing a large amount of these seemingly simple classification tasks, it
is possible to learn useful vector representations for a large vocabulary that are
in line with our understanding of semantic similarity. The learned vector space
has interesting properties. Firstly, the dimensionality of the final word vectors
is a hyperparameter that is usually much smaller than the size of the original
vocabulary. Secondly, the semantic similarity of words, albeit a vague concept,
is often reflected by the similarity in the vector space. As an example, the four
closest words in the learned vector space for the word “bartender” are “waitress”,
“bartenders”, “waiter”, and “barman”3. Furthermore, the embeddings exhibit
properties that support simple arithmetic operations in the vector space. The
learned vectors allow us to resolve analogies such as “man is to waiter as woman
is to ” with simple vector arithmetic:

vwaiter − vman = v? − vwomen

v? = vwaiter − vman + vwomen

Retrieving the closest neighbor of the resulting vector v? from the pretrained word
embeddings with respect to the cosine similarity gives the expected answer “wait-
ress”.

2.3 Sequence Labeling

A central point of this thesis is the extraction of relevant phrases and expressions
from documents. Finding these phrases in an automatic fashion can be approached
in several ways: In some domains, relevant phrases can be extracted by designing
linguistic rules based on POS and dependency patterns. Such an approach has
been used for aspect extraction in opinion mining [Liu et al., 2015b; Poria et al.,
2016a]. A drawback of this approach is the importance of expert knowledge in
crafting these rules and the reliance on advanced linguistic tools that are not
necessarily available for every domain and language. On the other hand, rule-
based approaches are usually not supervised learning algorithms, alleviating the
cost of annotating a suitable amount of training data.

An alternative approach is given with factor graphs [Frey, 1998]. An approach
based on factor graphs can model phrases explicitly by sampling over possible
phrase candidates and scoring individual solutions. Such an approach has been
used to detect drug mentions in medical documents [ter Horst et al., 2017] but
also subjective phrases and their targets in customer reviews [Klinger and Cimiano,
2013b]. Factor graphs are an interesting choice as they allow to model dependencies

3Using publicly available word embeddings trained on the Google News corpus: https://

code.google.com/archive/p/word2vec/

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
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explicitly through specific factors. On the contrary, the sampling space of these
methods can be quite large making the sampling procedure costly.

The prevalent approach to extract phrases is to formulate the task as a se-
quence labeling problem by using an appropriate tagging scheme. In the following
section, we elaborate this approach and present tagging schemes that are used
throughout this thesis.

2.3.1 Tagging Schemes

The problem of identifying phrases of variable length in a text is commonly for-
mulated as a sequence labeling problem. Given a text containing various phrases
of interest, we can represent these phrases by assigning a tag to each single word
according to a tagging scheme. The resulting sequence is a one-to-one mapping of
words to tags and encodes which words are part of a phrase and which are not.
In the following, we introduce some of the predominantly used tagging schemes in
NER and sequence labeling in general.

IO scheme The simplest tag set is the IO scheme introduced by [Tjong Kim
Sang and Veenstra, 1999]. Following this scheme, we distinguish between two types
of tokens:

1. Tokens that are part of a phrase, i.e. Inside, are tagged with the I tag.

2. All other tokens, i.e. tokens Outside of any relevant phrase, are tagged with
O.

This tagging scheme is straight-forward and boils down to a simple binary
classification per token. However, decoding such a tag sequence is inherently
ambiguous as there is no indication to separate adjacent phrases. This is especially
an issue in domains with colloquial writing styles, where punctuation symbols are
omitted that would otherwise mark the boundaries between phrases. As such,
this tagging format is only reasonably applicable when adjacent phrases are not
expected or only a single phrase per document is possible.

IOB2 Scheme The IOB2 schemes addresses the limitations of the IO format by
introducing a new tag for the beginning of a phrase. In the IOB2 scheme, the B
tag is assigned to the first token of each phrase while the remaining tokens of a
phrase still receive the I tag. This extension removes the ambiguity for adjacent
phrases, thus making the encoding and decoding lossless.
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We enjoyed pizza santa fe chopped salad and fish and chips .

IO O O I I I I I O I I I O

IOB O O I B I I I O I I I O

IOB2 O O B B I I I O B I I O

IOBES O O S B I I E O B I E O

Figure 2.10: Four common tagging formats for representing text chunks.

IOB Scheme As a slight variation of this, the IOB format restricts the usage
of the B tag and only applies it to the first token of a phrase that immediately
follows another phrase. In all other cases, the full phrase is tagged with I tags.
Figure 2.10 shows the three tagging schemes.

Besides these formats, several other variations can be found in the literature.
The IOE and IOE2 formats correspond to IOB and IOB2, respectively, yet mark
the last word of a chunk with an E instead of the B tag for the initial word. The
IOBES extends these by using both B and E tags for every multi-word chunk and
a single S tag for single-word chunks. Some studies report performance differ-
ences of several chunk representations for different tasks, languages, and learning
algorithms with mixed results: Ratinov and Roth [2009] show that the IOBES
(BILOU) representations performs significantly better in NER tasks compared to
the common IOB (BIO) format. In contrast, Konkol and Konoṕık [2015] show that
the performance of a tagging scheme also depends on the language of the tagged
documents and the used sequence labeling algorithm. Their findings suggest that
the IOBES representation is not particularly good for the NER task. Rather, the
IOE and IOE2 formats ”seem to be the best or at least reasonable choice for almost
all languages and methods.”[Konkol and Konoṕık, 2015]. Cho et al. [2013] present
a method for combining segment representations and achieve improved results
when combining the most complex and the least complex tagging formats. The
authors surmise that the complex format support the model in developing a higher
discriminative power while the simpler format alleviates problems associated with
data sparseness.

2.4 Metrics

In the course of this thesis, we propose a variety of machine learning models
that address complex annotation tasks in an automatic fashion. To assess the
performance of these models, we perform experiments on manually labeled datasets
and compare the predicted results with the given true labels. In this section, we
establish the core metrics that are commonly used in the field of ABSA.
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F1-Score, Precision, and Recall Precision and recall are metrics that are
widely used to evaluate NLP tasks that are concerned with the retrieval of a set
of interesting items (e.g. entities) from a potentially very large set of candidates
(e.g. every possible phrase). An example of this is NER [Derczynski, 2016]. In
this context, precision measures the fraction of retrieved items that are correct as
compared to a set of target items.

Precision =
|{target items}

⋂
{retrieved items}|

|{retrieved items}|

A system that is very selective and only returns a few but correct items can thus
reach high precision values. It is maximized when all retrieved items are correct.

On the other hand, recall measures the fraction of target items that were
correctly retrieved.

Recall =
|{target items}

⋂
{retrieved items}|

|{target items}|

To achieve a high recall, a system needs to retrieve as many target items as possible
even if it retrieves a few wrong items as well. The score is maximized when all
target items have been retrieved.

Put together, these two scores characterize the performance of a retrieval
system well. A combination of the two scores is given by the F1-score. The F1-
score, also commonly referred to as the F1-measure, is defined as the harmonic
mean of precision and recall:

F1 = 2 · Precision ·Recall
Precision+Recall

It gives a balanced view on the extraction performance and is the de facto standard
metric for NER and opinion target extraction. In these areas, the aforementioned
items are phrases that are to be identified in a given text. It is worth noting that
opinion target extraction is usually evaluated with exact matches. That means
that the identified start and end positions of a phrase need to be exactly the
same as those of the target phrases. Partial matches are considered errors in this
formulation. In the following, we give an example for the computation of precision,
recall, and F1-score for a set of predicted phrases given a target set of phrases4:

Targets:

“The signs , the specials menus , food , and even all the waitstaff

4In practice, we represent phrases as start and end offsets in order to properly account for
phrases with the same surface form.
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are ALL TOTALLY Japanese.”

→ {“signs”,“specials menus”,“food”,“waitstaff”}

Predictions:

“The signs , the specials menus , food , and even all the waitstaff

are ALL TOTALLY Japanese .”

→ {“signs”,“menus”, “food”, “the waitstaff”,“Japanese”}

Given these sets, we can calculate the precision, recall, and F1-score with the
formulas above as:

Precision =
|{“signs”, “food”}|

|{“signs”, “menus”, “food”, “the waitstaff”, “Japanese”}|
= 0.4

Recall =
|{“signs”, “food”}|

|{“signs”, “specials menus”, “food”, “waitstaff”}|
= 0.5

F1 = 2 · 0.4 · 0.5
0.4 + 0.5

= 0.4

Accuracy The accuracy of a classification is characterized by the fraction of
correctly classified instances compared to the total amount of instances:

Accuracy =
|{correct instances}|
|{all instances}|

The accuracy constitutes an intuitive metric and is commonly used when the label
distribution is roughly balanced. We use the accuracy throughout this thesis to
evaluate the classification of sentiment polarity.
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Chapter 3

Relational Sentiment Analysis

Chapter Overview This chapter presents the formulation of sentiment analysis
as a relation extraction problem. We approach this problem by dividing it into four
subtasks that we separately address using novel architectures. Our findings suggest
that a combination of CNN and RNN layers outperforms alternatives for opin-
ion target extraction. By jointly addressing opinion target extraction and opinion
phrase extraction in a single model, we can further achieve performance improve-
ments. Moreover, we propose a position-aware RNN for phrase-specific sentiment
classification and relation extraction and achieve large improvements over baseline
approaches.

3.1 Introduction

Sentiment Analysis (SA) is the task of classifying expressed opinions in natural
language texts. Although Sentiment Analysis (SA) has been addressed in the
form of a classification task of documents to a large extent [Liu et al., 2010; Yang
et al., 2016], this is not sufficient. As seen in Chapter 1, opinions can be expressed
in complex ways. While a document might have an overall sentiment theme,
the actual opinions are often more nuanced. In fact, it is common that opinion
holders express multiple opinions towards different targets in a single sentence. The
following example clearly shows that a single sentiment label cannot accurately
represent the expressed opinions in that sentence:

Example:

“the food and drinks were tasty
pos

but the menu was limited
neg

.”

In this example, an opinion holder expresses three distinct opinions. A positive
sentiment is expressed towards the two aspects food and drinks , indicated by the

39
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term tasty . A third, negative opinion is expressed through the term limited and

targets the menu . To provide accurate analyses of expressed opinions, these need
to be modeled at a more fine-grained level than the document- or sentence-level.

In the course of this chapter, we advocate to model sentiment analysis as a
relation extraction problem. In this framework, we decompose it into four subtasks:

1. the extraction of opinion targets that specify the aspect of a product, theme
or event that is assessed,

2. the extraction of opinion phrases which indicate the reason and polarity of
an opinion,

3. the labeling of these opinion phrases with a sentiment label (e.g. “positive”,
“neutral”, “negative”), and

4. the extraction of relations between targets and opinion phrases.

The entirety of relational sentiment analysis can thus be tackled in a modularized
way, facilitating the otherwise complex problem. The modularization allows us to
develop machine learning components that are focused on the respective subtask.
As the subtasks are in line with existing research areas (e.g. sequence tagging or
relation extraction), we can build on findings of these fields. Overall, our work
is in line with the growing interest of providing more fine-grained, aspect-based
sentiment analysis, going beyond a mere text classification or regression problem
that aims at predicting an overall sentiment for a text. In the following, we give
an overview of related research fields that this chapter touches upon.

Opinion Extraction The area of Opinion Role Labeling (ORL) is concerned
with identifying relevant text fragments that define an expressed opinion. Often
these include opinion holders and opinion targets but can also encompass opinion
phrases. Such an annotation scheme is realized by the MPQA Opinion Corpus
[Wiebe et al., 2005] and the VERB corpus [Wiegand et al., 2015] and approached
by many researchers [Josef Ruppenhofer and Wiebe, 2008; Yang and Cardie, 2013;
Katiyar and Cardie, 2016; Marasović and Frank, 2018]. In this thesis, we are not
concerned with detecting opinion holders, as the considered datasets are customer
reviews. In reviews, the opinion holder does not contribute much to the under-
standing of the expressed opinions as it is implicitly clear that the opinion is held
by the author of a review. In accordance with that, the formulation of ABSA by
Pontiki et al. [2014, 2015, 2014] that is concerned with customer reviews, omits the
opinion holder entirely and focuses on the opinion target. Since the first iteration
of the SemEval Challenge on ABSA, Pontiki et al. [2014] model sentiment analysis
with opinion targets, target-specific sentiment labels, and aspect categories. In



3.1. Introduction 41

contrast to the aforementioned ORL, the SemEval ABSA formulation does not
include explicit opinion phrases that express the sentiment polarity. A different
route to opinion extraction is taken by Hu and Liu [2004]. They address opinion
extraction as the summarization of reviews. They present an approach that sum-
marizes reviews based on the product features for which an opinion is expressed
using data mining and natural language processing techniques. Similarly, Titov
and Mcdonald [2008] describe a statistical model for joint aspect and sentiment
modeling for the summarization of reviews. The method is based on Multi-Grain
Latent Dirichlet Allocation which models global and local topics extended by a
Multi-Aspect Sentiment Model.

Opinion Target and Opinion Phrase Extraction San Vicente et al. [2015]
present an approach that addresses opinion target extraction as a sequence label-
ing problem based on a perceptron algorithm with local features. The system also
implements a sentiment polarity classifier to classify individual opinion targets.
The approach uses a window of words around a given opinion target and classi-
fies it with a Support Vector Machine (SVM) classifier based on a set of features
such as word clusters, POS tags and polarity lexicons. Opinion target and opinion
phrase extraction for sentiment analysis has also been addressed using probabilis-
tic graphical models. Toh and Wang [2014] for instance propose a Conditional
Random Field (CRF) as a sequence labeler that includes a variety of features
such as POS tags and dependencies, word clusters and WordNet [Fellbaum, 1998]
taxonomies. Additionally, the authors employ a logistic regression classifier to ad-
dress opinion target polarity classification. Jakob and Gurevych [2010] follow a
very similar approach that addresses opinion target extraction as a sequence la-
beling problem using CRFs. Their approach includes features derived from words,
POS tags and dependency paths, and performs well in a single and cross-domain
setting. Klinger and Cimiano [2013a,b] have modeled the task of joint target and
opinion phrase extraction using probabilistic graphical models and rely on Markov
Chain Monte Carlo methods for inference. They have demonstrated the impact
of a joint architecture on the task with a strong impact on the extraction of opin-
ion targets, but less so for the extraction of opinion phrases. The approach to
semantic role labeling proposed by Fonseca and Rosa [2013] is closely related to
our approach to opinion target extraction in that the task is phrased as a sequence
tagging problem using convolutional neural networks. Most relevant in terms of
opinion target and opinion phrase extraction are the works of Liu et al. [2015a]
and İrsoy and Cardie [2014]. Liu et al. [2015a] address the extraction of opin-
ion expressions while İrsoy and Cardie [2014] focus on the extraction of opinion
targets. Both approaches are framed as a sequence labeling using RNNs.



42 Chapter 3. Relational Sentiment Analysis

Targeted Sentiment Analysis Zhang et al. [2016] propose an RNN-based clas-
sifier to predict the sentiment label of target phrases in a text. The model processes
the target phrase, as well as the left and right context separately and is thus able to
extract target-specific sentiment. Brun et al. [2016] propose a model for aspect cat-
egory and target sentiment classification. The model relies on a rich, term-centric
feature representation involving lexico-semantic features and syntactic dependency
features that are classified using an Elastic Net regression model. Our work is re-
lated to other approaches using deep neural network architectures for sentiment
analysis. Lakkaraju et al. [2014] present a recursive neural network architecture
that is capable of extracting multiple aspect categories and their respective senti-
ments jointly in one model or separately using two softmax classifiers.

In the course of this chapter, we propose a position-aware RNN that leverages
distance embeddings to perform targeted classification. The benefits of distance
and position embeddings are explored and supported by [dos Santos et al., 2015b;
Zeng et al., 2014; Sun et al., 2015]. More recently, the transformer architecture
[Vaswani et al., 2017] shows the benefit of distance embeddings in combination
with an attention mechanism as a way to encode structural information in a text
without recurrent or convolutional networks.

Relation Extraction In Section 3.2, we phrase fine-grained sentiment analysis
as a relation extraction problem. Our approach for relation extraction is inspired
by the work of Zeng et al. [2014] who address relation extraction between pairs of
entities using a convolutional neural network architecture. Their approach com-
bines lexical features for both entities with sentence level features learned by a
CNN model. The authors use learned position-embeddings to instill positional
information about the subject and object entities into the CNN. We adopt a sim-
ilar strategy as presented in [Zeng et al., 2014] to address relation extraction. In
contrast to [Zeng et al., 2014] however, we use a recurrent neural network instead
of a convolutional architecture to perform the actual relation extraction. Katiyar
and Cardie [2016] model relations between opinion holders and opinion phrases, as
well as opinion targets and opinion phrases in a single LSTM model. To extract
relations between tokens, the model predicts relative distances for each token to
its relation counterpart or 0 if no relation is assumed. In contrast to the model of
Zeng et al. [2014] which assumes the entities as given, the LSTM model of Katiyar
and Cardie [2016] has no explicit knowledge of entities when predicting relations
but rather predicts both simultaneously.

3.1.1 Contributions and Structure of the Chapter

The aforementioned works address some form of sentiment analysis and relation
extraction to some extent. However, we argue that sentiment analysis is a com-
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plexly structured problem that is often framed in a too simplified way. Rather, it
ought to be addressed as a relation extraction task between opinion expressions
and their target phrases. In order to address this lack, we answer the following
overarching research question throughout this chapter:

RQ1 How can fine-grained sentiment analysis be addressed in its complexity?

We particularly focus on the following facets of this question:

RQ1.1 How can relevant phrases be identified?

RQ1.2 What is the impact of domain-specific word embeddings on the task?

RQ1.3 How can dependencies between aspect and opinion phrases be leveraged?

RQ1.4 How can we infer the sentiment pertaining to a particular expression in a
document?

RQ1.5 How can we identify corresponding targets for an opinion phrase?

In the scope of these questions, our contributions are the following:

i) We present a complete architecture that addresses sentiment analysis as a
relation extraction problem to offer a very fine-grained analysis. The archi-
tecture works in modularized way by extracting targets and opinion phrases,
opinion-phrase specific sentiment and opinion-target relations separately. For
all four subtasks, we present a neural network based component that achieves
competitive and state-of-the-art results without extensive, task-specific fea-
ture engineering.

ii) We show the impact of training the target aspect and opinion extraction
component with word embeddings initialized from a domain-specific corpus,
showing that using domain-specific embeddings increases performance by
6.5% F-Measure as compared to randomly initialized embeddings.

iii) We show the impact of a component performing target aspect and opinion
phrase extraction jointly versus predicting each type of phrase separately,
demonstrating that joint prediction increases F-measure performance by 1%
for target phrases and 5% for opinion phrases.

iv) We present a novel approach that is able to extract opinion-phrase-specific
sentiment. Our position-aware RNN achieves performances high above our
baselines and provides the first results on the USAGE dataset for the task of
opinion-phrase-specific sentiment prediction, thus setting a strong baseline
for future research.
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v) Finally, we show that the relation extraction component is applicable to
the sentiment analysis problem and show that our approach outperforms
the current state-of-the-art in opinion-target relation extraction by 15% F-
measure.

The remaining part of the chapter is structured as follows: In Section 3.2,
we propose our framework for relational aspect-based sentiment analysis. We
suggest a set of subtasks for relational sentiment analysis that can be addressed
by individual components. In Section 3.3, we address the subtasks of extracting
opinion phrases and its targeted aspect phrases from texts. We first describe the
overall procedure of extracting opinion phrases and opinion targets framed as a
sequence labeling problem. Thereafter, we describe the core features underlying
our models. Here, we motivate the usage of domain-specific word embeddings and
Part-of-Speech tags. We introduce our baseline models based on RNNs and CNNs
for sequence labeling and give intuitive explanations about their suitability for the
task. Then, we propose two extensions to these baseline models: Firstly, we pro-
pose an extension that combines both types of networks in a stacked architecture.
Secondly, as another extension, we propose a model capable of jointly extracting
opinion phrases and opinion targets. Section 3.4 attends to the classification of
opinion phrases with respect to one of four sentiment classes. A position-aware
recurrent neural network extracts the expressed sentiment of each opinion phrase
by using POS tags, word and distance embedding features. In the following Sec-
tion 3.5, we present our component for extracting relations between target aspect
and opinion phrases. We describe our data representation and classification model
that is based on a RNN architecture similar to the one presented in Section 3.4.
The relation model classifies extracted target and opinion phrases in a pair-wise
fashion. We evaluate the proposed components of our framework in Section 3.6.
The evaluation is carried out on two datasets which allow us to investigate differ-
ent properties of the overall system. We conclude this chapter in Sections 3.6.7
and 3.7 where we summarize our findings, point out shortcomings and potential
improvements.

3.2 A Relational Framework for Aspect-Based

Sentiment Analysis

As we motivated before, sentiment analysis needs to be addressed in a fine-grained
way. To simply perform sentiment analysis at the document or sentence level
is insufficient as this cannot adequately model multiple, potentially conflicting
opinions in a single sentence. Instead, aspect phrases ought to be considered which
offer crucial information about the target of an expressed opinion. Furthermore,
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to deduce the reasons for an opinion, the corresponding opinion phrases and its
sentiment label (e.g. positive, negative) needs to be identified, as well. To this end,
we advocate to frame sentiment analysis as a relation extraction problem. This
approach offers possibilities for more fine-grained analysis. To reach a sufficient
level of granularity, sentiment analysis can be divided into the following subtasks:

(i) Opinion Target Extraction

(ii) Opinion Phrase Extraction

(iii) Sentiment Classification

(iv) Relation Extraction

In the framework of relational sentiment analysis, we first detect occurrences
of target aspect and opinion phrases. The detection of aspects and opinions can
be done separately but, as we see in Section 3.6.4, solving these tasks jointly
is beneficial to both sides. As a next step, we classify the previously detected
opinion phrases into one of several sentiment classes. This classification considers
the phrase in the context of the document to allow to disambiguate otherwise
ambiguous phrases e.g. “cold” as in “cold food” or “cold beers”. Finally, we infer
relations between extracted phrases which allows us to explicitly associate the
subjective expression with the opinion target. A schematic visualization of the
complete architecture can be seen in Figure 3.1.

As a first step of assessing the relational sentiment analysis framework, we
propose and evaluate possible models for each of the subtasks. The extraction
of target and opinion phrases can essentially be regarded as a tagging task and
can potentially be tackled by sequence tagging techniques such as Hidden Markov
Models, CRFs etc. Besides these, neural networks have sparked increasing inter-
est in recent years and have been applied very successfully to a great variety of
NLP-related tasks. In particular, CNNs have been proposed as a general method
for solving sequence tagging [Collobert et al., 2011] and sequence classification
[Kim, 2014]. Similarly, RNNs have been applied to a variety of NLP-related tasks
[Cho et al., 2014] as they are a natural candidate for processing textual data (see
Section 2.1.3). In this chapter, we build on these encouraging results and employ
several neural network based components which we combine into a single system
to address relational sentiment analysis in four steps.

All models are based on neural networks and use only a limited amount of
task-specific features. This makes each model easily extensible and allows for an
easier transfer to other datasets, domains, and related tasks. In the following, we
present our components for each subtask.
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" The  food  and  drinks  were  tasty  ,  but  the  menu  was  limited "

Opinion Target Extraction

Opinion
Relation Extraction

Opinion-Phrase-Specific
Sentiment Extraction

" The  food  and  drinks  were  tasty  ,  but  the  menu  was  limited "

Opinion Phrase Extraction

" The  food  and  drinks  were  tasty  ,  but  the  menu  was  limited "
pos neg

Figure 3.1: An architecture for sentiment analysis as a relation extraction problem.
The architecture comprises four components that each address a subtask of the
problem: i) The extraction of opinion target phrases, ii) the extraction of opinion
phrases, iii) the classification of opinion-phrase-specific sentiment, and iv) the
identification of relations between opinion phrases and opinion targets.
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3.3 Opinion Target and Opinion Phrase Extrac-

tion

In this section, we propose different choices for neural-network-based components
for the task of aspect and opinion phrase extraction. As both subtasks are struc-
tured similarly, we address both tasks using the same approaches. We interpret
the problem as a sequence labeling task [Toh and Wang, 2014; Fonseca and Rosa,
2013] and predict sequences of tags for sequences of words. We use the IOB2
scheme [Tjong Kim Sang and Veenstra, 1999] to represent our aspect and opinion
annotations as a sequence of tags (see Section 2.3). According to this scheme, each
word in our text receives one of three tags, namely I, O or B that indicate if the
word is at the Beginning, Inside or Outside of an annotation:

The tuna and wasabe potatoes are excellent . (Text)

O B O B I O O O (Target Phrases)

O O O O O O B O (Opinion Phrases)

In this example the tuna and the wasabe potatoes are opinion target annotations

that we encoded with the IOB2 scheme. Similarly, the opinion phrase excellent
is encoded in a separate tag sequence. Ultimately, each tag is represented as a
one-hot vector:

I =

1
0
0

 , O =

0
1
0

 , B =

0
0
1

 .

As shown above, we encode opinion target annotations separately from opin-
ion phrase annotations thus resulting in two separate tag sequences per review.
This procedure is reasonable since overlapping opinion target expressions and opin-
ion phrases are in principle possible1. Encoding these into a single tag sequence
would require to use a larger, more complicated tag set as it would need to cover
single and overlapping annotations, e.g. {I-Target, I-Opinion, I-Target-Opinion,

B-Target, B-Opinion, B-Target-Opinion, O}. We expect this to hinder the learning
procedure. For most experiments, we instantiate two separate models — one for
extracting opinion targets and another for extracting opinion phrases — and train
both separately to predict their respective tag sequences. However, as we later
show in Section 3.3.6, it is also possible to extract aspect and opinion phrases
jointly without using a larger tag set.

For the core of the sequence labeling model, we compare convolutional neural
networks, recurrent neural networks and combinations thereof. While both CNNs

1We orient our design choices in accordance with the USAGE dataset that allows overlapping
annotations.
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and RNNs are capable of handling sequential data, it is unclear which of these is to
be preferred for aspect and opinion phrase extraction. In the following, we discuss
the input representation used by our systems, which includes both POS tags as
well as word embeddings. The word embeddings are learned from a domain-
specific corpus of Amazon reviews using a skip-gram model (see Section 2.2.1
in Chapter 2). Then, we present our different choices of components that we
experimentally examine for the aspect and opinion phrase extraction subtask in
Sections 3.6.4 and 3.6.4. We describe a convolutional network architecture as well
as a recurrent network architecture as baseline systems. We then propose a stacked
architecture that feeds features of multiple convolutional layers to a recurrent layer
that, in turn, produces an output tag sequence. Additionally, we specify a joint
model that shares parameters for the extraction of aspects and opinion phrases.

3.3.1 Domain-Specific Word Embeddings

Distributed word embeddings have been proven to be a useful feature in many NLP
tasks [Collobert et al., 2011; dos Santos and Zadrozny, 2014; Le and Mikolov, 2014]
since they often encode semantically meaningful information of words [Mikolov
et al., 2013a; dos Santos and Zadrozny, 2014]. For word embeddings to be ef-
fective features in downstream tasks, they are usually trained on large unlabeled
text collections. Besides different techniques for computing word embeddings from
these data collections, the choice of the data itself is important. We argue that
different domains use a different vocabulary and phrasing which ultimately af-
fects the computed word representations. Since the meaning of words can differ
between domains, we expect that precomputing word embeddings on domain spe-
cific data might lead to better overall results for downstream tasks acting in the
same domain.

To confirm this hypothesis for the downstream task of ABSA, we use three
sets of word embeddings. The first set of embeddings are randomly initialized
without using any pretraining. The second set of embeddings are pretrained on
English Wikipedia articles and act as our baseline word embeddings for a general
domain. The third set are domain-specific embeddings trained on product reviews.
We pretrain the word embeddings using the skip-gram model with hierarchical
softmax as it is implemented in the topic modeling library gensim [Řeh̊uřek and
Sojka, 2010]. To quantify the impact of using these domain-specific embeddings,
we also compute word embeddings on a domain-independent corpus of Wikipedia
articles. As we show in Section 3.6.3, the domain-specific word embeddings indeed
outperform the more general Wikipedia word embeddings.
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3.3.2 Part-of-Speech Tags

While word embeddings encode features of a word that are useful to many NLP
tasks, it is often beneficial to introduce further, more linguistically motivated fea-
tures. We argue that POS tags are a helpful feature for subtasks of relational
sentiment analysis and that they complement pretrained word embeddings. To
test this hypothesise, we evaluate the use of POS tags as additional word-level
features in our sequence tagger models. We obtain these tags for a document with
the Stanford POS tagger [Manning et al., 2014]. The underlying tag set contains
45 tags to which we add one additional padding tag. We encode these tags as
one-hot vectors which results in a POS tag feature vector pi ∈ R46 for each word.

3.3.3 Convolutional Neural Network Model

While CNNs were originally intended for image processing, they have been suc-
cessfully applied to several NLP tasks, as well [Poria et al., 2015; Kim, 2014; dos
Santos et al., 2015a]. When working with sequences of words, convolutions allow
to extract local features around each word.

The CNNs component for sequence tagging that we propose is composed of
several sequentially applied layers that transform an initial sequence of words (i.e. a
review) into a sequence of IOB2 tags. This sequence of tags encodes predicted
aspect (or opinion) phrase annotations for the given review. More formally, the
process from word sequence to tag sequence can be described as follows:

Given a sequence of n of words:

w = (w1, . . . , wn)

that correspond to a vocabulary V , our model applies a word embedding layer to
each sequence element to retrieve a sequence of word embeddings xi ∈ RDword :

x = (x1, . . . , xn).

This is done by treating the embedding matrix Wword ∈ RDword×|V | as a lookup
table and returning the column vector that corresponds to the respective word
index. Optionally, we are able to use POS tags as additional features. To do so,
we concatenate the corresponding one-hot vector pi to the word embedding xi and
use the resulting sequence:

x′ = (x1 ⊕ p1, . . . , xn ⊕ pn)

in place of x in the next steps. We refer to x (or x′, respectively) as our input
representation.
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After we obtain the initial feature representation for the input text, each
window of lconv consecutive vectors in x around xi is convolved into a single vector
h1i ∈ RDconv , whereDconv specifies the number of feature maps for this convolution2.
Precisely, the convolution is performed on the concatenated sliding-window zi ∈
RDword·lconv that we define as:

zi = xn−(lconv−1)/2 ⊕ · · · ⊕ xn+(lconv−1)/2,

where ⊕ marks the concatenation operation. The convolution at position n in the
sequence is then:

h1i = f(Wconvzi + bconv),

where the kernel matrix Wconv ∈ RDconv×Dword·lconv and the bias vector bconv are
shared across all windows for this convolution. The function f is an element-wise,
non-linear activation function such as the ReLU function. See Chapter 2 for a
description of the ReLU function. The resulting hidden sequence as obtained by
the first convolution layer is then:

h1 = (h11, . . . , h
1
n).

For simplicity, we denote the computation of a single CNN layer as

h = CNN(x)

This convolution operation can be applied several times (with different weights
and on the output sequence of the previous convolution) to yield a sequence of more
abstract representations:

hm = (hm1 , . . . , h
m
n ) = CNN(hm−1).

In a last step, we apply a standard feed-forward layer with a softmax activation
function to each individual sequence element that projects the hidden representa-
tion hmi to a vector of DIOB2 = 3 probabilities for the corresponding tags I, O or
B:

ti = softmax(Wtagh
m
i + btag).

Figure 3.2a depicts the architecture.
The network is trained by minimizing the cross-entropy loss for the classifi-

cation of each token which we recall from Eq. (2.9) in Chapter 2 as the negative

2Since we want to apply the convolution operation to the first and the last element in a
sequence, too, we pad the input sequence with vectors of 0s.
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logarithm of the probability of the expected tag ci ∈ {I, O,B} of word wi:

Ltok(ci, ti) = −log(tici)

The loss for a training text is then defined as the average loss of its tokens:

L =
1

n

n∑
i=1

Ltok(ci, ti) (3.1)

which we try to minimize for the entire training corpus. If not stated otherwise,
the formulation of the loss is the same for following sequence tagging models.

3.3.4 Recurrent Neural Network Model

In Section 2.1.3 of Chapter 2, we stressed that RNNs are naturally capable of pro-
cessing textual data as they are designed to handle sequential inputs and outputs.
To leverage this, we define a second, RNN-based baseline component to perform
aspect and opinion phrase extraction that we compare to the CNN model from
the previous section. We chose the GRU layer [Cho et al., 2014] to power our
RNN model. To avoid repetition, we refer to Section 2.1.3 of Chapter 2 for a more
detailed description of the GRU.

The RNN model receives the same input representation x as the CNN model
which comprises the word embeddings of the input sequence and, optionally, the
sequence of POS tags. We apply a single recurrent GRU layer and obtain a se-
quence of hidden states:

h = (h1, . . . , hn) = GRU(x)

Analogously to the CNN approach, the produced hidden states are then mapped
to tag probabilities for each token:

ti = softmax(Wtaghi + btag).

As before, we train the network weights by minimizing the cross-entropy loss for
each token. Figure 3.2b depicts the architecture.

3.3.5 Stacked Model

The previous two sections describe the baseline models that we consider to tackle
opinion target and opinion phrase extraction. In this section, we propose a com-
bination of the previous two models.

The intuition for combining the CNN and the RNN model is that both models



52 Chapter 3. Relational Sentiment Analysis

h4

x4

h5

x5

h6

x6

h1

x1

h2

x2

h3

x3

h7

x7

h8

x8

wasabe potatoes areThe tuna and excellent .

t4 t5 t6t1 t2 t3 t7 t8

NN NNS VBPDT NN CC JJ .

p4 p5 p6p1 p2 p3 p7 p8

Convolution

Input

IOB2

h4 h5 h6h1 h2 h3 h7 h8Convolution

2 2 222 222

1 1 111 111

(a) The CNN architecture for sequence labeling. The classification of each word depends
on its local neighborhood by means of convolution operations.
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(b) The RNN architecture for sequence labeling. The model reads the text from left to
right and classifies each word given all the preceding words.

Figure 3.2: The baseline networks for sequence labeling. The words marked with
boxes are annotated opinion targets and are tagged with the correct IOB2 tags at
the output layer. The input to the network are word embeddings and optionally the
corresponding POS tags. The gray vectors are padding vectors for the convolution
operation. For simplicity, we show an instantiation of the CNN model with only
two convolution layers.



3.3. Opinion Target and Opinion Phrase Extraction 53

present quite different approaches for the same task. While the CNN uses locally
connected weights to produce a localized feature representation of a words imme-
diate context, the RNN uses recurrent connections and allows for a much larger
context. The RNN makes it possible to capture important pieces of information
from preceding and potentially distant parts of the text. A combination of both
models might benefit from both the local connectivity of the CNN and the larger
available history of the RNN. Related ideas are expressed in Zhou et al. [2015a]
and He et al. [2016].

We design the new, combined model as a stack of CNN and RNN layers.
First, we apply a stack m convolutional layers to the input sequence, similar to
the baseline CNN model, yet only up to the final hidden layer:

h1 = (x1, . . . , xn) = CNN(x)

hm = (hm1 , . . . , h
m
n ) = CNN(hm−1)

On top of this sequence of high-level features, we stack a GRU layer that learns
temporal dependencies of its input sequence:

hm+1 = (hm+1
1 , . . . , hm+1

n ) = CNN(hm)

Finally, a dense layer with a softmax activation is used to map the recurrent hidden
states to tag probabilities:

ti = softmax(Wtagh
m+1
i + btag). (3.2)

The full model is trained end-to-end just as the tagging models before. Figure 3.3
visualizes the architecture.

3.3.6 Joint Opinion Target and Opinion Phrase Extraction

The aforementioned neural networks are general sequence labeling architectures
that predict a single output tag for each input token. To extract two different
types of phrases, i.e. opinion targets and opinion phrases, we can instantiate two
separate models and train these to predict their respective tag sequences. This
formulation of the problem is straightforward. However, we argue that opinion
phrases and their targets are interdependent and knowledge about opinion phrases
in a text could help extracting opinion targets and vice versa. A single model could
leverage interactions by jointly predicting opinion phrases and opinion targets. In
fact, the idea of extracting opinion targets and opinion phrases jointly has been
addressed by Klinger and Cimiano [2013a,b] using a factor graph model and later
by Wang et al. [2017a] in a neural network architecture. A similar idea is expressed
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Figure 3.3: The stacked CNN-RNN architecture. The extracted features from the
convolution layers are further processed by a GRU layer. In this example, we only
show a single convolution layer.

by Katiyar and Cardie [2016] who jointly extract opinion holder entities, opinion
targets and their relations.

In the following, we propose an architecture that performs the extraction of
opinion targets and opinion phrases jointly. The network shares large parts of
its parameters between the two tasks but features task-specific output layers. By
training the network to perform well for both objectives the model is constrained
to learn an internal feature representation that is beneficial for both tasks. We
realize this concept by introducing two separate, task-specific output layers. While
the shared parts of the network are optimized with training signals from both
objectives, the output layers are optimized for single tasks only: either opinion
phrase extraction or opinion target extraction. Formally, we modify Eq. (3.2) for
the output layer of the stacked model as such:

tTi = softmax(W T
tagh

m+1
i + bTtag)

tOi = softmax(WO
tagh

m+1
i + bOtag)

This gives us two output tag sequences tT and tO. During the training of the
network, we optimize the weights such that tT produces the tag sequence corre-
sponding to the target aspects and tO the sequence for the opinion phrases. This
is achieved by redefining the loss function in (3.1) as the sum of the losses for the
individual tag sequences:

L =
1

n

n∑
i=1

Ltok(cTi , t
T
i ) + Ltok(cOi , t

O
i )
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Figure 3.4: The CNN-RNN architecture for joint target and opinion phrase ex-
traction. This model is capable of predicting aspect and opinion phrases jointly
by featuring two separate output layers.

With this modification we obtain a single model that can jointly produce two
distinct tag sequences. See Figure 3.4 for a depiction of the joint architecture.

3.4 Opinion-Phrase-Specific Sentiment Classifi-

cation

With the previously described models, we are able to detect mentioned aspect
and opinion phrases. The second step in our pipeline for relational sentiment
analysis is to predict sentiment labels for these opinion phrases. The difficulty
here is that it is not enough to extract an overall sentiment for a given review.
Rather, the sentiment needs to be extracted with respect to one of possibly several
opinion phrases in a text. In this section, we propose a position-aware recurrent
neural network for this task: an RNN augmented with learned distance embedding
features for targeted sentiment classification.

3.4.1 Position-Aware Recurrent Neural Network

In Chapter 2, we pointed out that a vanilla RNN is capable of encoding a text
sequence as a single summary vector by e.g. selecting its final hidden state as the
summary vector. If trained correctly, this summary vector contains condensed
information that is relevant to the training objective. Many RNN-based text
classification models use such a summary vector as input to a classification layer.
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However, the summary vector is not conditioned on a particular phrase but rather
on the entire sentence and is thus not suitable to classify the sentiment pertaining
to a particular phrase in a text.

In this thesis, we propose a position-aware RNN to challenge this problem.
The proposed network uses additional positional information about a specific
phrase and computes a summary vector that is conditioned on this phrase. The
conditioned summary is different for each phrase and allows the network to cap-
ture relevant sentiment information for this particular phrase. Let us consider the
following example:

Coffee stays fresh and hot in the Carafe (Text)

NNP VBZ JJ CC JJ IN DT NN (POS)

-1 0 0 1 2 3 4 5 (Distances)

In this example, an opinion holder expresses a positive opinion towards the Coffee

which is indicated by the opinion phrase stays fresh . Another opinion is ex-

pressed through the phrase hot which is also targeted at the Coffee. Below,
the corresponding sequence of POS tags is given. Our procedure for classifying
the sentiment value of a phrase classifies each opinion phrase separately. In the
given example, we focus on the phrase stays fresh . To encode the position of
this phrase in the full text, we compute the relative distance of each token to
the opinion phrase in question. These distance values are displayed in row (Dis-
tances). We convert each word into its respective vector representation using the
pretrained lookup table of word embeddings, thus obtaining a sequence of word
vectors. Similar to this, we also use an embedding layer for the relative distances
that provides us with a vector representation of dimensionality Ddist = 10 for each
distance value. The distance embeddings are treated as learnable parameters and
are optimized alongside other weights of the model.

The individual vectors of the three sequences — word embeddings xi, POS
tags pi and distance embeddings di — are concatenated, resulting in a single
sequence with Dword +Dpos +Ddist dimensional elements:

x′ = (x1 ⊕ p1 ⊕ d1, . . . , xn ⊕ pn ⊕ dn) (3.3)

We feed the resulting sequence to a recurrent neural network consisting of three
layers. The first hidden layer is a GRU layer with Dgru hidden units that reads in
the sequence of vectors and produces a sequence of hidden states:

h = (h1, . . . , hn) = GRU(x′).
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Figure 3.5: The position-aware RNN for opinion-phrase-specific sentiment classi-
fication. The red box at the input marks an opinion phrase. Below, the POS tags
and relative word distances are shown. The input vectors are composed of three
parts: one part for the word embeddings, one part for the POS tag vectors, and
a final part for the distance embeddings. The output layer contains one unit for
each possible sentiment label: positive, neutral, negative, and unknown.

We define the summary vector s as the final hidden state:

s = hn.

We recall that the input sequence comprises the relative distances to a specific
opinion phrases and that s is thus conditioned on that phrase.

The second layer is a feed-forward layer of ReLU units that transforms the
summary vector s into a vector h′ of Dpol dimensions. Lastly, another feed-forward
layer maps the previous hidden layer to the desired number of output classes using a
softmax activation function. For our problem at hand, the output units correspond
to one of four possible sentiments: positive, neutral, negative, and unknown.
Finally, the sentiment with the highest probability at the corresponding output
unit is the predicted sentiment. Figure 3.5 visualizes the network. In practice, we
do not pass the entire sentence to the RNN for each opinion phrase. Rather, we
prune the input text by extracting a window of lpol = 20 words centered around
the opinion phrase3. Using just a subsequence of words and POS tags around each
opinion phrase is reasonable since the lengths of the considered reviews reach up to
several hundred words. We expect that relevant sentiment information is generally
located close to the opinion phrase and that pruning the input helps focusing on
these parts of the text. An evaluation of the proposed architecture is given in
Section 3.6.5.

3Sequences for review texts with less than lpol words are padded at the left with zeros.
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3.5 Relation Extraction

In the previous section, we proposed a position-aware RNN model that uses relative
distance embeddings in order to provide positional information about a phrase to a
classification layer. In this section, we extend the position-aware RNN to be capa-
ble of addressing relation extraction between opinion targets and opinion phrases.
As outlined earlier, our relational sentiment analysis pipeline first extracts opinion
targets and opinion phrases and, in a later step, establishes the corresponding rela-
tions between the inferred phrases. We approach the extraction of opinion-target
relations as a classification problem: Given a text w, an opinion phrase o, and a
target phrase t we predict a binary label r ∈ {0, 1} that indicates whether the text
expresses a relation between o and t.

Again, we employ a position-aware neural network. To encode information
about the distance between the aspect and opinion phrases with respect to their
position in the review, we follow a similar approach as in Section 3.4 which was
originally inspired by Zeng et al. [2014] and dos Santos et al. [2015b].

Our approach employs four types of features for a given pair of target and
opinion phrase: i) the sequence of word embeddings for the review text, ii) the
sequence of corresponding POS tags for each word, iii) a sequence of relative
distances of each word to the target phrase, and iv) a sequence of relative distances
of each word to the opinion phrase. For a real world example, this could look as
follows:

I like all the different features . (Text)

PRP VBP PDT DT JJ NNS . (POS)

-4 -3 -2 -1 0 0 1 (DistancesT )

-1 0 1 2 3 4 5 (DistancesO)

Here, the word like is an opinion phrase that indicates the sentiment toward the

target phrase different features . Below, the corresponding sequence of POS tags

is shown. The rows labeled with (DistancesT ) and (DistanceO), show the sequence
of relative distances of each word to the target and opinion phrase, respectively.

The first step in classifying the triple (w, o, t) is a pruning heuristic that
automatically rejects all instances where the opinion phrase o and the target phrase
t are more than 20 words apart from each other. While this does reject some valid
relations, we can still predict 98% of relations correctly for this maximum distance
of 20 words. For those pairs which are below the rejection distance, our model
extracts a context of 20 of words centered around the two phrases4. Analogously,
the sequence of POS tags is extracted.

4Sequences for review texts with less than 20 tokens are padded at the left with 0s.
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Figure 3.6: The position-aware RNN for opinion-target relation extraction. The
colored boxes at the input mark the opinion-target pair that is to be classified.
Below, the POS tags and relative word distances to the aspect and opinion phrase
are shown. Each of the four input sequences are concatenated and passed to the
GRU layer. The final output layer contains one single sigmoid unit. An output
value above 0.5 indicates a relation between the aspect and opinion phrases.

Again, we use an embedding layer to obtain a sequence of Ddist = 10 dimen-
sional embedding vectors for the relative distances. The individual vectors of the
four sequences — word embeddings xi, POS tags pi, target distance embeddings
dTi and opinion distance embeddings dOi — are concatenated:

x′ = (x1 ⊕ p1 ⊕ dT1 ⊕ dO1 , . . . , xn ⊕ pn ⊕ dTn ⊕ dOn )

We feed the resulting sequence to a GRU layer with Dgru hidden units that com-
putes a sequence of hidden states and a summary vector for the input:

h = (h1, . . . , hn) = GRU(x′) (3.4)

s = hn. (3.5)

The summary vector s is passed on to a feed-forward layer h′ of Drel maxout
units [Goodfellow et al., 2013], a generalization of the ReLU. As a last step, h′

is projected to a single output value using a feed-forward maxout layer with a
sigmoid activation function that projects the output to a value between 0 and 1.
We interpret the network’s output as the probability that the text expresses a
relation between the pair of target and opinion phrase. Figure 3.6 visualizes the
network. With this model for the extraction of relations between opinion phrases
and opinion targets, we established the final component of the relational sentiment
analysis framework.
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Reviews Sentences Annotations

Train 254 1315 1654
Test 96 685 845

Table 3.1: An overview of the SemEval 2015 ABSA dataset for the restaurant
domain.

3.6 Experimental Evaluation and Discussion

This section evaluates our proposed system for relational sentiment analysis. Our
evaluation targets the individual components of the overall system, measuring
their performances in isolation. For the evaluation, we consider two datasets
which offer a different granularity in their annotations. The SemEval dataset does
not provide annotations for opinion phrases, opinion-phrase-specific sentiment or
opinion-target relations. As such, we only evaluate our component for opinion
target extraction on this dataset. The USAGE dataset, on the other hand, offers
annotations for all our subtasks, allowing us to evaluate all our components on
this dataset. Where possible, we give precision, recall, and F1-score for our own
and baseline approaches. All experiments were performed with the deep learning
library Keras [Chollet, 2015] and employ many of its pre-implemented algorithms.
Tag sequences predicted by our approach are post-processed to yield only sequences
that are valid according to the IOB2 scheme.

3.6.1 Datasets

For the evaluation of this work, we employ two datasets that provide annotated
reviews for the task of aspect-based or relational sentiment analysis.

SemEval 2015

The SemEval 2015 Task 12 dataset [Pontiki et al., 2015] is used to evaluate our
systems for the subtask of opinion target extraction. The dataset provides a collec-
tion of review sentences from different domains (Restaurant, Laptops, Hotels). We
only make use of the data from the restaurant domain as it contains annotations
for explicitly mentioned opinion targets. The datasets for the laptop and hotel
domains only contain annotations for aspect categories without annotated textual
mentions. Note that we can only use this dataset to evaluate our architecture on
opinion target extraction since the dataset is not annotated with respect to opinion
phrases, and therefore also without explicit target-opinion relations. An overview
of the dataset is given in Table 3.1.
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Reviews Opinion Targets Opinion Phrases Relations Categories

622 8545 5321 4481 8

Table 3.2: An overview of the USAGE dataset for relational sentiment analysis.

USAGE

The USAGE corpus [Klinger and Cimiano, 2014] is a collection of annotated En-
glish and German Amazon5 reviews of different product categories. The annota-
tions include (among others) mentioned aspect phrases, opinion phrases marked
with a sentiment label and relations between aspect and opinion phrase. In con-
trast to the SemEval dataset, the reviews are not separated into sentences but
rather treated as a whole. An example from the dataset is given below:

Example:

“I have had the coffeemaker for over a month and I am very pleased
pos

.

I have had no problems
pos

with the hot water side . Very convenient

and the water is very hot
pos

with no bad
pos

taste . [...]”

This dataset provides annotations for all considered subtasks, hence we will evalu-
ate all our components on this dataset. However, we restrict our use of this corpus
to the annotations for the English reviews. A high-level overview of the dataset
is given in Table 3.2. For a more detailed description, we refer to Klinger and
Cimiano [2014].

3.6.2 Experimental Settings

This section briefly outlines our training procedure. For comparability with previ-
ous works, we comply with established evaluation practices for the used datasets.

The standard procedure for evaluations on the SemEval 2015 dataset uses
an official train and test split. Therefore, our experiments for opinion target ex-
traction in Sections 3.6.3 and 3.6.4 follow this setup. Since many of our network

5https://www.amazon.com/

https://www.amazon.com/
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parameters are initialized randomly and our training data is processed in a random
order, the performance of our model might be influenced by these external factors.
To mitigate these effects, we perform each experiment on this dataset three times
and averaged the obtained results. The USAGE dataset does not provide offi-
cial splits for the data. Instead, prior work performed experiments in a 10 fold
cross-validation on the available data which we adopt for our experiments on this
dataset.

In all experiments, we keep the word embedding dimension fixed at Dword =
100. If not specified otherwise, the architecture of the CNN component is fixed
as well. It is composed of 3 convolution layers with each Dconv = 50 kernels, a
kernel size of lconv = 3, and ReLU activation functions. We do not employ a max
pooling operation after convolutions in order to retain the initial sequence length.
However, we employ dropout [Srivastava et al., 2014] with a drop probability of
0.5 after each convolution as a regularization to prevent overfitting. Furthermore,
we set the dimensionalities Dgru, Dpol, and Drel of the hidden layers of the other
models to 100.

3.6.3 Evaluation: Domain-Specific Word Embeddings

In our first experiment, we compare the performance impact of initializing the
weights of the word embedding lookup table in the stacked CNN-RNN model
with:

i) randomly initialized embeddings,

ii) pretrained embeddings trained on Wikipedia articles, and

iii) pretrained embeddings trained on domain-specific product reviews.

Our intuition in using domain-specific embeddings is that we expect these to reflect
the target domain more closely and thus constitute a favorable text representation
for relational sentiment analysis on reviews. With the following evaluation we aim
to answer the research question:

RQ1.2 What is the impact of domain-specific word embeddings on the task?

The dataset of domain-specific reviews is provided by McAuley et al. [2015b]
and consists of roughly 83 million reviews from 1996 to 2014. All reviews are
lowercased and the dimensionality of the word vectors is set to Dword = 100. Rare
words that appear less than 10 times in the corpus are replaced with a special
token <UNK>. This token is later used to represent previously unseen words in
order to provide a vector for each word at test time. The resulting vocabulary
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Word speed quality display

Nearest Neighbors
spped qualtiy displays
speeds qualilty diplay
speeed qulaity dislay

Table 3.3: Three commonly used words in product reviews and their 3 nearest
neighbors in the embedding space. Often, misspelled versions (italic) of the original
word are among its closest neighbors.

contains about 1 million unique words which we trim to the 200000 most frequent
words to reduce the memory footprint of our model.

A welcome side effect of using this huge dataset of reviews is that we obtain
word embeddings for misspelled forms of a word that appear commonly in reviews.
As shown in Table 3.3, the learned representation of a misspelled word is in many
cases very close6 to its correctly spelled counterpart. The informal writing style
of customer reviews is therefore, to some extend, reflected in the representation of
words themselves.

For all three types of embeddings, we train the stacked CNN-RNN model on
the training portion of the SemEval 2015 dataset and measure the extraction per-
formance of opinion targets on the official test data. We measure the performance
in terms of exact matches using the F1-score (see Section 2.4 in Chapter 2). The re-
sults are summarized in Table 3.4. The experiments show that our model achieves
on average an F1-score of 0.581 with the randomly initialized embeddings. The
initialization with the Wikipedia embeddings leads to a performance improvement
of 3.7 points, and the domain-specific review embeddings give an even greater im-
provement of 6.5 points. As expected, we can observe a large benefit in pretraining
our word embeddings on large collections of natural language texts with the largest
gain using domain-specific embeddings. Considering these first results, we only use
the domain-specific review embeddings as initialization in further experiments.

3.6.4 Evaluation: Opinion Target and Opinion Phrase Ex-
traction

This section evaluates our relational sentiment analysis architecture focusing on
the component for opinion target and opinion phrase extraction. We perform the
evaluation in two steps: First, we evaluate the component on the SemEval 2015
dataset measuring its performance for opinion target extraction only. Keep in

6We use the euclidean vector distance as a distance measure.
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Embeddings F1

Random 0.581
Wikipedia 0.618
Reviews 0.646

Table 3.4: Results for opinion target extraction on the SemEval 2015 test dataset
using different initializations of the word embedding layer of the CNN+RNN
model. The domain-specific embeddings pretrained on product reviews achieve
the best result.

mind that we cannot evaluate the other subtasks on this particular dataset due
to limitations of the provided annotation. These subtasks are evaluated in later
sections.

Sequence Encoder

This section evaluates our opinion target extraction component. We compare
different choices for the underlying sequence encoding and evaluate the use of POS
tags as additional linguistic features. With this, we answer the research question:

RQ1.1 How can relevant phrases be identified?

We train and test the CNN, the RNN and the stacked CNN-RNN model from
the Sections 3.3.3, 3.3.4, and 3.3.5 on the SemEval 2015 dataset using the official
training and test split. Again, we perform each experiment thrice to account
for differences due to the networks’ initializations and training sample orders.
Table 3.5 shows the average precision, recall, and F1-score for each model.

The model based on convolutional layers and the model based on recurrent
layers both perform similarly regarding the overall F1-score. Combining both types
of models in a stack-like architecture results in an increased averaged F1-score that
is statistically significant (p = 0.05). Providing additional features in the form of
POS tags also improves the extraction performance. While we still perform not
quite as good as the current state-of-the-art system EliXa [San Vicente et al.,
2015], we do perform well with respect to the overall ranking of the SemEval 2015
task as can be seen in [Pontiki et al., 2015]. The benefit of our method is that it
is not restricted to the mere extraction of opinion targets but that it is capable of
extracting opinion targets and opinion phrases jointly. The following section shows
that our method achieves state-of-the-art performance on the USAGE dataset with
this joint extraction objective. Since our method uses only a very limited set of
features, i.e. word embeddings and POS tags, we believe that improvements can
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Opinion Targets

Model P R F1

RNN 0.592 0.646 0.618
CNN 0.558 0.702 0.621
Stack 0.599 0.703 0.646
Stack+POS 0.633 0.689 0.659
EliXa [San Vicente et al., 2015] – – 0.701

Table 3.5: Precision (P), Recall (R), and F1-scores for opinion target extraction on
the SemEval 2015 test dataset using different model architectures and additional
POS tag features.

be obtained using a similarly rich feature set as that of EliXa and other competing
systems. We leave the confirmation of this hypothesis to future work. Based
on the results of these experiments, we perform all following opinion target and
opinion phrase extraction tasks using the CNN-RNN model with additional POS
tag features.

Joint Objective

The previous part of the evaluation focused on the performance differences of
CNNs and RNNs as the core sequence encoder of the tagging model. This section
investigates the benefits of predicting opinion target and opinion phrases jointly
in one model, in contrast to two separate models. The evaluation addresses the
research question:

RQ1.3 How can dependencies between aspect and opinion phrases be leveraged?

In this experiment, we compare a model with a joint training objective for
opinion target and opinion phrase extraction to baseline models that address both
tasks separately. To account for the added complexity that the joint training
objective poses for the model, we consider two variations. The model Joint is in-
stantiated with the same layer dimensions as the models Targets only and Opinion
only. For the model Joint (large), we doubled the layer sizes to observe the impact
of added capacity on the joint model. Similar to Klinger and Cimiano [2014], we
evaluate our models in a 10-fold cross-validation and report the averaged scores.
Table 3.6 shows the results for the joint and the separate models.

We can see that extracting opinion target and opinion phrases jointly does
indeed enhance the models performance, but only so for a larger network con-
figuration. The extraction of opinion phrases benefits from the joint setting in
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Opinion Targets Opinion Phrases

Model P R F1 P R F1

Klinger and Cimiano [2014] – – 0.56 – – 0.48
Targets only 0.63 0.70 0.66 – – –
Opinion only – – – 0.44 0.48 0.45
Joint 0.57 0.65 0.61 0.40 0.40 0.40
Joint (large) 0.65 0.69 0.67 0.47 0.53 0.50

Table 3.6: Precision (P), Recall (R), and F1-scores for aspect and opinion phrase
extraction on the USAGE dataset for joint and separate models.

particular. Here we observe a drastic improvements of the F1-score by 5 points
over a model that only extracts opinion phrases. However, this might also be
attributed to the increased size of the hidden layers in our neural architecture.
The extraction of opinion phrases might simply require more network parameters
which it is able to claim in the larger joint architecture.

3.6.5 Evaluation: Opinion-Phrase-Specific Sentiment Clas-
sification

In previous experiments, we assessed our proposed components for the extrac-
tion of opinion targets and opinion phrases. Next, we present our evaluation of
the position-aware RNN as proposed in Section 3.4. The model analyzes individ-
ual opinion phrases in a wide context and predicts one of four sentiment labels:
positive, neutral, negative, or unknown. With this evaluation, we address the
following question:

RQ1.4 How can we infer the sentiment pertaining to a particular expression in a
document?

The subtask of opinion-phrase-specific sentiment classification is evaluated on
the USAGE dataset which offers gold standard annotations for opinion phrases
and their sentiment labels. We perform the sentiment classification on the these
gold standard phrases in order to measure the suggested component in isolation.
To keep the experimental settings consistent across our different components, the
evaluation is performed as a 10-fold cross-validation.

At the time of publication, there are no comparable approaches published that
address opinion-phrase-specific sentiment classification on the USAGE dataset. In
the absence of published reference results, we also report the results of two baseline
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Model All Conflicting
Majority (Positive) 0.646 0.439
baseline RNN 0.793 0.541
position-aware RNN 0.836 0.731

Table 3.7: Accuracy for opinion-phrase-specific sentiment classification. The pro-
posed position-aware RNN is particularly beneficial for samples with conflicting
sentiment expressions.

models: i) a naive baseline that always predicts the (most frequent) sentiment label
positive (dubbed Majority), and ii) a regular RNN sequence classifier, i.e. an
RNN that does not use distance embeddings (dubbed baseline RNN ). We keep
the results comparable across models and perform all experiments on the same
cross-validation splits. Furthermore, the baseline RNN and the proposed position-
aware RNN operate on the same window of tokens around each opinion phrase
and are instantiated with identical hyperparameters. The only difference is the
presence or absence of distance embeddings that inform about the exact position
of the opinion phrase.

Besides reporting results for different models, we also compute the accuracy of
all models on two test sets: i) the full test set of opinion phrases (dubbed All), and
ii) the subset of opinion phrases that feature other phrases of different polarity in
their near context7 (dubbed Conflicting). The evaluation on the full test set gives
an overview of the classification performances on the entire range of expressed
opinions and facilitates comparability with potential future research results. On
the other hand, the evaluation on the subset of conflicting opinion phrases gives us
a clearer understanding of the benefits of the distance embeddings. It emphasizes
difficult cases that cannot be adequately addressed by models that lack positional
information. Table 3.7 shows the results for all models and test sets.

We see that the majority baseline gives an accuracy of 0.646 on the full test set
which indicates a slight imbalance towards the positive sentiment in this dataset.
Both RNN models score high above this naive baseline. The regular RNN reaches
an accuracy of 0.793 on this test set. Our position-aware RNN surpasses this result
and scores an average accuracy of 0.836. This shows that the additional distance
embeddings improve the models overall performance as compared to the regular
RNN model.

Looking at the subset of conflicting opinions, we can see that the baseline RNN
is not capable of classifying these samples reliably and only reaches an average
accuracy of 0.541. This can be attributed to the lack of positional information.

7The context is equivalent to the window of lpol = 20 words centered around the opinion
phrase as described in Section 3.4
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Model P R F1

Klinger and Cimiano [2014] – – 0.65
Our Approach 0.87 0.75 0.81

Table 3.8: Precision (P), Recall (R), and F1-scores for opinion-target relation
extraction.

On the other hand, the position-aware RNN performs well yielding an average
accuracy of 0.731 even for these difficult cases. While we do observe a small drop
in performance for this subset, the relative benefit of the proposed method as
compared to the baseline is especially pronounced here. We can conclude that
the position embeddings are vital for the task and enable opinion-phrases-specific
sentiment classification. Hence, with this work, we contribute the first results for
this task on the USAGE dataset and set a strong baseline for future research.

3.6.6 Evaluation: Opinion-Target Relation Extraction

So far, we assessed the extraction of opinion target and opinion phrases as well as
the classification of opinion phrases into one of four sentiment categories. The final
component in the overall architecture for relational sentiment analysis is concerned
with the extraction of relations between opinion phrases and its target aspects.
With the evaluation of the proposed position-aware RNN for relation extraction,
we provide an answer to the research question:

RQ1.5 How can we identify corresponding targets for an opinion phrase?

We perform the relation extraction on the opinion targets and opinion phrases
from the gold standard annotations of the USAGE corpus, in order to measure the
performance for relation extraction in isolation. This methodology is adopted from
Klinger and Cimiano [2014] and allows us to compare our method to their work.
Table 3.8 shows the results of a 10-fold cross-validation of our proposed compo-
nent. The results show that our RNN-based model improves relation extraction by
15 points F1-score compared to the probabilistic graphical model of Klinger and
Cimiano [2014]. The strong result suggests that our model is capable of leveraging
the word and distance embeddings alongside the POS tags to accurately link an
opinion phrase to its correct target.
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3.6.7 Discussion and Future Work

Our experiments and evaluations touched upon several facets of ABSA. We saw
that domain-specific embeddings provide sensible embeddings for common mis-
spelled words and are ultimately beneficial for OTE extraction. However, pre-
trained word-level embeddings can only represent known words and spelling errors,
i.e. words that appeared in the pretraining corpus. A more dynamic approach is
to model words at the character-level to learn relevant information about the word
structure itself. We examine this idea in Chapter 5.

In Section 3.6.4, we evaluated different sequence encoders for the extraction of
OTEs. Among the considered architectures were CNNs, RNNs, and combinations
thereof. Our results clearly showed that a combined architecture obtains the best
results. However, more specialized models with richer feature sets such as proposed
by San Vicente et al. [2015] are required to reach state-of-the-art performance on
this subtask. For the other subtasks in scope, further experiments need to be
performed to determine the best architecture. Recently proposed encoder types
such as attention-based RNNs [Bahdanau et al., 2015] or Transformers [Vaswani
et al., 2017] are interesting candidates, especially so for targeted-sentiment analysis
and relation extraction. The use of an attention mechanism is especially interesting
for our position-aware RNN that, equipped with an attention mechanism, could
use the positional information more explicitly. Zhang et al. [2017] propose a similar
idea and report improvements for a slot filling task. In general, we expect our RNN-
based components to benefit from bidirectional recurrent connections [Schuster
and Paliwal, 1997] so that words appearing later in a sentence can be taken into
account.

With our experiments in Section 3.6.4, we confirm results of prior work that
show the effectiveness of jointly modelling opinion expressions and their target
phrases [Klinger and Cimiano, 2013a]. How to extend the joint objective to include
sentiment classification and relation extraction is not obvious and an interesting
direction for future research. Potential avenues are outlined by research on joint
entity and relation extraction [Gupta et al., 2016; Bekoulis et al., 2018].

The pipeline approach that we followed in this chapter allows for an easy mod-
ularization and evaluation of the overall system. We evaluated all components in
isolation to allow for comparability with earlier works. An end-to-end evaluation
from plain text to fully extracted opinion could give more insight into interdepen-
dencies of tasks and might reveal an alternative separation and order of execution
of subtasks for this pipeline approach.
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3.7 Conclusion

In this chapter, we presented a modular architecture that addresses sentiment anal-
ysis as a relation extraction problem. The proposed system divides the problem
into four subtasks and addresses each with a dedicated component. This highly
flexible approach offers a fine-grained solution for sentiment analysis.

As part of this overall architecture, we presented possible implementations
for the individual components: First, we presented different neural network mod-
els that are capable of opinion target and opinion phrase extraction and which
achieved competitive and state-of-the-art results on different datasets. We re-
ported a benefit for this task in using domain-specific word embeddings compared
to domain-independent and randomly initialized embeddings. We investigated the
extraction of opinion targets and opinion phrases separately and jointly and found
the joint approach to produce superior results in one setting. Thus, we confirm pre-
vious results from Klinger and Cimiano [2013a] who used a probabilistic graphical
model instead of a neural network model. Secondly, we addressed opinion-phrase-
specific sentiment extraction with a position-aware recurrent neural network using
distance embedding features and achieved promising results that surpassed those
of two baseline approaches by a large margin. The benefit was especially pro-
nounced for difficult samples with conflicting sentiment expressions. Our results
are the first sentiment extraction results on the considered dataset and provide a
strong baseline for future research. Thirdly, we designed and evaluated a model
for the extraction of relations between opinion targets and opinion phrases which
outperformed prior results on the same dataset by 15 points in F1-score.

This chapter shows that it is possible to divide sentiment analysis in a flexible
and fine-grained way using a highly modular architecture. While the compo-
nents we presented are all exchangeable, they do pose advantages in their cur-
rent implementation. All proposed components stand out by their minimal use
of hand-engineered features that are strongly tuned to their specific tasks. The
only external resources that were used are machine-generated POS tags and word
embeddings which were created with a data-driven approach. Nevertheless, all
components perform competitive on their individual subtasks. It is easily con-
ceivable to provide further task-specific features to improve the performances of
the individual components even further. We address this in following chapters by
leveraging structured, semantic knowledge bases and by focusing on problems aris-
ing from i) noisy, user-generated data (see Chapter 5), and ii) limited, annotated
training data (see Chapter 6).



Chapter 4

Aspect-Based Sentiment Analysis
and Structured Resources

Chapter Overview In this chapter, we discuss how structured knowledge bases
can support aspect-based sentiment analysis. This is achieved by integrating graph-
based knowledge bases into a two-step machine learning pipeline. We demonstrate
the positive impact of lexical and semantic knowledge for target-specific sentiment
classification.

4.1 Introduction

In the previous chapter, we showed that the complexity of ABSA can be modeled
in a relational framework to a fine degree. In that framework, we subdivide the
problem into four smaller sub-problems:

1. the extraction of opinion phrases,

2. the extraction of opinion targets,

3. the classification of opinion phrases into a set of sentiment categories, and

4. the extraction of opinion-target relations

In this chapter, we approach ABSA with a simplified framework that ex-
changes the expressivity of the relational framework for a simpler two-step setup.
We adopt a formalization comprising: i) the extraction of opinion targets, and
ii) the classification of target-specific sentiment, that is, the inference of the senti-
ment of an aspect without explicitly extracting opinion phrases and relations first.
The intuition behind this approach is that is the expressed sentiment in a text is
sometimes only implicitly stated and hard to pinpoint to a specific phrase. This

71
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difficulty is reflected by the lower agreement between annotations of different an-
notators for opinion phrases compared to opinion targets in the USAGE dataset
[Klinger and Cimiano, 2014]. In the following examples, it is easy to see that the
sentiment towards the respective aspects is positive:

Example:

“Please take my advice, go and try this place .”

“There is something about their atmosphere that makes me come back
nearly every week.”

However, it is difficult to locate a single succinct phrase that holds this informa-
tion. By directly assigning the sentiment to the opinion target, we can circumvent
this problem and classify implicit sentiment statements the same way as explicit
statements. Furthermore, the annotation effort for the generation of a dataset of
training samples can be reduced, albeit at the cost of losing fine-granular informa-
tion about opinion phrases.

A finding of the previous chapter shows that it is possible to train supervised
machine learning models for ABSA. The proposed models can learn from annotated
training data and do not necessarily need much feature engineering. However, the
regularities in natural language texts underlying ABSA are complex and might not
be fully inferable from the annotated datasets alone. On the contrary, high-level
features such as POS tags prove to be beneficial for opinion target extraction. In
light of this, this chapter explores the usage of structured, semantic resources to
boost the opinion extraction process. Semantic knowledge graphs provide human
knowledge distilled into a machine readable format that we aim to leverage for
opinion extraction. How to harness the structured knowledge is dependent on
the task at hand and the knowledge base itself. In this thesis, we consider two
resources which we motivate in the following.

As we established in Section 2.2, word embeddings encode words in such a way
that similar words tend to be close together in the vector space. Ultimately, this
similarity of two words stems from an overlapping set of common context words
since those play a crucial part in the computation of word embeddings. However,
this encoding sometimes struggles with words of opposite polarity which, despite
their difference in sentimental meaning, often share similar word embeddings since
they appear in similar contexts [Tang et al., 2014; Yu et al., 2017]. This issue
extends to antonyms in general. Querying the pretrained and publicly available
word embeddings1 of the Google News corpus by Mikolov et al. [2013a], we can see
that seemingly opposite words appear close together: The nearest neighbor of the

1https://code.google.com/archive/p/word2vec/

https://code.google.com/archive/p/word2vec/
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word small in that embedding space is the word large. We address this issue using
the lexico-semantic database WordNet [Fellbaum, 1998]. WordNet is a graph that
organizes words according to their meanings, called synsets. The graph explicitly
models various semantic relations between synsets such as hypernyms, hyponyms,
meronyms, and many more. We argue that inducing this knowledge into word
embeddings could be beneficial for the extraction of opinion targets or sentiment
classification. To this end, we employ a technique called retrofitting [Faruqui
et al., 2015] that post-processes pretrained embeddings in a way that reflects the
structure of the used semantic lexicon. We give a more detailed description in
Section 4.3.

While WordNet offers lexical knowledge, it does not contain explicit infor-
mation about the sentiment of words or synsets. To some extent, sentiment and
subjectivity are encoded in word embeddings but only implicitly. We can observe
this by querying the closest neighbors for a particular sentiment-laden word such
as good. Using the publicly available word embeddings from Mikolov et al. [2013a]
as before, we obtain the 5 closest neighbors of the word good, namely great, bad,
terrific, decent, and nice. From the given example, it is apparent that the subjec-
tivity of words contributes to their measured similarity. However, we also observe
(again) that words with opposite sentimental meaning are assessed as being sim-
ilar which might hamper the performance of an ABSA system. Considering this,
we expect that external, sentiment-focused information can be a helpful indicator
for the automatic sentiment analysis of texts. We address this hypothesis using
the common sense knowledge base SenticNet 3 [Cambria et al., 2014], a concept-
level resource for sentiment analysis. SenticNet provides us a means to induce
explicit sentimental knowledge into a model. We give a more detailed description
of SenticNet 3 and our method of leveraging it in Section 4.4.

The value of knowledge bases as a source of features for document-level sen-
timent analysis has been explored in prior work [Schouten and Frasincar, 2015;
Dragoni et al., 2014; Chung et al., 2014b]. Schouten and Frasincar [2015] enrich
a feature representation of a document with bag-of-concept features that are ex-
tracted from WordNet. The features are used in conjunction with an SVM and
evaluated for the tasks of sentence-level polarity classification and aspect category
detection. A similar bag-of-concept approach for document-level sentiment classi-
fication is presented by Chung et al. [2014b]. Both works differ from our approach
in that these approaches address document-level sentiment analysis and thus omit
the positional information of the concept. The extracted sentiment information
is thus not associated with an individual aspect but rather with the entire doc-
ument. Aprosio et al. [2015] target opinion frame detection and combine a large
feature set including SenticNet features with a CRF tagger and an SVM to ex-
tract opinion phrases, opinion targets, opinion holders and polarities. Toh and
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Wang [2014] propose a CRF as a sequence labeler that includes (among others)
features derived from WordNet taxonomies to address opinion target extraction.
While WordNet-based features have been used in some ABSA applications, so far,
retrofitted word embeddings have not been explored. Concept-level information as
provided by SenticNet has been shown to be effective for document-level sentiment
analysis but no research is available for such a benefit for target-specific sentiment
analysis.

4.1.1 Contributions and Structure of the Chapter

In this chapter, we investigate in how far semantic resources such as WordNet
and SenticNet support ABSA. We present an alternative approach for ABSA that
follows a two-step framework. The complexity of ABSA is addressed by i) the
extraction of opinion target phrases and ii) the assignment of a polarity label
directly to each extracted opinion target. At the core of this chapter are two
neural network models that target the two subtasks. The models are inspired by
the findings of Chapter 3 and follow similar principles. In this chapter, we answer
the main research question:

RQ2 How can external, structured knowledge be incorporated into a model for
ABSA?

We specifically look at two types of structured knowledge and answer the related
questions:

RQ2.1 What is the benefit of lexical knowledge?

RQ2.2 What improvements can be expected when including semantic knowledge?

The approach was originally developed in the context of the ESWC 2016
Challenge on Semantic Sentiment Analysis and was awarded as the best performing
and most innovative sentiment analysis system among all submissions. Below, we
list the key contributions of this chapter:

i) We propose an RNN-based model that is capable of classifying aspect-term-
specific sentiment. The model follows the same principles established in
Chapter 3.

ii) We show the effect of infusing lexical knowledge from WordNet into word
embeddings for aspect extraction and targeted sentiment classification. We
observe that retrofitted embeddings, contrary to our intuition, do not support
the extraction of opinion targets.
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iii) We assess SenticNet as a source for sentiment-related knowledge that aids
ABSA. We derive word-level features from the knowledge graph and show
that it is particularly helpful for target-specific sentiment classification. Our
evaluation shows a substantial positive effect on training time and classifica-
tion accuracy.

The remaining chapter is structured as follows: In the following Section 4.2,
we present our overall setup and describe its two main components as well as the
core features we employ. Section 4.3 introduces the concept of retrofitting word
vectors to semantic lexicons. Here, we show how we incorporate knowledge form
WordNet into our model. In Section 4.4, we give a brief introduction to SenticNet
and describe the features we derive from it. The two steps of our approach and
its extensions are evaluated in Section 4.5. We first assess the performance of the
opinion target extraction in a cross-validation on the training data. Following, we
evaluate the target-specific sentiment classification accordingly and show a benefit
in leveraging knowledge from SenticNet. As a last step in our evaluation, we report
results on the official test data of the sentiment analysis challenge. We conclude
the chapter in Section 4.6 and give suggestions for future research.

4.2 A Two-Step Approach for Aspect-Based Sen-

timent Analysis

The previous chapter showed us that ABSA can be modeled in a relational frame-
work which provides a fine-grained view of expressed opinions. In this chapter, we
rephrase this formulation in favor of a reduced complexity by focusing on the iden-
tification of OTEs and the classification of sentiment polarity. In contrast to our
earlier formulation, we omit the detection of explicit opinion phrases and opinion
relations. The expressed sentiment is thus not attributed to a phrase in the text,
but rather directly assigned to the opinion target expression. A visualization of
this formulation could look like this:

Example:

“The food
pos

and drinks
pos

were tasty but the menu
neg

was lim-
ited”

We see that the food and drinks are perceived as positive while the menu is
mentioned as a negative aspect of the experience.

We follow this two-step formulation and design a system that is capable of
extracting an opinion holder’s sentiment towards certain aspects of an entity. As
a first step, given a text, the system extracts OTEs, i.e. aspect phrases that are
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the target of an opinion. Secondly, each extracted opinion target expression is
processed individually considering its context and a sentiment value is assigned.
The following sections elaborate on our design and feature choices for our target
phrase and sentiment extraction components.

4.2.1 Domain-Specific Word Embeddings

A central feature in our models are pretrained word embeddings which have been
successfully employed in numerous NLP tasks [Collobert et al., 2011; dos Santos
and Zadrozny, 2014; Le and Mikolov, 2014; Mikolov et al., 2013a; Pennington et al.,
2014].

In the previous chapter, we highlighted the importance of domain-specific
word embeddings for ABSA. By training a skip-gram model on domain-specific
data, the resulting embeddings capture the semantics of each word for our targeted
domain more closely than embeddings trained on domain-independent data. We
evaluated this effect in Section 3.6.3 of Chapter 3. In this chapter, we use the same
skip-gram word embeddings from earlier experiments but limit the vocabulary to
the 100,000 most frequent words. The resulting vocabulary is denoted as V .

Word embeddings constitute an integral part of the input representation for
our approaches. Throughout this chapter, we refer to the sequence of word em-
beddings for an input sentence as:

w = (w1, . . . , wn) with wi ∈ R100.

4.2.2 Part-of-Speech Tags

Apart from these word embeddings, we enrich the input representation by pro-
viding POS tags for each word in a sentence as we could show a positive impact
of POS tags on the extraction of opinion target expressions in Chapter 3. When
including POS tags, we employ a one-hot encoding that transforms each tag into
a k-dimensional vector that represents this specific tag. Specifically, we use the
Stanford POS Tagger [Manning et al., 2014] with a tag set of k = 45 tags. These
vectors are then concatenated with their respective word vectors before being fed
to the extraction components. The sequence of POS tag vectors for a sentence
with words 1 . . . n is denoted as:

p = (p1, . . . , pn) with pi ∈ R45.
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Figure 4.1: The opinion target extraction component. The network processes the
input sentence as a sequence of word vectors wi, sentic vectors si and POS tags
pi using a bidirectional GRU layer and feed-forward layers. The output of the
network is a predicted tag sequence in the IOB2 format. The opinion targets that
are to be predicted are marked in the input sentence.

4.2.3 Opinion Target Extraction

Our first step in extracting aspect-based sentiment from a text is the extraction of
mentioned opinion targets. We follow the approach from Chapter 3 which allows
us to extract an arbitrary number of opinion targets from a given text by framing
the extraction as a sequence labeling problem. For this, we encode expressed
opinion targets using the IOB2 tagging scheme [Tjong Kim Sang and Veenstra,
1999]. According to this scheme, each word in our text receives one of three tags,
namely I, O or B that indicate if the word is at the Beginning, Inside or Outside
of an annotation:

The sake menu should not be overlooked !

O B I O O O O O

This tagging scheme allows us to encode multiple non-overlapping opinion targets
at once.

We design a neural network based sequence tagger that reads in a sequence
of words and predicts a sequence of corresponding IOB2 tags that encode the
detected opinion targets. Figure 4.1 depicts the neural network component. The
procedure to generate a tag sequence for a given word sequence can be described as
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follows: First, the sequence of words is mapped to a sequence of word embedding
vectors w = (w1, . . . , wn) and POS tag vectors p = (p1, . . . , pn) using the resources
described in Sections 4.2.1 and 4.2.2. We concatenate each word vector with its
corresponding POS tag vector to receive the sequence:

x = (x1, . . . , xn) = (w1 ⊕ p1, . . . , wn ⊕ pn) with xi ∈ R100+45. (4.1)

where ⊕ denotes the concatenation of two vectors. The resulting sequence is
passed to a bidirectional layer [Schuster and Paliwal, 1997] of Gated Recurrent
Units (GRU, [Cho et al., 2014]) that produces an output sequence of recurrent
hidden states:

g = BiGRU(x) = (g1, . . . , gn) with gi ∈ R50, (4.2)

using a combination of update and reset gates in each recurrent hidden unit. For
a mathematical formulation of the GRU, we refer to Section 2.1.3 in Chapter 2.
We implement the bidirectional GRU layer as two separate GRU layers. One layer
processes the input sequence in a forward direction (left-to-right) while the other
processes it in reversed order (right-to-left). The sequences of hidden states of
each GRU layer are concatenated element wise in order to yield a single sequence
of hidden states:

g = (−→g 1 ⊕←−g 1, . . . ,
−→g n ⊕←−g n) with −→g i,

←−g i ∈ R25, (4.3)

where −→g i and←−g i are the output vectors for the forward and backward GRU layer,
respectively. Each vector gi is passed to a regular feed-forward layer that produces
a transformed representation h′i ∈ R50 for that vector. Lastly, a final layer in the
network projects each h′i of the previous layer to a probability distribution qi over
all possible output tags, namely I, O or B, using a softmax activation function:

qi = softmax(Wtagh
′
i + btag). (4.4)

For each word, we choose the tag with the highest probability as its predicted
IOB2 tag. Since the prediction of each tag can be interpreted as a classification,
the network is trained to minimize the categorical cross-entropy between expected
tag distribution pi and predicted tag distribution qi of each word i:

L(pi, qi) = −
∑
t∈T

pti log(qti), (4.5)

where T = {I, O,B} is the set of IOB2 tags, pti ∈ {0, 1} is the expected probability
of tag t and qt ∈ [0, 1] the predicted probability. The network’s parameters are
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optimized using the stochastic optimization technique Adam [Kingma and Ba,
2014].

For further processing, a predicted tag sequence can be decoded into opinion
target annotations using the IOB2 scheme. Note that we do not enforce the syn-
tactic correctness of the predicted IOB2 scheme on a network-level. It is possible
that the network produces a tag sequence that is not correct in terms of the em-
ployed IOB2 scheme. Thus, we post process each predicted tag sequence such that
it constitutes a valid IOB2 tag sequence. Specifically, we replace each I tag that
follows an O tag with a B in order to properly mark the beginning of an opinion
target.

4.2.4 Target-Specific Sentiment Classification

The second step in our two-step architecture for aspect-based sentiment analysis
is the prediction of a polarity label given a previously detected opinion target.
We adopt our approach from the previous chapter and employ a position-aware
recurrent neural network for the targeted classification. In contrast to the previous
chapter which was concerned with the classification of the sentiment label for an
opinion phrase, we are now using the position-aware RNN to predict the sentiment
label for an opinion target directly. Let us briefly recap the position-aware RNN: In
order to predict a polarity label for a specific opinion target in a sentence, we need
to mark the opinion target in question. We tag each word in the input sentence
with its relative distance to the opinion target, as follows:

Great service , great food . (Text)

-1 0 1 2 3 4 (Distance)

where the word service is the selected opinion target phrase that is to be classified.

The word food marks another opinion target that is processed separately in a
later step. The relative distance to the selected opinion target is shown below
each word. This sequence of relative distances encodes the position of the opinion
target in question in the sentence. We do not use the raw distance values directly
but represent them as 10 dimensional distance embedding vectors similar as in
[dos Santos et al., 2015b; Zeng et al., 2014; Sun et al., 2015] and treat them as
learnable parameters in our network. We further denote the sequence of distance
embedding vectors for a sentence of n words as:

d = (d1, . . . , dn) with di ∈ R10. (4.6)

Figure 4.2 depicts the neural network component.
Given the position-aware RNN, the procedure for predicting a polarity label

for an opinion target can be described as follows: Assume we have a sentence
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Figure 4.2: The target-specific sentiment classification component. The network
processes the input sentence as a sequence of word vectors wi, sentic vectors si, POS
tags pi and distance embeddings di using a bidirectional GRU layer and regular
feed-forward layers. The output of the network is a single predicted polarity label
for the opinion target of interest. The opinion target for which a polarity label is
to be predicted is encoded in the input sentence with relative distance values.

and an already extracted opinion target. We concatenate each word vector with
its corresponding POS tag vector and distance vector to receive the input feature
sequence:

x = (w1 ⊕ p1 ⊕ d1, . . . , wn ⊕ pn ⊕ dn) with xi ∈ R100+45+10. (4.7)

The resulting sequence is passed to a bidirectional GRU layer that produces an
output sequence of recurrent states:

g = BiGRU(x) = (−→g 1 ⊕←−g 1, . . . ,
−→g n ⊕←−g n) with −→g i,

←−g i ∈ R25. (4.8)

We take the final output vector −→g n of the forward GRU and the final output vector
←−g 1 of the backward GRU2 and concatenate them to receive a fixed sized repre-
sentation h = (−→g n⊕←−g 1) ∈ R50 of the opinion target in the whole input sentence.
We denote h the summary of the target and its context. Next, the network passes

2Since this GRU processes the sequence in a reversed direction, the final output vector is the
output vector for the first word.
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the summary h through a densely connected feed-forward layer producing another
hidden representation h′ ∈ R50. As a last step, a final densely connected layer
with a softmax activation function projects h′ to a 2-dimensional vector q ∈ R2

representing a probability distribution over the two polarity labels positive and
negative. We consider the label with the highest estimated probability to be the
predicted polarity label for the given opinion target.

Again, we train the network to minimize the categorical cross-entropy between
expected polarity label distribution p and predicted polarity label distribution q
of each opinion target:

L(p, q) = −
∑
l∈P

pl log(ql), (4.9)

where P = {positive, negative} is the set of polarity labels and pl and ql the
expected and predicted probability, respectively, for label l. As before, we use the
Adam optimizer to update network parameters.

4.3 Retrofitting Word Embeddings to WordNet

Although word embeddings have been shown to encode semantic and syntactic fea-
tures of their respective words well [Mikolov et al., 2013b; dos Santos and Zadrozny,
2014; Mikolov et al., 2013a], we try to enhance their encoded semantic informa-
tion by using an external lexical resource. For this, we employ a technique called
retrofitting [Faruqui et al., 2015]. The idea behind retrofitting is to iteratively
adapt precomputed word vectors to better fit the relations modeled in a given
knowledge graph. The graph-based algorithm gradually “moves” each word vec-
tor towards the word vectors of its neighboring nodes while still staying close to
its original position.

Following the notation of Faruqui et al. [2015], let V = {v1, . . . , vNV
} be the

considered vocabulary and W = (w1, . . . , w|V |) with wi ∈ Rd the corresponding
precomputed word vectors. G = (V,E) is the graph of semantic relationships to
which we want to fit the word vectors with (vi, vj) ∈ E ⊆ V × V denoting the

edges between words. With Ŵ = (ŵ1, . . . , ŵ|V |) being the fitted word vectors, the
algorithm tries to minimize the following objective function:

Ψ(W, Ŵ ) =

|V |∑
i=1

[
αi||ŵi − wi||2 +

∑
(i,j)∈E

βij||ŵi − ŵj||2
]

(4.10)



82 Chapter 4. Aspect-Based Sentiment Analysis and Structured Resources

cold warm small
original retrofit original retrofit original retrofit

frigid colder toasty warms large large
colder coldest warmer warmed big smaller
warm frigid chilly warmer tiny smallest
coldest coldness cold warmest smallish larger
winter colds warms warmth larger big

big slow fast
original retrofit original retrofit original retrofit

huge bigger slower slower quick quick
small biggest snail’s slows quickly faster
bigger small slows slowed superfast fasted

too large sloooow sluggish speedy quickly
large little fast slowest super-fast speedy

Table 4.1: The 5 closest nearest neighbors with respect to the cosine similarity
of words in the original embedding space and the retrofit embedding space. We
underline words that we judge as antonymic to the query word.

The online update rule for each wi is then:

ŵi =

∑
j:(i,j)∈E βijŵj + αiwi∑

j:(i,j)∈E βij + αi

(4.11)

where α and β are parameters of the retrofitting procedure.
In this work, we chose WordNet [Fellbaum, 1998] as our lexico-semantic re-

source. We construct a subgraph of the WordNet relations that links each word
in our vocabulary to all its synonyms (lemma names) in the WordNet graph. We
set all αi = 1 and all βij = 1/degree(i) and run the retrofitting algorithm for 10
iterations as suggested by Faruqui et al. [2015]. The resulting embeddings are still
very similar to their original embeddings yet incorporate part of the semantics of
WordNet. Table 4.1 shows the nearest neighbors for a selected set of words before
and after the retrofitting process. When using retrofitted word embeddings in our
models, we modify Eqs. (4.1) and (4.7) by replacing the plain word embeddings w
with retrofitted embeddings ŵ. The subsequent equations remain unchanged. We
investigate the benefit of using these retrofitted word embeddings in comparison
to their original counterparts in Section 4.5.
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4.4 Extracting Word-Level Features from Sen-

ticNet

SenticNet 3 [Cambria et al., 2014] is a graph-based, concept-level resource for se-
mantic and affective knowledge. Among other common- and common sense knowl-
edge entries and relations, SenticNet 3 comprises entries for adjectives such as good
or horrible that convey an unambiguous sentiment regardless of the targeted noun.
Beyond that, ambiguous adjectives such as small or cold assume a polarity only
in conjunction with the targeted noun. This can be seen in examples such as cold
beer and cold food where the adjective cold acts as a positive and negative modi-
fier, respectively. SenticNet 3 addresses these cases by storing them as multi-word
concepts that convey an unambiguous sentiment only in conjunction. For each of
the 30,000 concepts that are part of the knowledge graph, SenticNet 3 provides
real-valued scores for 5, so called, sentics: pleasantness, attention, sensitivity, ap-
titude, and polarity. These sentics encode information about the semantics and
polarity of a concept. Making this knowledge accessible to a classification model
for target-specific sentiment could improve the models accuracy when compared
to a baseline that has no explicit knowledge about sentiment. In order to leverage
the stored knowledge in SenticNet, we need to detect expressed concepts in a given
input text. Moreover, we require that the obtained concepts are localized in the
text, such that we can attribute the obtained sentiment information to certain
words. The positional information enables our position-aware RNN to relate the
expressed sentiment to specific target aspects mentioned in the text instead of
relating it to the document as a whole.

While Cambria et al. [2014] provide a concept parser for SenticNet 3, the
available implementation exposes the detected concepts as a bag-of-concepts that
is oblivious to their locations in the text. Since the modification of the automatic
concept parser is out-of-scope of this work, we follow a simple approach and omit
all ambiguous multi-word concepts such as notice problem or beautiful music.
Instead, we only consider unambiguous single-word concepts such as experience

or improvement that we can easily detect and pinpoint to a position in a text.
Doing this, we can inject the real-valued sentics directly at the word-level.

For each word wi in a text, we perform a lookup in SenticNet 3 and obtain
the associated vector of sentics:

si = Sentics(wi)

= (pleasantnesswi
, attentionwi

, sensitivitywi
, aptitudewi

, polaritywi
)

If we cannot find a concept for a word wj, we define sj = (0, 0, 0, 0, 0). We extend
the baseline models by concatenating the sentic vectors with the other word-level
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Dataset #Sentences #Tokens #Opinions #Targets

Laptops (train) 3048 51840 1864 1864
Restaurants (train) 2000 29278 2406 1808

Table 4.2: An overview of the ESWC 2016 ABSA dataset.

features in Eqs. (4.1) and (4.7). The remaining processing steps for the opinion
target extraction with the position-aware RNN remain unchanged.

4.5 Experimental Evaluation and Discussion

In this section, we assess the proposed lexically and semantically enriched models
in comparison to our baseline models. We perform the evaluation of the two
subtasks in isolation to obtain a clearer understanding of the observed effects.

4.5.1 Dataset

We carry out the evaluation of the proposed models on the ABSA dataset of the
ESWC 2016 Challenge on Semantic Sentiment Analysis. For every sentence of
a review, the dataset provides annotations for opinion target expressions spec-
ified as character offsets and their respective sentiment labels which can either
be positive or negative. The organizers of the challenge provide data for the
domains restaurants and laptops which we combine into a single dataset for our
experiments. An overview of the dataset is given in Table 4.2.

4.5.2 Opinion Target Extraction

We evaluate opinion target extraction using precision, recall, and F1-score. Table
4.3 shows the results for opinion target extraction for different feature combina-
tions. Here, WE denotes the usage of regular word embeddings, WE-Retro denotes
the retrofitted embeddings, POS specifies additional POS tag features and Sentics

indicates the usage of sentic vectors. Comparing the models in Table 4.3, we can
see that including either type of structured knowledge surprisingly degrades the
networks performance. Both the retrofitted embeddings and the sentic vectors
negatively affect the F1-score to a similarly small extent. The only small increase
with respect to the measured precision can be observed for the model using sentic
vectors. Overall, the extraction of OTEs does not seem to profit from either type
of structured semantic knowledge as it is induced here.
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Features F1 Precision Recall

WE + POS 0.684 0.659 0.710
WE + POS + Sentics 0.679 0.663 0.697
WE-Retro + POS 0.678 0.651 0.708
WE-Retro + POS + Sentics 0.679 0.655 0.706

Table 4.3: Results of 5-fold cross-validation for opinion target extraction using
different feature combinations.

Features Accuracy

WE + POS + Dist 0.776
WE + POS + Dist + Sentics 0.811
WE-Retro + POS + Dist 0.776
WE-Retro + POS + Dist + Sentics 0.809

Table 4.4: Results of 5-fold cross-validation for target-specific sentiment extraction
using different feature combinations.

4.5.3 Target-Specific Sentiment Classification

To evaluate the target-specific sentiment classification, we extract polarity labels
for all opinion targets of the ground truth annotations. By separating opinion
target extraction and sentiment extraction, we can better evaluate the sentiment
extraction in isolation. Again, we only consider unique opinion targets that are ei-
ther labeled with a positive or negative polarity. We report the performance of
our sentiment extraction in terms of the accuracy of the system for different feature
combinations. Table 4.4 shows the results for the 5-fold cross-validation on the
training data. WE, WE-Retro, POS and Sentics are defined as before, while Dist

denotes the obligatory distance embedding features of the position-aware RNN.
While the retrofitted embeddings do not contribute positively to the performance
for sentiment extraction either, a notable gain is achieved using the sentic vec-
tors in our component for target-specific sentiment extraction. Here, we observe
a gain of 3.5 points accuracy compared to using only word embeddings, distance
embeddings and POS tags. Apart from that, the usage of sentic vectors drasti-
cally reduces the training time needed to achieve these results. The best results
for the WE + POS + Dist and WE-Retro + POS + Dist model were achieved with
102 iterations over the training portion of the data, while the WE + POS + Dist +

Sentic and WE-Retro + POS + Dist + Sentic model reached their best perfor-
mances for only 12 and 9 iterations, respectively. See Figure 4.3 for a visualization
of the system’s accuracy with respect to the employed features and the iteration
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Figure 4.3: Visualization of the performance gain of using sentic vectors with
respect to the number of iterations over the training data. By using additional
sentic vectors we achieve better results with less training needed.

over the training data.

4.6 Conclusion

In this chapter, we empirically evaluated the benefit of introducing structured,
semantic knowledge into a two-step approach for ABSA. We addressed the extrac-
tion of opinion target expressions and corresponding sentiment labels using neural
network architectures that were inspired by our findings from earlier chapters. We
considered the two knowledge graphs WordNet and SenticNet as sources for se-
mantic knowledge that have the potential to support ABSA. For our approach
to leverage WordNet, we experiment with a technique called retrofitting. This
technique iteratively adapts pretrained word embeddings such that the word sim-
ilarities in the embedding space correspond more strongly to the given structure
of a knowledge graph such as WordNet. As a means to induce affective knowl-
edge into our baseline models, we make use of SenticNet. SenticNet provides
real-valued scores for thousands of concepts that we use as additional word-level
features in our models. Contrary to our expectation, the retrofitted embeddings
neither support the extraction of opinion target expression, nor the classification of
target-specific sentiment. Here, a baseline model with skip-gram embeddings and
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POS tag features alone obtains better results. On the other hand, regarding the
classification of target-specific sentiment using a position-aware RNN, the sentics
obtained from SenticNet prove to be a valuable feature that increase accuracy and
shorten training time considerably.
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Chapter 5

Subword Information for Opinion
Target Extraction

Chapter Overview In this chapter, we investigate whether character-level models
can improve the performance of the identification of opinion target expressions. We
integrate information about the character structure of a word into a sequence label-
ing system using character-level word embeddings and show their positive impact
on the system’s performance. In further experiments, we reveal encoded charac-
ter patterns of the learned embeddings and take a closer look at the performance
differences as compared to a baseline system.

5.1 Introduction

A key task within aspect-based sentiment analysis consists of identifying Opinion
Target Expressions (OTEs). OTEs are segments of a text that specify the target
of an opinion and, therefore, form a crucial part of understanding an opinion. A
particular challenge involved in OTE identification in online reviews stems from
the fact that these reviews can be of low quality or feature an informal writing
style. This results in a couple of phenomena which can only be handled to a limited
degree by models based on classic word embeddings. For example, reviews often
contain misspelled words:

Example:

“The pizza is yummy and I like the atmoshpere .”

These can affect the quality of an OTE extraction model that relies on a fixed-sized
vocabulary of words as is often the case when using precomputed word embeddings.
A similar effect is presented by the elongation of words. Opinions expressed in

89
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informal texts are often emphasized by repeating certain characters, especially in
phrases indicating the sentiment itself:

Example:

“i love their chicken pasta cant remember the name but is sooo good”

“ [...] service was so slowwwww [...]”

Due to the high variability of possible surface forms, a fixed-sized vocabulary might
not contain all relevant words for accurately detecting sentiment and targets. We
can observe another form of emphasis in which single words or entire phrases are
capitalized to inform the reader about the importance of this phrase:

Example:

“The prices were CHEAP compared to the quality of service and

food .”

“The signs , the specials menus , food , and even all the waitstaff
are ALL TOTALLY Japanese.”

“I LOOOVE their eggplant pizza , as well as their pastas !”

While it is possible to normalize the texts by e.g. lowercasing the entire text, this
would discard useful information for the understanding of the opinion.

The aforementioned issues are particularly problematic for models that rely
on classic word embeddings that have a fixed vocabulary such as Continuous Skip-
Gram (SG), Continuous Bag-of-Words (CBOW) or GloVe embeddings [Pennington
et al., 2014]. These embeddings are usually pretrained on a separate, unlabeled
dataset and can only represent words that were encountered in that pretraining
phase. A notable exception to this are fastText embeddings [Joulin et al., 2017;
Bojanowski et al., 2017] that extend the ideas of SG and CBOW to include em-
beddings for character n-grams.

A further challenge is that opinion target expressions can span multiple tokens.
As we show in this chapter, extracting multi-word expressions is difficult and much
harder than detecting single-word targets. This phenomenon is aggravated by
variations in spelling and hyphenation that represent identical concepts as either
single words or multiple words, which ultimately affects the representation of the
phrase in the model. As an example, compare the spelling variations of the target
concept waitstaff :

Example:



5.1. Introduction 91

“the waitstaffs are nice though.”

“ [...] absurdly arrogant wait-staff who don’t recognize they work at a

glorified diner [...]”

“Cute place , nice wait staff but would never go there again.”

or the usage of a hyphenated compound phrase:

Example:

“ Wine list selection is good and wine-by-the-glass was generously filled

to the top.”

Improper tokenization might lead to subpar word and phrase representations
which, in turn, affects the extraction of target phrases.

Considering these issues, we hypothesize that including subword information
is beneficial in the context of OTE extraction, allowing a model to be robust
to spelling variations as well as to generalize to unseen words and multi-word
expressions. In the following, we point out notable works for OTE extraction
that leverage subword information to some extent. Beyond that, we give a brief
overview of recent research on character-level NLP in general.

Subword Information for Opinion Target Extraction San Vicente et al.
[2015] present a system that addresses opinion target extraction as a sequence
labeling problem based on a perceptron algorithm with local features. Besides
word clusters and context features, they make use of prefix and suffix features
to inform the system about the morphology of the words. Kumar et al. [2016]
propose a CRF-based model using an extensive collection of lexical and semantic
features. Similar to San Vicente et al. [2015], the model includes prefix and suf-
fix features but also character n-grams for every word. Hercig et al. [2016] also
consider character n-grams in the context of ABSA for aspect-polarity and aspect-
category classification. However, they do not use these for the extraction of aspect
target phrases. All approaches include subword information in the form of discrete
n-grams into the respective machine learning models, yet do not model the word
structure as a whole.

Character-Level Natural Language Processing Character-level neural net-
work models are gaining interest in many research areas such as language modeling
[Kim et al., 2016], spelling correction [Sakaguchi et al., 2017], text classification
[Zhang et al., 2015] and more. Most similar works from the area of character-level
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word representations can be found in [dos Santos and Zadrozny, 2014; dos San-
tos et al., 2015a; Ma and Hovy, 2016]. In these works, word and character level
representations are successfully learned and combined to improve POS tagging
and NER. dos Santos and Zadrozny [2014] and dos Santos et al. [2015a] apply
a CNN to the raw character sequence that detects character patterns and rep-
resents them as a fixed-sized embedding vector. The concatenated sequence of
word and character-level embeddings is then used to predict POS or NER tags for
each word. Ma and Hovy [2016] use a similar CNN-based word structure model.
However, the subsequent processing of the embedded word sequence is carried out
using a bidirectional LSTM network.

An example of character-level text classification not requiring any tokenization
is given by Zhang et al. [2015]. In their work, the authors perform text classification
using character-level CNNs on very large datasets and obtain comparable results
to traditional models based on words. Their findings suggest that the standard
tokenization of text is indeed something to be reconsidered.

In a recent work, Akbik et al. [2018] present a character-level LSTM that is
pretrained on a language modeling task. They use the internal LSTM states to ob-
tain contextualized character-level word embeddings for a sentence which are then
passed to a subsequent sequence labeling model for NER. Their approach using
the character-level language-model embeddings achieved state-of-the-art results at
that time.

Overall, an increasing research interest in subword-informed models can be ob-
served. In the case of OTE extraction, however, character-level features have been
limited to n-gram indicator features. So far, the research of end-to-end character-
based models has not been extended to ABSA and the extraction of OTEs.

5.1.1 Contributions and Structure of the Chapter

User-generated texts pose a series of challenges for opinion target extraction. Mo-
tivated by these challenges, we investigate whether a character-based approach for
the extraction of OTEs is capable of using the additional low-level information to
improve upon a standard word-based baseline. We hypothesize that character-level
word embeddings capture relevant information for OTE extraction that regular
(skip-gram) word embeddings lack. In the course of this chapter, we answer the
following research question:

RQ3 How can we alleviate the difficulty of opinion target extraction for noisy
textual data?

We particularly focus on the following facets of this question:

RQ3.1 How can a model learn relevant morphological information?
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RQ3.2 Which challenges are alleviated with subword information?

In answering these questions, our contributions are as follows:

i) We propose a neural network model that learns and utilizes character-level
word embeddings to extract opinion target expressions. To our knowledge,
this is the first model for OTE extraction to learn character-level word em-
beddings in an end-to-end fashion.

ii) We perform an experimental analysis and show that with an increase of 3.3
points F1-score compared to a word-only baseline, the character information
is indeed valuable for the task.

iii) We shed light on the learned properties of character-level word embeddings
and show that they encode useful suffix information.

iv) We narrow down the observed performance improvement in focused experi-
ments. We attribute the improvement to a more accurate detection of multi-
word expression.

The rest of the chapter is structured as follows: In Section 5.2, we describe
our baseline approach to address opinion target extraction. The model follows a
simple sequence labeling architecture which we already investigated in previous
chapters. Section 5.3 introduces the extension to the baseline model that we use
to measure the impact of character information on the task. The extended model
is equipped with an RNN-based component that processes the character sequence
of each word and encodes it in a single vector. The character-informed word rep-
resentation is included in the tagging model and trained in an end-to-end fashion
alongside other parts of the model. We carry out our evaluation in Section 5.4
and examine the learned character-level word embeddings in more detail. Here, we
describe our experimental settings and outline our hyperparameter optimization.
In Section 5.4.3, we report results for a cross-validation on the training data as well
as results for an official held-out test set. To obtain more insights into the inner
workings of the proposed model we perform further, more focused experiments: We
probe the learned character-level word embeddings in Section 5.4.4 and reveal that
they encode suffix information. We hypothesize that this additional information is
particularly helpful for OTE extraction. Furthermore, in Sections 5.4.5 and 5.4.6,
we explore the performance differences on various subsets of the data and find that
the proposed extension is particularly helpful in identifying multi-word expressions
but does not alleviate problems associated with out-of-vocabulary terms. Finally,
Section 5.5 summarizes our findings and presents directions for future work.
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5.2 Baseline Model

We approach the task of extracting opinion target expressions by phrasing it as
a sequence labeling problem. As we established in previous chapters, OTEs can
be extracted using a neural network model in combination with a span encoding
scheme such as the IOB scheme [Tjong Kim Sang and Veenstra, 1999]. We reit-
erate that, according to the IOB tagging scheme, each word in our text receives
one of three tags, namely I, O or B that indicate if the word is at the Beginning,
Inside or Outside of an expression: Doing so allows us to extract an arbitrary
number of multi-word expressions in a given text.

I LOOOVE their eggplant pizza , as well as their pastas !

O O O I I O O O O O I O

The task is thus reduced to mapping a sequence of words to a sequence of tags. In
this chapter, we model the sequence labeling task using RNNs which allow us to
integrate character-level knowledge into the model in the form of character-level
word embeddings. To quantify the impact of these embeddings, we compare a
baseline model that only uses word-level embeddings to an extended model that
learns character-level word embeddings in an end-to-end fashion. Let us formally
describe the components of our model.

Gated Recurrent Unit The core of our sequence labeling model is the GRU.
The GRU uses a combination of update and reset gates to improve its ability
to learn long range information comparable to Long Short-Term Memory cells
[Chung et al., 2014a]. We reiterate its general mathematical formulation for a
single timestep i:

ri = σ(Wrxi + Urgi−1 + br) (5.1)

zi = σ(Wzxi + Uzgi−1 + bz) (5.2)

hi = f(Whxi + Uh(ri � gi−1) + bh) (5.3)

gi = (1− zi)� gi−1 + zi � hi (5.4)

where xi is an element of an input sequence and gi the computed output at timestep
i. zi is the update gate and ri the forget gate, σ is the sigmoid activation function
and f the ELU [Clevert et al., 2016] function. The operator � denotes the element-
wise multiplication. For simplicity, we denote the application of Eqs. (5.1) – (5.4)
as

GRU(x) = g
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GRU GRU GRU GRU

GRU GRU GRU GRU

The wine list is

Figure 5.1: Illustration of the RNN sequence labeling model. The dashed
boxes represent the character-level word embeddings that are only present in the
character-enhanced model.

For an explanation of the individual equations of the GRU, we refer to Section 2.1.3
in Chapter 2.

Bidirectional GRU The Bidirectional Gated Recurrent Unit (BiGRU) is a
variant of the GRU that processes the input sequence in forward and backward
direction. The individual hidden states of the forward GRU and the backward
GRU are concatenated to produce a single hidden state sequence:

BiGRU(x) =←→g = (−→g 1 ⊕←−g 1, . . . ,
−→g n ⊕←−g n), (5.5)

where −→g i and ←−g i are the output vectors for the forward and backward GRU
layer, respectively, and ⊕ denotes the vector concatenation. The bidirectional
connections allow the model to include words appearing before and after each
timestep into the computation of the hidden states. The resulting sequence of
hidden states←→g incorporates the context for each word in its corresponding hidden
state.

We combine the above concepts in a recurrent neural architecture for OTE
extraction. The proposed baseline model is a BiGRU that receives a word sequence
w = (w1, . . . , wn) as input features and predicts an output sequence of IOB tags
t = (t1, . . . , tn). Figure 5.1 illustrates the network. Formally, the word sequence is
passed to a word embedding layer that maps each word wi to its dwrd-dimensional
embedding vector xwrd

i by means of an embedding matrix Wwrd ∈ Rdwrd×|V wrd|:

xwrd
i = Wwrdewi (5.6)
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where V wrd is the vocabulary of the word embeddings and ewi is a one-hot vector of
size |V wrd| representing the word wi. The representation of words xwrd

i is processed
by a BiGRU layer that computes a contextualized representation for each word:

gwrd = BiGRU(xwrd
i ) (5.7)

In a last step, each hidden state gwrd
i is projected to a probability distribution qi

over all possible output tags, namely I, O and B, using a standard feed-forward
layer with a softmax activation function:

qi = softmax(Wtaggwrd
i + btag) (5.8)

with Wtag ∈ Rdtag×rwrd
and btag ∈ Rdtag . For each word, we choose the tag with

the highest probability as the predicted IOB tag. In all experiments, we fix the
dimensionality of the parameters of the word-level GRU layers such that −→g i,

←−g i ∈
Rrwrd/2, where rwrd is a hyperparameter of the model.

5.3 Character-Enhanced Model

We propose a variation of the aforementioned baseline model that incorporates
character-level information in the process of opinion target extraction. Our goal
is to confirm the hypothesis that character information poses a valuable source of
information for the task of opinion target extraction. Following previous work in
this direction, we incorporate the character information in the form of character-
level word embeddings [Ma and Hovy, 2016]. These embeddings are computed
dynamically for each word in an input sequence using an RNN sub-model. The
RNN processes each word as a sequence of characters. Every character is repre-
sented as an embedding vector and the entire character sequence is encoded as a
single summary vector for each word. The resulting vector is incorporated in the
text-level model to support the sequence tagging procedure. Figure 5.2 illustrates
the character-level word model.

More formally, the character-enhanced model can be described as follows:
Given the character sequence c = (c1, . . . , cm) of a word w, we first transform each
character ci to its corresponding dchr-dimensional character embedding xchri using
a character embedding matrix W chr ∈ Rdchr×|V chr|:

xchri = Wchreci . (5.9)

Analogously to the procedure for word embeddings, V chr is the character vocab-
ulary and eci is a one-hot vector of size |V chr| representing the character ci. As
before, the sequence of character embeddings is passed through a bidirectional
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Figure 5.2: Illustration of the RNN character-level word embedding model. The
output of this sub network is later concatenated with the regular word embeddings.

GRU layer that produces two sequences of hidden states, −→g chr and ←−g chr:

−→g chr =
−−−→
GRU(xchr), (5.10)

←−g chr =
←−−−
GRU(xchr). (5.11)

We choose the dimensionality of the parameters such that −→g chr
i ,←−g chr

i ∈ Rdchr .
To represent the sequence of characters as a fixed-sized summary vector, we con-
catenate the final hidden states of both sequences and obtain a single summary
representation gchr = −→g chr

m ⊕←−g chr
1 for the character sequence. Lastly, the concate-

nated hidden state gchr is transformed to the final character-level word embedding
using a linear feed-forward layer:

xcw = Wcwgchr + bcw (5.12)

with Wcw ∈ Rdchr×2·dchr and bcw ∈ Rdchr .
To incorporate the word model in the overall neural network model, we pass

the corresponding character sequence of each word in w = (w1, . . . , wn) through
the character model to obtain xcw = (xcw1 , . . . , x

cw
n ). The resulting character-level

embeddings are then concatenated with the word-level embeddings:

x̃ = (xwrd
1 ⊕ xcw1 , . . . , xwrd

n ⊕ xcwn ) (5.13)

The augmented sequence x̃ replaces xwrd in Eq. (5.7) and subsequent equations
of the baseline model and is passed through the remaining layers of the network.
Since x̃ contains word and character-level information, the subsequent RNN and
projection layers can make use of the additional information to improve the ex-
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traction of opinion target expressions.

5.4 Experimental Evaluation and Discussion

In this section, we evaluate the impact of using character-level word embeddings
on the task of extracting opinion target expressions from user-generated reviews.
We start by describing the dataset that we use in our evaluation and give rele-
vant statistics to put the evaluation into perspective. Afterwards, we compare the
character-enhanced model from Section 5.3 to the baseline RNN of Section 5.2. To
select a fitting set of hyperparameters for each model, we perform a 5-fold cross
validation on the training portion of our dataset. Using the best hyperparameters,
we evaluate both models on the test portion of the data and investigate the mod-
els’ properties with respect to the induced character information in Section 5.4.3.
Evaluation is carried out in terms of F1-score of expected opinion target expres-
sions and retrieved opinion target expressions using exact matches1. Following
this, we probe the learned character-based word representations with respect to
the encoded information in Section 5.4.4 and their performance on selected subsets
of the test data in Sections 5.4.5 and 5.4.6.

5.4.1 Dataset

In our experiments, we use the data for the SemEval 2016 ABSA Task 5 [Pontiki
et al., 2016]. The used dataset consists of English review sentences from the
restaurant domain with annotations for opinion target expressions. Table 5.1 gives
a summary of the dataset. Notably, the training portion of the datasets contains
2000 review sentences with a total of 1880 OTEs. The length of the target phrases
ranges from 2 characters per phrase up to 80 characters. An example sentence
with a particularly long target phrase is given in the example below:

Example:

“ noodles with shrimp and chicken and coconut juice is the MUST!”

5.4.2 Experimental Settings

The optimization of the model parameters is done by minimizing the classification
error for each word in the sequence using the cross-entropy loss. The optimization
is carried out using a mini-batch size of 5 with the stochastic optimization tech-
nique Adam [Kingma and Ba, 2014]. We clip the norm of the gradients to 5 and

1We use the provided evaluation code from the organizers of the SemEval 2016 challenge.
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Dataset Sentences OTEs Chars. per OTE Words per OTE
Train 2000 1880 2 – 80 1 – 15
Test 676 650 3 – 50 1 – 11

Table 5.1: Relevant statistics of the SemEval 2016 dataset (Task 5, restaurant
domain).

regularize our network quite rigorously using L2 regularization of 10−5 on Wtag

and Wcw, as well as using Dropout [Srivastava et al., 2014] in various positions in
our network. Specifically, we apply Dropout with a drop probability of 0.5 to the
character and word embeddings, the output of the character-level GRUs, as well
as the input and hidden sequence of the word-level GRUs as proposed in [Gal and
Ghahramani, 2016]. Initial experiments suggested that this strong regularization
is necessary due to the moderate size of the training dataset. The networks are
implemented using the machine learning framework Keras [Chollet, 2015].

The word embedding matrix Wwrd is initialized with a pretrained matrix of
skip-gram embeddings trained on a corpus of Amazon reviews [McAuley et al.,
2015a]. With these embeddings, we rely on our findings of Chapter 3 that using a
domain-specific corpus in the pretraining stage significantly improves performance
for opinion target extraction.

5.4.3 Overall Performance

Hyperparameter Selection

We set the dimensionality dwrd of the pretrained word embeddings to 100 and
perform a grid search on a subset of the hyperparameters to find a suitable solution
to be used in the final system configuration. We evaluate each candidate set of
hyperparameters using a 5-fold cross validation on the training data. The search
is performed for each model (word-only and char+word). We experiment with:

• the size of the word vocabulary2 |V wrd| ∈ {10000, 20000, 50000} (with respect
to the most frequent words),

• the size of the sentence level RNN hidden layer rwrd ∈ {60, 100, 200},

• and the size of the character-level RNN and the corresponding character-level
word embedding vector dchr ∈ {20, 50, 100}.

Table 5.2 shows the best hyperparameters for each model. As expected, the
search indicates that it is always better to increase the size of the word vocabulary

2The size of the word vocabulary is the main factor in terms of (GPU) memory usage.
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Model |V wrd| rwrd dchr ∅ F1

word-only 50000 60 – 0.6713
char+word 50000 100 100 0.6936

Table 5.2: Results of a search for hyperparameters. The column ∅ F1 gives the
best mean F1-score for the best performing training epoch across cross-validation
models.

Model F1-score
word-only 0.6260
char+word 0.6586

Table 5.3: Results on the test set for best performing hyperparameters. The pre-
vious findings of the usefulness of character-level word embeddings are confirmed
by the results of the test set.

V wrd. The best model using both word and character-level information performs
on average about 2.2 points F1-score better than the best model that only uses
word-level information. For the following evaluations, we instantiate and train our
models according to these hyperparameters.

Performance on Held-Out Data

For the evaluation on the test set, we use the previously found hyperparameters
and instantiate our models. We train both models on 80% of the training set and
use the remaining 20% as a validation set for early stopping [Caruana et al., 2000].
The word-only model reaches its best performance at epoch 35 and the char+word
model peaks at epoch 73. The performances of both models are given in Table 5.3.
The results confirm our hypothesis and the findings from the cross validation that
the character-level word embeddings offer a substantial improvement (3.3 points
F1-score ) over the word-only baseline model.

5.4.4 Suffix Information

Our empirical results show that learned character-level word embeddings improve
the extraction performance for OTE. We hypothesize that the character-level word
embeddings encode morphological features of a word. To confirm this assumption,
we visualize the learned embeddings using suffix information.

From a large collection of reviews, we extract a subset of the 2000 most
frequently occurring words that end on one of the following suffixes: -ing, -ly,
-able, -ish, -less, -ize. We project the character-level word embeddings of the
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Figure 5.3: Visualization of suffix information of the two employed types of em-
beddings.

words to a 2 dimensional space using the dimensionality reduction technique t-SNE
[van der Maaten and Hinton, 2008]. The resulting low-dimensional embeddings
are plotted as a scatter plot. By highlighting each word according to its suffix,
we see that the character-level embeddings are grouped according to their suffixes
(see Figure 5.3a). Performing the same procedure with the regular skip-gram
word embeddings results in no clear separation between the 6 suffix groups (see
Figure 5.3b).

In the earlier Chapter 3, we could show a positive impact of POS tag features
for the extraction of opinion phrases and opinion target expressions. It stands to
reason if the character-level word embeddings act in a similar way. The morpho-
logical information of character-level word embeddings (as shown in Figure 5.3a)
might help to disambiguate word occurrences with respect to their linguistic func-
tion in the sentence, similar to the positive effect of POS tags for this task. We
leave the verification of this hypothesis for future work.

5.4.5 Out-of-Vocabulary Errors

Next, we are interested in seeing if the improvement in F1-score can be traced back
to Out-of-Vocabulary (OOV) word errors. For this, we compute the F1-score on 3
different subsets of sentences for the word-only model and the char+word model:

• no OOV: This subset only contains sentences for which all words are part of
the known vocabulary.

• OOV sent.: This subset contains sentences that contain an unknown word
at some position in the sentence.
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(a) Performance on OOV-related subsets.
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Figure 5.4: Illustration of performance differences for different subsets of sentences.

Word atmosphere restaurant service

Nearest Neighbors
:::::::::::::
atomosphere

:::::::::::
restaraunt customer

ambience eatery
:::::::
serivce

::::::::::::
atmoshpere

:::::::::::
restuarant costumer

Table 5.4: Three commonly used words in restaurant reviews and their 3 nearest
neighbors in the embedding space. Often, misspelled versions of the original word
are among its closest neighbors. We highlight these with

:::::
wavy

::::::
lines.

• OOV op.: The subset of sentences that contain at least one opinion target
expression with an unknown word.

Figure 5.4a shows F1-scores for different subsets. Surprisingly, we can see that
the F1-scores rise and fall similarly for both models regardless of the evaluated
subset. This suggests, that the positive influence of the character information
does not particularly help in those cases where the text contains previously unseen
words (e.g. misspelled words). We assume that the positive impact on these cases
is mitigated since the domain specific skip-gram word embeddings already contain
various writing errors that frequently occur in customer reviews. This can be seen
in Table 5.4, which shows the nearest neighbors of exemplary words in the skip-
gram embedding space. We see that common writing mistakes are often already
captured by the word embeddings.
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5.4.6 Multi-Word Expressions

Another possible cause for the performance difference of both models might be
related to the length of opinion target expressions. This hypothesis is motivated by
the idea that e.g. variations in spelling with respect to hyphenation (e.g. bartenders
vs. bar tenders or wait staff vs. wait-staff ) could have less of an influence on
the character-based model than on the word-based model. To test this idea, we
consider subsets of sentences that contain at least one OTE that is a multi-word
expression of more than or equal to k words. The performance differences for
k ∈ {2, 3, 4} are visualized in Figure 5.4b.

The first thing to notice is that both models are strongly affected by the
length of the OTEs. Longer expressions seem to be harder to extract in general.
However, we can observe that the character model is influenced by the length
of an OTE to a lesser degree. While the difference in F1-score for all sentences
between the word-only model and char+word model is about 3.3, the differences
for OTEs composed of more than or equal to 2, 3, and 4 words are 8.4, 6.1 and
10.4, respectively.

5.5 Conclusion

There is a growing interest in character and subword-level models for natural lan-
guage processing in recent years. Tokenization is a crucial step for many applica-
tions, yet neglects the information that can be gained from the character structure
of a word itself.

In this chapter, we were able to show that character-level information assists in
the task of opinion target extraction, an important step in aspect-based sentiment
analysis. We compared a model using only word-level features to a more sophisti-
cated model that also includes character-level word embeddings. We showed that
the more complex character model consistently outperforms the baseline model
with a substantial margin of 3.3 points F1-score. A visualization of the learned
embeddings revealed encoded morphological regularities that we could not find in
our skip-gram word embeddings. Through experiments on different subsets of the
data, we linked the positive influence of the character-level word embeddings to
the difficulty of extracting multi-word expressions. We did not observe a perfor-
mance difference for Out-of-Vocabulary cases. However, it is not entirely clear how
exactly the additional character information contributes to the task of extracting
opinion target expression. In general, we suspect that the morphological informa-
tion of character-level word embeddings helps to disambiguate word occurrences
similarly to the positive effect of POS tags for OTE extraction. A confirmation of
this hypothesis remains for future work. An interesting direction for future work
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is the pretraining of parts of the network to enrich the character-based word rep-
resentation. To a degree, this is approached by [Akbik et al., 2018] who initialize
early parts of their network with a pretrained character-level language models.

The positive results of this work and remaining open questions suggest a need
to focus further research effort in the direction of character-level neural network
models in order to improve token-based approaches or even replace the need for
tokenization altogether.



Chapter 6

Zero-Shot Cross-Lingual Opinion
Target Extraction

Chapter Overview In this chapter, we address the lack of available annotated
data for specific languages by proposing a zero-shot cross-lingual approach for the
extraction of opinion target expressions. We leverage multilingual word embed-
dings that share a common vector space across various languages and incorporate
these into a convolutional neural network architecture for OTE extraction. Our
experiments with 5 languages give promising results: We can successfully train a
model on annotated data of a source language and perform accurate prediction on a
target language without ever using any annotated samples in that target language.
Furthermore, we can increase the prediction accuracy by performing cross-lingual
learning from multiple source languages.

6.1 Introduction

A key task within aspect-based sentiment analysis consists of the identification of
Opinion Target Expressions (OTEs). Opinion target expressions are segments of
a text that specify the target of an opinion and, therefore, form a crucial part of
understanding an opinion. To automatically extract OTEs, supervised learning al-
gorithms are usually employed which are trained on manually annotated corpora.
The creation of these corpora is labor-intensive and sufficiently large datasets are
therefore usually only available for a very narrow selection of languages and do-
mains. As a large part of the research community focuses on English, the available
datasets for English are large compared to other, less researched languages.

For a particular domain, such as restaurant reviews, opinion targets are fairly
similar across languages. In the following example, we can see parallels between
an English, a Dutch, and a Spanish review that all praise the “wine list” of their
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respective restaurants1:

Example:

“The wine list is excellent.”

“Er is een uitstekende wijnkaart die regelmatig vernieuwd wordt.”
(“There is an excellent wine list that is regularly updated.”)

“Magńıfica atención , buena carta de vinos , muy buen paella .”
(“Magnificent attention , good wine list , very good paella .”)

The shared semantic and grammatical regularities of these languages suggest that
cross-lingual learning could be beneficial for OTE extraction by effectively allowing
a model to use more training data. Motivated by this, in this chapter, we are
concerned with the transfer of trained models across languages to alleviate the
need for multilingual training data. We explore the overarching question of how
we can leverage the available data in one language to support the detection of
OTEs in other languages.

This chapter brings together the domains of opinion target extraction on the
one side and cross-lingual learning on the other side. In the following, we give a
brief overview of both domains and point out parallels and shortcomings of the
existing research.

Opinion Target Extraction for Multiple Languages Kumar et al. [2016]
present a CRF-based model for opinion target extraction that makes use of a va-
riety of morphological and linguistic features and is one of the few systems that
submitted results for more than one language for the SemEval 2016 ABSA chal-
lenge. The strong reliance on high-level NLP features, such as dependency trees,
named-entity information and WordNet features restricts its wide applicability to
resource-poor languages. Àlvarez-López et al. [2016] propose a CRF model us-
ing only word, lemma, bi-gram, and POS tag features features. The approach is
trained on English and on Spanish data separately and achieved the best perfor-
mance for the latter. While the results for the individual languages are good, the
model does not leverage features across languages. Another CRF model is pre-
sented by Brun et al. [2016] who use POS tags, word lemmas, and lexico-semantic
features. The approach is tested on English and French data with successful results
for French. Again, the model is trained for both languages separately without any
cross-lingual learning. In a recent work, Agerri and Rigau [2019] present a system
for opinion target extraction that reaches state-of-the-art results on several lan-
guages using the same perceptron architecture for all languages. Their work differs

1Translations obtained from DeepL: https://www.deepl.com/translator
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from ours in that their focus is to develop a single architecture that works well
for multiple languages if the required training data is provided for that language.
In contrast, our aim is to leverage the existing training data for a given language
in order to support languages with fewer resources. For a more comprehensive
overview of ABSA and OTE extraction approaches in general we refer to earlier
chapters and Pontiki et al. [2016].

Cross-Lingual and Zero-Shot Learning for Sequence Labeling With the
CLOpinionMiner, Zhou et al. [2015b] present a method for cross-lingual opinion
target extraction that relies on machine translation. The approach derives an
annotated dataset for a target language by translating the annotated source lan-
guage data. Part-of-Speech tags and dependency path-features are projected into
the translated data using the word alignment information of the translation al-
gorithm. The approach is evaluated for English to Chinese reviews. A drawback
of the presented method is that it requires access to a strong machine translation
algorithm for source to target language that also provides word alignment informa-
tion. Additionally, it builds upon NLP resources that are not available for many
potential target languages. Addressing the task of zero-shot Spoken Language Un-
derstanding (SLU), Upadhyay et al. [2018] follow a similar approach as our work.
They use the aligned embeddings from Smith et al. [2017] in combination with
a BiRNN and target zero-shot SLU for Hindi and Turkish. Their evaluation is
limited to the two language pairs English-Turkish and English-Hindi and does not
consider other approaches for word embedding alignment.

Overall, our work differs from the related work by presenting a simple model for
the accurate cross-lingual and zero-shot extraction of opinion target expressions.
Similar to Upadhyay et al. [2018], our model leverages multilingual word embed-
dings [Smith et al., 2017; Lample et al., 2018] that share a common vector space
across various languages. The shared space allows us to transfer a model trained on
source language data to predict OTEs in a target language for which no (i.e. zero-
shot setting) or only small amounts of data are available. The multilingual word
embeddings themselves mostly rely on unlabeled text corpora and can be gen-
erated with very limited supervision [Smith et al., 2017] or none at all [Lample
et al., 2018]. By using no annotated target data or elaborate NLP resources, such
as Part-of-Speech taggers or dependency parsers, our approach is easily applicable
to many resource-poor languages.

6.1.1 Contributions and Structure of Chapter

In this chapter, we are concerned with the annotation effort that is required for
training a tool for the automatic extraction of OTEs. As most NLP research
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focuses on English, other languages remain underrepresented in terms of the avail-
ability of tools and resources. To alleviate this issue, we are interested in answering
the following research question:

RQ4 How can we reduce the annotation effort for the creation of training data
for under-resourced languages?

We approach this question by proposing a model that is capable of accurate zero-
shot cross-lingual OTE extraction, thus reducing the reliance on annotated data
for every language. We evaluate this approach with regards to a set of focused
questions:

RQ4.1 To what degree is a multilingual model capable of performing OTE extrac-
tion for unseen languages?

RQ4.2 What is the benefit of training a model on more than one source language?

RQ4.3 How much annotation effort can be saved by harnessing cross-lingual learn-
ing?

RQ4.4 How big is the impact of the used alignment method on the OTE extraction
performance?

Our main contributions can be summarized as follows:

i) We present the first approach for zero-shot cross-lingual opinion target ex-
traction and achieve up to 87% of the performance of a monolingual baseline.

ii) We investigate the benefit of using multiple source languages for cross-lingual
learning and show that we can improve by 6 to 8 points in F1-score compared
to a model trained on a single source language.

iii) We investigate the benefit of augmenting the zero-shot approach with addi-
tional data points from the target language. We observe that we can save
hundreds of annotated data points by employing a cross-lingual approach.

iv) We compare two methods for obtaining cross-lingual word embeddings on
the task.

The remaining part of the chapter is structured as follows: Section 6.2 presents
our mono-lingual baseline model for opinion target extraction. The model follows
the same principles for the extraction of OTEs that we established in previous
chapters. In Section 6.3, the mono-lingual model is extended with multilingual
word embeddings that enable transfer learning between arbitrary combinations
of source and target languages. Section 6.4 describes our experiments in which
we evaluate the proposed approach with respect to our research questions. The
chapter is concluded with Section 6.5 which summarizes the results and highlights
avenues for future work.
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6.2 Monolingual Model

Throughout this thesis, we presented several variations of neural-network-based
models that can be trained to extract OTEs by framing the task as a sequence
labeling problem. We reiterate that an annotated text can be represented as a
sequence of tokens, where each token is labeled with a tag:

The wine list is also really nice .

O I I O O O O O

In this example, we see the opinion target wine list which is encoded as a sequence
of tags according to the IOB tagging scheme. For a more detailed description of
the encoding, see Section 2.3.

In this chapter, we use a multi-layer CNN as our sequence tagging model.
The model receives a sequence of words as input features and predicts an output
sequence of IOB tags. In order to keep our model simple and our results clear,
we restrict our input representation to a sequence of word embeddings. While
additional features such as POS tags are known to perform well in the domain of
OTE extraction (cf. Section 3.6.4 and [Toh and Su, 2016; Kumar et al., 2016]),
they would require a separately trained model for POS-tag prediction which can
not be assumed to be available for every language. Furthermore, we refrain from
using more complex architectures such as memory networks as our goal is mainly
to investigate the possibility of performing zero-shot cross-lingual transfer learning
for OTE prediction. Being the first approach proposing this, we leave the ques-
tion of how to increase the performance of the approach by using more complex
architectures to future work.

In the following, we describe our monolingual CNN model for OTE extraction
which we use as our baseline model. Afterwards, we show how we adapt this model
for a cross-lingual and even zero-shot regime. Our monolingual baseline model
consists of a word embedding layer, a stack of convolution layers, a standard feed-
forward layer followed by a final output layer. Formally, the word sequence:

w = (w1, . . . , wn)

is passed to the word embedding layer that maps each word wi to its embedding
vector xi using an embedding matrix E. The sequence of word embedding vectors:

x = (x1, . . . , xn)

is processed by a stack of L convolutional layers2, each with dconv kernels, a kernel

2The input sequences are padded with zeros to allow the application of the convolution oper-
ations to the edge words.
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Figure 6.1: Model for sequence tagging using convolution operations. For simplic-
ity, we only show a single convolution operation. The gray boxes depict padding
vectors. The layers inside the dashed box are shared across multiple languages.

width of lconv, and ReLU activation functions f (see Chapter 2). The final output
of these convolution layers is a sequence of abstract representations:

hL = CNN(hL−1) = (hL1 , . . . , h
L
n)

that incorporate the immediate context of each word by means of the learned
convolution operations. The hidden states hL of the last convolution layer are
processed by a regular feed-forward layer to further increase the model’s capacity
and the resulting sequence is passed to the output layer. In a last step, each hidden
state is projected to a probability distribution over the possible output tags B, I,
and O using a standard feed-forward layer with weights Wtag, bias btag and a
softmax activation function. As in previous chapters, we optimize the network
parameters for minimal categorical cross entropy loss regarding the expected and
predicted tag probabilities. Figure 6.1 depicts the sequence labeling architecture.

6.3 Cross-Lingual Model

Our cross-lingual model works purely with word embeddings that have been trained
on monolingual datasets and in a second step have been aligned across languages.
In fact, the embeddings are precomputed in an offline fashion and are not adapted
while training the convolutional network on data from a specific language. As
the inputs to the convolutional network are only the cross-lingual embeddings,
the network can be applied to any language for which the embeddings have been
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aligned. In the following, we i) introduce two approaches to obtain multilingual
word embeddings and ii) describe how we can adapt the monolingual baseline to
handle multiple languages at once.

6.3.1 Aligning Word Embeddings across Languages

Word embedding trained on unlabeled data for a particular language often ex-
hibit useful semantic and syntactic relationships between words of that language
[Andreas and Klein, 2014]. However, when comparing the embedding space for
independently trained models for different languages, we quickly see that these
relations do not hold across languages. While both vector spaces have a similar
internal structure (e.g. “wine” is close to “drinks” and “vino” is close to “bebidas”),
these structures are not aligned and thus not comparable (e.g. “wine” is not close
to “vino”). In an effort to alleviate this problem, several approaches have been
proposed that align pretrained word embeddings across languages [Smith et al.,
2017; Lample et al., 2018; Chen and Cardie, 2018]. As a result of these align-
ment procedures, the aligned embeddings share a common vector space and are
thus comparable and, to an extend, exchangeable. In this chapter, we rely on
two approaches to compute embeddings that are aligned across languages. Both
methods rely on fastText [Bojanowski et al., 2017] to compute monolingual em-
beddings trained on Wikipedia articles. The first method is the one proposed by
Smith et al. [2017], which computes a Singular Value Decomposition (SVD) on
a dictionary of translated word pairs to obtain an optimal, orthogonal projection
matrix from one space into the other. We refer to this method as SVD-aligned.
We use these embeddings in our experiments in Sections 6.4.3, 6.4.4 and 6.4.6.

The second method proposed by Lample et al. [2018] performs the alignment of
embeddings across languages in an unsupervised fashion, without requiring trans-
lation pairs. The approach uses adversarial training to initialize the cross-lingual
mapping and a synthetically generated bilingual dictionary to fine-tune it with the
Procrustes algorithm [Schönemann, 1966]. We refer to the multilingual embed-
dings from Lample et al. [2018] as ADV-aligned. These are used in Section 6.4.5.

To illustrate the effect of the alignment procedure, we visualize a small subset
of the embeddings for three languages in Figure 6.2 before and after the alignment
with SVD-aligned. For the purpose of the visualization, the dimensionality of the
embeddings is reduced to 2 dimensions using a PCA projection [Pearson, 1901;
Hotelling, 1933]. Before the alignment, the original embeddings for the separate
languages are strongly separated and do not show meaningful similarities between
translation triples such as “wine”, “vino”, and “wijn”. Afterwards, these triples
exhibit the desired similarities while the closeness to other semantically similar
words, such as “drinks”, is retained.
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(b) Aligned embeddings.

Figure 6.2: Word embeddings for English, Spanish, and Dutch before (left) and
after (right) the alignment procedure.

6.3.2 Cross-lingual Transfer

The monolingual baseline model from Section 6.2 uses only word embeddings as
the feature representation of the input text. In the monolingual setting, the word
embedding matrix is pretrained for a particular language and fixed such that the
vector representation does not change over the course of the model training. To
extend this model to a cross- or multilingual setting, we employ the aforementioned
multilingual word embeddings.

Suppose we have a dataset of training samples for a source language s and we
want to leverage those to train a model for a target language t. We also assume
that we have precomputed, monolingual word embeddings Es and Et for source and
target language, respectively3. As a first step, we align the two sets of embeddings
using the previously mentioned techniques and obtain aligned embeddings Ês and
Êt. Due to this alignment, semantically similar words in Ês and Êt are also similar
in a mathematical sense, i.e. in terms of cosine similarity. We then instantiate our
monolingual model and initialize the word embedding layer of the model with
the aligned embeddings for the source language Ês. We proceed to train the
model using the training samples for s as we would do in a monolingual setting.
In the course of the training, the model parameters for the convolution layers
and the fully-connected layers are optimized to minimize the loss for the given
training data while the word embeddings are kept fixed. After the training of the
network is finished, we substitute the source language embeddings with the aligned

3Obtaining word embeddings for under-represented languages is usually not a problem as
most embedding approaches merely require unlabeled datasets which are available in sufficient
size for many languages.
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embeddings for the target language Êt. Since the word embeddings for source and
target language share a common vector space, the remaining parts of the network
are able to process target language samples and perform accurate zero-shot opinion
target extraction.

Multiple Source and Target Languages The aforementioned procedure al-
lows us to train a model on a source language and perform predictions on a target
language. Since the core layers of the network are language agnostic, we can extend
this approach to any number of source and target languages, provided that the em-
beddings of the considered languages share a common vector space. One problem
in this regard is that both alignment methods from Section 6.3.1 are conceived for
producing bilingual word embeddings, that is, they can align the embeddings of
a single source language to a single target language. The simultaneous alignment
of several languages is not provided as part of the original methods. However, we
can enable this by using a proxy language. By mapping all languages to the same
target language, e.g. English, all these languages effectively share the same vector
space. The training of a cross-lingual model for OTE extraction that leverages the
training data of multiple source languages is then a straightforward extension of
the procedure for a single source and target language.

6.4 Experimental Evaluation and Discussion

In this section, we investigate the proposed zero-shot cross-lingual approach and
evaluate it on the widely used ABSA dataset of the SemEval 2016 workshop. With
our evaluation, we answer our final major research question:

RQ4 How can we reduce the annotation effort for the creation of training data
for under-resourced languages?

We are particularly concerned with the following questions that each relate to
different aspects:

RQ4.1 To what degree is a multilingual model capable of performing OTE extrac-
tion for unseen languages?

RQ4.2 What is the benefit of training a model on more than one source language?

RQ4.3 How much annotation effort can be saved by harnessing cross-lingual learn-
ing?

RQ4.4 How big is the impact of the used alignment method on the OTE extraction
performance?
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Dataset #Sent. #Tokens #Targets

en (train) 2,000 29,278 1,880
en (test) 676 10,080 650
es (train) 2,070 36,164 1,937
es (test) 881 13,290 731
nl (train) 1,711 24,981 1,283
nl (test) 575 7,690 394
ru (train) 3,655 53,734 3,159
ru (test) 1,209 17,856 972
tr (train) 1,232 12,702 1,385
tr (test) 144 1,360 159

Table 6.1: Statistics of the SemEval 2016 ABSA dataset for the restaurant domain.

Before we answer these questions, let us first give a brief overview of the used
datasets and resources.

6.4.1 Datasets

As part of Task 5 of the SemEval 2016 workshop [Pontiki et al., 2016], a collection
of datasets for aspect-based sentiment analysis on various languages and domains
was published. Due to its relatively large number of samples and high coverage
of languages and domains, the datasets are commonly used to evaluate ABSA
approaches. To answer our research questions, we make use of a selection of
the available datasets. We evaluate our cross-lingual approach on the available
datasets for the restaurant domain for the 5 languages Dutch (nl), English (en),
Russian (ru), Spanish (es) and Turkish (tr)4. Table 6.1 gives a brief overview of
the used datasets.

6.4.2 Experimental Settings

In all our experiments, we report F1-scores for the extracted opinion target expres-
sions computed on exact matches of the character spans as in the original SemEval
task [Pontiki et al., 2016]. As described in Section 6.3, our model relies on pre-
trained multilingual embeddings. For both of the used alignment approaches,
namely SVD-aligned and ADV-aligned, we use the embeddings as provided by
the original authors5. However, we restrict our vocabulary to the most frequent

4The dataset for French reviews was no longer available.
5https://github.com/Babylonpartners/fastText_multilingual and https://github.

com/facebookresearch/MUSE

https://github.com/Babylonpartners/fastText_multilingual
https://github.com/facebookresearch/MUSE
https://github.com/facebookresearch/MUSE
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50,000 words per language6 to reduce memory consumption. For all experiments,
we fix our model architecture to 5 convolution layers with each having a kernel
size of 3, a dimensionality of 300 units and a ReLU activation function [Nair and
Hinton, 2010]. The penultimate feed-forward layer has 300 dimensions and a ReLU
activation, as well. We apply dropout [Srivastava et al., 2014] on the word em-
bedding layer with a rate of 0.3 and between all other layers with 0.5. The word
embeddings and the penultimate layer are L1-regularized with λ = 0.0001 [Ng,
2004]. The network’s parameters are optimized using the stochastic optimization
technique Adam [Kingma and Ba, 2014]. We optimize the number of training
epochs for each model using early stopping [Caruana et al., 2000] but do not tune
other hyperparameters of our models. We always pick 20% of our available train-
ing data for the validation process. For the zero-shot scenario, this entails that
we optimize the number of epochs on the source language and not on the target
language to simulate true zero-shot learning.

6.4.3 Zero-Shot Transfer Learning

In this section, we present our evaluation for zero-shot learning. We first examine a
setting with a single source language. Then, we evaluate the effect of cross-lingual
learning from multiple source languages.

Single Source Language

This part of our evaluation addresses our first research question:

RQ4.1 To what degree is a multilingual model capable of performing OTE extrac-
tion for unseen languages?

To answer this question, we perform a set of experiments in the zero-shot setting.
We train a model on the training portion of a source language and evaluate the
model performance on all possible target languages. In total, we consider 25
language pairs. Figure 6.3 shows the obtained scores. The reported results are
averaged over 10 runs with different random seeds to account for variations due
to the initialization of model parameters. The main diagonal represents results of
models where both source and target language are the same. We considered these
our monolingual baselines. The remaining 20 results correspond to true zero-shot
settings enabled by the use of multilingual word-embeddings.

In general, the proposed approach achieves relatively high scores for some
language pairs, although with large performance differences depending on the ex-
act source and target language pairs. Looking at the absolute scores, the best

6As appearing in the respective embedding files.
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Figure 6.3: Zero-shot F1-scores for cross-lingual learning from a single source to a
target language.

performing cross-lingual language pair is en→es with an F1-score of 0.5. This is
followed by en→nl at 0.46. The lowest is es→tr with an F1-score of 0.14. When
considering the results relative to their respective monolingual baselines, the high-
est relative performance is achieved by en→nl at 77% of a nl→nl model, followed
by en→es and ru→nl, which both reach an F1-score of about 74%. The weakest
performing language pair is still es→tr at 29% relative performance. In general,
the Turkish language seems to benefit the least from the cross-lingual transfer
learning, while Russian is on average the best source language in terms of relative
performance achievement for the target languages.

Overall, the presented results show that it is in fact possible for most con-
sidered languages to train a model for OTE extraction without ever using any
annotated data in that target language.

Multiple Source Languages

In the next experiment, we want to address our second research question:

RQ4.2 What is the benefit of training a model on more than one source language?

As we explained in Section 6.3.2, our approach allows us to train and test on
any number of source and target languages, provided that we have aligned word
embeddings for each considered language.
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Figure 6.4: Zero-shot results for cross-lingual learning from multiple source lan-
guages to a target language. The yellow bars show the monolingual scores that
act as a baseline. The blue bars represent the best performing cross-lingual model
from Figure 6.3 for each target language. The orange bars show the results for
training on all languages except for the target language.

In order to answer our second research question, we train a model on the
available training data for all but one language and perform prediction on the test
data for the left-out language. The results for these experiments are summarized
in Figure 6.4. For every target language (x-axis), the figure shows the performance
for three configurations:

1. a monolingual setting where source and target language are the same (yel-
low),

2. a zero-shot setting highlighting the single best performing source language
(blue),

3. a zero-shot setting that exploits the training data for all available languages
save for the target language (orange).

We can see that all languages with the exception of Turkish substantially profit
from a zero-shot transfer setting with multiple source languages compared to using
only a single source language. The absolute improvements are in the range of 6 to
8 points in F1-score while the performance on Turkish samples drops by 3 points.
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We can summarize that we can obtain substantial improvements for most
languages when training on a combination of multiple source languages. In fact,
for en, es, nl and ru, the results of our cross-lingual models trained on all other
languages reach between 78% to 87% relative performance of a monolingual model.

6.4.4 Cross-Lingual Transfer Learning with Additional Tar-
get Language Data

While our goal is to reduce the effort of annotating huge amounts of data in a target
language to which the model is to be transferred, it might still be reasonable to
provide a few annotated samples for a target language. Our next research question
addresses this issue:

RQ4.3 How much annotation effort can be saved by harnessing cross-lingual learn-
ing?

We answer this question by training our models jointly on a source language dataset
as well as a small amount of target language samples and compare this to a base-
line model that only uses target language samples. By gradually increasing the
available target samples, we can directly observe their benefit on the test perfor-
mance. Figure 6.5 shows a visualization for the source language en and the target
languages es, nl, ru, and tr.

We can immediately see that a monolingual model requires at least 100 target
samples to produce meaningful results as opposed to a cross-lingual model that
performs well with source language samples alone. Training on increasing amounts
of target samples improves the model performances monotonically for each target
language and the model leveraging the bilingual data consistently outperforms
the monolingual baseline model. The benefits of the source language data are
especially pronounced when very few target samples are available, i.e. less than
200. As an example, a model trained on bilingual data using all available English
samples and 200 Dutch samples is competitive to a monolingual model trained on
1000 Dutch samples (0.55 vs. 0.56).

As one would expect, the results in Figure 6.4 and Figure 6.5 suggest that
training the model on more data samples leads to a better performance. Since our
model can leverage the data from all languages simultaneously, we can exhaust our
resources and train an instance of our model that has access to all training data
samples from all languages including the target training data. This is reflected
by the dashed line in Figure 6.5. We see that we reach our highest scores for
all languages when exploiting all available source languages. However, the model
cannot leverage the other source languages far beyond what it already achieves in
a bilingual setting. Nevertheless, for the considered languages, we can conclude
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that enriching the original monolingual training dataset with further samples from
other languages is always beneficial for OTE extraction.

6.4.5 Comparison of Alignment Methods

The previous experiments show that we can achieve good performance in a cross-
lingual setting for OTE extraction using the multilingual word embeddings pro-
posed by Smith et al. [2017]. Now we address our final research question:

RQ4.4 How big is the impact of the used alignment method on the OTE extraction
performance?

With our final research question, we compare our previous results to an alterna-
tive method of aligning word embeddings in multiple languages. We repeat our
experiments in Section 6.4.3 using the embeddings of Lample et al. [2018] which
we refer to as ADV-aligned. To enable a direct comparison to the zero-shot results
in Section 6.4.3, we report absolute differences in F1-score to the scores obtained
with SVD-aligned for all source and target language combinations.

As can be seen in Figure 6.6, the two methods both perform well overall,
albeit different for specific language pairs. In a monolingual setting (i.e. main
diagonal), ADV-aligned performs slightly worse than SVD-aligned with the ex-
ception of en→en. Using ADV-aligned, Spanish appears to be a more effective
source language than using SVD-aligned as the average performance is about 2.9
points higher. It can also be observed that the cross-lingual transfer learning works
better for English as a target language using ADV-aligned since the average per-
formance is about 2.2 points higher than for SVD-aligned. The opposite is true
for Dutch as a target language, which shows a reduction in performance by 2.1
points on average. The largest difference is observed for the language pair tr→nl

where the performance of ADV-aligned drops by 6.2 points F1-score compared to
SVD-aligned. Overall, we see that both types of embeddings perform comparably
well: For 13 of the 25 language pairs, the embeddings based on SVD-aligned per-
form better than embeddings aligned with ADV-aligned with an average of only
0.2 points higher scores.

6.4.6 Comparison to State-of-the-Art

In this last part of our evaluation, we want to put the results of this chapter
into perspective of state-of-the-art systems for opinion target extraction on the
SemEval 2016 restaurant datasets. We report results for our multilingual model
that is trained on the combined training data of all languages and evaluated on
the corresponding test datasets. We compare our model to the respective state-
of-the-art for each language in Table 6.2.
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Figure 6.6: Zero-shot results comparing the multilingual embeddings ADV-aligned
to SVD-aligned. A positive value means higher absolute F1-score for ADV-aligned
and vice versa. For readability, score differences are scaled by a factor of 100.

System en es nl ru tr

Toh and Su [2016] 0.723 – – – –

Àlvarez-López et al. [2016] 0.666 0.685 – – –
Kumar et al. [2016] 0.685 0.697 0.644 – –
Pontiki et al. [2016]* 0.441 0.520 0.506 0.493 0.419
Li and Lam [2017] 0.734 – – – –
Agerri and Rigau [2019] 0.735 0.699 0.664 0.655 0.602
all→target (Ours) 0.660 0.687 0.624 0.567 0.490

Table 6.2: Overview of the current state-of-the-art for opinion target extraction for
5 languages. Our model is trained on the combined training data of all languages
and evaluated on the respective test datasets. The row marked with * is the
baseline provided by the workshop organizers.
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We can see that the competition is strongest for English and very recently
also Russian and Turkish. Here, we fall behind latest monolingual systems. For
English, this corresponds to rank 7 of 19 of the original SemEval competition.
However, we see that we clearly outperform the original baseline system from
Pontiki et al. [2016] for all languages by at least 7 points in F1-score. Regarding
Spanish and Dutch, we see that we are close to the best published systems.

Overall, we present the first approach on this task to achieve such promising
performances for a variety of languages with a single, multilingual model. While
we do not surpass dedicated monolingual models, we believe that a more complex
model architecture as proposed by Li and Lam [2017] or a richer feature set as by
Agerri and Rigau [2019] could close the gap.

6.4.7 Discussion

The presented experiments shed light on the performance of our proposed approach
under various circumstances. In the following, we want to discuss its limitations
and consider explanations for performance differences of different language pairs.

Model Limitations

The core of our proposed sequence labeling approach consists of aligned word
embeddings and shared CNN layers. Due to the limited context of a CNN layer,
the model can only base its decisions for each word on the local information around
that word. In many cases, this information is sufficient since most opinion target
expressions are adjective-noun phrases7 which are well enough identified by the
local context for most considered languages. Nevertheless, it is worth to investigate
in how far our findings translate to more complex model architectures.

Language Characteristics

Due to the inherent variability of natural languages and of the used datasets, it
is difficult to identify the exact reasons for the observed performance differences
between language pairs. However, we suspect that language features such as word
order, inflection, or agglutination affect the compatibility of languages. As an
example, Turkish is considered a highly agglutinative language, that is, complex
words are composed by attaching several suffixes to a word stem. This sets Turk-
ish apart from the other four languages which we considered in this chapter and
might explain some of the obtained results. This language feature might present a
difficulty in our approach since the appending of suffixes is not optimally reflected

790% of OTEs in the English dataset consist of zero or more adjectives followed by at least
one noun.
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in the tokenization process and the used word embeddings. An approach that
performs alignment of languages on subword units might alleviate this problem
and lead to performance gains for language pairs with similar inflection rules.

Syntactic regularities, such as word order might also play a role in our transfer
learning approach. It is reasonable to assume that the CNN layers of our approach
pick up patterns in the word order of a source language that are indicative of an
opinion target expression, e.g. ”the [NOUN] is good”. When applying such a
model to a target language with drastically different word order regularities, these
patterns might not appear as such in the target language and ultimately reduce
the model’s performance.

For the considered languages, we see the following characteristics: Where En-
glish and Spanish are generally considered to follow a Subject-Verb-Object (SVO)
order, Dutch largely exhibits a combination of SOV and SVO cases. Turkish and
Russian are overall flexible in their word order and allow a variety of syntactic
structures. In the case of Turkish, its morphological and syntactic features seem
to explain some of the relatively low results. However, with the small sample of
languages and the many potential influencing factors at play, we are aware that it is
not possible to draw any strong conclusions. Further research has to be conducted
in this direction to answer remaining questions.

6.5 Conclusion

In this chapter, we presented a method for cross-lingual and zero-shot extraction
of opinion target expressions which we evaluated on 5 languages. Our approach
uses multilingual word embeddings that are aligned into a single vector space to
allow for cross-lingual transfer of models. By training a model equipped with these
embeddings on annotated samples in a source language, we obtain a pretrained
model for any target language through the replacement of the source language
word embeddings with the corresponding set in the target language.

Using English as a source language in a zero-shot setting, our approach was
able to reach an F1-score of 0.50 for Spanish and 0.46 for Dutch. This corresponds
to relative performances of 74% and 77% compared to a baseline system trained on
target language data. By using multiple source languages, we increased the zero-
shot performance to F1-scores of 0.58 and 0.53, respectively, which correspond
to 85% and 87% in relative terms. We investigated the benefit of augmenting the
zero-shot approach with additional data points from the target language. Here, we
observed that we can save several hundreds of annotated data points by employing
a cross-lingual approach. Among the 5 considered languages, Turkish seemed to
benefit the least from cross-lingual learning in all experiments. The reason for this
might be that Turkish is the only agglutinative language in the dataset. Further,
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we compared two approaches for aligning multilingual word embeddings in a single
vector space and found their results to vary for individual language pairs but to be
comparable overall. Lastly, we compared our multilingual model with the state-
of-the-art for all languages and saw that we achieve promising performances and
even come close to leading monolingual models for Spanish and Dutch.

Our results show that the quality of the transfer learning between language
pairs is dependent on the exact source and target languages. As future work,
it is interesting to investigate which language characteristics, if any, are critical
for effective cross-lingual learning. Furthermore, it is worth to investigate in how
far our findings translate to more complex model architectures that have been
proposed for OTE extraction, such as LSTMs with memory interactions [Li and
Lam, 2017] or attention-based models [Wang et al., 2017b]. We are especially
interested in cross-lingual learning with character- or subword-level models such
as the model presented in Chapter 5. Modeling words at the morpheme level could
alleviate the observed difficulties with opinion target extraction for Turkish texts.
Apart from that, a transfer of our approach to targeted sentiment classification
as shown in Chapters 3 and 4 could yield similarly positive results and boost the
classification performance for under-resourced languages.



Chapter 7

Conclusion

Chapter Overview In this final chapter, we summarize the main findings of
this thesis. We provide a brief overview of the answers to the underlying research
questions that were addressed throughout the thesis. We end this chapter by giving
perspectives for future research opportunities on aspect-based sentiment analysis.

7.1 Summary

This thesis revolves around aspect-based sentiment analysis and a related formu-
lation coined relational sentiment analysis. We recall from Chapter 3 that in the
framework of relational sentiment analysis, an expressed opinion is divided into
four parts:

i) an opinion phrase that carries sentimental meaning,

ii) a sentiment label that marks the opinion as e.g. positive or negative,

iii) an aspect phrase that constitutes the target of the opinion, and

iv) a relation that explicitly links an opinion phrase to one or more target
phrases.

In Chapter 3, we were concerned with the automatic extraction of all four
of these parts from natural language texts. We presented a complete, modular
architecture for relational sentiment analysis and evaluated each proposed com-
ponent (RQ1). Our evaluation showed that opinion phrases and their targets can
be extracted with sequence labeling techniques based on CNNs and RNNs. A
model combining CNN and RNN layers performed best (RQ1.1) and could be
improved by providing POS tags and domain-specific word embeddings (RQ1.2).
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We also observed that we can benefit from a jointly formulated objective for as-
pect and opinion phrase extraction (RQ1.3). Furthermore, we proposed an ap-
proach for opinion-phrases-specific sentiment classification using a position-aware
RNN (RQ1.4). With this, our work provides the first results for targeted senti-
ment analysis on the considered dataset. Following a similar architectural design,
we adapted the position-aware RNN for aspect-opinion relation extraction and
achieved substantial improvements of 15 points F1-score over prior work (RQ1.5).

Chapter 4 was concerned with the integration of external structured knowl-
edge into neural architectures for ABSA (RQ2). Firstly, we explored the effect of
retrofitting pretrained word embeddings to a graph of lexico-semantic relations but
could not observe any positive effects on opinion target extraction or target-specific
sentiment classification (RQ2.1). Secondly, we proposed to include sentiment in-
formation from a concept knowledge base as word-level features. Our experiments
showed that the sentiment information, while not helpful for OTE extraction, of-
fers substantial improvements of 3.5 points F1-score for sentiment classification
and a drastically improved training speed (RQ2.2).

In Chapter 5, we were able to show that character-level information assists
in the task of opinion target extraction, an important step in aspect-based sen-
timent analysis. We compared a model using only word-level features to a more
sophisticated model that also includes character-level word embeddings (RQ3).
We showed that the more complex character model consistently outperforms the
baseline model with a substantial margin of 3.3 points F1-score. A visualization
of the learned embeddings revealed encoded morphological regularities that we
could not find in regular pretrained skip-gram word embeddings (RQ3.1). Via
experiments on different subsets of the data, we linked the positive influence of
the character-level word embeddings to the difficulty of extracting multi-word ex-
pressions (RQ3.2). However, we did not observe a performance difference for
Out-of-Vocabulary cases.

Chapter 6 addresses the lack of research dedicated to aspect-based sentiment
analysis for under-resourced languages. We specifically addressed this gap by
proposing a model for opinion target extraction capable of cross-lingual and zero-
shot transfer learning (RQ4). Using pretrained multilingual word embeddings,
our proposed approach is capable of performing predictions for a target language
without ever seeing any samples in that language. Using English as a source lan-
guage in a zero-shot setting, our approach was able to reach an F1-score of 0.50
for Spanish and 0.46 for Dutch. This corresponds to relative performances of 74%
and 77% compared to a baseline system trained on target language data (RQ4.1).
Overall, our results show that the quality of the transfer learning between lan-
guage pairs is dependent on the exact source and target languages. By training a
model with access to training samples of multiple source languages, we increased
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the zero-shot performance to F1-scores of 0.58 and 0.53, respectively, which cor-
respond to 85% and 87% in relative terms (RQ4.2). We investigated the benefit
of augmenting the zero-shot approach with additional data points from the target
language. This allowed us to estimate how much annotation effort can be avoided
by harnessing available data from multiple languages. Here, we observed that we
can save several hundreds of annotated data points by employing the proposed
cross-lingual approach (RQ4.3). Further, we quantified the impact of different
methods of aligning word embeddings across languages and found their results to
vary for individual language pairs but to be comparable overall (RQ4.4).

7.2 Outlook

Although this thesis provides answers for challenging research questions regarding
aspect-based sentiment analysis, there remain open questions and further research
opportunities. In the following, we give perspectives that are more general in na-
ture in order to avoid overlap with specific research directions that were mentioned
in previous chapters:

Relational Sentiment Analysis A drawback with arranging interdependent
machine learning modules in a pipeline structure is the propagation and amplifi-
cation of errors from one step to the next. As every single step in such a pipeline
can produce incorrect results, the individual errors may add up in the course of
the processing chain and lead to flawed end results. In the scope of this thesis,
this pertains to the relational sentiment analysis framework and its subtasks, pre-
sented in Chapter 3. We already showed that the joint extraction of target aspects
and opinion phrases leads to improvements for both subtasks (see Section 3.6.4 of
Chapter 3). It is worth investigating whether a single model that addressed all
subtasks with a joint objective yields further improvements and alleviates issues
arising from error propagation in our pipeline. Particularly, we hypothesize that
the extraction of OTEs profits from such a joint objective as this could reduce false
positive phrases. The intuition behind this can be seen in the following example
where the same phrases might conceivably be recognized as a target aspect despite
the lack of an expressed sentiment statement:

“I ordered the chicken fajita ” (False Positive)

“I ordered the chicken fajita and enjoyed it.”. (True Positive)

Multi-Task and Transfer Learning A further research question arises from
the available annotated training data. Annotated datasets for aspect-based sen-
timent analysis usually consist of a few hundred or thousand samples. While the
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annotation effort is already high to provide such complex and reliable annotations,
the datasets are still rather small when comparing these to datasets for other nat-
ural language processing problems. As an example, machine learning models for
document-level sentiment classification or machine translation are usually trained
on datasets with orders of magnitudes more samples. In Chapter 6, we addressed
this problem from the perspective of cross-lingual transfer learning and obtained
promising results. Beyond this approach, we are interested in two related avenues:
Firstly, how can we leverage unlabeled textual data to improve aspect-based senti-
ment? We already saw the large impact of pretraining word embeddings, especially
on domain-specific data (see Section 3.6.3 in Chapter 3). Similarly, we expect im-
provements from pretraining entire sequence processing components [Peters et al.,
2018; Akbik et al., 2018; Howard and Ruder, 2018]. Secondly, we are interested
in leveraging other datasets by approaching aspect-based sentiment analysis in a
multi-task setting [Søgaard and Goldberg, 2016]. By selecting the right auxiliary
tasks, we could harness already annotated datasets for these tasks in order to sup-
port our main objective of aspect-based sentiment analysis. While it is not clear,
how to identify helpful auxiliary tasks for multi-task learning [Bjerva, 2017], we
believe that low-level NLP problems such as chunking, NER, POS tagging, con-
stituency parsing, or dependency parsing are promising candidates. The latter is
particularly promising for targeted sentiment and relation extraction since syntac-
tic dependencies are known to be an effective source of information for relation
extraction in general [Fundel et al., 2007; Zhang et al., 2018; Gupta et al., 2019].

Following up on our work in Chapter 6, we see opportunities in extending the
cross-lingual, zero-shot approach for OTE extraction to include subword informa-
tion. We proposed a zero-shot approach that uses aligned word embeddings to
represent words. It remains to be seen if such an approach can be applied to the
subword-level, e.g. by performing the alignment on the level of morphemes.

Text Representation In Chapter 6, we observed performance differences of
mono-lingual models across languages for the extraction of opinion target expres-
sions. We surmise that the word-level representation of textual data might not
be optimal for all languages. A simple tokenization based on näıve indicators
(white spaces, punctuation) could pose problems for languages that are highly
agglutinative (e.g. Turkish), fusional (e.g. Russian), or do not explicitly delimit
words (e.g. Chinese). These languages might profit from other text representation
approaches that take into account the subword structure of words [Akbik et al.,
2018; Schuster and Nakajima, 2012]. To an extent, we could show such a benefit of
subword representations for English in Chapter 5. An extension of this analysis to
other languages might help explaining the observed phenomena and reveal similar
benefits for opinion target extraction.
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Chung, J., Gülçehre, Ç., Cho, K., and Bengio, Y. (2014a). Empirical evaluation
of gated recurrent neural networks on sequence modeling. In NIPS Deep
Learning Workshop.

Chung, J. K., Wu, C., and Tsai, R. T. (2014b). Polarity detection of online
reviews using sentiment concepts: NCU IISR team at ESWC-14 challenge on
concept-level sentiment analysis. In Presutti, V., Stankovic, M., Cambria,
E., Cantador, I., Iorio, A. D., Noia, T. D., Lange, C., Recupero, D. R., and
Tordai, A., editors, Semantic Web Evaluation Challenge - SemWebEval 2014
at ESWC 2014, Anissaras, Crete, Greece, volume 475 of Communications in
Computer and Information Science, pages 53–58. Springer.

Clevert, D.-A., Unterthiner, T., and Hochreiter, S. (2016). Fast and accurate deep
network learning by exponential linear units (ELUs). In Proceedings of the
International Conference on Learning Representations (ICLR).

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa,
P. (2011). Natural language processing (almost) from scratch. Journal of
Machine Learning Research, 12:2493–2537.

Dekel, O., Gilad-Bachrach, R., Shamir, O., and Xiao, L. (2012). Optimal
distributed online prediction using mini-batches. J. Mach. Learn. Res.,
13(1):165–202.

Derczynski, L. (2016). Complementarity, f-score, and nlp evaluation. In Chair),
N. C. C., Choukri, K., Declerck, T., Goggi, S., Grobelnik, M., Maegaard,
B., Mariani, J., Mazo, H., Moreno, A., Odijk, J., and Piperidis, S., editors,
Proceedings of the Tenth International Conference on Language Resources
and Evaluation (LREC 2016), Paris, France. European Language Resources
Association (ELRA).



140 Bibliography
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