Demand Estimation and Household's Welfare Measurement : Case Studies on Japan and Indonesia

Tri Widodo*

Abstract

This paper aims to estimate households' demand function and welfare measurement under Linear Expenditure System (LES) in the case of Japan and Indonesia. In estimating the coefficients of the LES, this paper applies Seemingly Uncorrelated Regression (SUR) method. This paper gives some conclusions. First, for food consumption Indonesian households have the maximum marginal budget share on Meat and the minimum one on Fruits; meanwhile Japanese households have the maximum marginal budget share on Fish and sellfish and the minimum one on Dairy products and eggs. Indonesian households are 'meat lover' and Japanese households are 'fish lover'. Second, Indonesian households have smaller gap between minimum consumption (subsistence level) and average consumption than Japanese households have. Third, with the same level of price increase on foods the simulation shows that in nominal-term (Yen, \mathfrak{Y}) Japanese households get greater welfare decrease than Indonesian households get. However, in the percentage of total food expenditure, Indonesian households get greater welfare decrease than Japanese households get. Fourth, for the period 2000-2004 the changes of prices in living expenditure increased both Japanese All Households and Japanese Worker Households more than \$4,500.

Keywords: Linear Expenditure System (LES), Seemingly Uncorrelated Regression (SUR), Compensating Variation (CV), Equivalent Variation (EV).

^{*} Doctoral Program, Graduate School of Economics, Hiroshima University of Economics, Hiroshima, Japan. The author would like to thank Prof. Masumi Hakogi, Prof. Toshiyuki Mizoguchi and all participants of discussion conducted at Hiroshima university of Economics June 27th, 2006 for helpful comments and corrections.

1. Introduction

An individual household gets welfare (utility) from its consumption of goods and services, such as food, clothes, housing, fuel, light, water, furniture, transportation and communication, education, recreation and so on. The idea of standard of living relates to various elements of household's livelihood and varies with income. When income was low as in Japan in the 1950s this could be indicated mainly by the consumption level, especially of foods. After most of the households were able to meet basic needs in the 1960s, household consumption on semi-durable and durable goods became measure of the standard living (Mizoguchi, 1995). How many goods and services the individual household might have access depends very much on many factors such as income, prices of goods (complementary and substitution), availability of goods in market, etc.

In the basic microeconomics theory, it is assumed that the individual household wants to maximise its welfare (utility) subject to its income. It is achieved by determining the optimal number of goods and services (Mas-Colell et al., 1995). Therefore, some changes not only in prices of goods and services but also in the individual household's income will affect the individual household's welfare. As the income increased as high as the other developed countries in the 1970s, Japanese household's interest turned from current expenditure to financial and real assets for maintaining a stable life in the present and in the future. Further, in such a higher income level country as Japan, households start preferring leisure hours to overtime pay.

The prices of goods and services and income might be determined by market mechanism or government intervention. By market mechanism means that the prices of goods and services are determined by the interaction between market supply and demand. In market, the prices will decrease if supply is greater than demand (excess supply); in contrast, the prices will increase when demand is greater than supply (excess demand). The government might control the prices of goods and services for some reasons; such as equality in distribution, pro-poor government policy, floor and ceiling prices policy (for example in agricultural products: e.g.rice), efficiency, etc. The goods and services which the prices are determined by the government are called administrated goods (Tambunan, 2001). In Indonesia, for example, the government determines the prices of fuel (*Bahan Bakar Minyak*, BBM), electricity, telephone, minimum wage and so on. Therefore, estimation demand and welfare measurement of the individual household are very interesting to be analysed.

This paper has some aims i.e. to derive a model of demand and welfare measurement of an individual household; to estimate the model for Japan and Indonesia cases; to make some simulation from the estimation. The rest of this paper is organized as follows. Part 2 gives the theoretical framework that will be used. Data and estimation method are presented in part 3. Research findings will be presented in part 4. Finally, some conclusions are in part 5.

2. Theoretical Framework

This paper will estimate the measurement of household welfare-change and then use the estimation for analyzing the welfare impact of price changes due to any shocks - such as government policies, economic crisis-in the case of Japan and Indonesia. Figure 1 shows the theoretical framework of this paper. The welfare analysis in this paper is mainly derived from the household consumption. Theoretically, the household demand for goods and services is a function of prices and income (by definition of Marshallian demand function). Therefore, some changes in income and prices of goods and services will directly affect the number of goods and services and indirectly affect household welfare.

2.1. Estimating Demand, Indirect Utility and Expenditure Function

To get the measurement of welfare change, we have to estimate the household expenditure function. For that purpose, some steps should be followed. *Firstly*, the household utility function should be established. In this paper, the household's utility function is assumed to be Cobb-Douglas function which can derive the Linear Expenditure System of demand (LES) (Stone, 1954). This assumption is taken because the Linear Expenditure System (LES) is suitable for the household consumption/demand⁽¹⁾. *Secondly*, the Linear Expenditure System.

Figure 1. Theoretical Framework

ture System of household demand can be estimated by using available data. Therefore the household demand function (Marshallian and Hicksian) for each food commodity can be found. From the estimated demand function, we can derive the household indirect utility and expenditure function. *Finally*, for the purpose of policy analysis the welfare change can be measured by comparing the household expenditure pre and post shock or government policy. These stages will be expressed in the next paragraphs.

Marshallian Demand System

In this paper, it is assumed that the households have a utility function following the more general Cobb-Douglas. Stone (1954) made the first attempt to estimate a system equation explicitly incorporating the budget constraint, namely the Linear Expenditure System (LES). In the case of developing countries, this system has been used widely in the empirical studies in India by some authors (Pushpam and Ashok (1964), Bhattacharya (1967), Ranjan (1985), Satish and Sanjib (1999)).

Formally the individual household's preferences defined on n goods are characterized by a utility function of the Cobb-Douglas form. Klein and Rubin (1948) formulated the LES as the most general linear formulation in prices and income satisfying the budget constraint, homogeneity and Slutsky symmetry. Basically, Samuelson (1948) and Geary (1950) derived the LES representing the utility function:

 $U_{(x_1 \cdots x_n)} = (x_1 - x_1^o)^{\alpha_1} (x_2 - x_2^o)^{\alpha_2} (x_3 - x_3^o)^{\alpha_3} \cdots (x_n - x_n^o)^{\alpha_n} \cdots (x_n -$

The individual household's problem is to choose x_i that can maximize its utility $U(x_i)$ subject to its budget constraint. Therefore, the optimal choice of x_i is obtained as a solution to the constrained optimization problem as follows:

Max
$$U_{(X_i)} = \prod_{i=1}^{n} (x_i - x_i^o)^{\alpha_i}$$

 X_i

Subject to:

 $PX \le M$

Solving the utility maximization problem, we can find the Marshallian (uncompensated) demand function for each commodity x_1 as follows:

Since a restriction that the sum of parameters α_i equals to one, $\sum_{i=1}^{n} \alpha_i = 1$, is imposed equation (2) becomes:

Equation (2) can be also reflected as the Linear Expenditure System as follows:

$$p_i x_i = p_i x_i^o + \alpha_i \left(M - \sum_{j=1}^n p_j x_j^o \right) \text{ for all } i \text{ and } j \cdots (4)$$

This equation system (4) can be interpreted as stating that expenditure on good i, given as p_1x_1 , can be broken down into two components. The first part is the expenditure on a certain base amount x_1° of good i, which is the minimum

expenditure to which the consumer is committed (*subsistence expenditure*), $p_i x_i^{\circ}$ (Stone, 1954). Samuelson (1948) interpreted x_i° as a necessary set of goods resulting in an informal convention of viewing x_i° as non-negative quantity.

The restriction of x_i° to be non-negative values however is unnecessarily strict. The utility function is still defined whenever: $x_i - x_i^{\circ} > 0$. Thus the interpretation of x_i° as a *necessary level of consumption* is misleading (Pollak, 1968). The x_i° allowed to be negative provides additional flexibility in allowing price-elastic goods. The usefulness of this generality in price elasticity depends on the level of aggregation at which the system is treated. The broader the category of goods, the more probable it is that the category would be price elastic. Solari (in Howe, 1954 : 13) interprets negativity of x_i° as *superior* or *deluxe* commodities.

In order to preserve the committed quantity interpretation of the x_i^{n} 's when some x_i^{n} are negative, Solari (1971) redefines the quantity $\sum_{j=1}^{n} p_j x_j^{n}$ as 'augmented supernumerary income' (in contrast to the usual interpretation as supernumerary income, regardless of the signs of the x_i^{n}). Then, defining n^* such that all goods with $i \le n^*$ have positive x_i^{n} and goods for $i > n^*$ are superior with negative x_i^{n} , Solari interprets $\sum_{j=1}^{n} p_j x_j^{n}$ as *supernumerary income* and $\sum_{j=n+1}^{n} p_j x_j^{n}$ as *fictitious income*. The sum of 'Solary-supernumerary income' and fictitious income equals augmented supernumerary income. Although somewhat convoluted, these redefinition allow the interpretation of 'Solari-supernumerary income' as expenditure in excess of the necessary to cover committed quantities.

The second part is a fraction α_i of the *supernumerary income*, defined as the income above the 'subsistence income' $\sum_{j=1}^{n} p_j x_j^0$ needed to purchase a base amount of all goods. The α_i are scaled to sum to one to simplify the demand functions. The α_i is referred to as the *marginal budget share*, $\alpha_i / \sum \alpha_i$. It indicates the proportion in which the incremental income is allocated.

Indirect Utility

The indirect utility function V(P,M) can be found by substituting the Marshallian demand x_i (equation 3) into the utility function $U(x_i)$ (equation 1).

Therefore the indirect utility function is:

Expenditure Function

Equation (5) shows the household's utility function as a function of income and commodity prices. By inverting the indirect utility function the expenditure function E(P,U), which is a function of certain level of utility and commodity prices, can be expressed as follows:

$$E(P, U) = \frac{U}{\prod_{i=1}^{n} \left(\frac{\alpha_i}{p_i}\right)} + \sum_{i=1}^{n} p_i x_i^{\circ} \text{ for all } i \text{ and } j \cdots (6)$$

2.2. Welfare Change

Equivalent Variation (EV) and Compensating Variation (CV) will be applied to analyze the impact of the price changes due to any shock or government policy. The Equivalent Variation (EV) can be defined as the dollar amount that the household would be indifferent in accepting the changes in food prices and income (wealth). It is the change in household's wealth that would be equivalent to the prices and income change in term of its welfare impact (EV is negative if the prices and income changes would make the household worse off). Meanwhile, the Compensating Variation (CV) measures the net revenue of the planner who must compensate the household for the food prices and income changes, bringing the household back to its welfare (utility level) (Mas-Colell et al., 1995: 82). The CV is negative if the planner would have to pay household a positive level of compensation because the prices and income changes make household worse off). Figure 2 visualizes the EV and CV when there is only an increase in price of one good.

If there are changes in prices and income, the EV and CV can be formulated as:

$$EV = F(p^{0}, U') - E(p, U) + (M' - M^{0})$$

$$CV = E(p^{0}, U^{0}) - E(p', U) + (M' - M^{0})$$
(8)

1-71

In the context of Linear Expenditure System (LES), equation (7) and (8) become:

EV and CV. Suppose C is composite goods and R is rice. Consider a household has income M that is spent for Rice (R) and Composite goods (C) at price P_c and P_rI , respectively. The budget line is shown by BL1. Suppose there is an increase in price of rice from P_rI to P_r2 . Therefore, the budget line becomes BL2. The household's equilibrium moves from E1 to E2. It derives the Marshallian demand curve FB (panel b). To get the original utility IC1, the household should be compensated such that BL2 shifting until coincides with IC1 at E3. The compensating variation is represented by GH in panel (a) or area P_r2ABP_rI (panel b). The equivalent variation is represented by HI in panel (a) or P_r2FDP_rI (panel b).

Figure 2. Compensating Variation (CV) and Equivalent Variation (EV)

for all i and j

Where:

 p_i^0 is the price of commodity i 'pre shock'

 p_i is the price of commodity i 'post shock'

U⁰ is level of utility (welfare) 'pre shock'

U' is level of utility (welfare) 'post shock'

M⁰ is income (expenditure) 'pre shock'

M' is income (expenditure) 'post shock'

3. Data And Estimation

Data

Basically, estimating LES model requires data on prices, quantities and incomes. For the case of Japan, this paper uses time-series secondary data. The data on yearly average monthly receipts and disbursement per household (All household and Worker household) (in Yen) are taken from Annual Report on the Family Income and Expenditure (Two or More Person Household) 1963 -2004 published by Statistics Bureau, Ministry of Internal Affairs and Communication, Japan.

The analysis is divided into two i.e. analysis on food expenditure and on living expenditure. The food expenditure covers Cereal; Fish and shellfish; Meat; Dairy products and eggs; Vegetable and seaweeds; Fruits; and Cooked food. Meanwhile, the living expenditure covers: Food; Housing; Fuel, light and water; Furniture and household utensils; Clothes and footwear; Medical care; Transportation and communication; Education; Reading and recreation; and Other living expenditure. The Other living expenditure consists of personal care, toilet articles, personal effects, tobacco, etc.

Consumer Price Indexes (CPI) on food and living expenditure (subgroup index) are taken from Annual Report on the Consumer Price Index 1963-2004 published by Statistics Bureau, Ministry of Internal Affairs and Communication, Japan. There are three year basis 1980=100; 1990=100 and 2000=100. This paper converts the index into the same base year 2000=100 (base year shifting). Prices of commodities on food and living expenditure are taken from Annual Report on the Price Survey 2000 published by Statistics Bureau, Ministry of Internal Affairs and Communication, Japan. Food commodity prices (Cereal; Fish and shellfish; Meat; Dairy products and eggs; Vegetable and seaweeds; Fruits; and Cooked food) are then derived from the simple average of two extreme prices of the items in 49 towns and villages in Japan. Prices of living expenditure (Food, Housing, Fuel, light and water, Furniture and household utensils, Clothes and footwear, Medical care, Transportation and communication, Education, Reading and recreation, and Other living expenditure) are derived from the weighted average of the items in 49 towns and villages in Japan. This paper uses the weight from the Annual Report on the Consumer Price Index 2000. Since the prices in 2000 derived, prices in the other years can be calculated by using correspondence Consumer Price Index. Data on quantity of goods or services consumed can be derived by dividing good or services expenditure with related prices.

For the case study of Indonesia, this paper uses pooled (time series and cross section, panel) secondary data about individual household's expenditure from Rural Price Statistics (*Statistik Harga Pedesaan*) and Survey of Living Cost (*Survey Biaya Hidup*) published by the Central Bureau of Statistics (*Badan Pusat Statistik, BPS*) Indonesia 1980, 1981, 1984, 1987, 1990, 1993 and 1996. The data used are consumption on foods, prices of foods, income (total expenditure) of households. For the comparison proposes between Japan and Indonesia, this paper uses the same kind of food products i.e. Cereal; Fish and shellfish; Meat; Diary products and eggs; Vegetable and seaweeds; Fruits; and Cooked food. There is no analysis of living expenditure due to the lack of availability of data on prices of living expenditures in Indonesia.

Estimation

The estimation of a linear expenditure system (LES) shows certain complications because, while it is linear in the variables, it is non-linear in the parameters, involving the products of α_i and x_i° in equation systems (3) and (4). There are several approaches to estimation of the system (Intriligator et al., 1996). The first approach determines the base quantities x_i° on the basis of extraneous information or prior judgments. The system (4) then implies that expenditure on each good in excess of base expenditure ($p_i x_1 - p_i x_i^{\circ}$) is a linear function of supernumerary income, so each of the marginal budget shares α_i can be estimated applying the usual single-equation simple linear regression methods.

The second approach reverses this procedure by determining the marginal budget shares a_i on the basis of extraneous information or prior judgments (or Engel curve studies, which estimate a_i from the relationship between expenditure and income). It then estimates the base quantities x_i^{0} by estimating the system in which the expenditure less the marginal budget shares time income $(p_i x_i - a_i M)$ is a linear function of all prices. The total sum of squared errors – over all goods as well all observations- is then minimized by choice of the x_i^{0} .

The third approach is an iterative one, by using an estimate of α_i conditional on the x_i^{0} (as in the first approach) and the estimates of the x_i^{0} conditional on α_i (as in the second approach) iteratively so as to minimize the total sum of squares. The process would continue, choosing α_i based on estimate x_i^0 and choosing x_i^0 based on the last estimated α_i , until convergence of the sum of squares is achieved.

The fourth approach selects α_i and x_i^0 simultaneously by setting up a grid of possible values for the 2n-1 parameters (the-1 based on the fact that the α_i sum tends to unity, $\sum_{i=1}^{n} \alpha_i = 1$) and obtaining that point on the grid where the total sum of squares over all goods and all observations is minimized.

This paper applies the fourth approach. The reason is that when estimating a system of seemingly uncorrelated regression (SUR) equation, the estimation may be iterated. In this case, the initial estimation is done to estimate variance. A new set of residuals is generated and used to estimate a new variance-covariance matrix. The matrix is then used to compute a new set of parameter estimator. The iteration proceeds until the parameters converge or until the maximum number of iteration is reached. When the random errors follow a multivariate normal distribution these estimators will be the maximum likelihood estimators (Judge et al., 1982: 324).

Rewriting equation (4) to accommodate a sample t=1,2,3,...,T and 10 goods yields the following econometric non-linear system:

 $p_{10t}x_{10t} \!=\! p_{10t}x_{10t}^{o} \!+\! \alpha_{10} \! \left(M \!-\! \sum_{j=1}^{10} \! p_j x_j^{o} \right) \!+\! e_{10t}$

Where: e_{it} is error term equation (good) i at time t.

Given that the covariance matrix $E|e_t e'_t| = \xi$ where $e_1 = (e_{1t}, e_{1t}, \cdots e_{10t})$ and ξ is not diagonal matrix, this system can be viewed as a set of non-linear seemingly unrelated regression (SUR) equations. There is an added complication, however. Because $\sum_{t=1}^{10} p_{tt} x_{tt} = M$ the sum of the dependent variables is equal to one of the explanatory variables for all t, it can be shown that $(e_{1t}, e_{2t}, \cdots \cdots e_{10t})=0$ and hence ξ is singular, leading to a breakdown in both estimation procedures. The problem is overcome by estimating only 9 of the ten equations, say the first nine, and using the constraint that $\sum_{i=1}^{10} \alpha_i = 1$, to obtain an estimate of the remaining coefficient α_{10} (Barten, 1977).

The first nine equations were estimated using the data and the maximum likelihood estimation procedure. The nature of the model provides some guide as to what might be good starting values for an iterative algorithm. Since the constraint that the minimum observation of expenditure on good i at time t (x_{it}) is greater than the minimum expenditure x_i^{0} should be satisfied, the minimum x_{it} observation seems a reasonable starting value for x_i^{0} in iteration process. Also the average budget share, $T^{-1}\sum_{t=1}^{T} (p_{it}x_{it}/M_t)$, is likely to be a good starting value for α_i in the iterating process (Griffith et al., 1982). It is because the estimates of the budget share α_i will not much differ from the average budget share.

4. Research Findings

Food Consumption: 'Meat Lover' and 'Fish Lover'

The individual household tries to determine the optimal level of each goods consumed. The optimal level of goods theoretically depends on prices off goods and income, *ceteris paribus*. Other factors such as prices of substitution and complementary goods, demographic characteristics, taste, number of consumers and producers in market, special circumstances, preferences and so on are assumed to remain unchanged. Under construction of LES, it is assumed that demand for a specific good is determined by its price, other good s' prices and income.

Table 1 represents the estimated parameters of equations in Linear Expenditure System model (equation 11) for foods in the case of Indonesia and Japan. There are two categories of households in Japan i.e. "All household and Worker household". All estimators for both minimum expenditure (x_1°) and marginal budget share (a_1) have positive sign. Those fulfill the theoretical requirements. Two properties of LES are that inferior and complementary goods are not allowed. Evaluation of the expression $\frac{\partial x_1}{\partial M} = \frac{\alpha_1}{p_1}$ reveals that, in

	Indonesia (annually)		Japan (monthly)			
			All Hou	sehold	Worker Household	
Food Items	Minimum Consumption, (x ₁ °)	Marginal Budget Share, (α ₁)	Minimum Consumption, (x ₁ °)	Marginal Budget Share, (<i>a</i> i)	Minimum Consumption, (x ₁)	Marginal Budget Share, (<i>a</i> 1)
Cereal	3960.684*	0.038*	0.676*	0.243*	0.869*	0.218*
Fish and shellfish	1730.131*	0.293*	10.238*	0.256*	8.734*	0.271*
Meat	550.260*	0.376*	8.832*	0.192*	13.046*	0.162*
Diary product & eggs	565.695*	0.044*	1.529*	0.003	1.563*	0.005
Vegetable & seaweeds	1231.284*	0.111*	5.131*	0.156*	4.762*	0.172*
Fruits	636.394*	0.030*	1.242*	0.107*	0.717*	0.122*
Cooked food	1059.068*	0.107*	3.184*	0.043*	3.156*	0.049*
Maximum		0.030		0.003		0.005
Minimum		0.376		0.256		0.271

 Table 1. Estimator of Parameter in the LES Model

 for Indonesia and Japan: Food

Source: see section 3, author's calculation

Note:*significant at level of significance 1%; **significant at level of significance 5%; *** significant at level of significance 10%. Detail statistics are in the Appendix.

the LES, the income elasticity is always positive, inferior goods are not allowed. Cross substitution matrix are positive with LES. However, at the high level of aggregation employed in a research, this limitation is not restrictive. It would be possible to find the negative α_i , when a research is related with the aggregation data. In fact, the goods could be normal or inferior good. Therefore, when we aggregate those goods, the nature of the goods (normal or inferior) will appear in the aggregate data. The higher level of aggregation, the less likely it is that consumption of any given category would decline with an increase in income, negative α_i (Howe, 1974 : 18).

The positive α_i means that when there is an increase in income such that supernumerary income may increase, $\left(M - \sum_{j=1}^{10} p_j x_j^0 < 0\right)$ the demand for good i will also increase (normal goods). The value of α_i indicates the share of additional expenditure going to good i. In the case of Indonesia, if there is an increase in supernumerary income, the biggest proportion of it will go to meat expenditure and the smallest proportion of it will go to fruit expenditure, i.e.

37.6 percent and 3 percent, respectively. Indonesian households can be referred as 'meat lover' households. In contrast, Japanese households (both All households and Worker households), the highest marginal budget share is for Fish and shellfish and the minimum one is for Dairy product and eggs i.e. 27.1 percent and 0.5 percent. Japanese households can be identified as 'fish lover' households. If there is increase in supernumerary income, 27.1 percent of it will be allocated for fish and sellfish expenditure.

The minimum consumption (x_i°) of both Indonesian and Japanese cases are not comparable because the data (quantity and value) used are different from each other i.e. currency, prices and unit of measurements. To make it comparable, this paper constructs the ratio between minimum consumption (x_i°) and average consumption (AC), in notation: $CR = \frac{x_i^{\circ}}{AC}$. The minimum consumption (x_i°) can be defined as the amount of goods consumed by the 'poorest household', meanwhile the average consumption (AC) can be interpreted as the amount of goods consumed by the 'average household'.

The ratio can be seen as an indicator of 'gap' between the minimum and the average expenditures (or 'gap' between the 'poorest household' and the 'average household' consumption). The ratio will lie between zero and one. The ratio CR will be close to one when the minimum consumption x_i^{0} is close to the average. There is no much difference between the minimum consumption and the average consumption. In contrast, the ratio CR will close to zero when the minimum consumption x_i^{0} is far from to the average. It is theoretically hoped, the households in developed countries which have a high level on non-food consumption, will have relatively lower CR ratio than the households in developing countries have a larger variety of food consumption than household in developing countries. Japanese consumers are increasingly looking for diversity and high quality food choices (Agriculture and Agri-Food Canada, 2005).

Table 2 exhibits the CR ratio for Indonesian and Japanese households. In general it is clearly shown that for all products except Dairy product and eggs, Indonesia has higher CR ratios than Japan has. This indicates that in the case

	Indonesia			Japan					
		muonesia	1	All Household			Worker Household		
Foods	Minimum Consumption, (xî)	Average Consumption (AC)	Ratio CR Minimum/ Average (xî/AC)	Minimum Consumption, (xî)	Average Consumption (AC)	Ratio CR Minimum/ Average (xî/AC)	Minimum Consumption, (xî)	Average Consumption (AC)	Ratio CR Minimum/ Average (xî/AC)
Cereal	3960.684	3993.837	0.992	0.676	2.012	0.336	0.869	1.976	0.440
Fish and shellfish	1730.131	1851.107	0.935	10.238	33.800	0.303	8.734	31.345	0.279
Meat	550.260	801.360	0.687	8.832	25.074	0.352	13.046	25.063	0.521
Diary product & eggs	565.695	759.083	0.745	1.529	1.550	0.987	1.563	1.595	0.980
Vegetable & seaweeds	1231.284	1366.513	0.901	5.131	9.590	0.535	4.762	9.244	0.515
Fruits	636.394	764.483	0.832	1.242	5.917	0.210	0.717	5.675	0.126
Cooked food	1059.068	1345.090	0.787	3.184	6.733	0.473	3.156	6.777	0.466
Maximum			0.687			0.210			0.126
Minimum			0.992			0.987			0.980

Table 2. Minimum, Average and Ratio

Source: see section 3, author's calculation

of Indonesia the minimum consumption of foods are close to the average food consumptions. This finding is parallel with theory. Household in Japan which is a developed country has lower CR ratio and household in Indonesia which is a developing countries has higher CR ratio.

In the case of Indonesia, the minimum CR ratio is 0.687 (meat) and the maximum ratio is 0.992 (cereal). Although it is statistically insignificant, there might be negative correlation between CR ratio and the marginal budget share. A specific food with lower CR ratio (household minimum expenditure is close to the average) will have higher marginal budget share. For example Meat has the lowest CR ratio but has the biggest marginal budget share in the case of Indonesia. In contrast, when households can relatively have access on a specific food (shown by higher the CR ratio) then the marginal budget share of it will be low. Cereal which can be gotten relatively by households (shown by high CR ratio) has relatively low marginal budget share (0.038). In the case of Japanese both All and Worker Households, Dairy product and eggs has the highest CR ratio i.e. 0.987 and 0.98 respectively. There is no much difference between the minimum and the average on it. In contrast, Fruits has the lowest CR ratio i. e. 0.21 for All households and 0.126 for the Worker household.

There are some factors affecting differences in the food consumption between Indonesia and Japan such as policy and regulation (availability, safety and quality), culture, demographic, socio-economic characteristics. The availability and diversity of foods in domestic market are affected by government policy and regulation especially on agriculture sector. Indonesia has relatively loose policies and regulations on agricultural sector, especially on food, compared to Japan. Some policies implemented by the Government of Indonesia are not in the benefit of domestic farmers. They are abolishment of fertilizer subsidy, decreasing of budget for agriculture sector and import practices of low quality rice without illegal or legal tariff (Arfian and Wijanarko 2000).

Japan has very advanced policies and regulations on agricultural sectors especially on foods, if it can not be said 'very restricted'. The Basic Law on Food, Agriculture and Rural Area maintains to give the agricultural framework and policy direction of Japan. Although trade liberalization has been made somehow in Japan, significant distortions still exist in the fields of both tariff and non tariff barriers such as import prohibitions, import licensing and quantitative restriction. Dairy products, vegetables, roots and tubers, products of the milling industry, sugar and sugar product have relatively high tariff protection (Agriculture and Agri-Food Canada 2005). Non ad-valorem duties are applied to live animal and products, vegetables, fats and oils, and prepared food. Tariff quotas are implemented to dairy products, rice, wheat, barley, prepared edible fat and starches. Import guota of rice, wheat, barley, certain milk products and silk are covered substantially by state-trading entities. A new Japanese Agriculture Standard (JAS) guarantees the traceability of imported beef and beef products not covered by the new *Beef Traceability Law*. The ministry of Agriculture, Fisheries and Food (MAFF) is establishing a new JAS for pork and considering similar standards for vegetables, rice and other agricultural products. The Food Sanitation Law established specifications and standards for genetically modified foods, and prohibited their import unless approved under the law.

Safety and quality requirements are different between Indonesia and Japan. Indonesia has institutions related to consumers -such as National

Consumer Protection Institution (Badan Perlindungan Konsumen Nasional BPKN), Indonesian Consumer Institution Foundation (Yavasan Lembaga Konsumen Indonesia YLKI), National Consumer Protection Institution Foundation (Yayasan Lembaga Perlindungan Konsumen Nasional YLPKN), Indonesian cosumer Advocating Institution (Lembaga Advokasi Konsumen Indonesia (LAKI) etc- but they are relatively powerless in intervening policy or regulation related to consumers. Law No. 8/1999 about Consumer Protection was established. Nevertheless, the implementation is still far from perfect. A Consumer co-cooperative is a valuable lesson from Japanese case. The Japanese movement of cooperatives goes back to the 19th century when the first consumer cooperative was established in 1896. Today, the Japanese consumer cooperatives have established themselves as a major force in the retailing industry, foods are the dominant products for them. The Japanese Consumers' Co-operative Union (JCCU) develops its own food standards, much stricter than those imposed by the government and ensures that food and co-op brand products supplied by their members meet its own standards for safety and quality (JCCU 2002-2003). The revision of the Food Sanitation Law and the passage of the new Basic Law for Food Safety in 2003 gave consumer cooperatives a central role in food safety (JCCU, 2002-2003). In the past (New Order regime), Indonesia had many kinds of co-operatives including consumer co-cooperative. But they did not develop well because the governments used them as 'political commodity'.

Religions, geography, climate and cultural belief, basic nutritional requirements and the unaccountable elements of tastes and preferences might affect the development of a particular country's eating habits and cuisine. In the Japanese case, it might be guessed that fish and seafood — both fresh and preserved- play an important dietary role in daily life. Generally speaking, Japanese are supposed to enjoy meals with their eyes. 'Nature' and 'harmony' are words used to represent Japanese food which is served in a very artistic and three-dimensional way. With preference put on freshness and natural flavour, Japanese people love foods and ingredients that are at their 'shun' (now-inseason). They believe that eating the ingredients that are at their 'shun' will be good for the health and spiritual life. The Japanese food culture is also influenced by religious beliefs. Despite much longer existence of Shinto and Confucianism, Buddhism became the official religion of Japan in the sixth century. During the following 1,200 years, meat was a prohibited food to the Japanese because Buddhist teaching did not allow killing of animals for food. Meat was allowed for sale and consumption only after the Meiji Restoration in 1867. Although meat is widely consumed, only certain cuts are preferred (Agriculture and Agri-Food Canada 2005). In contrast, Moslem religion is the dominant religion in Indonesia. Indonesia is the biggest Moslem country in the world. At least, there are two big religion days of Islam i.e. *Idul Fitri and Idul Adha*. In the *Idul Adha*, Moslem people cut sheep and cow for sacrificing and distribute them to the society. *Idul Fitri* is the holy day celebrating the end of the fasting time holly Ramadan. In the *Idul Fitri*, Indonesian moslem households always serve delicious foods in which the ingredient is meat.

Food Consumption: Welfare Change

In the developed countries like Japan, it is common that prices are relatively stable. Figure 3 exhibits only small upward tendencies of foods except Cereal during period 1963-2004. There was a sharp increase of Cereal in 1974 -1987, but after then its fluctuation became flattered in a certain level. There

Figure 3. Price of Foods, (1963-2004)

has been change in food consumption (Agriculture and Agri-Food Canada 2005). Due to rapid economic growth in the 1960s and 1970s, the traditional way of eating, reliant on rice and fish, gradually shifted towards new food products such as livestock and dairy products. The mid-1980s saw the emergence of a variety of processed foods and the proliferation of fast food restaurants. In 1990s, there were change in dining pattern from the traditional form of dining at home at a fixed time with all household members present to 'flexible meal pattern' with family members having own meals at different times to suit their lifestyles and schedules. These development leads to a strong preference for processed foods and eating out.

Table 3 represents the annual average growths of prices and quantities demanded by both All household and Worker household 1963-2004 in Japan. The food with highest annual average growth of price was Fish and shellfish (5. 16%). It was followed by Vegetable and seaweeds (5.07%), Cereal (3.87%), Fruits (3.40%), Meat (3.21%), Cooked food (2.17%) and finally Diary product and eggs (2.05%). There were negative growth of quantity demanded by All household and Worker household for cereal (-2.13% and -2%, respectively), Fish and shellfish (-1.51% and -1.53, respectively), vegetable and seaweeds (-0. 89% and -1.92%, respectively) and Fruits (-0.14% and -0.39% respectively). In contrast, there were positive annual growths of quantity demanded by All household and Worker Household for Meat (0.75% and 0.47% respectively),

Foods	ingroose of Prize	Growth of Quantity Demanded			
roous	increase of Flice	All Household	Worker Household		
Cereal	3.89	-2.13	-2.00		
Fish and shellfish	5.16	-1.51	-1.53		
Meat	3.21	0.75	1.00		
Dairy products & eggs	2.05	0.47	0.47		
Vegetable & seaweeds	5.07	-0.89	-0.92		
Fruits	3.40	-0.14	-0.39		
Cooked food	2.17	0.66	0.71		

 Table 3 Annual Average Growth of Food Prices and Quantity Demanded
 (in percent/year), 1963-2004

Source: see section 3, author's calculation

Walfara Change Maggurament	Indonesia	Japan		
wenare change measurement	muonesia	All Household	Worker Household	
Equivalent Variation (EV) - In currency (per year) - In percentage of total expenditure (%)	- Rp3,728.08 (-¥ 46.60*) (-0.341)	- ¥ 128.29 (-0.334)	- ¥122.06 (-0.330)	
Compensating Variation (CV) - In national currency (per year) - In percentage of total expenditure (%)	-Rp3,740.07 ([–] -¥46.751*) (-0.342)	- ¥ 128.73 (-0.335)	- ¥ 122.48 (-0.331)	

 Table 4. Individual Household's Welfare Change of Food Consumption (per month)

Source: see section 3, author's calculation

Note:*exchange rate \$1=Rp 80 (Rp is Indonesian currency, Rupiah)

Dairy products and eggs (0.47%) and Cooked food (0.66% and 0.71% respectively). It implies that there were decreases in quantity demanded for Cereal, Fish and shellfish, Vegetable and seaweeds, and fruits and increases quantity demanded on Meat, Dairy products of eggs and cooked food for 1963-2004.

The increase of prices will be used to make a simulation of welfare changes. We also use the similar increase of prices in the case of Indonesia for comparison proposes. As previously described in part 3, if there were changes in prices there might be changes of households' welfare measured by Compensating Variation (CV) and Equivalent Variation (EV).

Table 4 represents the CV and EV. The price changes have caused a decrease of household's welfare. The welfare decrease in the Japanese households is almost three times of the Indonesian household. The Indonesian household's welfare measured by EV and CV are Rp 3,728 and Rp 3,740 which is equal to $\frac{1}{4}$ 46.60 and $\frac{1}{4}$ 46.75 at the exchange rate $\frac{1}{4} = \text{Rp 80}$, respectively. At the same price changes, Japanese household get decrease welfare measured by EV and CV ; i.e. $\frac{128.28}{128.73}$ for All Household and $\frac{1}{4}$ 122.06 and $\frac{1}{4}$ 122.48 for Worker Household, respectively. Although Japanese household undergo greater welfare decrease in absolute amount, in relatively to total food expenditure Indonesian household have greater welfare decrease.

Living Expenditure

This part describes the estimation of the LES for the broader group of

expenditure than food expenditure previously analyzed i.e. living expenditure in the case of Japan. We do not analyze Indonesian case because there is no data on prices of living expenditure. The living expenditure consists of Food; Housing; Fuel, light and water charges; Furniture and household utensils; Clothes and Footwear; Medical care; Transportation and communication; Education; Reading and recreation; and Other living expenditure. The Other living expenditure consists of personal care services, toilet articles, personal effects, tobacco, etc.

Table 5 exhibits the estimated parameters of equations in LES model (equation 14) for living expenditure items in the case of the Japanese household, both All household and Worker household. The minimum consumption (x_1°) of specific expenditure is a minimum quantity of the packet of goods/services in

		Jaı	oan		
and the second sec	All Ho	usehold	Worker Household		
Living Expenditure Items	Minimum Consumption, (x _i)	Marginal Budget Share, (<i>a</i> ı)	Minimum Consumption, (x _i)	Marginal Budget Share, (<i>a</i> ı)	
Food	45.95*	0.04**	30.13*	0.16*	
Housing	1.58*	0.06*	2.13*	0.03*	
Fuel, Light & Water Charges	4.22*	0.06*	4.41*	0.03*	
Furniture & Household Utensils	3.00*	0.04*	2.23*	0.04*	
Clothes and Footwear	20.27*	0.01	3.34***	0.09*	
Medical care	6.50*	0.04*	8.37*	0.02*	
Transportation and Communication	5.66*	0.18*	15.22*	0.07*	
Education	23.00*	0.06*	23.65*	0.05*	
Reading and Recreation	11.49*	0.13*	13.13*	0.08*	
Other living expenditure	14.15*	0.39*	1.89*	0.43	
Maximum		0.39		0.43	
Minimum		0.01		0.02	

 Table 5. Estimator of Parameter in the LES Model for Japan: Living Expenditures

 (Monthly)

Source: see section 3, *author calculation* Note:*significant at level of significance 1%

**significant at level of significance 5%

***significant at level of significance 10% Detail statistics are in the Appendix the specific category consumed by individual household in a month. Therefore, if we want to know the minimum expenditure we just need to multiply the minimum consumption with corres ponding general price.

All estimators both minimum consumptions (x_1°) and marginal budget share (a_1) have positive sign. Those fulfill the theoretical requirements. All estimators are significant less than 1% level of significance except minimum consumption of Clothes and footwear in the case of Worker household which is significant at 10% level of significance. In addition, the marginal budget share of Clothes and footwear in the case of All household and the marginal budget share of Other living expenditure are statistically insignificant. The last two rows of Table 5 represents maximum and minimum values of marginal budget share of the All household and the Worker household. The maximum marginal budget share is for other living expenditure, i.e 0.39 for the All household and 0.43 for the Worker household. It means that if there is an additional supernumerary income, the expenditure on Miscellaneous will get highest proportion.

Figure 4. Consumer Price Index: Living Expenditure Group, 1963-2004 (2000=100)

Source: SBMIAC-Japan, Annual Report on the Consumer Price Index 1963-2004. Note: Author conducts the base year shifting from 1980=100 and 1990= 100 into 2000=100. See: Appendix 1 for the detail base year shifting

Welfare Change Simulation: Japan 2000-2004

Figure 4 exhibits Consumer Price Index (CPI) for Living Expenditure Group: Food; Housing; Fuel, light and water charges; Furniture and household utensils; Clothes and footwear; Medical care; Transportation and communication; Education; Reading and recreation; and Miscellaneous. It is interesting to analyse the change in CPI for living expenditure group especially 'before' and 'after' 2000. Furniture and household utensil had the highest index before 2000 and it becomes the lowest after 2000. The index of Furniture and household has downward tendency since 1993. In contrast, Education had lowest index before 2000 and it becomes the highest after 2000. The index of Eduction has an upward tendency.

For the last four year period (2001-2004) compared to 2000, there were price changes in living expenditure. There was deflation in Furniture and household utensils; Reading and recreation; Clothes and footwear; Transportation and communication; Fuel, light and water charges; and Housing. In contrast, there was inflation in Medical care; Education and Miscellaneous. The index of housing is relatively stable. Table 6 shows the average annual price changes. We use these price changes to simulate the welfare impact.

Table 7 represents the welfare impact of price change in 2000–2001 based on the price changes represented in Table 6 under the assumption of no-change

Itoms	Year					
Items	2000-2001	2001-2002	2002-2003	2003-2004		
Food	-0.60	-0.80	-0.20	0.91		
Housing	0.20	-0.10	-0.10	-0.20		
Fuel, Light & Water Charges	0.60	-1.19	-0.50	0.10		
Furniture & Household Utensils	-3.60	-3.63	-3.01	-3.33		
Clothes and Footwear	-2.20	-2.25	-1.88	-0.21		
Medical care	0.70	-1.19	3.42	0.00		
Transportation and Communication	-0.90	-0.61	0.10	-0.20		
Education	1.10	0.99	0.59	0.68		
Reading and Recreation	-3.00	-2.16	-1.48	-1.39		
Other living expenditure	-0.20	0.20	0.90	0.59		

Table 6. Price Change of Living Expenditure

Source: see section 3, author calculation

Period	Household	Equivalent Variation (EV)	Compensating Variation (CV)
200 2001	All Household	2,319	2,303
200-2001	Worker Household	2,459	2,440
2001-2002	All Household	2,425	2,411
	Worker Household	2,516	2,500
2002-2003 -	All Household	247	248
	Worker Household	226	226
2002 2004	All Household	-443	-443
2003-3004	Worker Household	-426	-427
0000 0004	All Household	4,548	4,519
2000-2004	Worker Household	4,774	4,739

Table 7. Welfare Effect of Prices Change: 2000-2004 (in Ξ per year)

Source: see section 3, author calculation

in income. The price changes during the period 2000-2004 increased welfare measured by EV and CV, $\underbrace{}$ 4,548 and $\underbrace{}$ 4,519 respectively for All Household; and $\underbrace{}$ 4,774 and $\underbrace{}$ 4,739 respectively for Worker Household.

5. Conclusions

This paper uses Linear Expenditure System (LES) in deriving demand and welfare measurement. Seemingly Uncorrelated Regression (SUR) is applied to estimate the demand. Some conclusions are withdrawn. *First*, Indonesian households have the maximum marginal budget share on Meat and the minimum one on Fruits; meanwhile Japanese households have the maximum marginal budget share on Fish and sellfish and the minimum one on Dairy product and eggs. Indonesian households are 'meat lover' and Japanese households are 'fish lover'. *Second*, Indonesian households have smaller gap between minimum consumption (subsistence level) and average consumption than Japanese households have. *Third*, with the same level of price increase on foods, in nominal-term (Yen, ¥) Japanese households undergo greater welfare decrease than Indonesian households do. In the percentage of total food expenditure, Indonesian households undergo greater welfare decrease than Japanese households do. *Fourth*, for period 2000-2004 the price changes in

living expenditure increased welfare for both All Household and Worker Household.

For future study, a research might consider number of family member (household size) for example one-person and two or more person household. In the literature, it is called demographic equivalent scale. This can show us the marginal living cost of the one additional household's member. Another research can be also conducted for several different groups of household for example: income group, location (district, rural-urban), etc.

Notes

- For detailed information, see Barten (1977), Deaton and Muellbauer (1980), Philips (1993) and Deaton (1986).
- (2) This paper does not take into account the variation of areas (urban and rural) and times. It is simply assumed that there are no differences within areas and time. See Gudjarati (2000) for detail explanation about panel-data models.
- (3) For a detailed explanation about iterative algorithms, see Griffith et al 1982.
- (4) Mizoguchi (1995) states that the 1959 National Survey of Family Income and Expenditure (Zenkoku Shohi Jittai Chosa), NISFIE, was the first effort to capture household expenditure in rural area because the Family Income and Expenditure Survey (Kakei Chosa), FIES, was restricted to the urban area before 1962. As in the FIES, forestry, farming and fishery households were not included in the NSFIE sample frame but were included after the 1984 survey. Therefore, the recent NISFE covers nearly all households in Japan in the population frame.
- (5) By construction of LES, a poorest household is the household which consume in the minimum amount of goods (subsistence level, x^o).
- (6) There is indication negative correlation between marginal budget share and the CR ratio. Here, the correlation between marginal budget share and the CR ratio:

		Marginal Budget Share	CR Ratio
Marginal Budget Share	Pearson Correlation	1	~.303
	Sig. (2-tailed)		.510
CR Ratio	Pearson Correlation	303	1
	Sig. (2-tailed)	.510	•

Indonesia Households:

		Marginal Budget Share	CR Ratio
Marginal Budget Share	Pearson Correlation	1	672
	Sig. (2-tailed)		. 098
CR Ratio	Pearson Correlation	672	1
	Sig. (2-tailed)	. 098	•

Japan: All Households

Japan: Worker Households

		Marginal Budget Share	CR Ratio
Marginal Budget Share	Pearson Correlation	1	592
	Sig. (2-tailed)		.161
CR Ratio	Pearson Correlation	592	1
	Sig. (2-tailed)	.161	

(7) Minimum expenditure of living expenditure i item can be calculated by using formula $p_i x_i^{\alpha}$. The sum up of the minimum expenditure (i) refers to the poor household's expenditure which can be used as measurement of poverty line. Poverty line under LES is $\sum p_i x_i^{\alpha}$

References

- Agriculure and Agri-Food Canada, 2005. 'Changing consumer and market demands in Canada' s priority markets: Japan'. *Bulletin* No.1, ISBN 0-662-39322-8. Cited on 10 June 2006: www.agr.gc.ca/spb/rad-dra/publications/japan/japan_e.php
- Arfian, M. and A. Wijanarko, 2000. 'Kondisi dan tangangan ke depan sub sector tanaman pangan di Indonesia. *Proceedings of the Fourth Symposium on Agri-Bioche*. Cited on 13 June 2006: http://www.istecs.org/Publication/Japan/000305_arfian. PDF
- Barten, A.P., 1977.'The system of consumer demand function approach: a review'. Econometrica 45: 23-51. Also in M.D. Intriligator, Ed., Frontier of Quantitative Economics, Vol.3. Amsterdam:North-Holland Publishing Company.
- Bhattacharya, N., 1967. 'Consumer behaviour in India- an application of the Linear Expenditure System'. *Economic and Political Weekly*, Dec. 2.
- Deaton A.S. and J. Muellbauer., 1980. *Economic and Consumer Behaviour*. Cambridge: Cambridge University Press.
- Deaton, A.S., 1986. 'Demand analysis'. in Z. Griliches and M.D. Intriligator, Ed, *Handbook* of *Econometrics*, Vol. 2. Amsterdam: Norh-Holland Publishing Company.
- Geary, R.C., 1950. 'A note on a constant utility index of the cost of living'. Review of Economic Studies. XVIII (I). No. 45: 65-66.

Gujarati, Damodar. 200. Basic Econometrics. Fourth Edition. Mc Graw Hill.

- Griffiths, W., R.C. Hill and G.G. Judge, 1993. *Learning and Practicing Econometrics*. John Wiley and Sons, Inc. Canada.
- Hicks, J., 1939. Value and Capita, Oxford: Clarendon Press.
- Howe, H., 1974. Estimation of the linear and quadratic expenditure systems: A cross-section case for Colombia. University Microfilm Internatinal, Ann Arbor, Michigan, USA, London, Engalnd.
- Intriligator, M.D., Bodkin, R.G. and Hsiao, C., 1996. *Econometric Models, Techniques, and Applications*. Prentice-Hall Inc, Upper Saddle River, NJ 07458.

JCCU (Japanese Consumers' Cooperative Union). 2002-03. Co-op for a Better Tomorrow.

- JCCU (Japanese Consumers' Cooperative Union). 2002-03. Co-op Fact and Figure.
- Judge, G.G., Hill. R.C., Griffiths. W.E. Helmut, L., and Lee. T.C., 1982. Introduction to the Theory and Practice of Econometrics. John Wiley and Sons, Inc. Canada
- Klein, L.R., and Rubin, H., 1948. 'A constant utility index of the cost of living'. Review of Economic Studies. XV(2). No. 38: 84-87.
- Mas-Colell, A., Whinston, M.D. and Green, J.R., 1995. *Microeconomic Theory*. Oxford University Press. New York.
- Mizoguchi, T., 1995. Reform of Statistical System under Socio-Economic Changes: Overview of Statistical Data in Japan. Maruzen Co., Ltd. Tokyo, Japan.
- Philips, L., 1993. Applied Consumption Analysis. Revised and enlarged ed. Amsterdam: North Holland Publishing Company.
- Pollak, R.A., 1968. 'Additive utility function and linear Engel curves'. Discussion Paper. No 53, Department of Economics, University of Pennsylvania, revised Feb.
- Puspham, P. and Ashok, R., 1964. " Demand elasticity for food grain'. Economic and Political Weekly. Nov. 28.
- Ranjan, R. 1985. 'A dynamic analysis of expenditure pattern in rural India'. Journal of Development Economics. Vol. 19.
- Samuelson, P.A. ,1948. 'Some implication of linearity'. Review of Economic Studies. XV (2). No. 38: 88-90
- Samuelson, P.A. dan Nordhaus, W.D., 2001. *Microeconomics*. Seventeenth Edition. McGraw-Hill. New York:.
- Satish, R. and Sanjib, P., 1999. 'An analysis of consumption expenditure of rural and urban income groups in LES framework. ASIAN Economies.
- Solari, L., 1971. Th
 órie des Choix et Fonctions de Consommation Semi-Agr
 ég
 ées: Mod
 éles Statiques. Gen
 éve: Librairie Droz: 59-63.
- Stone, R., 1954. 'Linear expenditure system and demand analysis: an application to the pattern of Britissh demand.' *Economic Journal*. 64: 511–27.
- Tambunan, Tulus, 2000. Perekonomian Indonesia. Ghalia Indonesia. Jakarta.
- The Central Bureau of Statistics (Badan Pusat Statistik, BPS) of Indonesia, 1980, 1981, 1984, 1987, 1990, 1993, 1996. Statistik Harga Konsumen Pedesaan Di Java Dan Sepuluh Provinsi Luar Java (Rural Consumer Price Statistics in Java and Ten Provinces Out of Java). Jakarta.
 - ____, 1980, 1981, 1984, 1987, 1990, 1993, 1996. Survey Biaya Hidup (Survey of Living Cost). Jakarta.

Appendix: Estimation of LES model on Food (Indonesia)

Estimation Method: Iterative Seemingly Unrelated Regression (Marquardt) Sample: 1 300

Simultaneous weighting matrix & coefficient iteration Convergence achieved after: 7 weight matrices, 8 total coef iterations

	Coefficient	Std. Error	t-Statistic	Prob.	
C(2)	1730.131	96.80288	17.87272	0.0000	
C(9)	0.292974	0.011889	24.64156	0.0000	
C(1)	3960.684	101.2355	39.12347	0.0000	
C(3)	550.2596	53.27179	10.32929	0.0000	
C(4)	565.6951	51.96354	10.88639	0.0000	
C(5)	1231.284	47.68557	25.82090	0.0000	
C(6)	636.3937	34.52336	18.43372	0.0000	
C(1)	0.375768	0.011209	9.105/01	0.0000	
C(10)	0.010700	0.011290	A2 A3871	0.0000	
C(12)	0.111490	0.003220	34 62540	0.0000	
C(13)	0.030122	0.000950	31.69453	0.0000	
C(14)	0.107333	0.003646	29.43464	0.0000	
Determinant residual cov	ariance	4.93E+66			
Equation: Q2*P2=C(2)*P	2+C(9)*(M-P	1*C(1)-P2*C(2)-	P3*C(3)-P4*(C(4)-P5	
*C(5)-P6*C(6)-P7*C(7))					
Observations: 300	(* <i>//</i>				
R-squared	0.861994	Mean depend	lent var	4354403.	
Adjusted R-squared	0.858686	S.D. depende	ent var	4591288.	
S.E. of regression	1725946.	Sum squared	resid	8.70E+14	
Durbin-Watson stat	0.959482				
Equation: Q3*P3=C(3)*P	3+C(10)*(M-F	P1*C(1)-P2*C(2))-P3*C(3)-P4	*C(4)-P5	
*C(5)-P6*C(6)-P7*C	(7))				
Observations: 300					
R-squared	0.886532	Mean depend	ent var	3772903.	
Adjusted R-squared	0.883812	S.D. depende	nt var	4740444.	
S.E. of regression	1615846.	Sum squared	resid	7.62E+14	
Durbin-watson stat	1.001032				
Equation: Q4*P4=C(4)*P	4+C(11)*(M-F	P1*C(1)-P2*C(2))-P3*C(3)-P4	*C(4)-P5	
	(7))				
P squared	0.026196	Moon depend	ontvor	100000 0	
Adjusted R-squared	0.936160	S D depende	en var	400200.0 561383 0	
S E of regression	143503.0	Sum squared	resid	6 01F+12	
Durbin-Watson stat	1.033030	oum oquarou	10010	0.012.12	
Equation: O5*D5=C/5)*D	5+C(12)*/M E	1*0(1) 02*0(2)	D2*C(2) D4		
*C(5)_P6*C(6)_P7*C	0∓C(12) (№-г (7))	-1 (1)-F2 (2)		C(4)-F0	
Observations: 300	('))				
R-squared	0.931772	Mean depend	ent var	1802176	
Adjusted R-squared	0.930137	S.D. depende	nt var	1766393.	
S.E. of regression	466886.7	Sum squared	resid	6.37E+13	
Durbin-Watson stat	1.217527	•			
Fountion: O6*P6=C(6)*P		21*C(1)-P2*C(2)	_P3*C(3)_P4*	C(4)-P5	
*C(5)-P6*C(6)-P7*C	(7))		-100(0)-14	0(4)-10	
Observations: 300	(*))				
R-squared	0.892112	Mean depend	ent var	395425.4	
Adjusted R-squared	0.889525	S.D. depende	nt var	419288.6	
S.E. of regression	139362.1	Sum squared	resid	5.67E+12	
Durbin-Watson stat	1.143906				
Equation: Q7*P7=C(7)*P	5+C(14)*(M-F	P1*C(1)-P2*C(2)	-P3*C(3)-P4*	C(4)-P5	
*C(5)-P6*C(6)-P7*C	(7))		(-) - 1		
Observations: 300					
R-squared	0.831429	Mean depend	ent var	937859.6	
Adjusted R-squared	0.827388	S.D. depende	nt var	1304308.	
S.E. of regression	541895.1	Sum squared	resid	8.57E+13	
Durbin-Watson stat	1.157530				

Appendix: Estimation of LES model on Food (Japan: All Household)

System: ALLHOUSEHOLDFOOD7GOODS

Estimation Method: Iterative Seemingly Unrelated Regression (Marquardt) Sample: 1963 2004

Simultaneous weighting matrix & coefficient iteration Convergence achieved after: 30 weight matrices, 31 total coef iterations

	Coefficient	Std. Error	t-Statistic	Prob.
C(2)	10.23776	1.077462	9.501740	0.0000
C(9)	0.255522	0.007457	34.26457	0.0000
C(1)	0.676021	0.145637	4.641832	0.0000
C(3)	8.832328	1.379303	6.403472	0.0000
C(4)	1.529488	0.066797	22.89768	0.0000
C(5)	5.131347	0.169412	30.28915	0.0000
C(6)	1.242047	0.307089	4.044584	0.0001
C(7)	3.183863	0.223640	14.23658	0.0000
C(10)	0.191931	0.012874	14.90898	0.0000
C(11)	0.003197	0.006366	0.502184	0.6160
C(12)	0.156375	0.003931	39.78364	0.0000
C(13)	0.107321	0.004795	22.38187	0.0000
<u>C(14)</u>	0.043132	0.004647	9.280922	0.0000
Determinant residual c	ovariance	2.80E+26		
Equation: Q2*P2=C(2) *C(5)-P6*C(6)-P7	*P2+C(9)*(M-P1 *C(7))	1*C(1)-P2*C(2)-	P3*C(3)-P4*0	C(4)-P5
Observations: 42	<i>、"</i>			
R-squared	0.992949	Mean depend	ent var	7761.045
Adjusted R-squared	0.991498	S.D. depende	nt var	2995.292
S.E. of regression	276.1869	Sum squared	resid	2593493.
Durbin-Watson stat	0.683571			
Equation: Q3*P3=C(3)	*P3+C(10)*(M-F	1*C(1)-P2*C(2)	-P3*C(3)-P4	*C(4)-P5
*C(5)-P6*C(6)-P7	*C(7))			
Observations: 42				
R-squared	0.972296	Mean depend	ent var	5854.490
Adjusted R-squared	0.966592	S.D. depende	nt var	2246.727
S.E. of regression	410.6512	Sum squared	resid	5733569.
Durbin-Watson stat	0.082885			
Equation: Q4*P4=C(4)*	*P4+C(11)*(M-F *C(7))	P1*C(1)-P2*C(2)	-P3*C(3)-P4	*C(4)-P5
Observations: 42				
R-squared	0.968851	Mean depend	ent var	3129.069
Adjusted R-squared	0.962438	S.D. depende	nt var	830.5084
S.E. of regression	160.9607	Sum squared	resid	880884.3
Durbin-Watson stat	0.640499	•		
Equation: Q5*P5=C(5)' *C(5)-P6*C(6)-P7' Observations: 42	*P5+C(12)*(M-F *C(7))	21*C(1)-P2*C(2)	-P3*C(3)-P4	*C(4)-P5
R-squared	0.998686	Mean depend	ent var	7416.419
Adjusted R-squared	0.998416	S.D. depende	nt var	2860.636
S.E. of regression	113.8691	Sum squared	resid	440849.6
Durbin-Watson stat	1.101244			
Equation: Q6*P6=C(6)* *C(5)-P6*C(6)-P7*	'P6+C(13)*(M-F 'C(7))	21*C(1)-P2*C(2)	-P3*C(3)-P4	°C(4)-P5
Observations: 42				
R-squared	0.966330	Mean depend	ent var	2866.005
Adjusted R-squared	0.959398	S.D. depende	nt var	907.0405
S.E. of regression	182.7686	Sum squared	resid	1135748.
Durbin-Watson stat	0.440875			
Equation: Q7*P7=C(7)* *C(5)-P6*C(6)-P7*	'P6+C(14)*(M-F 'C(7))	21*C(1)-P2*C(2)	-P3*C(3)-P4*	°C(4)-P5
Discivations: 42	0.052400	Moon donord	opt ver	2525 074
R-squared Adjusted P aguarad	0.902409	S D depende	en var ntvor	2020.074
Aujusted A-squared	104 2565	Sum equared	reeid	1282014
Durbin-Watson stat	184.2000	Sum squared	realu	1203011.
	0.000018			

Appendix: Estimation of LES model on Food (Japan: Worker Household)

Estimation Method: Iterative Seemingly Unrelated Regression (Marquardt) Sample: 1963 2004 Simultaneous weighting matrix & coefficient iteration Convergence achieved after: 36 weight matrices, 37 total coef iterations

	Coefficient	Std. Error	t-Statistic	Prob.
C(2)	8.733630	0.798757	10.93402	0.0000
C(9)	0.271262	0.005702	47.57661	0.0000
C(1)	0.869390	0.112168	7.750792	0.0000
C(3)	13.04640	0.935430	13.94695	0.0000
C(4)	1.562512	0.050670	30.83705	0.0000
C(5)	4.762436	0.147292	32.33336	0.0000
C(6)	0.717227	0.313160	2.290288	0.0229
C(7)	3.155576	0.273969	11.51802	0.0000
C(10)	0.161556	0.011809	13.68056	0.0000
C(11)	0.005467	0.005296	1.032283	0.3030
C(12)	0.172316	0.003446	50.00750	0.0000
C(13)	0.122392	0.005431	22.53759	0.0000
C(14)	0.049221	0.006499	7.573839	0.0000
Determinant residual co	variance	2.10E+26		
Equation: Q2*P2=C(2)*	P2+C(9)*(M-P	*C(1)-P2*C(2)-	P3*C(3)-P4*(C(4)-P5
*C(5)-P6*C(6)-P7*	C(7))			-(.,
Observations: 42	- (*)/			
R-squared	0.994529	Mean depend	ent var	7261.873
Adjusted R-squared	0.993403	S.D. depende	nt var	2873.907
S.E. of regression	233.4320	Sum squared	resid	1852677.
Durbin-Watson stat	0.322206			
	D2+C/40)*/M C	1*C(1) D2*C(2)	D2*C/2) DA	
*C(5) De*C(6) D7*	C(7))	-1 O(1) - 2 O(2)	-23 0(3)-24	C(4)-P5
Observations: 42	U (7))			
Diservations. 42	0.067795	Mean depend		E904 4E7
Adjusted D several	0.90//00	Mean depend	entvar	3091.437
Adjusted R-squared	0.901102	S.D. depende	nt var	2313.2/4
S.E. or regression	400.9429	Sum squared	resia	7068053.
Durph-Watson stat	0.050622			
Equation: Q4*P4=C(4)*	P4+C(11)*(M-F	21*C(1)-P2*C(2)	-P3*C(3)-P4	*C(4)-P5
*C(5)-P6*C(6)-P7*	C(7))			
Observations: 42				
R-squared	0.973926	Mean depend	ent var	3227.914
Adjusted R-squared	0.968557	S.D. depende	nt var	877.4583
S.E. of regression	155.5915	Sum squared	resid	823096.4
Durbin-Watson stat	0.372473			
Equation: Q5*P5=C(5)*	P5+C(12)*(M-F	P1*C(1)-P2*C(2)	-P3*C(3)-P4	C(4)-P5
*C(5)-P6*C(6)-P7*	C(7))			
Observations: 42	- (.)/			
R-squared	0.998672	Mean depend	ent var	7158,602
Adjusted R-souared	0.998399	S.D. depende	nt var	2778.454
S.E. of regression	111,1770	Sum squared	resid	420250.9
Durbin-Watson stat	0.684805			
	0.0000000	110(4) D0+0/0	D020(0) D4	
Equation: Q6"P6=C(6)"	P6+C(13)"(IVI-F	1°C(1)-P2°C(2)	-P3*C(3)-P4	·C(4)-P5
"C(5)-P6"C(6)-P7"	G(7))			
Observations: 42				
R-squared	0.949838	Mean depend	ent var	2722.292
Adjusted R-squared	0.939511	S.D. depende	nt var	861.7822
S.E. of regression	211.9516	Sum squared	resid	1527398.
Durbin-Watson stat	0.399310			
Equation: Q7*P7=C(7)*	P6+C(14)*(M-F	P1*C(1)-P2*C(2)	-P3*C(3)-P4*	°C(4)-P5
*C(5)-P6*C(6)-P7*	C(7))	.,,		
Observations: 42	,			
R-squared	0.923765	Mean depend	ent var	2550,960
Adjusted R-squared	0.908069	S.D. depende	nt var	853.2423
S.E. of regression	258,7037	Sum squared	resid	2275539
Durbin-Watson stat	1.250834			

Appendix: Estimation of LES model on Living Expenditure (Japan: All Household)

Estimation Method: Iterative Seemingly Unrelated Regression Sample: 1963 2004 Simultaneous weighting matrix & coefficient iteration Convergence achieved after: 353 weight matrices, 354 total coef

iterations

iterations				
	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	45,94734	1,144154	40,15834	0.0000
C(11)	0.038658	0.015337	2.520536	0.0121
C(2)	1.578613	0.209419	7.538062	0.0000
C(3)	4.215196	0.359267	11.73275	0.0000
C(4)	3.002279	0.157802	19.02557	0.0000
C(5)	20.26634	1.456098	13.91825	0.0000
C(6)	6.496677	0.555443	11.69639	0.0000
C(7)	23 00385	0.9442/0	0.992000	0.0000
C(9)	11 48821	0.933180	12 31082	0.0000
C(10)	14,14749	1.277116	11.07768	0.0000
C(12)	0.055397	0.011332	4.888491	0.0000
C(13)	0.060448	0.008723	6.929946	0.0000
C(14)	0.043998	0.003348	13.14252	0.0000
C(15)	0.006057	0.012247	0.494564	0.6212
C(16)	0.041151	0.003533	11.64695	0.0000
C(17)	0.183153	0.014278	12.82767	0.0000
C(18)	0.056413	0.004794	11.76735	0.0000
C(19)	0.132130	0.007510	17.09001	0.0000
	0.307.020	0.0000000	40.47 343	0.0000
Determinant residual cova	ariance	1.11E+57		
Equation: Q1*P1=C(1)*P1	+C(11)*(M-F	1*C(1)-P2*C(2)	-P3*C(3)-P4	*C(4)-P5
*C(5)-P6*C(5)-P7*C(7)-P8*C(8)-P	'9°C(9)-P10°C(1	10))	
P-squared	0.066104	Mean depend	opt var	59961 96
Adjusted R-squared	0.900104	S D depende	en var	22741 18
S E of regression	4815 051	Sum squared	resid	7 195+08
Durbin-Watson stat	0.038642	oumoquatou	10010	1.102.00
Equation: 02*P2=C(2)*P2		1*C(1)_D2*C(2)	-D3*C(3)-D4	*C(A)_P5
*C(5)-P6*C(6)-P7*C(7)-P8*C(8)-P	9*C(9)-P10*C(10))	0(4)-1-0
Observations: 42	.,	(-)(
R-squared	0.860528	Mean depend	ent var	11910.43
Adjusted R-squared	0.815536	S.D. depende	nt var	7451.764
S.E. of regression	3200.474	Sum squared	resid	3.18E+08
Durbin-Watson stat	0.121035			
Equation: Q3*P3=C(3)*P3	8+C(13)*(M-P	1*C(1)-P2*C(2)	-P3*C(3)-P4	*C(4)-P5
*C(5)-P6*C(6)-P7*C(7)-P8*Ć(8)-P	9*C(9)-P10*Č(1	10))	. ,
Observations: 42				
R-squared	0.968397	Mean depend	ent var	13246.93
Adjusted R-squared	0.958202	S.D. depende	nt var	7358.531
S.E. of regression	1504.414	Sum squared	resid	70161070
Durbin-Watson stat	0.467150			
Equation: Q4*P4=C(4)*P4	I+C(14)*(M-P	'1*C(1)-P2*C(2)	-P3*C(3)-P4	*C(4)-P5
*C(5)-P6*C(6)-P7*C(7)-P8*C(8)-P	'9*C(9)-P10*C(1	10))	
Observations: 42				
K-squared	0.966254	Mean depend	ent var	9093.167
Adjusted R-squared	0.900309	S.D. depende	nt var	3/00.166
Durbin-Watson stat	1.589041	Sum squared	realu	10042/4/
Equation: 05*05=0(5)*05+0(15)*(M.04*0(4) 02*0(2) 02*0(2) 04*0(4) 05				
*C(5)_P6*C(6)_P7*C(7)_P8*C(8)_P9*C(9)_P1*C(2)-P3*C(3)-P4*C(4)-P5				
Observations: 42	, j=1 0 0(0) - P		•))	
R-squared	0,710199	Mean depend	ent var	15297 67
Adjusted R-squared	0.616715	S.D. depende	nt var	5866.516
S.E. of regression	3631.959	Sum squared	resid	4.09E+08
Durbin-Watson stat	0.050808_		_	-

Equation: Q6*P6=C(6)*P6+C(16)*(M-P1*C(1)-P2*C(2)-P3*C(3)-P4*C(4)-P5 *C(5)-P6*C(6)-P7*C(7)-P8*C(8)-P9*C(9)-P10*C(10)) Observations: 42

Observations: 42			
R-squared	0.899724	Mean dependent var	6557.690
Adjusted R-squared	0.867377	S.D. dependent var	3703.530
S.E. of regression	1348.732	Sum squared resid	56391449
Durbin-Watson stat	0.076537		
Equation: Q7*P7=C(7)*P7	'+C(17)*(M-P	1*C(1)-P2*C(2)-P3*C(3)-P4	*C(4)-P5
*C(5)-P6*C(6)-P7*C(7)-P8*C(8)-P	9*C(9)-P10*C(10))	- () /
Observations: 42			
R-squared	0.904552	Mean dependent var	20660.10
Adjusted R-squared	0.873763	S.D. dependent var	12946.04
S.E. of regression	4599.713	Sum squared resid	6.56E+08
Durbin-Watson stat	0.068291		
Equation: Q8*P8=C(8)*P8	3+C(18)*(M-P	1*C(1)-P2*C(2)-P3*C(3)-P4	*C(4)-P5
*C(5)-P6*C(6)-P7*C(7)-P8*C(8)-P	9*C(9)-P10*C(10))	0(1):0
Observations: 42	.,		
R-squared	0.981963	Mean dependent var	9023.143
Adjusted R-squared	0.976145	S.D. dependent var	5188.639
S.E. of regression	801.3947	Sum squared resid	19909236
Durbin-Watson stat	0.390556	•	
Equation: Q9*P9=C(9)*P9	+C(19)*(M-P	1*C(1)-P2*C(2)-P3*C(3)-P4	*C(4)-P5
*C(5)-P6*C(6)-P7*C(7)-P8*C(8)-P	9*C(9)-P10*C(10))	0(1)10
Observations: 42	.,		
R-squared	0.978198	Mean dependent var	20732.33
Adjusted R-squared	0.971165	S.D. dependent var	10924.29
S.E. of regression	1855.049	Sum squared resid	1.07E+08
Durbin-Watson stat	0.151659	•	
Equation: 010*P10=C(10)*P10+C(20)*(M-P1*C(1)-P2*C(2)-P3*C(3)-P4			
*C(4)-P5*C(5)-P6*C(6)-P7*C(7)-P	8*C(8)-P9*C(9)-P10*C(10))	,,,,,,
Observations: 42	0,1,1,0(1,),1		
R-squared	0.997438	Mean dependent var	56794.12
Adjusted R-squared	0.996611	S.D. dependent var	28596.44
S.E. of regression	1664.662	Sum squared resid	85904073
Durbin-Watson stat	0.713423	•	
···· · · · · · · · · · · · · · · · · ·			

Appendix: Estimation of LES model on Living Expenditure (Japan: Worker Household)

Estimation Method: Iterative Seemingly Unrelated Regression Sample: 1963 2004

Simultaneous weighting matrix & coefficient iteration Convergence achieved after: 182 weight matrices, 183 total coef

iterations

	Coefficient	Std. Error	t-Statistic	Prob.
	30.12914	1.443349	20.87447	0.0000
C(11)	0.159825	0.009160	17.44780	0.0000
C(2)	2.127116	0.268021	7.936365	0.0000
C(3)	4,406852	0.484444	9.096718	0.0000
C(4)	2.231857	0.149199	14,95893	0.0000
C(5)	3 338788	1 904799	1 752830	0.0804
C(6)	8 367445	0.504365	16 59005	0.000
C(7)	15 21961	1 041232	14 61603	0.0000
C(8)	23 64671	2 465731	9 590142	0.0000
C(9)	13 12788	0.949276	13 82035	0.0000
C(10)	1 80/8/5	1 874412	1 010001	0.3127
C(12)	0.025640	0.000217	2 782005	0.0127
C(12)	0.0200-00	0.003217	A 772026	0.0007
C(14)	0.032139	0.000734	20 90626	0.0000
C(14)	0.0000085	0.001910	11 62022	0.0000
C(15)	0.092000	0.007916	0.002127	0.0000
C(10)	0.010334	0.002010	9.093137	0.0000
0(17)	0.071557	0.010444	0.001007	0.0000
C(18)	0.049079	0.004059	12.09011	0.0000
C(19)	0.081227	0.000435	14.94490	0.0000
C(20)	0.431541	0.010056	42.91409	0.0000
Determinant residual cov	/ariance	5.43E+57		
Equation: Q1*P1=C(1)*F	1+C(11)*(M-F	1*C(1)-P2*C(2)	-P3*C(3)-P4	*C(4)-P5
*C(5)-P6*C(6)-P7*C	C(7)-P8*C(8)-F	9*C(9)-P10*C(10))	
Observations: 42				
R-squared	0.957140	Mean depend	ent var	59040.74
Adjusted R-squared	0.943314	S.D. depende	nt var	23432.43
S.E. of regression	5578.993	Sum squared	resid	9.65E+08
Durbin-Watson stat	0.028467			
Equation: Q2*P2=C(2)*P	2+C(12)*(M-F	1*C(1)-P2*C(2)	-P3*C(3)-P4	*C(4)-P5
*C(5)-P6*C(6)-P7*C	(7)-P8*C(8)-F	9*C(9)-P10*C(10))	. ,
Observations: 42	., .,	., .	,,	
R-squared	0.942870	Mean depend	ent var	13303.00
Adjusted R-squared	0.924440	S.D. depende	nt var	7414.442
S.E. of regression	2038.088	Sum squared	resid	1.29E+08
Durbin-Watson stat	0.367242			
Equation: 02*D2=0(2)*D	2.0/12)*/М.	4*0/4) 00*0/0	D2*C(2) D4	
*C(5)_D6*C(6)_D7*C	17)_D8*C(8)_E	1 (1)-F2 (2)	-F3 C(3)-F4	0(4)-F5
Observations: 42	,(<i>r</i>)-r0 0(0)-r	3 0(3)-1 10 0(10))	
Deservations. 42	0.056055	Meen denend	antwar	10750 70
Adjusted D several	0.950955	D depend	ent var	12/09./0
Adjusted R-squared	0.943069	S.D. depende	nt var	7192.120
S.E. of regression	1710.049	Sum squared	resid	91289031
Durbin-vvatson stat	0.373301			
Equation: Q4*P4=C(4)*P	4+C(14)*(M-P	1*C(1)-P2*C(2)	-P3*C(3)-P4	*C(4)-P5
*C(5)-P6*C(6)-P7*C	;(7)-P8*C(8)-P	9*C(9)-P10*C(1	l 0)) ·	
Observations: 42				
R-squared	0.968221	Mean depend	ent var	9529.976
Adjusted R-squared	0.957970	S.D. depende	nt var	3783.543
S.E. of regression	775.6717	Sum squared	resid	18651662
Durbin-Watson stat	1.056354	•		
Equation: ()5*PE-C/E)*PE+C/(E)*/M P1*C/(1) P2*C/(2) P2*C/(2) P4*C/(1) PE				
Equation. QD FD=0(0)"P0+0(10)"(IVEP1"0(1)-P2"0(2)-P3"0(3)-P4"0(4)-P5				
C(0)-F0 C(0)-F7 C(7)-F0 C(0)-F3 C(3)-F10 C(10))				
Observations: 42	0.000040	Mana dan sud		45949 61
K-squared	0.682316	iviean depend	ent var	15840.24
Adjusted K-squared			ENT 1/01P	
OF af an and a star	0.5/983/	S.D. depende		0101.003

Durbin-Watson stat	0.034563		
Equation: Q6*P6=C(6)* *C(5)-P6*C(6)-P7*	P6+C(16)*(M-F C(7)-P8*C(8)-F	P1*C(1)-P2*C(2)-P3*C(3)- P9*C(9)-P10*C(10))	P4*C(4)-P5
Observations: 42			
R-squared	0.922654	Mean dependent var	6389.881
Adjusted R-squared	0.897703	S.D. dependent var	3483.446
S.E. of regression	1114.141	Sum squared resid	38480640
Durbin-Watson stat	0.101254		
Equation: Q7*P7=C(7)*	P7+C(17)*(M-F	P1*C(1)-P2*C(2)-P3*C(3)-I	P4*C(4)-P5
*C(5)-P6*C(6)-P7*	C(7)-P8*C(8)-F	9*C(9)-P10*C(10))	
Observations: 42			
R-squared	0.830853	Mean dependent var	23775.81
Adjusted R-squared	0.776290	S.D. dependent var	15321.30
S.E. of regression	7246.673	Sum squared resid	1.63E+09
Durbin-Watson stat	0.038749		
Equation: Q8*P8=C(8)*	P8+C(18)*(M-F	P1*C(1)-P2*C(2)-P3*C(3)-	P4*C(4)-P5
*C(5)-P6*C(6)-P7*	C(7)-P8*C(8)-F	P9*C(9)-P10*C(10))	
Observations: 42	-(.,(.,.		
R-squared	0.970861	Mean dependent var	10710.48
Adjusted R-squared	0.961461	S.D. dependent var	6780.964
S.E. of regression	1331.194	Sum squared resid	54934425
Durbin-Watson stat	0.155559		
Equation: Q9*P9=C(9)*	P9+C(19)*(M-F	P1*C(1)-P2*C(2)-P3*C(3)-	P4*C(4)-P5
*C(5)-P6*C(6)-P7*	C(7)-P8*C(8)-F	P9*C(9)-P10*C(10))	/ 0(/// 0
Observations: 42			
R-squared	0.975174	Mean dependent var	21680.40
Adjusted R-squared	0.967165	S.D. dependent var	11439.73
S E of regression	2072 920	Sum squared resid	1.33E+08
Durbin-Watson stat	0.113169		
Equation: 010*P10=C(10/*010+0/20)	*/\1_01*(^(1)_02*(^(2)_03*(2(3)-DA
*C(4)-P5*C(5)-P6*	C(6)-P7*C(7)-F	28*C(8)_P9*C(9)_P10*C(1()))
Observations: 42		0 0(0)-1 0 0(0)-1 10 0(10	<i>'</i>))
R-equared	0 088240	Meen dependent vor	62163 55
Adjusted B-squared	0.000240	S D dependent vor	31083 41
SE of regression	2976 529	Sum equared resid	4 665+08
Durbin Moteon stat	0 140605	oum squareu resiù	4.002-000
Dannin Anaron sidi	0.190080		