
1. Introduction

This report reviews and straightens method-

ologies to explore functional forms of man-land-

cover interrelations**. Tanaka and Nishii[7, 8, 9, 

10, 12, 13], Nishii and Tanaka[4, 6], Nishii, 

Miyata, and Tanaka[5] have engaged in the 

analysis of deforestation by human population 

interactions. The basic strategy has been to use 

landcover data mashed up with cell-formed popu-

lation density data.

Two factors – human population size (N) and 

relief energy (R: difference of minimum altitude 

from the maximum in a sampled area) – were 

picked up firstly to make elucidation of forest 

coverage ratio (F) on the same site. The func-

tional forms with sigmoidal shape were suggested 

by step functions fitted to one-kilometer square 

high precision grid-cell data in Japan. By calculat-

ing relative appropriateness to data, Akaike’s 
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Information Criterion (AIC) was applied. The two 

AIC values by step functions  – one by independ-

ent model, the other by a model that takes 

neighbor effect  – indicate baseline fitness to 

examine succeeding suitability of candidate func-

tions.

To formulate world dataset, landcover data-

set estimated from NOAA observations available 

at UNEP, Tsukuba for F, gridded population of 

the world (GPW) of CIESIN, US for N, and 

GTOPO30 of USGS for R, were used. The resolu-

tions were matched by taking their common 

multiple of 20 minutes square.

How to refine models by adding minimal 

variables such as mean altitude of the site is 

examined also in this work.

2. Remotely-Sensed Images Mashed-up 

with Gridded Data

Table 1 shows data sources to make up F, 

N, and R, and Figure 1 depicts the data on map. 

Data on water surface as well as on missing cells 

are excluded in cell-aggregation process such as 

F s
c Kii( )

( )
= ∑ ∈

=
I

1

25

25 , in a coarsened larger cell of 

20′ × 20′ resolution, in case of calculating forest 

areal rate, where K denotes the set of class codes 

(category identifier) of forests, and ci the identifier 

of ith original cell[3]. Similarly, N s
n org

m
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where n_orgi is of the population density of the 

original unit cell, and m denotes number of the 

missing values such as for water surfaces[1]. 

R(s) = max(r_orgi: i = 1, ..., 1600) – min(r_orgi: 

i = 1, ..., 1600), where r_orgi is the altitude of the 

original unit cell of GTOPO30 (Global 

TOPOgraphic data in 30 arc-second units)[14]. 

The above ‘s’ of F(s), N(s) and R(s) identifies the 

site. Note that the GPW is still the unique world 

data source that provides human population on 

a grid-cell basis.

In the case that resolutions do not match off 

by taking least common multiple, conventional 

spatial interpolation methods in general literature 

of remote sensing can be applied.

3. Quest for Additive Regression Models

Suppose that there are n sites numbered from 

i = 1 to n. We partition the range of log(Ni + 1) 

where Ni is population density as

[a0, a1]  (a1, a2]  ··· (as–1, as]

where a0 ≡ min{log(Ni + 1) | i = 1, ..., n} < a1 < 

··· < as–1 < as ≡ max {log(Ni + 1) | i = 1, ..., n}.

Effects of population in the intervals are 

denoted by 0, β1, ... , βs–1 where the effect in [a0, 

a1] is set to zero as a base line. Similarly, we 

divide the range of relief energy log(Ri + 1) as 

[b0, b1]  (b1, b2]  ··· (bt–1, bt] where b0 ≡ 

min{log(Ri + 1) | i = 1, ..., n} < b1 < ··· < bt–1 < bt ≡ 

max{log(Ri + 1) | i = 1, ..., n}. Effects of the relief 

energy in the intervals are denoted by 0, βs, ... , 

βs+t–2 where the effect of [b0, b1] is also set to zero 

as a base line. Now, we set ββ = ′ + − ×+ −( , ..., ) :( )β β1 2 2 1s t s t
ββ = ′ + − ×+ −( , ..., ) :( )β β1 2 2 1s t s t , ββ ββ= ′ + − ×′( , ) :( )β0 1 1 s t , where β0 

is the general mean. We define p ≡ 1 + (s – 1) + 

(t – 1) = s + t – 1 as a number of all regression 

coefficients.

3.1 Estimation of Step Functions by 

Independent Models

Our linear model is as follows

yi = β0 + βu + βs–1+v + εi� (1)

where i denotes a site number, au < log(Ni + 1) ≤ 

au+1 and bv < log(Ri + 1) ≤ bv+1 with u ≥ 1 and v ≥ 

1. For u = 0 or v = 0, the effect is regarded as 

zero.

Let X x n pik= × −( ): ( )1  be a design matrix 

with zero or one entries, whose ith row describes 

which intervals of (au, au+1] and (bv, bv+1] include 

Ni and Ri. The linear model (1) is denoted by

Table 1  Data Source and Cell-Size Match (Coarsened)

Source Trimmed Unit Area Processed

LCDS 1935×5400 5′ × 5′
GPW 1548×4320 4′ × 4′ 20′ × 20′
GTOPO30 15480×43200 30″ × 30″ (≈ 37×37 km)

LCDS: available at UNEP, Tsukuba
GPW: available at CIESIN, US
GTOPO30: available at USGS

Figure 1  Grid-cell based world dataset.
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y = + + = +β σ0
21 0 X X N Iββ εε εε εεββ , ~ ( , ).

where 1 = (1, ..., 1)′:  n × 1, ββ ββ= ′ ×′( , ) :β0
 n p  

and X X n p= ×[ ; ]:1   with p = 1 + s + t – 2. Then, 

AIC of y is given by

AIC

with

( ) log( ) log ( )

( ) /

y

yy

= + + +

≡ ′ − ′ ′{ }−

n e n p

I X X X X n

2 2 12

2 1

π σ

σ

ˆ

ˆ

where the penalty term 1 is for σ 2.

If y = logit(F) ≡ log{F/(1 – F)} for forest areal 

ratio 0 < F < 1, we have the following relation 

between densities.

g(y)dy = g(logit(F)) |dy/dF|dF

= g(logit(F)) {1/F + 1/(1–F)} dF

= g(logit(F)) {F(1–F)}–1 dF.

Therefore, AIC of F based on the transformed 

vector y = (logit(F1), ..., logit(Fn))′ is given by

AIC( ) log( ) log

log ( ) ( ).

F = +

+ −{ } + +
=
∑

n e n

F F p
i

n

i i

2

2 1 2 1

2

1

π σ̂

3.2 Estimation of Step Functions by 

Spatially-Dependent Models

Let i1, i2, i3 and i4 be neighbors in the first-

order neighborhood of site i. The effect from the 

neighbor i1 is given by the i1th entry of Xβ. Then, 

we suppose that this effect is degraded by mul-

tiplication of a unknown constant φ. Intuitively, 

the unknown constant would meet inequality 

|φ| < 1/4.

Let H h n nij= ×( ):  be an adjacency matrix 

of the first-order neighborhood. Then, it holds 

that

i H X

h jij
j

n

thelement of

effect fromsite

 ββ

= ×{ }
=

=
∑

1

sumof effects froomsites i i i i1 2 3 4, , , .

The above effect is degraded by multiplication of 

φ, which captures the effect from the neighbors 

to the center. Thus, we obtain the following 

conditionally-independent model:

y= + + +

= + + +

= +

β φ

β φ

σφ

0

0
2

1

1

0

  

 

X HX

I H X

X N I

ββ ββ εε

ββ εε

εε εεββ

( )

, ~ ( , )

where X I H X n pφ φ≡ + ×[ ];( ) : .1   If φ is given, the 

maximum likelihood estimates of β and σ 2 given 

φ are calculated by the usual least square method 

as

ˆ( ) ( ) ,ββ φ φ φ φ= ′ ′−X X X1 y � (2)

ˆ ( ) [ ( ) ] / .σ φ φ φ φ φ
2 1= ′ − ′ ′−y yI X X X X n � (3)

Then, the profile log likelihood is given by

log ( ) ( / )log( ) ( / )log ( )L n e nφ π σ φ= − −2 2 2 2ˆ  (4)

Thus, φ can be estimated by maximizing the 

formula (4) for –1/(max eigenvalue of H) < φ < 

–1/(min eigenvalue of H). Let φ̂  be the optimal 

solution. Then, the maximum likelihood esti-

mates are given by ˆ ˆββ( )φ  and ˆ ( ˆ)σ φ2  using formu-

las (3) and (4).

Thus, AIC for y is given by

AIC( ) log( ) log ( ) ( )y = + + + +n e n p2 2 1 12π σ φˆ ˆ

where the penalty terms 1 for σ 2 and 1 for φ.

If y = logit(F) ≡ log{F/(1 – F)}, AIC of the 

original vector F is given by

AIC( ) log( ) log ( )

log ( ) ( )

F = +

+ −{ } + + +
=
∑

n e n

F F p
i

n

i i

2

2 1 2 1 1

2

1

π σ φˆ ˆ

3.3 Estimation of Non-linear Regression 

Functions by Independent Models

We fit nonlinear regression functions speci-

fied unknown parameters θ: s × 1 and τ: t × 1 as
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yi = β0 + g(Ni; θ) + h(Ri; τ) + εi, εi iid N(0, σ2)� (5)

where i denotes a site number. The functions are 

supposed to satisfy g(0; θ) = h(0; τ) = 0 as similar 

to the step functions. Then, a target function to 

be minimized is give by

y g N h Ri i i
i

n
− − −{ }

=
∑ β0

2

1
( ; ) ( ; ) .θθ ττ � (6)

The function should be minimized w.r.t. (β0, θ, 

τ). We define the estimated parameters as 

( )ˆ , ,ˆ ˆβ0 θθ ττ . The variance is estimated by

ˆ ˆ ( ; ˆ) ( ; ˆ)σ β2
0

2

1

1
= − − −{ }

=
∑n

y g N h Ri i i
i

n
θθ ττ � (7)

Then, AIC of y is given by

AIC( ) log( ) log ( )y = + + + + +n e n s t2 2 1 12π σ̂

where the penalty term is for β0, θ, τ and σ2. If y 

= logit(F) ≡ log{F/(1 – F)} for forest areal ratio 

0 < F < 1, AIC of F based on the transformed 

vector y = (logit(F1), ..., logit(Fn))′ is given by

AIC( ) log( ) log

log ( ) ( ).

F = +

+ −{ } + + +
=
∑

n e n

F F s t
i

n

i i

2

2 1 2 3

2

1

π σ̂

3.4 Estimation of Non-Linear Regression 

Functions by Spatially-Dependent Models

Let i1, i2, i3 and i4 be neighbors of site i in 

the first-order neighborhood. The total values for 

the neighbor i1 is given by

g N h Ri i
j

j j
( ; ) ( ; )θθ ττ+{ }

=
∑

1

4
� (8)

We suppose that multiplication to the above 

quantity has an effect to the mean value at the 

site i. So, our conditionally-independent model 

would be

y g N h R

g N h R

iid N

i i i

j j
j U

i

i

i

= +

+ +{ } +
∈
∑

( ; ) ( ; )

( ; ) ( ; ) ,

( , )

θθ ττ

θθ ττφ ε

ε σ0 2

�
(9)

where Ui denotes a first-order neighborhood of 

site i. Note that a number of neighbors in Ui is 

ranging from 0 to 4. Then, the target function to 

be minimized is give by

y g N h R

g N h R

i i i
i

n

j j
j Ui

− − −

− +{ }


=

∈

∑

∑

β

φ

0
1

2

( ; ) ( ; )

( ; ) ( ; )

θθ ττ

θθ ττ

The function should be minimized w.r.t. (φ, β0, θ, 

τ). We define the estimated parameters as 

( )ˆ, ˆ , ,ˆ ˆφ β0 θθ ττ . The variance is estimated by

ˆ ˆ ( ; ˆ ) ( ; )

ˆ ( ; ˆ ) ( ; ˆ )

ˆσ β

φ

2
0

1

1= − − −


− +{
=
∑n

y g N h R

g N h R

i i i
i

n

t t

θθ

θθ ττ

ττ

}}


∈
∑
t Ui

2

ˆ ˆ ( ; ˆ ) ( ; )

ˆ ( ; ˆ ) ( ; ˆ )

ˆσ β

φ

2
0

1

1= − − −


− +{
=
∑n

y g N h R

g N h R

i i i
i

n

t t

θθ

θθ ττ

ττ

}}


∈
∑
t Ui

2
� (10)

Then, AIC of y is given by

AIC( ) log( ) log
( )

y = +
+ + + + +
n e n

s t
2

2 1 1 1

2π σ̂

where the penalty term is for φ, β0, θ, τ and σ2. 

If y = logit(F) ≡ log{F/(1 – F)} for forest areal 

ratio 0 < F < 1, AIC of F based on the transformed 

vector y = (logit(F1), ..., logit(Fn))´ is given by

AIC( ) log( ) log

log ( ) ( ).

F = +

+ −{ } + + +
=
∑

n e n

F F s t
i

n

i i

2

2 1 2 3

2

1

π σ̂
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4. Estimation of Spatially-Dependent 

Models by Pseud-Maximum Likelihood

In Section 3, estimations by maximum-like-

lihood methods are streamlined in terms of 

acquiring additive regression models of defor-

estation. Here, we newly introduce much easier 

and faster ways to estimate the relative appropri-

ateness to data of the models by AIC as well as 

Bayesian Information Criterion (BIC).

From the relation (9), the following is derived 

y g N h R

g N h R
i i i

j j
j U

i
i

= +{ }
+ +{ } +

∈
∑

φ

ψ ε

( ; ) ( ; )

( ; ) ( ; )

θθ ττ

θθ ττ

ˆ

ˆ ˆ

ˆ
�

(11)

The variance is estimated by

ˆ ˆ ( ; ˆ ) ( ; ˆ )

ˆ ( ; ˆ ) ( ; ˆ )

σ φ

ψ

2

1

1= − +{ }
− +{




=
∑n

y g N h R

g N h R

i i i
i

n

j j

θθ ττ

θθ ττ }}


∈
∑
j Ui

2

ˆ ˆ ( ; ˆ ) ( ; ˆ )

ˆ ( ; ˆ ) ( ; ˆ )

σ φ

ψ

2

1

1= − +{ }
− +{




=
∑n

y g N h R

g N h R

i i i
i

n

j j

θθ ττ

θθ ττ }}


∈
∑
j Ui

2
� (12)

The function should be minimized w.r.t. φ snd ψ. 

We define the estimated parameters as ( )ˆ, ˆφ ψ . 

Then, AIC and BIC of y are given by

AIC( ) log( ) logy = + +n e n p2 22π σ̂

BIC( ) log( ) log log( )y = + +n e n n p2 2π σ̂

where p is the total number of estimated param-

eters.

Let call us this pseudo-maximum likelihood 

(PML) estimation.

5. Modeling for Partly Deforested 

Coverage Ratios

Actual forest coverage conforms to the 

0,1-inflated distribution. In deserts or in the sea, 

there are no forests. In the climax forest, usually 

the land is covered fully by forest. Therefore 

divide the observed area into three classes = D0 

= {s ∈ D | Fs = 0}, D1 = {s ∈ D | Fs = 1}, and D2 = 

{s ∈ D | 0 < Fs < 1}. See Nishii and Tanaka[4, 5, 

6] for details.

D2 is the class to explore the functional forms 

of deforestation by human population interactions 

here. Asymptotic lower and upper bounds with 

homosedastic error assumption give anomaly in 

analysis. We suppose therefore that the logit 

transformation of forest areal rate 

lF N R F
F( , ) log= −1

 is expressed by the following 

additive model:

lF(N, R) = α0 + g(N) + h(R) + e,

� (–∞ < lF < ∞)　(13)

where α0 is intercept.

Figures 2 and 3 of the step functions 

described in Section 3.1 in Japanese test area 

(data size: 6762) strongly indicate that the shapes 

should be sigmoidal. Thus we investigated func-

tions in Table 2. As the result, Tanaka and 

Nishii[9] obtained lF(N, R) = α0 + g2(N) + h2(R) 

showed the best result among the models both 

in Hiroshima with 1 km2 cell resolution of high-

precision, and Chinese test areas with resolution 

of Table 1.

Figure 2  h0(R) and h2(R) vs. R.
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Next, to get better fitness to real data, vari-

able addition is examined. So far we used relief 

energy as a rough measure of slope steepness, 

but more careful consideration should be taken 

into account.

As the candidate additional models for 

regression functions h(Ds(1), ..., Ds(M)) we con-

sidered are: (a) functions h*(Rs) of the relief 

energy, Rs = maxi{Ds(i)} – mini{Ds(i)}. (b) 

Functions h*(Ds) of the averaged altitude, 

D D i Ms si
M=
=∑ ( )/

1
. (c) Functions h*(Vs) of the 

sample variance, V D i D Ms s si
N≡ −
=∑ ( ( ) ) /2

1
 at 

the site ‘s’. (d) Sum of two or all regression 

functions in the above, where h*(·) may be para-

metric or non-parametric functions.

The best parametric model was of the form 

Figure 3  g0(n) and g2(n) vs. log(N+1).
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Table 2  Regression Functions

g N N1 1( ) log( )= − +β
g N

N2
1

2 3

1

21 1 1
( )

exp log( ) exp( )
= −

+ − +{ } +
+

β
β β

β
β

g N N3 1 1( ) exp{ log( )}= − + β α

h x x x1 1( ) ( ) log( )= > ⋅ − +I θ δ θ

h x x x
2( ) ( ) log= > ⋅ ( )I θ δ θ

h x e x
3 3 1 3 1

2( ) exp( ) exp( )= − − −−γ γ γ γγ

h x
x4

1

2 3

1

21 1
( )

exp( ) exp( )
=

+ −
−

+
γ
γ γ

γ
γ

h2(Rs). So, the power transform to the argu-

ments of the functions like h Ds*( ) or h*(logVs) 

were examined[12, 13].

It had been known already that the term 

g2(n) give the best fitness.

The spatial model logit(F) = α0 + g2(Ns) + 

h2(Rs) + Ds showed the best result so far, which 

can be interpreted as: the higher the altitude, the 

more human effort required to remove forests, 

thus forests are kept. Detailed results will appear 

in the near future with respect to the efficacy of 

newly introduced PML with use of BIC.

6. Discussion

It is reported that adjacency to developed 

land and proximity to transportation networks 

and major human settlements are important 

factors that determine regional patterns of land 

development[2], as the fragmentation and disper-

sion of forests should be taken into account. It 

would be more accurate to take up cells that are 

in a buffer region along a timber transport alley 

for example, but before going too far, to know 

neighbor cell effect should be the primer, and 

our work verifies the bold drastic efficacy. This 

work is based on cross-sectional data, but it is 

vital to design spatio-temporal models[11]. 

GPWv4 from CIESIN, Columbia University will 

make it possible to analyze the spatial changes 

in time-series.
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