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Abstract
This paper considers a decision maker choosing from a set of options when options 
have multiple real-valued attributes. Assuming DM chooses all options with posi-
tive probability, four invariance assumptions are necessary and sufficient for choice 
probabilities to take McFadden’s conditional logit form: independence of irrelevant 
alternatives, translation invariance, presentation independence and context inde-
pendence. Variations on these assumptions yield generalized logit and contextual 
logit models. This shows that even specific logit models have behavioral foundations 
in simple invariance assumptions involving observables only, which therefore are 
directly testable.
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1 Introduction

Economic analyses typically rest on preference assumptions, and the resulting 
necessity to understand preferences inspired a large body of work developing meth-
ods to infer preferences from choice. The main difficulty is that choice is inherently 
stochastic, implying that preferences are not directly revealed. Structural modeling 
attempts to control for noise in the choice process, using explicit models of stochas-
tic choice, and has a wide range of applications in empirical and behavioral analyses 
(for a “primer,” see Wilcox 2008). In order to apply models of stochastic choice, 
however, researchers need to specify the formal link between choice propensities 
and observables, as demonstrated by Axiom 4 in McFadden’s (1974) seminal char-
acterization of conditional logit. This suggests that models of stochastic choice can-
not be applied without making functional-form assumptions that are not directly 
testable (see, e.g., Keane 2010a; Nevo and Whinston 2010).
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The present paper seeks to contribute to this discussion by demonstrating that 
specific models of stochastic choice, several widely used logit models with linear 
links between propensities and observables, have axiomatic foundations in invari-
ance assumptions and therefore do not require functional-form assumptions. These 
invariance assumptions involve solely observable attributes of options and are 
directly testable. Extensions to nonlinear link functions that are additively separable 
in observables (such as CES utilities) are equally possible.

Formally, I consider a decision maker (DM) choosing from a finite set of options. 
Each option is characterized by an observable attribute vector (say, payoffs in dif-
ferent states of the world, or prices, quantities and qualities of products), and each 
option is chosen with positive probability. Within this framework, and given an 
essentialness condition requiring that DM is not indifferent with respect to any of 
the attributes, IIA and two simple invariance assumptions, clarifying when choice 
responds to changes in attributes and when not, uniquely characterize the condi-
tional logit model of McFadden (1974). On the one hand, “ �-invariance” requires 
choice to be invariant to translation of the attribute vector, and on the other, “ �-rel-
evance” requires that choice responds “uniformly” to attribute changes other than 
translation (comprising “presentation independence” and “context independence,” 
in a sense to be made precise). Empirical evidence seems to suggest that observed 
choice exhibits also a form of scaling invariance, however. After strengthening �
-invariance and weakening �-relevance correspondingly, I obtain a multi-attribute 
generalization of the contextual utility model of Wilcox (2011).

Four points appear to be worth noting about these results. (1) All invariance 
assumptions solely involve choice probabilities and option attributes, which both are 
considered observable in applied work (for a foundation, see Gul et al. 2014) and 
thus directly testable. Applied work may therefore first test, for a given dataset, if the 
choice postulates underlying logit are satisfied, or if the postulates are satisfied after 
a transformation of attributes suggested by McFadden (1974), and only then apply 
logit if adequate. (2) The widely used conditional logit model, which assumes a lin-
ear utility function linking attributes and log-propensities of choice, is provided with 
a foundation void of the functional-form assumptions it has been criticized for (for 
discussion, see Keane 2010b; Rust 2010; Blundell 2010; Heckman and Urzua 2010). 
(3) For any given choice profile satisfying the invariance assumptions, the utility 
function linking attributes and log-propensities of choice is shown to be unique up 
to linear transformation, which is a novel uniqueness result that may be helpful in 
applications. (4) Observed behavior tends to exhibit a form of invariance to rescal-
ing attributes that conditional logit does not accommodate, suggesting that alternate 
models such as the generalized form of contextual utility may indeed be more ade-
quate in applied work.

To provide some context for the results, the general family of logit models is 
known to be characterized by positivity and IIA in the sense that choice probabilities 
then take the logit form for an unknown, potentially nonlinear utility function link-
ing attributes and log-propensities of choice. My results provide testable conditions 
for this utility function to be uniquely linear in attributes or in pre-specified trans-
formations thereof, as postulated by McFadden in his definition of conditional logit. 
The main condition is translation invariance, and interestingly, linear logit models 
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are already known to predict choice probabilities that are invariant to translation of 
option attributes (or, utilities in some work). This paper’s contribution is therefore 
the result that translation invariance is sufficient if complemented by a condition 
clarifying when attribute changes are relevant, and the sufficiency finally removes 
the necessity to make functional-form assumptions.

The need for the additional condition arises, because translation invariance 
yields a functional equation and its solution includes non-trivial integration con-
stants. These integration constants resemble prior probabilities as observed in the 
generalized logit model of Matejka and McKay (2015) and may be interpreted to 
represent presentation effects in choice (i.e., effects due to ordering and position-
ing of options). In order to formally represent and capture such presentation effects, 
I extend the standard framework of stochastic choice by explicitly distinguishing 
“contexts” of decisions, i.e., different mappings between options and attributes. This 
generalized framework, in turn, is the main difference to existing analyses of sto-
chastic choice when options have multiple attributes, such as Gul et al. (2014), and 
allows us to establish the necessity and sufficiency of simple invariance assumptions 
in characterizing logit models with specific (here, linear) utility functions.

2  Related literature

We may distinguish at least three classes of approaches in the characterization of 
logit models. The original approach due to Luce (1959) demonstrates that a gen-
eral family of nonlinear logit models is characterized by positivity and independ-
ence of irrelevant alternatives (IIA). That is, if choice probabilities satisfy positiv-
ity and IIA, then there exists a utility function v such that choice probabilities take 
the multinomial logit form. This utility function is not known, however, and applied 
research needs to specify a utility function. In order to provide a foundation for such 
work, McFadden (1974) introduces the conditional logit model, explicitly linking 
option attributes and choice probabilities without resorting to an unknown utility 
function. McFadden achieves this by introducing two additional axioms that fix the 
exponential structure (Axiom 3) and the additive separability (Axiom 4), but both 
assumptions involve non-observable utilities rendering them untestable (for discus-
sion, see Breitmoser 2018).

The third class of approaches seeks to model the choice process explicitly in 
order to establish conditions such that the resulting choice probabilities take the 
logit form. All of these approaches involve non-observable entities as well, render-
ing direct tests impossible. For example, logit can be formulated as random utility 
model (Thurstone 1927; Block and Marschak 1960), but this involves non-observ-
ables utilities, a specific functional form assuming additive separability of utilities 
and perturbations, and it requires unobservable utility perturbations to be identically 
and independently distribution as extreme-value type I. Logit can also be charac-
terized as the outcome of rational inattention (Matejka and McKay 2015), but this 
relies on assumptions involving non-observable utilities and assumptions relating 
non-observable costs of information acquisition to Shannon’s measure of entropy. 
Logit’s foundation in an additive perturbed utility representation (e.g., Fudenberg 
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et al. 2015) requires DM to maximize the difference of expected utility and pertur-
bation costs and requires the unobservable perturbation costs to be proportional to 
the Shannon entropy. Finally, in another recent paper, Woodford (2014) character-
izes logit choice as the solution to a specific optimization problem if a certain unob-
servable parameter ( � ) is equal to 1.

The present paper is most closely related to McFadden (1974), in its attempt to 
establish testable conditions for specific (linear) utility functions to form the link 
between observable attributes of options and choice propensities. This objective of 
McFadden has received renewed interest in recent work on the theoretical founda-
tion of logit. Specifically, Ahn et  al. (2018) characterize the linear logit model if 
only average choices are observable, and Allen and Rehbeck (2019) analyze stochas-
tic choice more generally if attributes vary between observations rather than option 
sets, noting that the latter was Luce’s original approach when defining independ-
ence of irrelevant alternatives. In this paper, we allow for both, variation of option 
sets and variation of attributes, showing that they jointly characterize linear logit 
models.1

3  Definitions

Decision maker DM chooses option x from menu B. Menu B is finite subsets of 
some set X, and the set of all finite subsets of X is denoted as P(X). Each option 
x ∈ X is associated with an attribute vector via � ∶ X → ℝ

n , which may define pay-
offs in different states of the world (as in decision theory) or payoffs to different 
agents as a function of the option chosen (as in game theory), or product bundles 
and prices (as in consumer choice). I refer to the attribute mapping � as the context 
of DM’s decision and to the pair (�,B) as a choice task. Given choice task (�,B) , the 
probability that DM chooses x is denoted as Pr(x|�,B).

The set of choice tasks (�,B) that can be constructed is D = � × P(X) . � denotes 
the set of attribute mappings � that may be constructed by changing attributes such 
as quantities or prices, or, for example, by permuting the attribute mapping (rear-
ranging options in a shop or on a screen, or by relabeling states of the world or 
co-players in experiments). As indicated, a formal expression of variations of � will 
be necessary to address “presentation effects” that come with integration constants 
below. For the purpose of the present paper, I assume that attributes are exogenously 
given by an experimental design or the analyst, but note that this may in practice not 
always be trivial (Gul et al. 2014).

1 To be clear, while these two studies appear to be the most closely related amongst the recent ones, 
the Luce model in particular and stochastic choice in general have been studied fairly comprehensively 
recently. To give just a few examples, Koida (2018) studies stochastic choice influenced by positioning of 
objects in menu, Ryan (2018) studies axiomatic characterizations of logit in choice under risk or uncer-
tainty, and Echenique and Saito (2019) study generalized Luce models that relax positivity.
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I assume that the set of choice tasks D satisfies the following conditions. 
Throughout this paper, ℝ+ denotes the set of positive reals.2

Assumption 1 (Framework) The set of choice tasks D = Π × P(X) satisfies 

A1  Transformabilitya + b� ∈ Π for all � ∈ Π and all a ∈ ℝ
n, b ∈ ℝ

n
+
,

A2  Surjectivity for all � ∈ Π and k ≤ n , the image �k[X] = {�k(x)|x ∈ X} is a 
bounded, convex and non-singleton subset of ℝ,

A3  Richness for all k ≤ n , there exist (�,B) and x, y ∈ B such that �k(x) ≠ �k(y) 
and �−k(x) = �−k(y).

Besides being standard assumptions in microeconomic theory and in recent 
analyses of stochastic choice (Gul et al. 2014; Fudenberg et al. 2015), these condi-
tions help us ensure that the representation derived below is unique. Specifically, 
transformability ensures that we may discuss reactions to affine transformations of 
attributes, by ensuring that all affine transformations are well-defined objects. Sur-
jectivity rules out scarce choice environments where the set of feasible attribute vec-
tors is finite or even singleton; but it will be notationally convenient to know that 
�[X] is convex and bounded in all dimensions. These assumptions are satisfied in 
choice tasks typically of interest in behavioral work (such as in choice under risk or 
in games, as payoffs can be varied almost continuously up to exogenous bounds). 
Note that the attribute functions may still be fairly ill-behaved, violating smooth-
ness, monotonicity and continuity for any number points. Richness finally ensures 
that we may discuss reactions to uni-dimensional variations of the attribute vector. 
This is straightforwardly satisfied in decision tasks typically of interest to analysts, 
for example by direct manipulations of prices or payoffs.

Within this framework, we assume DM’s choice profile Pr adheres to the follow-
ing postulates.

Assumption 2 (Postulates on choice probabilities) There exists � ∶ Π → ℝ+ such 
that for all (�,B) : 

P1  Essentialness �k(x) ≠ �k(y) and �−k(x) = �−k(y) implies Pr(x|�,B) ≠ Pr(y|�,B),
P2  Positivity Pr(x|�, {x, y}) ≥ �� for all x, y ∈ B,
P3  IIA Pr(x|�,B)

Pr(y|�,B) =
Pr(x|�,B�)

Pr(y|�,B�)
 for all x, y ∈ B ∩ B� and all � ∈ Π,

P4  �-Invariance Pr(x|�,B) = Pr(x|� + r,B) for all r ∈ ℝ
n,

P5  �-Relevance if �x = ��
x�
 and �y = ��

y�
 , then Pr(x|�, {x, y}) = Pr(x�|��, {x�, y�}).

2 With slight abuse of notation, I further identify all real numbers as constant functions such that addi-
tion and multiplication of a function with a real are well defined. Thus, for any � ∶ X → ℝ

n and any 
a ∈ ℝ

n
, b ∈ ℝ

n , �� = a + b� is equivalent to ��
k
(x) = a

k
+ b

k
�
k
(x) for all k ≤ n and x ∈ X . As usual, I 

use �
k
(x) to denote the attribute k ≤ n of option x and �−k(x) to the list of all attributes but k.
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Essentialness requires that all dimensions of the attribute vector are relevant to 
DM. With respect to non-essential dimensions, the representation derived below 
would not be unique. Positivity allows that DM fails to maximize utility, however 
rarely, and captures the widely documented phenomenon that individual choice fluc-
tuates and involves dominated options (Hey 2005). The above formulation of posi-
tivity requires that choice probabilities in all binary choice tasks are bounded below 
at a value strictly above zero, but this bound may be arbitrarily close to zero. Fol-
lowing McFadden (1974), positivity captures stochastic choice in a comparably mild 
manner, as an event occurring with zero probability is empirically indistinguishable 
from one occurring with positive but small probability.

Next, �-invariance requires the choice profile Pr to be invariant to translation of 
attribute mappings. While translation is directly testable, e.g., by varying show-up 
fees in experiments, I am not aware of studies directly testing it. A string of evi-
dence suggesting that choice is translation invariant is provided by neuro-economic 
studies, which consistently find “adaptive coding” as I discuss in more detail when 
deliberating scaling invariance. Finally, �-relevance requires relative choice prob-
abilities to be invariant across contexts if the option attributes are equivalent.

McFadden introduces the conditional logit model as a logit model where the log-
propensities of choice are linear in option attributes (potentially after transforming 
attributes). This conditional logit model is a special case of the Luce model, which 
can be defined as follows:

Definition 1 Choice profile Pr has a Luce representation if there exists 
V = {V� ∶ X → ℝ}�∈Π such that for all tasks (�,B) ∈ D and options x ∈ B:

Any such V is said to admit a Luce representation.

Based on this, we define conditional logit as follows (following McFadden 1974):

Definition 2 The choice profile Pr has a conditional logit representation if 
there exists � ∈ ℝ

n such that V with V�(x) = exp{� ⋅ �x} for all x,� admits a Luce 
representation.

Note the abbreviated vector notation involving option attributes �x ∈ ℝ
n for all 

x ∈ B.
Given Assumption 1, we will see that the above choice postulates are equivalent 

to the choice profile Pr taking the conditional logit form. That is, conditional logit is 
adequate if and only if the choice postulates are satisfied. Since the choice postulates 
solely involve observables, they are straightforwardly testable, which allows analysts 
to verify whether logit is an adequate model given their dataset. In practice, it may 
also be appropriate for analysts to determine whether the postulates are satisfied after 
invoking pre-specified transforms to the attributes and then run their analysis using 
these transforms, similar to power transforms such as Box–Cox transformations that 

(1)Pr(x|�,B) = V�(x)∕
∑

y∈B

V�(y).
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align data with normal distributions in other applied work. Such transforms allow 
the utility to simply be additively separable in attributes, which contains many well-
known utility functions (most obviously CES utilities) as special cases.

4  Analysis

As shown by Luce, positivity and IIA imply that choice probabilities have a Luce 
representation, i.e., for each � , a propensity function V� ∶ X → ℝ exists such that 
Pr(x��,B) = V�(x)∕

∑
y∈B V�(y) . The following result also clarifies that the choice 

propensities V� are context dependent, as IIA itself does not restrict choice across 
contexts � , and thus may involve arbitrary statistics of � (such as suprema or infima) 
as constants. Given context � , however, V� can be expressed as a function of the 
option itself (x) and its attributes �x.

Lemma 1 Pr satisfies P2–P3 ⇒ Pr has a Luce representation.

The routine proof is relegated to “Appendix.” It should be clear that the func-
tional forms of V� are unrestricted and not directly observable by the analyst. There 
simply exists a family of unknown utility functions {V�} admitting a Luce repre-
sentation, and the question we ask is if there are testable conditions such that {V�} 
assumes specific functional forms—focusing on the linear form assumed in McFad-
den’s definition of conditional logit.

Next assume that choice is also �-invariant, i.e., invariant to translations of con-
texts. On its own, this implies a comparably modest refinement of the set of pro-
pensity functions in relation to those compatible with just positivity and IIA. 
Here and in the following, writing “ cinf� ” and later “ csup� ”, I refer to π’s com-
ponentwise infimum and supremum, respectively, over its domain (X), i.e., 
cinf� =

(
infx∈X �k(x)

)
k≤n

 and csup� =
(
supx∈X �k(x)

)
k≤n

.

Lemma 2 Pr satisfies P2–P4 ⇒ Pr has a Luce representation where for all r ∈ ℝ
n , 

V�+r is a linear transformation of V�.

The requirement of �-invariance has further implications once we take its coun-
terpart �-relevance into account, but on its own, it poses no restriction on the func-
tional form in our framework. This will be illustrated after the proof.

Proof By Lemma 1, there exists a collection of functions (V�)�∈Π such that 
Pr(x��,B) = V�(x)∕

∑
y∈B V�(y) for all x,B,� . Now fix � ∈ Π and note that, given 

this representation of Pr , by P4 we obtain

By positivity (P2), the values of V� and V�+r are nonzero. Hence, there exists c ∈ ℝ 
such that V�+r = c ⋅ V� . To see this, assume for contradiction that there is no such 

(2)
V�(x)∑
y∈B V�(y)

=
V�+r(x)∑
y∈B V�+r(y)

for all r ∈ ℝ
n and (�,B) ∈ D.
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constant. Then, there exist x, y such that V�+r(x) = c1 ⋅ V�(x) and V�+r(y) = c2 ⋅ V�(y) 
with c1 ≠ c2 . By P4,

implying c1 = c2 , the contradiction, i.e., V�+r is a linear transformation of V� .   ◻

Now, to illustrate, fix a one-dimensional attribute mapping � ∶ X → ℝ and 
assume �x = 2 and �y = 0 . Also consider �� = � + 8 , which implies ��

x
= 10 and 

��
y
= 8 . By �-invariance, the relative probability of choosing x over y is equal in both 

contexts � and �′ . Two seemingly related invariances are not implied, and those pre-
vent us from taking full advantage of �-invariance. On the one hand, assume there 
exist x�, y� ∈ X with payoffs 10 and 8 in the original context � , i.e., �x� = 10 and 
�y� = 8 . Translation invariance does not imply that the relative probability of choos-
ing 10 ( x′ ) over 8 ( y′ ) in context � is equal to the one of choosing 2 (x) over 0 (y) in 
context �—although we know that choosing between 2 and 0 under � is equivalent 
to choosing between 10 and 8 in a different context �′ . I refer to this phenomenon as 
“presentation effect”: The probability of choosing an option with a given outcome 
may depend on which option it is. Presentation effects may reflect labeling, order-
ing or positioning of options. They are compatible with V�(x) as the option x itself is 
choice relevant, not just its attributes �x . Presentation independence results if choice 
is invariant to permutation of options, and in order to express invariance to permuta-
tion, we need to distinguish contexts, since each permutation represents a different 
context �.

On the other hand, fix �′′ such that ���
x
= 2 and ���

y
= 0 , but � ≠ �′′ . Hence, �′′ 

is not a translation of � , and choice propensities in contexts � and �′′ are unrelated 
by Lemma 2. Hence, the relative probabilities of choosing options x and y may well 
differ between these contexts, despite the equality of attributes and options assuming 
these attributes, which I will call “context dependence.” Strict context independence 
obtains if for all �,�� ∈ Π and all x, y ∈ X:

The postulate of �-relevance introduced above combines presentation and context 
independence, and with its help, we arrive at the conditional logit representation 
with a necessarily (log-)linear value function.

Theorem 1 Pr has a conditional logit representation with �k ≠ 0 for all k ≤ n ⇔ Pr 
satisfies P1–P5. In addition, any V = {V�}�∈Π admitting a Luce representation is a 
collection of functions that are linear transformations of another.

Proof First, we establish ⇒ . For any � and any k ≤ n , consider any x, y such that 
�k(x) ≠ �k(y) and �−k(x) = �−k(y) (A3). By assumption, Pr has a conditional logit 
representation with �k ≠ 0 , implying Pr(x|�,B) ≠ Pr(y|�,B) for all B ⊇ {x, y} , and 
thus, essentialness is satisfied (P1). By surjectivity (A2), for any � , the image �[X] is 

(3)
V�(x)

V�(y)
=

V�+r(x)

V�+r(y)
=

c1 ⋅ V�(x)

c2 ⋅ V�(y)
,

(4)�x = ��
x

and �y = ��
y

⇒ Pr(x|�, {x, y}) = Pr(x|��, {x, y}).
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bounded, implying that Y� = {��x | x ∈ X} is bounded and that Pr{x|�, {x, y}} ≥ �� 
for all x, y ∈ X with 𝜖𝜋 ∶= inf Y𝜋∕(supY𝜋 + inf Y𝜋) > 0 (yielding positivity, P2). The 
remaining properties (P3–P5) follow from the conditional logit representation.

The remainder establishes ⇐.
Step 1 (Representation independently of x):
Pick any � ∈ Π and x, y ∈ X . By P5, �x = �y implies Pr(x|�,B) = Pr(y|�,B) and 

thus V�(x) = V�(y) . Hence, choice propensities in any given context � ∈ Π solely 
depend on attributes, and we can define a function Ṽ𝜋 ∶ ℝ

n
→ ℝ+ such that

Note that this does not rule out presentation effects entirely, but �x contains the 
information required to implicitly represent presentation effects for any �.

Step 2 (Narrow bracketing and presentation independence):
Define x, y, x�, y� ∈ X and �,�� ∈ Π such that (1) �� = � + r , (2) ��

y
= �y� , and (3) 

��
x
= �x� , for some r ∈ ℝ

n , which is possible by surjectivity (A2). By P5 (first equal-
ity) and P4 (second equality),

Using the representation from Eq. (5), for all r < (csup𝜋 − cinf𝜋)∕2 and all 
B ∈ P(X),

Hence,

for all x,  y and r, implying that there exists some function h� ∶ ℝ
n
→ ℝ such 

that Ṽ𝜋(𝜋x + r) = Ṽ𝜋(𝜋x) ⋅ h𝜋(r) for all x and r. Defining V̂𝜋 = log Ṽ𝜋 as well as 
ĥ𝜋 = log h̃𝜋 , we obtain V̂𝜋(𝜋x + r) = V̂𝜋(𝜋x) + ĥ𝜋(r) . By positivity,

implying that V̂𝜋 = log Ṽ𝜋 is bounded above and below. By surjectivity (A2), V̂𝜋 is 
defined on sets of positive measure in ℝ for all dimensions k ≤ n of the attribute 
vector. Thus, all solutions of this fundamental Pexider functional equation satisfy 
V̂𝜋(𝜋x) = 𝜆𝜋 ⋅ 𝜋x + c𝜋 for all x, with unique �� ∈ ℝ

n and some c� ∈ ℝ (Aczél and 
Dhombres 1989, Corollary 10, p. 43, in conjunction with Theorem 8, p. 17). Using 
Ṽ𝜋 = exp V̂𝜋 and the relation of Ṽ𝜋 to V� , this yields V�(x) = exp{�� ⋅ �x + c�} for all 
x ∈ X . Hence,

(5)Pr(x�𝜋,B) =
Ṽ𝜋(𝜋x)∑
y∈B Ṽ𝜋(𝜋y)

for all x ∈ B, (𝜋,B) ∈ D.

(6)
Pr(x�|�, {x�, y�})
Pr(y�|�, {x�, y�})

=
Pr(x|��, {x, y})

Pr(y|��, {x, y})
=

Pr(x|�, {x, y})
Pr(y|�, {x, y})

.

(7)
Ṽ𝜋(𝜋x)∑
y∈B Ṽ𝜋(𝜋y)

=
Ṽ𝜋(𝜋x + r)

∑
y∈B Ṽ𝜋(𝜋y + r)

for all x ∈ B and (𝜋,B) ∈ D.

(8)
Ṽ𝜋(𝜋x)

Ṽ𝜋(𝜋y)
=

Ṽ𝜋(𝜋x + r)

Ṽ𝜋(𝜋y + r)

1 − 𝜖𝜋

𝜖𝜋
≥

Pr(x|𝜋, {x, y})
Pr(y|𝜋, {x, y})

=
Ṽ𝜋(x)

Ṽ𝜋(y)
≥

𝜖𝜋

1 − 𝜖𝜋
for all x, y ∈ X,
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Finally, again by P4 (translation invariance),

which implies �� = ��+r for all r ∈ ℝ
n.

Step 3 (Context independence):
Finally, we establish �� = ��� for all �,�′ . For the purpose of contradiction, 

assume there exist �,�� ∈ Π such that �� ≠ ��′ . Since �x = ��
x�
 and �y = ��

y�
 imply, 

by P5 and Eq. (9),

�� ≠ ��′ can be satisfied only if there are no such x, x′, y, y′ . However, now consider 
the contexts �̃� = 𝜋 − cinf𝜋 and �̃�� = 𝜋� − cinf𝜋� . By A2 (surjectivity), these con-
texts overlap in the sense that there must exist x, y, x′, y′ such that �̃�x = �̃��

x�
 and 

�̃�y = �̃��
y�
 , implying

by P5 and 𝜆�̃� = 𝜆�̃�� by Eq. (9). As observed above, P4 implies 𝜆𝜋 = 𝜆�̃� and 𝜆𝜋� = 𝜆�̃�� , 
the contradiction.

Hence, there exists � ∈ ℝ such that �� = � for all � , implying 
V�(x) = exp{� ⋅ �x + c�} for all x,� and that V� has the conditional logit form 
defined up to linear transformation.   ◻

5  Incorporating scaling invariance

A range of empirical and experimental studies suggests that �-relevance as intro-
duced above may be too strict. Specifically, choice in many experiments appears 
to be invariant to scaling option attributes (i.e., to scaling payoffs of players), and 
this seems to contradict �-relevance. There is a caveat to this, however. The evi-
dence suggesting that behavior is scale invariant stems from comparing observations 
between experiments (or, between experimental subjects). The most direct evidence 
that I am aware is provided by meta-analyses of experimental behavior, which con-
sistently find that decisions are independent of the amounts of money at stake, for 
example in dictator games (Engel 2011), ultimatum games (Oosterbeek et al. 2004; 
Cooper and Dutcher 2011) and trust games (Johnson and Mislin 2011). An explana-
tion for such scale invariance, and thus indirect evidence, is provided by the neuro-
economic result called “adaptive coding” (see Tremblay and Schultz 1999, and the 

(9)Pr(x��,B) =
exp{�� ⋅ �x + c�}∑
y∈B exp{�� ⋅ �y + c�}

.

Pr(x�� + r,B) =
exp{��+r ⋅ (�x + r) + c�+r}∑
y∈B exp{��+r ⋅ (�y + r) + c�+r}

=
exp{�� ⋅ �x + c�}∑
y∈B exp{�� ⋅ �y + c�}

= Pr(x��,B).

Pr(x|�,B)
Pr(y|�,B)

=
Pr(x�|��,B)

Pr(y�|��,B)
⇒

exp{�� ⋅ �x}

exp{�� ⋅ �y}
=

exp{��� ⋅ �x� }

exp{��� ⋅ �y� }
,

Pr(x|�̃�,B)
Pr(y|�̃�,B)

=
Pr(x�|�̃��,B)

Pr(y�|�̃��,B)
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recent survey of Camerer et al. 2017): The neuronal representation of option payoffs 
adapts to the range of feasible payoffs. The baseline activity of the cell encoding the 
value of a given object adapts to the minimum of the payoff range in a given context, 
and its peak activity adapts to the maximum of the payoff range. Thus, choice ends 
up being invariant to scaling, and to changes in background income as indicated 
above, which appears to falsify the strict form of �-relevance postulated before.3

However, there is little direct evidence for scale invariance within subjects (see, 
however, Wilcox 2011, 2015). That is, if subjects are presented pairs of decision 
problems that are equivalent up to scaling, in sufficiently quick succession such that 
the neuronal representation does not adapt, it is not clear that behavior would actu-
ally be scale invariant indeed. Intuitively, if a high-stake decision is immediately 
followed by a “seemingly trivial” low-stake decision, scale invariance might be vio-
lated. I am not aware of experimental evidence directly testing this intuition, but 
such tests are clearly conceivable.

In general, though, substantial rescaling of option attributes of decision prob-
lems presented in quick succession is rarely a concern in analyses. Instead, rescaling 
tends to be concern in analyses merging data obtained independently under various 
conditions, under varying treatments or in different experiments, and in such cases, 
where scale invariance seems confirmed by meta-analyses, one may wish to adapt 
�-relevance in order to acknowledge scale invariance. The following two choice 
postulates weaken �-relevance and strengthen �-invariance in order to additionally 
acknowledge such scale invariance.

Assumption 3 (Alternative postulates on choice probabilities) 

P6  Strong  �-invariance: Pr(⋅|�,B) = Pr(⋅|a + b�,B) for all a ∈ ℝ
n and b ∈ ℝ

n
+

P7  Weak  �-relevance: �-relevance if csup� − cinf� = csup�� − cinf��

If we adopt these postulates instead of P4 and P5, then it follows immediately 
that the scale of the attribute range must factor out. That is, Pr satisfies P1–P3 and 
P6 if and only if Pr has Luce representation with V� being linear transformations of 
some function ( ⊘ is used to denote componentwise division of vectors)

where Ṽ𝜋 = Ṽa+b𝜋 for all a ∈ ℝ
n, b ∈ ℝ

n
+
 . Additionally invoking P7 yields a multi-

attribute variation of the contextual logit model proposed by Wilcox (2011).

Ṽ𝜋

(
𝜋x ⊘ ( csup𝜋 − cinf𝜋)

)
,

3 In an interesting recent paper, Steverson et al. (2019) demonstrate how a weak form of scale invariance 
called “divisive normalization” (also motivated by neuro-economic evidence) partially characterizes a 
model of stochastic choice that violates IIA but is otherwise comparable to the contextual logit model 
characterized below. Two key differences are that unavailable options (called “context” below) do not 
matter in the divisive normalization model and that the characterization is subject to an unknown utility 
function v that we seek to characterize simultaneously.
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Definition 3 The choice profile Pr has a contextual logit representation if there 
exists � ∈ ℝ

n such that V with V(x) = exp{𝜆 ⋅ [𝜋x ⊘ ( csup𝜋 − cinf𝜋)]} for all x,� 
admits a Luce representation.

Theorem 2 Pr has a contextual logit representation with �k ≠ 0 for all k ≤ n ⇔ Pr 
satisfies P1–P3 and P6–P7.

The formal proof is relegated to “Appendix,” as it largely resembles that for con-
ditional logit. In conclusion, let me briefly discuss a few points related to Theo-
rem 2. To begin with, let me clarify the relation to contextual logit as defined by 
Wilcox (2011). Wilcox considers binary choice from lotteries, where lotteries are 
distributions over three outcomes z1 < z2 < z3 . These three outcomes are called the 
context of the decision; the specification of the lotteries may change while the con-
text (z1, z2, z3) is held constant. Lotteries over these outcomes are denoted S and T, 
and utilities from lotteries are denoted V(S) and V(T). Given this, Wilcox defines the 
contextual logit representation as

V(z3) and V(z1) denote the utilities from the degenerate lotteries yielding the maxi-
mal outcome and minimal outcome (respectively) in context (z1, z2, z3) with prob-
ability 1. Given the logit specification of H, this is equivalent to

where Vmax ∶= V(z3) and Vmin ∶= V(z1) . The above definition of contextual logit 
extends Wilcox’ definition, who considered a decision maker caring about one 
option attribute (expected utility), straightforwardly to multiple attributes.

One concern about applying the contextual logit model may be that the attributes 
of unavailable options matter. In Wilcox’ formulation, the “context” is defined by 
the degenerate lotteries that yield either outcome with certainty, which may be una-
vailable to DM yet tend to be observable by the analyst, but in general, the context 
of a decision may be subjective and therefore unobservable by the analyst (see, for 
example, Panizza et  al. 2019). In order to capture choice in line with the contex-
tual logit model defined above, it suffices to find some measure for the scale of the 
choice task and rescale attributes correspondingly, but to the extent the scale is sub-
jective, rescaling may not be trivial in all applications.

Finally, invariance with respect to heterogeneous scaling across dimensions, 
i.e., with respect to scaling the attribute vector by a vector b ∈ ℝ

n , can be shown 
(analogously to the proof of Theorem  1) to yield a so-called strict utility model: 
V(�(x)) =

∏
k �k(x)

�k . To see this, note that scaling invariance is equivalent to 

Pr(S) = H

(
� ⋅

V(S) − V(T)

V(z3) − V(z1)

)
with H(x) = 1∕(1 + exp{−x})

Pr(S) =
exp{� f (S)}

exp{� f (S)} + exp{� f (T)}
with f (y) =

V(y)

Vmax − Vmin

,
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translation invariance of logarithmized attributes.4 Along these lines, many more 
models of stochastic choice may be found to have behavioral foundations in invari-
ance assumptions.
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Appendix

Appendix 1: Proof of Lemma 1

To prove that IIA implies Luce, note first that Pr(x|�, {x, y}) is in gen-
eral a function of x, y,�x,�y . By positivity, it is possible to define 
V(x, y,�x,�y) ∶= Pr(x|�, {x, y})∕Pr(y|�, {x, y}) , and thus by IIA (see McFadden 
1974, p. 109, for details),

Since this holds true for all x, y ∈ B and all B ∈ P(X) , it does so in particular for all 
possible benchmarks y ∈ X . Hence, the odds of choosing x over x′ are constant for 
any pair of benchmark options y, y� ∈ X:

As a result, functions f (y,�y) and V1(x,�x) exist such that 
V(x, y,�x,�y) = V1(x,�x) ⋅ f (y,�y) for all x, y ∈ X , and we can write, for all 
B ∈ P(X) , x ∈ B and y ∈ X,

(10)Pr(x��,B) =
V(x, y,�

x
,�

y
)

∑
x�∈B V(x

�, y,�
x�
,�

y
)

for all x, y ∈ B and allB ∈ P(X).

Pr(x|�,B)
Pr(x�|�,B)

=
V(x, y,�x,�y)

V(x�, y,�x� ,�y)
=

V(x, y�,�x,�y� )

V(x�, y�,�x� ,�y� )
for all x, x�, y, y� ∈ B and allB ∈ P(X).

4 For a loosely related result involving scaling invariance, see Dagsvik (2018), who focuses on binary 
choice and continuity of choice probabilities in observables, however.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Since this holds independently for each � , function V1 depends on � , and we can 
write V�(x) = V1(x,�x) for all x,� .   ◻

Appendix 2: Proof of Theorem 2

⇒ is established as in the proof of Theorem  1. The remainder establishes ⇐ . We 
have to show that given P1–P3 and P6, P7 implies contextual logit. First, extend 
the domain of � to be a set function. Thus, P7 implies that for all 𝜋, �̃� ∈ Π , all 
B, B̃ ∈ P(X) , and all x ∈ B, y ∈ B̃,

if csup� − cinf� = csup�� − cinf��.

Step 1 (Incorporating scaling invariance):

Given the representation established in Lemma 2, we need to derive the additional 
implication of “scaling invariance” (i.e., the incremental effect of P6 over P4). As 
in Step 1 in the Proof of Theorem 1, we can demonstrate that there exist functions 
{V̂𝜋}𝜋 such that

for all x,�,B , and translating as well as rescaling these functions, it follows that 
there exist functions {Ṽ𝜋}𝜋 such that

for all x,�,B . By P6, Pr(x|�,B) = Pr(x|��,B) if 
�� = a + b� for some a ∈ ℝ

n and b ∈ ℝ
n
+
 , and since 

(𝜋x − cinf𝜋)⊘ ( csup𝜋 − cinf𝜋) = (𝜋�
x
− cinf𝜋�)⊘ ( csup𝜋� − cinf𝜋�) then, this 

yields

for all B ∈ P(X) , x ∈ B . Hence, Ṽ𝜋′ is a linear transformation of Ṽ𝜋.

Step 2 (solving the functional equation):

Pr(x��,B) =
V(x, y,�x,�y)∑

x�∈B V(x
�, y,�x� ,�y)

=
V1(x,�x)∑

x�∈B V1(x
�,�x� )

.

(11)𝜋(B) = �̃�(B̃) and 𝜋x = �̃�y ⇔ Pr(x |𝜋,B) = Pr(y | �̃�, B̃)

Pr(x�𝜋,B) =
V̂𝜋(𝜋x)∑
y∈B V̂𝜋(𝜋y)

,

Pr(x�𝜋,B) =
Ṽ𝜋

�
(𝜋x − cinf𝜋)⊘ ( csup𝜋 − cinf𝜋)

�

∑
y∈B Ṽ𝜋

�
(𝜋y − cinf𝜋)⊘ ( csup𝜋 − cinf𝜋)

�

Ṽ𝜋

�
(𝜋�

x
− cinf𝜋�)⊘ ( csup𝜋� − cinf𝜋�)

�

∑
y∈B Ṽ𝜋

�
(𝜋�

y
− cinf𝜋�)⊘ ( csup𝜋� − cinf𝜋�)

� =
Ṽ𝜋�

�
(𝜋�

x
− cinf𝜋�)⊘ ( csup𝜋� − cinf𝜋�)

�

∑
y∈B Ṽ𝜋�

�
(𝜋�

y
− cinf𝜋�)⊘ ( csup𝜋� − cinf𝜋�)

�



1 3

An axiomatic foundation of conditional logit  

Now, fix � ∈ Π such that csup� − cinf� = � and cinf� = � (such � exists by trans-
formability A1). Hence, using Ṽ  as defined in Step 1,

i.e., conditional on the fixed context � , we may follow the arguments in the proof of 
Theorem 1 up to Eq. (9) and obtain (abusing the fraction sign to denote component-
wise division ⊘)

with �� ∈ ℝ
n and c� ∈ ℝ , where ��+r = �� for all r. As demonstrated in Step 1, this 

implies for any �′ such that �� = a + b� for some a ∈ ℝ
n and b ∈ ℝ

n
+
 , still abusing 

the fraction sign to denote componentwise division ⊘,

for all B ∈ P(X) , x ∈ B . Hence, for any such �′,

with ��� = ��.

Step 3 (Weak context and presentation independence):

Let Π� ⊂ Π denote the set of contexts such that � ∈ Π� if and only if 
csup� − cinf� = � . Given this, we can follow Step 3 in the proof of Theorem 1 to 
establish that there exists � ∈ ℝ

n such that, for all � ∈ Π�

for some c� ∈ ℝ (which cancels out). The claimed extension to contexts � with 
csup� − cinf� ≠ � follows directly from P7.   ◻

Pr(x�𝜋,B) =
Ṽ𝜋

�
(𝜋x − cinf𝜋)⊘ ( csup𝜋 − cinf𝜋)

�

∑
y∈B Ṽ𝜋

�
(𝜋y − cinf𝜋)⊘ ( csup𝜋 − cinf𝜋)

� =
Ṽ𝜋(𝜋x)∑
y∈B Ṽ𝜋(𝜋y)

,

Pr(x��,B) =
exp{�� ⋅ �x + c�}∑
y∈B exp{�� ⋅ �y + c�}

=
exp

� �� ⋅�x− cinf�

csup�− cinf�
+ c�

�

∑
y∈B exp

� �� ⋅�y− cinf�

csup�− cinf�
+ c�

� ,

Pr(x���,B) =Pr(x��,B) =
exp{�� ⋅ �x + c�}∑
y∈B exp{�� ⋅ �y + c�}

=
exp

� �� ⋅(�
�
x
− cinf��)

csup��− cinf��
+ c��

�

∑
y∈B exp

� �� ⋅(�
�
y
− cinf��)

csup��− cinf��
+ c��

� =
exp

� �� ⋅�
�
x

csup��− cinf��
+ c��

�

∑
y∈B exp

� �� ⋅�
�
y

csup��− cinf��
+ c��

�

Pr(x�𝜋�,B) =
exp

�
𝜆𝜋� ⋅ 𝜋�

x
⊘ ( csup𝜋� − cinf𝜋�) + c𝜋�

�

∑
y∈B exp

�
𝜆𝜋� ⋅ 𝜋�

y
⊘ ( csup𝜋� − cinf𝜋�) + c𝜋�

� ,

Pr(x��,B) =
exp{� ⋅ �x + c�}∑
y∈B exp{� ⋅ �y + c�}
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