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Abstract

Quarz crystal microbalances allow the monitoring of the adsorption process of mass from a

liquid to their surface. The adsorbed mass can be analysed regarding to its protein content using

mass spectromety. To ensure the protein identi�cation the results of several measurements can

be combined. A high content QCM-D array was developed to allow up to ten measurements

parallel. The samples can be routed inside the array distributing one sample to several chips.

The �uidic parts were prototyped using 3D printing. The assembled array was tight and the

sample routing function could be demonstrated. A temperature controller was developed and

implemented. The parameters for the PID controller were determined and the controller was

shown to be able to keep the temperature constant over long time with high accuracy.

Keywords: QCM-D, Protein, Mass spectrometry, High content measurement, QCM-D Array,

3D printing, Temperature control, Arduino





Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Aim of the work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Materials and Methods 3

2.1 Chemicals, consumables and devices . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.1 QCM-D Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.2 Peltier elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.3 Motor driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.4 Digital temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.5 Seven segment driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.6 Microcontroller board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 3D Printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Modi�cations of printed parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.6 Valve development using test bodys . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.7 Galvanization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.8 UV bonding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.9 Printed circuit board etching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.10 Determination of controller parameters . . . . . . . . . . . . . . . . . . . . . . . . 11

2.11 Calibration of the current measurement . . . . . . . . . . . . . . . . . . . . . . . 14

2.12 Calibration of the room temperature sensor . . . . . . . . . . . . . . . . . . . . . 14

3 Results 15

3.1 QCM-D Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.2 Ventiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

I



3.1.3 Printed �uidic parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.4 Flexible sample routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.5 Cooling plate holder with fans . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Temperature control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.2 Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.3 Printed circuit board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.4 User interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.5 Determination of the controller parameters . . . . . . . . . . . . . . . . . 32

3.2.6 Response of the controller to setpoint jumps . . . . . . . . . . . . . . . . . 34

3.2.7 Long term stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Discussion 37

4.1 Fluidic design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Integration of the temperature sensor . . . . . . . . . . . . . . . . . . . . . 37

4.1.2 Di�usion inside the cooling channels . . . . . . . . . . . . . . . . . . . . . 37

4.1.3 Inserting of the ventiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.4 Manufacturing of the cooling plate . . . . . . . . . . . . . . . . . . . . . . 38

4.2 PCB design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Condluding Remarks 40

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

References 41

Supplement i

Supplement A: List of chemicals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Supplement B: List of consumables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Supplement C: List of components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Supplement D: List of devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Supplement E: List of abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Supplement F: List of �gures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Supplement G: List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Supplement H: Complete circuit diagram of the temperature controller . . . . . . . . . xii

Supplement I: Source codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

II



1 Introduction

1.1 Motivation

The amount of substance adsorbing from a liquid phase to a de�ned solid surface can be mon-

itored using quarz crystal microbalances. They consist of a cylindrical quarz crystal with elec-

trodes on each side. The inverse piezoelectric e�ect causes the crystal to be deformed, if a volt-

age is applyed to it. The resonance frequency depends on the mass of the crystal and changes

if mass from the liquid phase adsorbs onto the crystal surface. Additional information about

the viscoelastic properties of the adsorbed layer can be obtained by monitoring the decay of the

oscillation of the crystal, after its excitation is stopped. This is called quarz crystal microbalance

with dissipation monitoring (QCM-D) (O , 1999; Voinova et al., 1999).

If a complex sample is adsorbed onto the chip surface the composition of the adsorbed layer also

depends on the chip surface. To determine the composition of the layer on the surface regarding

to its protein content, QCM-D coupled with mass spectrometry can be used. The adsorbed

proteins are digested on the chip and the resulting peptides are enriched chromatographically.

Matrix assisted laser desorption ionization time of �ight mass spectrometry (MALDI-ToF MS)

allows the detection of the peptide masses with an accuracy allowing to identify the proteins

the peptides result from. The sample is mixed with a matrix, that absorbes the energy at the

wavelenght of the laser. In a vacuum this allows the desorption of the peptides into the gas

phase without their destruction. Adding tetra�uoroacetic acid (TFA) to the sample promotes

the ionization of the peptides by the addition of a proton. The ionizized peptides are accelerated

into a �ight tube and the time, needed to pass it, is determined. The �ight time depends on the

mass of the peptide and allows to determine it (Perkins et al., 1999; Kirschhöfer et al., 2013).

By comparing the measured masses with the masses of theoretical tryptic digests, the proteins

the peptides originate from can be determined. To ensure the correct identi�cation the peptide

masses can be further fragmented using a higher laser energy or a collision cell. The comparison

of the resulting spectra with theoretical fragmentations of the expected peptide sequences allows

to verify their correct identi�cation. To reduce the complexity of the mass spectra sets of at least

three chips sampled with indipendent samples are used in this method (Hohmann et al., 2014,

2015).
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1.2 Aim of the work

Commercially available QCM-D systems only allow up to six parallel measurements. To compare

e.g. the adsorption of one sample onto three di�erent chip surfaces three measurements have to

be done after another. A high content QCM-D array would allow to perform all measurements

parallel. To measure the same sample on three chips with the same surface the possibility to

connect them serially would also be usefull.

Aim of the work was to develop a parallelizable QCM-D array, that allows to measure the

adsorption of substances from up to ten liquid samples to up to ten QCM-D chips. Also a

�exible sample routing allowing the distribution of one sample to more than one chip should be

possible.

1.3 Structure of the thesis

A 3D model of a parallelizable QCM-D array was developed. The �uidic parts were prototyped

using a 3D printer. Copper wires were plated with gold to providing the electrical contacts to

the chip. Printed three way valves were developed to route the samples inside the array. The

sample routing and tightness of the �uidic was tested using di�erent colored samples. Cooling

channels at the bottom of the array allow to keep the sample at a constant temperature. To

control the temperature a digital temperature sensor with a PID controller was developed. After

the circuit was tested on a breadboard a printed circuit board was developed and manufactured.

The parameters of the PID controller were determined using empirical rules applyed to the jump

response of the control system. The response of the system to jumps in the setpoint were recorded

and the long time stability of the control process was examined.
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2 Materials and Methods

2.1 Chemicals, consumables and devices

A list of the used chemicals and their manufacturers can be found in supplement A. The used

consumalbes are are listed in supplement B. Supplement D contains a list of the used devices.

2.2 Components

A complete list of all used components can be found in supplement C. In the following sections

selected non standard components are described in more detail.

2.2.1 QCM-D Sensors

Ion crystals consist of positive and negative

+ +

+

_ _

_

+ +

+

_ _

_
F

δ+

δ-

A B

Figure 1: Piezo e�ect

charged ions. These are arranged in a regular

three dimensional pattern. The pattern can be

reduced to a single minimal cell, that describes

the whole crystal stucture, called elementary

cell. Each elementary cell is inert to at least

one symetric operation, resulting in a net charge

of zero at the macroscopic crystal surfaces. An

axis in the elementary cell, that is not identical

with its rotation about 180 degree around any

axis perpendicular to itself, is called a polar axis. Figure 1 shows the elementary cell of a crystal

with three polar axes and without a centre of symmetry. Applying a force to a crystal deformes

it reversibly unless the force exceeds its structural limits. Applying the force nonperpendicular

to one of the polar axes of the crystal in �gure 1 A the elastic deformation will also cause a

dislocation of the mass centers of the positive and negative charged ions (B). Summed up over

the elementary cells of a macroscopic crystal, that dislocation can be measured as voltage. This

is called the piezoelectric e�ect. The inverse piezoelectric e�ect describes a deformation of the

crystal, when a voltage is applyed to its surface (Auld, 1973; Reichl and Ahlers, 1989).
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To deform a crystal using the inverse piezoelectric e�ect and to record the e�ects of the

piezoelectric e�ect while the crystal is swinging back into its undeformed state is the principle of

the quartz crystal microbalance with dissipation monitoring (QCM-D). The resonance frequency

of a crystal is dependent to its mass. By measuring the resonance frequency (QCM) or the

response to a pulse (QCM-D) of a crystal, changes in its mass can be determined. If one side

of the crystal is in contact with a liquid �ow, adsorptions onto its surface can be detected. Due

to the mass of the adsorbed substances leading to the change in the resonance frequency these

types of sensors are called mass sensitive sensors (O , 1999; Voinova et al., 1999).

Figure 2 shows a QCM-D

A
B C

D

Figure 2: QCM-D chip; A: Sample electrode, B: AT cut quartz

substrate, C: Wrap around of the sample electrode, D:

Signal electrode

sensor based on an AT-cut

quarz crystal substrate (B).

The large circular electrode

on one side of the chip (A)

is in contact with the sam-

ple whilest a measurement.

To simplify the handling of

�uidic probes and electri-

cal connections, the sample

electrode is wrapped around

to the other side of the chip

(C). The other electrode

(D) carries the electrical sig-

nal as it is suitable to share ground with the liquids and all sensors. The sample electrode can

be modi�ed in a variety of ways allowing it to analyse the adsorption onto di�erent surfaces.

The used QCM-D sensors have a diameter of 14 mm and a thicknes of 0.3 mm. The active

surface in contact with the sample is about 80 mm2. Their base frequency is 4.95 MHz.

2.2.2 Peltier elements

The di�usion velocity of the main carriers of charge in a metal of semiconductor depends on

temperature. If a semiconductor is heated on one side, the charge carriers di�use to the cold

side. In case of a negative doped semiconductor electrons are the main carriers of charge

and the cold side becomes negatively charged. Defect electrons, like the main carriers of

charge in positive doped semiconductors, lead to a positive charge at the cold side. This is

called the Seebeck e�ect. Flows a current through a semiconductor the reverse e�ect leads

to a temperature gradient in direction of the current �ow. This is called the peltier e�ect.
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Figure 3: Peltier element

A peltier element consists of negative and pos-

itive charged semiconductors connected serial

between two ceramic plates as shown in �gure

3. The direction of the current �ow through

the element determines the direction of the

heat transport. This allows to use peltier el-

ements as well for heating as for cooling an

object connected to one of its sides. Connect-

ing a heat sink and a fan to the other side

helps to increase the heat transport. As the

semiconductors heat up by thermal losses the e�ciency of the cooling process is lower than that

of the heating process (Ri�at and Ma, 2003).

The peltier elements used in this work can be supplyed with a voltage up to 15.4 V drawing a

current of 4.6 A. It consists of 127 semiconductor elements between two quadratic ceramic plates

with a size of 39.5 x 39.5 mm The possible temperature di�erence between the hot and the cold

side is 60 K and their heat pumpint power is up to 41 W (NTS electronic and components GmbH,

2014).

2.2.3 Motor driver

Vin

M

Vin

M

Vin

M

VinVinVin

A B C

S1

S3 S4

S2 S1

S3 S4

S2 S1

S3 S4

S2

Figure 4: Function of a H bridge

To control the rotation of a motor its speed and its direction is important. The direction can

be changed by reversing the polarity of the voltage applyed to the motor. To archive that a H

bridge as shown in �gure 4 can be used. It consists of four switches S1 to S4. S1 and S2 are

connected to the positive supply voltage Vin, S3 and S4 to ground. The motor is connected with

S1 and S3 on its one junction and with S2 and S4 on its other one (A). The resulting circuit
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looks like the capital letter H and is therfore called H bridge. By activating the switches S1 and

S4, the left connector of the motor is connected to Vin and the right one to ground, resulting

in a clockwise rotation (B). By activating the switches S2 and S3, the left terminal is connected

to ground and the right one to Vin, resulting in a counterclockwise rotation (C). Activating S1

and S2 or S3 and S4 can be used to break the motor as its coils are shorted. Activating S1 and

S3 or S2 and S4 should be avoided as it shorts the supply voltage to ground (Tieze and Schenk,

1990).

In this work the integrated motor driver L6203 from SGS-Thomson is used to control the

amount and the direction of the current �owing through peltier elements. It containes a H

bridge build up by DMOS power transistors as switches combined with a logit circuit. It has

two TTL compatible digital inputs. One toggles the transistors used as switches S1 and S3, the

other one these of S2 and S4 in a way that either S1 or S3 are activated by the one and either S2

or S4 by the other input. This avoids the possibility of shortening the supply voltage to ground

as described above. It allows a supply voltage of up to 48 V, can drive a current of up to 4 A

and can be operated at frequencys up to 100 kHz (SGS-THOMSON Microelectronics, 1997).

2.2.4 Digital temperature sensor

To measure the array temperature the digital temperature sensor TSICTM 506 is used. It mea-

sures the temperature in a range from -10 ◦C to +60 ◦C with an accuracy of 0.1 K and a resolution

of 0.034 K and is calibrated by the manufacor. The 11 bit temperature value is transmitted serial

and can easily be read by a microprocessor (Thermo Technik GmbH, 2014).

2.2.5 Seven segment driver

A seven segment display unit consists of 8 elements, which can be turned on and o� seperately

and a common connection for the current back�ow. The numbers from 0 to 9 and a decimal

point can be displayed in a good readability using the seven number and the decimal point

segment. To control each segment of a unit, 8 digital signal lines are required without a driver.

Using 3 digits it would be even 24 one. The human eye is based on photochemical reactions and

their processing making it slow compared to the timescales of a microprocessor. The common

connections of the displays are used for a time sharing of the complete information between the

digits. If the frequency of the next digit position being allowed to display its content is fast

enough, the human eye can see no di�erence between the digits being all steady on except of a

loss of brightness. The state of a display unit �ts into one byte. Wired up the state of a display

unit is transferred parallel with eight lines. This allows the de�ned switching between the data

for each display unit while iterating over the common connectors. Because digital output lines
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are mostly rare there are 7 segment drivers managing all the multiplexing and communicating

serial to the user. The wanted values for the digits of the display are transferred serially to the

driver. The input is read into an internal memory, which is used as value for the digits until

changes are recieved. To be able to cascade these drivers to display more numbers than one alone

could handle an additional carriage select signal line can be used. Using it, the master device

can select by that line, on which display driver to update the values next (Tieze and Schenk,

1990). The MAX7221 7 segment driver from MAXIM was used in this work. It can drive up to

eight digits and allows further cascading. The data is transferred serial using the SPI protocol.

It allows brightness control by pulse width modulation. Only one resistor is needed to set the

current for the segments (MAXIM, 1997).

2.2.6 Microcontroller board

The arduino Micro microcontroller board was used for the PID controller. It is based on an

ATmega32u4 microcontroller with 16 MHz clock and 2.5 kB SRAM. It provides 20 digital IO

pins of which 7 can used for pulse width modulation (PWM) and 12 as analog input channels. It

provides 32 kB �ash memory for the executable code of which 4 kB are used for the boot loader.

1 kB EEPROM can be used for the nonvolatile storage of data. It has an integrated USB 2.0

port, that is used to program the controller. It can also be used to communicate with a PC to

transmit data (Arduino LLC, 2015; Atmel Corporation, 2014).

2.3 Software

This document was typesetted with LATEXusing TEXnicCenter v. 1.0. References were included

using BIBTEX. Text was edited using Notepad++ v. 6.7.5. Calulations were performed with

Matlab R2014a and Octave v. 8.3.2-5. To plot diagrams Microsoft Excel v. 14.0.6129.5000

was used. Technical drawings were made with AutoCAD 2015 SP2. 3D models were produced

using Inventor 2015 and AutoCAD 2015 SP2. Arduino IDE v. 1.6.1 was used to program the

microcontroller. Code::Blocks v. 13.12 was used for C programming on the PC. KiCAD 2013-

07-07 BZR 4022 stable was used to draw circuit diagrams to create component footprints and

to develop PCB layouts. Pictures were rendered using Silkypix RAW File Converter v. 3.2.2.0

and edited using Paint Shop Pro v. 5.0 and Gimp v. 2.8.6. Vector graphics were produced and

edited using Incscape 0.91.
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2.4 3D Printing

The �uidic parts and ventiles were produced using the Object Eden260V 3D printer from Stratsys

and the polymer Vero White. The printer allows object sizes up to 255 x 252 x 200 mm with a

horizontal layer size of 16 µm. The printing head moves with a resolution of 600 dpi at the X

and Y axis and with 1600 dpi at the Z axis. To print hollow structures a supporting material is

used. It can be removed after the printing process using sodiumhydroxide solution. The printer

has eight printing heads for the object and the supporting structure. The basic material is a

solution from acrylate monomers and oligomers and is applyed in small droplets, like in an inkjet

printer. The liquid is then polymerized using UV light (Stratasys Ltd., 2015).

2.5 Modi�cations of printed parts

(a) Surface roughness of the printed �uidic part (b) Wet sanding process

Figure 5: Surface roughness caused by the printing process

The surface of 3D printed parts shows a rough structure as shown in �gure 5 (a). To be able

to bond plane glass sheets onto its side containing the cooling channels, the surface was wet

sanded. To archive a �at surface sand paper was glued onto a glass sheet and the printed part

was moved on its wetted surface in an eight-shaped path.

In two steps threads for the �ttings were cutted into the printed material. Therefore a hollow

structure in the diameter of the core drill was printed. To correct tolerance errors in the position

of the threads in the cooling plate, a round �le and a scalpel were used. To correct the deepnes of

the structures to insert the temperature sensor a sperical cutter mounted onto a Dremel rotary

tool was used.
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2.6 Valve development using test bodys

(a) 3D model of the test body and the ven-
tile

(b) Test bodys with di�erent conical angels

Figure 6: 3D model of the test body, the ventiles and test bodys with di�erent conical
angles

The designed three way valves are conically shaped and can be removed by a hook, that is

inserted and turned about 90◦. To determine the best angle of the conical shape three versions

with di�erent angles were printed together with corresponding test bodys. The test bodys contain

three channels and a hollow shape to put in the ventile as shown in �gure 6 (a). The ventiles

were pressed into the test bodys and a needle with a syringe was put into the channels of the test

body. Water was pressed through every channel of the ventile to test its function. To determine

if they close tight against the environment the test body with the ventiles were submerged in

water and air was pressed into the channel while the ventile was in a position blocking it.

2.7 Galvanization

The galvanization setup developed to plate the wires, allowing the electrical connection to the

QCM-D chips by being wrapped around the sealing rings is shown in Fig. 7 (a). The galvaniza-

tion chamber (A) is �lled with a manufacturers electrolyte solution containing gold ions. The

used wire is shaped by a wire shaping tool (F) and then submerged into the electrolyte in the

galvanization chamber as shown in 7 (b). The circuit board is connected to a 3 V DC power

supply by the wires (C). The potentiometers (E) allow the adjustment of the current while the

plating process in a wide range of intensitys and current per area. The pushbutton (B) can be

used to de�ne the plating duration more exactly than disassembling a hole plating setup.
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A

B

C

D E
F

(a) Galvanization setup; A: Galvanization chamber,
B: Target, C: Power supply, D: Pushbutton, E: Cur-
rent control, F: Wire shaping tool

A

B

C

(b) Galvanization chamber; A: Wire as cathode, B:
Round shaped metal sheet anode, C: Electrolyte so-
lution

Figure 7: Galvanization circuit and chamber

2.8 UV bonding

After the sanding process the printed �uidic part was sonicated in water several times. Remaining

water was removed using nitrogen and the part was allowed to dry for an hour. The UV bonder

was allowed to reach the room temperature in 30 minutes. It was applyed to the printed part

using a 1 mL syringe with a needle. The needle allowed to apply the bonder to the dividers of

the cooling channels. The printed �uidic part with the applyed bonder can be seen in �gure 8

(a). Glass sheets were cut to cover 2 or 1 of the cells. The sheets were sanded to remove sharp

edges and �xed together using tranparent tape. Then they were put onto the prepared �uidic

part and exposed to the readiation of a UV lamp in the wavelenght range the bonder adsorbs

UV light best for about half an hour as seen in �gure 8 (b). Remaining bonder on the sides was

removed using acetone (DELO Industrie Klebsto�e, 2014).
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(a) Application of the UV bonder (b) UV gluing

Figure 8: Bonding between the wet sanded �uidic part and glass plates using UV
light

2.9 Printed circuit board etching

The designed layout of the printed circuit board for the temperature controller was printed onto

transparency �lm, using an inkjet printer. The foil was �xed onto the copper side of a circuit

board coated with photoresist and exposed to sunlight and a UV lamp. The photoresist exposed

to the light was removed using sodiumhydroxide solution with a concentraion of 10 g/L. The

board was etched using sodium persulfate solution in a concentration of 120 g/L at a temperature

of about 60◦C. The glass plate used to keep the foil plane adsorbed most of the UV light leading to

bad results. Finally the PCB was produced at the Institute for Data Processing and Electronics.

2.10 Determination of controller parameters

The principle of a control loop is shown in �gure 9 (a). Changes in the system input lead to

changes in the system output. The system input could e.g. be the position of a valve. Changes

in its position cause changes in the �ow though the valve, which is the system output. The

system output is measured by a sensor. The di�erence between the measured system output and

the wanted setpoint is built and fed as input into the controller. Depending on the error and its

behaviour over the time the controller output changes. The controller output is coupled to the

system input, closing the control loop.
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Measured output
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(a) Principle of a control loop

tj timetj tu tg

value

Yfinal
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Determination of controller parameters

(b) Typical jump response of a control system

Figure 9: Principle of a control loop and typical jump response

The most commonly used controller type is the PID controller. PID is an acronym for propor-

tional, integral and derivative. Its behaviour is determined by three values: (i) its proportional

gain Kp, its integral constant Ki and its derivative constant Kd. The proportional gain de-

termines the amout of the controller output, that directly depends on the input. The integral

constant determines the amout of the error, that is summed up over the time and added to the

controller output. The derivative constant determines the amount the controller reacts to the

speed of changes in the error (Unbehauen, 1989a).

The controller parameters can be determined by a mathematical model of the control system.

This is mostly done for easy control systems. If the number of in�uencing energy reservoirs

and their interaction is to complex for a mathematical modelling, empirical rules can be used to

determine the parameters. Figure 9 (b) shows the typical respond of a control system to a jump

in its input at the time tj over the time. Ystart is the value of the system to be controled in its

stable state at the time of the input jump and Yfinal is the �nal state the value approaches to

after the input jump. The di�erence between the time of the input jump and the section between

the �rst in�exion tangent and the start value is called tu. The di�erence between tu and the

intersection of the tangent with the �nal value Yfinal is called tg .

The empirical rules by Chien, Hrones and Reswick shown in table 1 were used to determine

the controller parameters. The jump response of the system was recorded three times for heating

and for cooling. For heating an input jump of 50 PWM was used, because it is very e�cient.

For cooling its complete intensity of 255 PWM was used.

The jump responses were recorded via the USB interface and the comma seperated �les were

imported into Matlab to determine the in�exion point. Listing 1 shows the performed calcu-

lations. The variable maxC1 contains the start temperature, minC1 the �nal temperature in

steady state, jumpTimeC the time point at which the input jump was applyed and jumpC

the amount the input was changed at jumpTimeC. The system gain is the ratio between the

12



Parameter Control response Disturbance response

Tn 2.4 ·Tu Tg

Tv 0.42 ·Tu 0.5 ·Tu

Kp 0.95 · Tg

Tu ·Ks
0.6 · Tg

Tu ·Ks

Ki
Kp

Tv

Kp

Tv

Kd Kp ·Tv Kp ·Tv

Table 1: Rules by Chien, Hrones and Reswick for the de-
termination of PID controller parameters with-
out overswing

amount the temperature changed diffC1 and the amount the input was changed. To determine

the in�exion point a polynom polyC1 with order 10 was �tted to the measured data imported

into the variables TimeC1 and TempC1. Its �rst and second derivative polyC1d and polyC1dd

were determined. The zero points zeroC1dd of the second derivative were determined and the

real one at the �tting time point xC1 was selected manually. The gain of the in�exion tangent

mC1 is the value of the �rst derivative of the polynom at the time xC1. The time points TuC1

and TgC1 result from the intersections between the tangent and the start and �nal temperature

as shown in �gure 32. The rules by Chien, Hrones and Reswick for control response without

overshoot were �nally applyed to determine the controller gain KpC1, the integral constant

KiC1 and the derivative constant KdC1 (Unbehauen, 1989a,b; Korsane et al., 2014). The jump

response was recorded for heating and cooling three times and the arithmetic avarage of the

resulting constants were used for the controller.

1 KsC1 = di f fC1 / jumpC

polyC1 = polyf it (TimeC1 ,TempC1, 1 0 )

3 polyC1d = polyder ( polyC1 )

polyC1dd = polyder ( polyC1d )

5 zeroC1dd = roots ( polyC1dd )

xC1 = zeroC1dd (7)

7 yC1 = polyval ( polyC1 , xC1)

mC1 = polyval ( polyC1d , zeroC1dd (7) )

9 TuC1 = ( (maxC1 − yC1) / mC1) + xC1 − jumpTimeC

TgC1 = ( (minC1 − yC1) / mC1) + xC1 − jumpTimeC − TuC1

11 TnC1 = TgC1

TvC1 = 0 .5 ∗ TuC1

13 KpC1 = (0 . 6 ∗ TgC1) / (TuC1 ∗ KsC1)

KiC1 = KpC1 / TnC1

15 KdC1 = KpC1 ∗ TvC1

Listing 1: Matlab code used to determine the controller parameters
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2.11 Calibration of the current measurement

The shunt resistors were disconnected from ground to calibrate the current measurement . A

de�ned current in the range from 0.5 A to 3.5 A was driven through the resistors using the current

limitation function of the laboratory power supply. The current was additionally measured with a

multimeter. The readings from the analog to digital converters (ADCs) were recorded. Assuming

a linear behavior between the current and the measurend voltage at the analog input a linear

regression was performed. The gain was used to calculate the current �owing through the resistor

and thereby through the peltier elements (Felderho�, 1990).

2.12 Calibration of the room temperature sensor

A negative temperature coe�cient resistor (NTC) was used to estimate the room temperature

and thereby adjust the controller parameters to weather the main tast is heating or cooling.

To calibrate the sensor it was �xed on the cooling plate next to the digital temperature sensor.

The temperature was set to values between 20 ◦C and 40 ◦C in steps of 1 K and the voltage

resulting in the voltage divider between the NTC and a resistor was determined. As the readings

showed a highly linear respond to the temperature the slope of the linear regression through the

measured points was determined and used to calculate the room temperature from the readings

of the ADC (Herold, 1993; Schrüfer, 1984).
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3 Results

3.1 QCM-D Array

3.1.1 Concept

A
B

C D

G H

E

F

Figure 10: 3D Model of the QCM-D Array; A: QCM-D chip, B: Sealing ring, C:
Fixing screw, D: Ventile, E: Tube �tting, F: Te�on tubing, G: Steel plate,
H: Peltier element

The 3D model of the complete �uidic array is shown in �gure 10. The array consists of a lower

part containing the �uidic structures and an upper part providing the electrical connections and

the �xation of the QCM-D chips. The array can be loaded with up to ten QCM-D chips (A). The

chips are �xed between two sealing rings (B). One �xing screw (C) per chip allows a position

independent de�ned pressure over the chip. Samples enter the array through te�on tubings (F)
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with �ttings (E). Below the �uidic part a steel plate (G) with peltier elements (H) allows to

control the temperature of the samples and the array.

A B

D

G

F

C

E

Figure 11: Section through the �uidic array; A: QCM-D chip, B: Sealing rings, C:
Cooling channels, D: Temperature sensor, E: Glass sheets, F: Steel plate,
G: Peltier element

Figure 11 shows a section through the middle of the array. The QCM-D chips (A) are �xed

between two sealing rings (B). Before the sample reaches the chip, it �ows through cooling

channels at the bottom of the array (C). The temperature sensor (D) is located at the same

level as the cooling channels, allowing to control the temperature of the sample �owing through

the channels. The cooling channels are sealed with glass sheets (E) and �xed to the steel plate

(F) with screws.

On one side the steel plate has ten threads for the �xing screws and three indentations for the

peltier elements on the other side. Figure 19 shows the technical drawing given to the workshop

for the production of the plate. Steel was choosen as material for the plate because of its high

thermal capacity and its quite low thermal conductance. Caused by the low thermal conductivity

the plate needs about half an hour to reach its target temperature, but once reached it also holds

its temperature some time. This helps to keep the temperature of the samples and the chips

constant against external disturbances.

The internal hollow structure of two cells of the array are shown in �gure 12. The sample enters

the array through the �rst �tting (A) and �ows through the �rst ventile (B) into the cooling

channels (C). The channels are used to bring the sample to the measurement temperature by

contact with the temperature controlled glass plate that covers it below. The sample �ows from

the cooling channels over the QCM-D chip (D) to the next ventile (E). There it can either be

routed to the �rst exit �tting (F) to leave the array or to the next cell (G). At the edges of the

array the sample can be routed to the other row (H) allowing every possible sample distribution

between the ten cells.
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G
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Figure 12: Structure of the channels inside the �uidic array; A: Sample in�ow
through �rst �tting, B: Input ventile, C: Cooling channels, D: Sample
volume below the QCM-D chip, E: Exit ventile, F: Exit through �tting,
G: Exit to the input ventile of the next chamber, H: Routing of the sample
over the edge

3.1.2 Ventiles

The three way ventiles used to route the sample are shown in �gure 13. The best results for

removability and tightness were resulted with the diameter of the lower part of the conical shape

of 4.075 mm. The removal tool shown in �gure 13 (b) is used to remove the ventiles from the

array to rearrenge the sample distribution. It consists of copper wire, shaped to a hook at one

side and soldered to a loop at the other side (�gure 13 (c)). To be able to remove the ventiles

they contain a hollow structure at their top shown in �gure 13 (a). It allows the tip of the

removal tool to be inserted and rotated by 90◦. By throwing at the removal tool the ventile can

be removed from the array.

3.1.3 Printed �uidic parts

Figure 14 shows the printed �uidic parts. In the top part of the array the gold plated electrical

contacts (A) are wrapped around the sealing rings (B). The sample reaches the chips through

the channels (C). The ventiles (D) determine the way of the samples through the array. The

chip holding mechanism was adopted from the commercial available �ow cell QFM 401 contained

in the Qsense 4 QCM-D system. The used chips, sealing rings and �ttings were original spare

parts available for the system (LOT-QuantumDesign GmbH, 2015).

17



(a) 3D model of the ven-
tile with internal struc-
tures

(b) Printed ventile with tip of
the removal tool

(c) Printed ventile with �tted removal tool

Figure 13: Internal structure of the ventiles and the ventile removal tool

3.1.4 Flexible sample routing

Figure 15 shows the printed �uidic part equipped with the sealing rings and the glass sheets

loaded with ten QCM-D sensors. The ventiles are inserted in the positions allowing a routing of

four samples over three groups of three chips and the remaining single chip as shown in �gure

16. After closing the array four pump tubes and four tubes for the sample in�ow were connected

to the array.

The result of using four samples di�erently colored using food color is shown in �gure ??. To

be able to see the samples in the cooling channels the upper part of the array was �xed with

nuts and the array was placed upside down. The channels are all tight and the ventiles are able

to route the samples over the chips as intended (compare to �gure 16.

3.1.5 Cooling plate holder with fans

The peltier elements were �xed into the hollow structures of the cooling plate using thermal

compound pads. Chipset coolers were used to archive a better heat �ow. They consist of a heat

sink with termal compound and a fan mounted onto it. The direction of the air�ow of the fans

was initially from the ambient to the cooler. As this leads to a heating up of the plate in the

cooling mode by the warm air �owing over the plate the fans were removed and mounted in the

opposite direction using wire as spacer. The cooling plate is �xed in a holder made of insulated

copper wire shown in �gure 18. At its back side additional fans suck in ambient air and remove

the hot or cold air from the chipset coolers to the back side.
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C

D

Figure 14: Printed �uidic parts; A: Gold plated electrical contacts, B: Sealing ring,
C: Sample channels for the QCM-D chip, D: Ventiles

Figure 15: Fluidic loaded with QCM-D chips
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Figure 16: Flexible sample routing

Figure 17: Routing of four samples in the printed array
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Figure 18: Cooling plate holder with fans

Figure 19: Temperature control steel plate
21



3.2 Temperature control

3.2.1 Concept

PID controller

Steel plateDigital temperature sensor

Motor driver Peltier elementPotis

Setpoint

PWM, mode Current, direction

Heat
transport

Plate temperature
Heat

transport

Room temperature sensor

Main mode

Figure 20: Control loop

The conception of the temperature controller is shown in �gure 20. The wanted temperature

is set using two potentiometers. They are connected as voltage dividers between ground and the

stabilized voltage of the arduino board. They divide the voltage on their outer contacts to a

fraction of it on their sliding contacts depending on the angle their axis is moved to. The voltage

is measured using two of the analog to digital converter channels contained in the microcontroller

board. One potentiometer is used to set the coarse temperature. Its ADC reading is mapped to

an output between 20 and 40. The output of the one used to set the �ne part of the temperature

is mapped to values from 0 to 9. Combining their outputs the temperature can be set between

20.0 and 40.0 degree celsius. Readings of the �ne potentiometer are ignored, if the coarse setting

is 40 ◦C. The room temperature sensor is used to estimate the room temperature and thereby

to determine the main operation the controller has to full�ll. If the setpoint is below the room

temeperature the main mode is cooling and the determined controller parameters for cooling

are used. If it is above the room temperature the heating mode and parameters are used. The

outputs of the PID controller are the mode signal changing the direction of the current supplyed

to the peltier elements and a pulse width modulated signal, controling the amount of current.

The peltier elements mounted onto the cooling plate heat or cool the plate depending on the

direction of the current �ow through it. The plate temperature sensor is mounted inside the
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�uidics at the same hight, the sample �ows through the cooling channels. Its output is read by

the PID controller closing the control loop.

3.2.2 Circuit

3.2.2.1 Power supply

Figure 21 shows the circuit diagram

Figure 21: Circuit of the power supply for the tempera-

ture controller

of the power supply unit of the tem-

perature controller. An external labo-

ratory power supply is connected be-

tween 12V C and GND. The elec-

trolyte capacitor C1 bu�ers the volt-

age against fast changes in the drawn

total current. The 12V voltage is used

to drive the peltier elements and the

fans. U3 is a linear voltage regulator of the type 7809, which stabilizes its input voltage down to

9 V. The 9V voltage is used as input for the microcontroller board, which stabilizes down to 5 V

internally. This 5V arduino is used as reference voltage for the ADC channels of the board. To

recieve accurate readings it it also used for the potentiometers, the voltage divider of the room

temperature sensor and the current measurement. The 9V voltage is further stabilized down by

the second linear voltage regulator U6 of the type 7905. Its stabilized 5 V voltage is used for the

7 segment display and the bus driver bewteen the micropocessor board and the peltier driver

units.

3.2.2.2 Peltier driver unit

One of the three used peltier driver units is shown in �gure 22. The used motor driver U7 of the

type L6203 is supplyed with voltage from the 12V line. Its input voltage and its internal voltage

reference output are buf-fered using a 100 µF elecrolyte and a 100 nF ceramic capacitor. They

were located as close as possible to the driver on the circuit board. The bootstrap capacitors C11

and C12 and the fast switching diodes D5 and D6 of the type UF 4508 help to supply enough

charge for the transistors in the driver allowing a fast switching. The capacitors C13 and C14

are used to smooth the PWM current for the peltier elements. They are connected between the

two outputs of the driver. The shunt resistor R19 is connected to the sense output of the driver.

The voltage drop on it can be used to measure amount of current, because all current �owing

through the peltier element is also �owing through it.
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Figure 22: Circuit of the peltier driver unit of the tempera-

ture controller

The inputs of the driver are

ENABLE, PWM , and MODE

connected to the enable and

switching inputs of the driver.

The enable function is used to

turn on the peltier driver units af-

ter the init process to allow the

control. One of the inputs is used

to determine the direction of the

current �ow. The other one is sup-

plyed with the PWM output of

the PID controller. By changing

the duration it is switched to one

of its states while the total interval of the pulse width allows to control how long the peltier

element is supplyed with current (Pang et al., 2015).

3.2.2.3 Current measurement

One unit of the current measurement is shown

Figure 23: Circuit of the current measurement

in the temperature controller

in �gure 23. The voltage from the shunt resis-

tor is connected the RC pass built by R10 and

C3. It converts the pulse width modulated in-

put into a direct voltage. This voltage is con-

nected to the positive input of the operational

ampli�er U4A of the type LM358. The ampli-

�er is connected as non inverting ampli�er and

supplyed by the 5V arduino voltage. Its gain is

determined by the ratio of the resistors R13 and R16. It was set to result in the maximum output

voltage of the ampli�er for a voltage of 0.9 V at the shunt resistor. Its output is connected to a

ADC channel of the microcontroller board (Tieze and Schenk, 1990).

3.2.2.4 Fan driver units

The fan driver units of one of the chip driver fans and the back fans are shown in �gure 24. To

switch the fans on the peltier elements the general purpose small signal transistor Q2 of the type

BC547 is used. To switch the back fans the transistor Q4 of the type BC639 is used. It allows a

higher collector emmiter current needed to drive the 80 mm fans on the back. The transistors are
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connected with common emmitter.

Figure 24: Circuit of the fan driver

unit of temperature

controller

Between their collector and the 12V line the fans and the

diodes D3 and D4 of the type 1N4148 are connected. Ap-

plying a voltage to the resistors R2 or R4 by the microcon-

troller switches the transistors and connects the teminal of

the fan to ground. The diode is used to protect the circuit

from incuced voltages in the coils of the fans by shorting

them. The values of the basis transistors were calculated

depending on the amount of collector emmitter currend

needed for the fans and the gain of the transistor. The

transistors are saturated at these working points to allow

a fast switching.

3.2.2.5 Usage of the microcontroller board

Arduino

Plate temperature sensor

Room temperature sensor

Potis LEDs

7 Segment

PC

Motor driverCurrent measurement

Fans

(a) Overview of the connections
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(b) Detailed pin usage of the arduino board

Figure 25: Usage of the arduino microcontroller board as PID controller

Figure 25 (a) gives an overview of the connections to

the microcontroller board. The potentiometers to set the wanted temperature, the plate with

the room temperature sensor and the current measurement units are connected to input lines.

The setpoint and the mode LEDs, the 7 segment display, the fans and the peltier driver units

are connected to its outputs. The USB connection allows the programming of the controller and

transmits the control parameters to a PC.

The detailed usage of the Arduino Micro pins is shown in �gure 25 (b). The usage of the pins is

shown in black, the function of the pins in red. The room temperature sensor, the three current
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measurement units and the potentiometers are connected to �ve of its analog inputs A0 to A5.

The digital plate temperature sensor is connected to ground, Pin 4 and Pin 2. Pin 4 supplys the

voltage for the sensor allowing to turn it on for the measurement. Its transmitted data is read

from Pin 2. The 7 segment display is connected to the ICSP pins SS, MOSI and SCK. SS

selects the display driver for data transmission. MOSI is used to sent the values to display to

it serially. SCK provides the clock for the serial transmission. The fan drivers are connected to

the digital pins 0, 1, 12 and 10. The setpoint LED is connected to the PWM capable pins 5, 6

and 13 for its red, green and blue input respectively. The mode LED is connected to pin 3 and

11 with its inputs for blue and red respectively. The green input is not connected as the LED is

used to indicate the mode of heating or cooling by its intensity in red or blue only. The enable

line of the peltier driver units is connected to pin 7. Weather it is heating or cooling is set by pin

8. Pin 9 is used to supply the PWM signal for the peltier drivers. The board is supplyed with

power by the 9V line. Its on board stabilized 5 V voltage is supplyed to the potentiometer, room

temperature sensor and current measurement circuits over the 5V arduino line (Wheat, 2011).

3.2.3 Printed circuit board

The copper side of the designed printed circuit board (PCB) is shown in �gure 26. The common

ground of the circuit is supplyed by a ground plane over the entire PCB. This allows to reduce

in�uences between the subcircuits. Were the motor drivers are mounted the ground plane was

removed to reduce the risk of short circuits and to allow a better dissipation of the heat caused

by the current through the copper lines.

Figure 27 shows the component mounting diagram of the PCB. The power is supplyed though

a connector at the right side in the front of the PCB. Here it has the highest distance to the

other parts of the circuit. The three identical peltier driver units are located in the back half

of PCB allowing a better heat dissipation of the heat sinks at the back of the planned casing.

The micropocessor board is located at the left side of the front of the PCB allowing to access its

USB connection from outside of the casing. The connections between the micropocessor board

and the peripherals are located as close as possible to the board.

The assembled PCB is shown in �gure 28. The Arduino Micro microcontroller board is plugged

into a socket (A). The bus driver (B) is used to protect the microcontroller from possible errors

in the peltier driver units and to supply enough current to them. The motor drivers (D) are

mounted onto heat sinks (C). Termal conductive compound was applyed between the back of

the drivers and the heat sinks to archive a better termal conductance. The shunt resistors (E)

are not mounted directly onto the surface of the PCB to allow a better convection for the heat

transport and to protect the insulation of the jumper wires below it. The current measurement
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Figure 26: Layout of the printed circuit board

Figure 27: Component mounting diagram of the printed circuit board 27
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Figure 28: Assembled printed circuit board; A: Arduino Micro, B: Bus driver, C:
Heat sink, D: Motor driver, E: Shunt resistor, F: Current measurement,
G: Voltage regulators, H: Fan drivers, I: Peltier connector, J: Power supply
connector, K: LED connector, L: Temperature sensor connector, M: Room
temperature sensor, N: Potentiometer connector, O: 7 Segment display
connector, P: Fan connector

subcircuits (F) are located near the microprocessor. Because the used LM358 containes two

operational ampli�ers circuits, only two of them are needed. The unused one is not connected.

The linear voltage regulators (G) are located left of the fan driver units (H). This allows a short

distance between the generation of the used voltages and the regulators. The fan drivers use the

12V voltage and are thereby located next to its input (J). The peltier elements are connected

throgh the connectors (I). They allow to turn in the cables and �x them with the contained

screws. This allows them to be easylie connected. The PCB connectors (K), (L), (N), (O)

and (P) are used to connect the LEDs, the plate temperature sensor, the potentiometers, the

7 segment display and the fans to the circuit. The room temperature sensor (M) was initally

mounted directly onto the PCB. Because it did heat up by the heat dissipated from the motor

drivers, the distance was increased using wires later.
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3.2.4 User interface

A

B

C

D E

Figure 29: User interface of the temperature controller; A: Status LED, B: Mode
LED, C: 7 segment display, D: Coarse setpoint potentiometer, E: Fine
setpoint potentiometer

The user interface of the temperature controller is shown in �gure 29. It consists of two LEDs

(A) and (B), a 7 segment display (C) and two potentiometers (D) and (E). Their usage is

described in the following sections.

Setting the wanted temperature

Two potentiometers are used to set the wanted temperature. The left one (D) is used to set the

coarse part of the temperature between 20 ◦C and 40 ◦C. Is the temperature set with the left

potentiometer to a value below 40 ◦C, the right potentiometer (E) can be used to set the �ne

part of the temperature between 0.0 ◦C and 0.9 ◦C. Is the coarse potentiometer set to 40 ◦C,

the value of the �ne potentiometer is discarded.

7 Segment display

The 7 segment display (C) is used to display the actual plate temperature with reduced intensity

while the controlling process. Is one of the potentiometers turned it starts to display the setpoint

with maximum intensity. The status LED also indicates the setting of the setpoint by its color.

Status and mode leds

Table 2 shows the di�erent colors used to signal di�erent states of the controller and the control-

ling process. While the setpoint is set and the following 700 ms the color of the setpoint LED

(A) color is purple. If the setpoint de�ned its color changes depending on the di�erence between

the plate temperature and the setpoint. Is the di�erence 5 K or higher, it is red. Below 5 K but
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LED color

Setpoint di�erence Setting ≥ 5.0 K ≥ 2.5 K ≥ 1.0 K > 0.6 K < 0.6 K

Table 2: Signal colors of the setpoint LED

above 2.5 K it is orange followed by dark yellow for the range from 2.5 K to 1.0 K, light yellow

for above 0.6 K and green for below 0.6 K. The highest accuracy of the used temperature sensor

is used as the di�erence below the LED begins to glow green. The green color indicates, that the

setpoint is reached. The mode LED (B) signals the amount of current set through the peltier

drivers by its intensity and the operation of the peltier elements by its color. For the cooling

process it is blue and for the heating process red.

Init sequence

Figure 30: Init message scrolled over the 7 segment display

When the controller is turned on an init sequence is executed. The status LED shows all its

possible signal color while the mode LED shows the intensity of the heating or cooling current

applyed to the peltier element by the intensity of its red or blue light in as many steps as the

status LED has signal colors. The fans are turned on in sequence, allowing to verify their function

by the user. While the init sequence the message shown in �gure 30 is scrolled from right to left

over the three digits of the 7 segment display.

USB communication with PC

The output of the programm written in C to read the control process data from the arduino

micro to a personal computer is shown in �gure 31. When executed from the command line, the

program shows its menu (a). By pressing the keys for the numbers 1 to 4, the user can select

between the given options. To select the serial port 1 is entered in the menu. The program

forks to ListSerialPorts.exe by Tod E. Kurt piping its output into a �le. The �le is openend and

the available serial ports and their descriptions are extracted from it. The serial ports available

in the system are listed as shown in �gure 31 (b). By pressing the number displayed left of

the serial port, the serial port is selected and opened for writing. In this case 2 would have

been selected, as it is the virtual serial port COM7 supplyed by the driver for the Arduino
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(a) Menu (b) Selection of the serial port

(c) Writing controller data to a �le

Figure 31: Program to read to read data from the temperature controller to a PC

Micro microcontroller board. Option 2 in the menu allows to monitor the actual control process.

Option 3 shows the same output as option 2 on the screen and additionally writes the recieved

values into a comma seperated �le. If selecting 3 the user is prompted to enter a �lename. If

the �le could be opened for reading this is acknowledged on the next screen line as seen in �gure

31 (c). Then the process data recieved from the temperature controller board is displayed in

seven columns. At each system hartbeat a new packed is recieved and displayed in the next

line. The �rst column contains the time in seconds since the control process was started. The

o�set to the higher actual system time was already removed in the Arduino. The next column

shows the actual plate temperature in ◦C with 5 digit resolution. This is the highest resolution

containing information, as the digitizing steps in the digital temperature sensor is 0.034 K. To

archive this higher resolution the TSIC 506 libary by Wagner (2014) was modi�ed. The next
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columns show the selected setpoint and the di�erence between the actual plate temperature and

the setpoint used as input for the PID controller. The next column either shows "`heating"'

or "`cooling"' depending on the value of the mode input of the peltier drivers. The next value

shows the actual pulse width of the PWM input signal of the peltier drivers. Caused by the fact,

that the direction selection and the PWM signal are applied to the inputs of the motor driver,

the same pulse width has di�erent e�ects on the resulting current. In the cooling mode a PWM

value of 0 leads to no current, a value of 255 to the maximum current. In heating mode the

bahaviour is reversed. This can also be seen in the �rst two prosess data lines in �gure 31 (c).

The PWM input of 106 in the �rst line leads to a current of 5.13 A through the peltier elements.

The following value of 242 reduces this current to 0.83 A. The current is displayed in the last

column of the output. The currents of the three shunt resistors in the temperature controller are

determined after the RC pass had time to settle. To minimize the in�uence of the residual ripple

after the �lter the voltage on the capacitor is read with oversampling. The arithmetic averages

of the measurements of the three peltier drivers are added and sent to the PC as current value

(Prinz and Kirch-Prinz, 2002; Wheat, 2011).

3.2.5 Determination of the controller parameters

The determination of the controller parameters is shown exemplarily for on one of the jump

responses recorded for the cooling process in �gure 32. The measurement starts at the room

temperature Y0. The controller was used with the reading of the room temperature sensor as

setpoint �rst followed by 10 minutes without peltier operation. After one hour the plate reached

the �nal temperature YB. The in�exion tangent was determined by the in�exion point of the

�tted polynom as described above. The temperature changes from the stable start value not

directly after the input jump was applyed. The moment it starts to change was used as start

point for the �tting of the polynom.

Table 3 shows the determined controller parameters for the three measurements for the heating

and cooling mode, their arithmetic averages, their standard deviations and their procentual error.

The procentual error for the time Tu has a quite high value of over 16 %. This error spreads to

the values for Kp and Ki because they depend on it.
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Figure 32: Determination of the controller parameters using the in�exion tangent of
an input jump in the openend control loop

Mode M. No. Ks/ kK
PWM Tu/s Tg/s Kp/PWM

kK Ki/PWM
kK · s Kd/PWM · s

kK

1 88.63 7.85 140.9 121.5 862.8 476.8
2 82.68 8.12 131.5 117.5 894.2 477.0

cooling 3 90.13 8.07 142.0 117.2 824.8 472.8
average 87.15 8.01 138.1 118.7 860.6 475.5
error 3.9 0.14 5.8 2.4 34.7 2.4

error % 4.5 1.8 4.2 2.0 4.0 0.5

1 321.1 9.82 288.4 54.8 190.2 269.4
2 318.3 11.27 266.3 44.6 167.3 251.0

heating 3 317.1 8.14 268.3 62.4 232.4 253.9
average 318.9 9.74 274.3 53.9 196.6 258.1
error 2.1 1.56 12.2 8.9 33.0 9.9

error % 0.6 16.1 4.4 16.6 16.8 3.8

Table 3: Determination of the controller parameters
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3.2.6 Response of the controller to setpoint jumps
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Figure 33: Respond of the control system to changes in the setpoint

Figure 33 shows the response of the control system to changes in the setpoint. Starting at a

temperature of 25 ◦C the setpoint is changed to 20 ◦C. The plate needs nearly 30 minutes to cool

down to this temperature, as the cooling process is the less e�cient ones using peltier elements.

After the setpoint is raised to 37 ◦C the plate temperature follows it in about 10 minutes. Here

the respond shows oscillations which decay over the time. To cool down to 25 ◦C again needs

about 15 minutes. Except of the oscillations before reaching 37 ◦C the system responds as wanted

showing no over- or undershoots.

3.2.7 Long term stability

The long term stability of the control process was determined by cooling the plate down to 20 ◦C

and then rising it to 40 ◦C in steps of 2.5 K. Each temperature was hold for 90 minutes. The

controller response shows initial overshoots when heating up. Their amount is the highest at low

temperatures, declining with rising temperature. Because the plate needs a maximum time of

30 minutes to stabilize, the �rst 30 minutes of every temperature setting were discarded.
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Figure 34: Determination of the long term stability

Setpoint Mean temp. Std. dev. Max. neg. dev. Max. pos. dev. Min. value Max. value

20.00 20.001 0.021 0.050 0.090 19.95 20.09
22.50 22.500 0.021 0.050 0.050 22.45 22.55
25.00 25.000 0.027 0.050 0.080 24.95 25.08
27.50 27.500 0.032 0.090 0.110 27.41 27.61
30.00 30.000 0.029 0.100 0.110 29.90 30.11
32.50 32.500 0.026 0.070 0.100 32.43 32.60
35.00 35.000 0.025 0.070 0.070 34.93 35.07
37.50 37.500 0.026 0.070 0.130 37.43 37.63
40.00 40.000 0.018 0.080 0.060 39.92 40.06

Average 0.025 0.070 0.089

Table 4: Long term stability of the temperature control

35



Table 3.2.7 shows the average temperatures, their standard deviations, their maximum neg-

ative and positive read deviations and the maximum and minimum measured values for each

temperature. Except of the value of 20.001 ◦C all mean temperatures are equal to the setpoint.

The maximum standard deviation of 0.032 K resulted at a setpoint of 27.5 ◦C. The maxiumum

negative deviation was 0.100 K with a temperature of 29.90 ◦C at the setpoint 30.00 ◦C. The

maximum positive deviation was 0.130 ◦C with a value of 37.63 ◦C at the setpoint 37.50 ◦C.

The average values of the standard deviation and the maxiumum negative and positive deviation

were 0.025 K, 0.070 K and 0.089 K respectively. As the accuracy of the digital temperature

sensor is 0.06 K in the used range, this values show, that the temperature controller is able to

control the temperature with a high enough accuracy over long time.
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4 Discussion

4.1 Fluidic design

4.1.1 Integration of the temperature sensor

Figure 35: Bonding failure

caused by to low

tolerances for the

included parts

The tolerance of the hollow structures at the bottom of the

array, taking up the temperature sensor and its blocking ca-

pacitor, was choosen to low. To insert the sensor the struc-

tures were deepend using a rotary tool and a scalpel. Figure

35 shows the result of the UV bonding. The bright struc-

tures below the temperature sensor consist of air. The cables,

connecting the temperature sensor with the temperature con-

troller, did not �ush plane with the outer structure. So the

glass plates did not get in contact with the glue and the bond-

ing remained incomplete. The stuctures connect the lower

cooling channels with the channel containing the tempera-

ture sensor. This would lead to sample reaching the uniso-

lated parts of the sensor and disturbing its function. The

glass plates were scraped o� the printed structure with acetone and a knife. This caused partly

destructions of the cooling channel structures, leading to the formation of air bubbles when the

channels are probed. The hollow structures, taking up the temperature sensor, should be deeper

in the next version to avoid such bonding errors.

4.1.2 Di�usion inside the cooling channels

The di�usion occuring inside the cooling channels while probing three sensors in a row is shown

in �gure 36. The e�ect is only visible after the second chip chamber. If it has an in�uence on

the obtained QCM-D signals has to be shown in further experiments. At the left side of �gure

36 the destruction of one channel divider and the air bubbles resulting from smaller destructions

of the structure can be seen.
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Figure 36: Di�usion inside the cooling channels

4.1.3 Inserting of the ventiles

Figure 37: Venting channels for

the ventiles

The ventiles were developed and tested using the test bodys

shown in �gure 6. Their bottom part is open, allowing the air,

replaced by the ventile, to escape. In the assembled array the

bottom part of the ventiles is closed by the glass sheets glued

to the cooling channels. The closed structure did not allow the

air to escape and the ventiles could not be inserted completely.

Venting channels were cut into the hollow structures taking

up the ventiles to alow the air to escape from the ventile.

Through this channels air can escape and the ventiles can be

inserted completely. The channels should be included in the

next version of the array to avoid that problem. Instead of

locating them inside the hollow parts of the bottom array a

venting channel could be included in the ventile itself. This would not a�ect the outer surface

of the ventile, which is important for the tightness.

4.1.4 Manufacturing of the cooling plate

The correction of tolerance e�ect while the manufacturing of the cooling plate is shown in �gure

38. The positions of the threads, cutted into the plate, are not all accurate (a). To be able to �x

the array with all its screws the printed parts were modi�ed using a round �le and a scalpel until

all screws did �t in without mechanical stress. The plate is much more di�cult to manufacture

than the printed parts. In further versions of the array the exact position of the threads in the

cooling plate should be determined and the position of the holes for the �xing screws in the 3D

model of the array should be aligned to the positions in the plate.
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(a) Tolerance error of the threads (b) Corrected printed part

Figure 38: Tolerance e�ects of the steel plate and correction by modi�cation of the
printed parts

4.2 PCB design

Figure 39: Modi�cation of a PCB

connector

The amount the Arduino microcontroller exceeds its pins

at the opposite side of the USB connector was not correctly

factored in. The connector for the 7 segment display lo-

cated next to the microcontroller board does thereby over-

lapp with the board. To be able to plug the connector in,

parts of it were removed using a cutting disk mounted onto

a rotary tool as shown in �gure 39. The connector should

be placed considering to the dimensions of the arduino

board in further versions of the PCB design to avoid the

need for this modi�cation.

39



5 Condluding Remarks

5.1 Conclusion

A functional �uidic array for up to ten QCM-D chips was designed. Ventiles allowing a �exible

routing through the array were developed. The array was shown to be tight and the sample

routing was visualized using colored samples. A temperature controller with an easy to use

interface for the user and a USB connetion to a PC was developed and build up. The controller

parameters were determined. The controller was able to keep the temperature stable in a range

below the accuracy of the used temperature sensor over long time.

5.2 Outlook

A second version of the �uidic array should be printed considering the design issus disusses above.

The temperature controller should be put into a casing to protect it from outside in�uences and

to facilitate its handling. If a second temperature controller would be build, the PCB design

should be adopted to the actual size of the microcontroller board. The QCM-D chips should

be connected to the existing commercial QCM-D electronics to determine weather the chips are

able to oscillate in it. To actually measure the mass adsorbing onto the QCM-D chips in the

array their electrical connections have to be included in an oscillator or vector analyzer circuit.
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Supplement A: List of chemicals

Substance Manufacturer Order number Charge number

Water Millipore Q-Gard

2, Membran Pure

Q2

194-0009 304-1-6-4890R

Sodium hydroxide Merk 1-06498-1000 B0127298 780

Ethanol Merk 1.000983.1000 K45251683 405

Ethanol Laboratory stock Barrel in storage n.a.

Acetone Laboratory stock Barrel in storage n.a.

2-Propanole Laboratory stock Barrel in storage n.a.
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Supplement B: List of consumables

Component Description Manufacturer Order number

Membrane �lter Aerodisk Premium 25 mm

Syringe Filter with GxF 1,2

µm GHP Membrane

Pall Life Sciences A4-4307T

Pump tubings LFL Longlife ID 0,38 mm TYGON 070703-04

Water �lter Quantum Ultrapute Organex

Cartridge

Millipore QTUM000EX
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Supplement C: List of components

Component Description Manufacturer Order number

7 segment dis-

play

SC08-11CGKWA Kingbright 1050568-62

7 segment driver MAX 7221 MAXIM MAX 7221 CNG

Thermal com-

pound

Arctic MX-4 ARCTIC ARCTIC MX-4-20

Potentiometer lin. 6mm 220k Omeg PO6M-LIN 220K

Bus driver 74HC541 SGS Thomson 74HC 541

Voltage regulator 7809 TS TS 7809 CZ

Voltage regulator 7805 TS TS 7805 CZ

Galvanisation set Galvanisier-Zubehör-Set Conrad 527983-62

Galvanisation set Handgalvanisier-Set Conrad 530506-62

Copper wire 1 x 0.20 mm2 Conrad 606397-62

Copper wire 1 x 1.50 mm2 Lapp Kabel 607051-62

Copper wire 1 x 1.50 mm2 Conrad 549236-62

Microcontroller

board

Arduino Micro 65192 Arduino 323485-62

USB cable 2m A B Delock 1007855-62

Circuit board Proma photoresist Proma 528579-62

Matrix hole

board

SU527769 Conrad 530753-62

Chipset cooler 28513C60 Akasa 999026-62

Diode BYW98-200 STMicroelectronics 155472-62

Peltier element CP12705 TEC 193569-62

Heat sink CTX/409/50 CTX Thermal Solutions 188041-62

Shunt resistor 0.18 ?5 W Virtrohm 427970-62

Temperature

sensor

TSIC506-TO92 B+B Sensors 506360-62

Thermal com-

pound pad

0.3 mm 1.4 W/mK (L x B) Keratherm 181133-62
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Component Description Manufacturer Order number

Electrolyte ca-

pacirors

Di�erent values velleman K/CAP2

Ceramic capaci-

tors

Di�erent values velleman K/CAP1

Resistors E12 di�erent values velleman K/RES-E12

Motor driver L6203 STMicroelectronics 189-1217

Sealing rings QS-QCS 002 Lot QS-QCS 002

Black nuts QS-QCS 013 Lot QS-QCS 013

Screws 464-M3-16-NI Ganter Gri� 464-M3-16-NI

Fittings Gripper Fitting, Ferrules Flat

Bottom

Diba 002310

Te�on tubing PTFE tubing Bohlender 271730005
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Supplement D: List of devices

Device Description Manufacturer

Analytic balance Analytic AC220S Satorius

Digital camera Finepix HS20EXR Fuji�lm

Piston pipettors Reference 5000 / 1000 / 100 / 10 Eppendorf

Magnetic stirrer MR 3001 Heidolph

Magnetic stirring plate Multipoint HP 15 Variomag

Voltage supply PPS 13610 Voltacraft

Peristaltic pump Reglo-Analog ISM796B Ismatec

QCM-D �owcell QFM 401 Lot Oriel Group Europe

Caliper rule 10059953 Mitutoyo

Water �lter Millipore Q-Gard 2 Millipore

Soldering station i-CON 1 Ersa

Multimeter 87 V True RMS Multimeter Fluke
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Supplement E: List of abbreviations

Abkürzung Bedeutung

ADC Analog to Digital Converter

DMOS Double-Di�used Metal Oxide Semiconductor

dpi dots per inch

EEPROM Electrically Erasable Programmable Read-Only Memory

GND GrouND

ICSP In Circuit Serial Programming

IO Input Output

LED Light Emmiting Diode

MALDI-ToF MS Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry

NTC Negative temperature coe�cient

PC Personal Computer

PCB Printed Circuit Board

PID Proportional, Integral, Di�erential

PWM Pulse Width Modulation

QCM quarz crystal microbalance

QCM-D quarz crystal microbalance with dissipation monitoring

RC Resistor Capacitor

SRAM Short-Range Attack Missile Static Random-Access Memory

TFA TriFluoroacetic Acid

TTL Transistor Transistor Logic

USB Universal Serial Bus

UV UltraViolet
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Supplement I: Source codes

Source code of the PID controller on the Arduino board

2

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

4 // inc l ude l i b a r y s

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

6

#include <math . h>

8 #include <t s i c . h>

#include <So f twa r eS e r i a l . h>

10 #include <LedControl . h>

12 extern "C" {

#inc lude <in t type s . h>

14 }

16 //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

// de f i n e cons tan t s

18 //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

20 const int pot iPinFine = A5 ;

const int pot iPinCoarse = A4 ;

22

const int roomTemperaturePin = A0 ;

24

const int Sense1Pin = A1 ;

26 const int Sense2Pin = A2 ;

const int Sense3Pin = A3 ;

28

const int PWM1Pin = 9 ; // PWM for P e l t i e r

30

const int d i r e c t i onP in = 8 ;

32 const int enablePin = 7 ;

34 const int Fan1Pin = 0 ;
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const int Fan2Pin = 1 ;

36 const int Fan3Pin = 12 ;

const int FanBackPin = 10 ;

38

const int ledPinR = 5 ;

40 const int ledPinG = 6 ;

const int ledPinB = 13 ;

42 const int led2PinR = 11 ;

const int led2PinB = 3 ;

44

const int TempVssPin = 4 ;

46 const int TempSignalPin = 2 ;

48 //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

// de f i n e v a r i a b l e s

50 //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

52 boolean d i r = f a l s e ;

boolean mainMode = f a l s e ;

54

int e r r o r ; //1 = OK, 0 = pa r i t y er ror re turn va lue o f getTSicTemp ()

56 int temperatur ; // " re turn " o f temperature in degrees Ce l s i u s ∗ 100

58 uint32_t time , t imesense , t imeOf f set , timeLast , timeSend , sett ingSinceTime ,

roomTemperatureSinceTime ;

uint32_t Ta = 500 ; // System har t b ea t

60 uint16_t temperature ;

uint16_t temperaturewanted = 30000 ;

62 uint16_t temperaturewantedLast ;

uint16_t temperaturewantedSend = 30000;

64 int16_t t empe ra tu r ed i f f e r en c e ;

uint16_t sensorValue = 0 ;

66 uint16_t sensorValueSend = 0 ;

uint16_t outputValue = 0 ;

68 uint16_t outputValueSend = 0 ;

70 int pot iValueFine ;

int pot iValueCoarse ;

72

unsigned long potiValueFine_Sum ;

74 unsigned long potiValueCoarse_Sum ;

76 const int potiValueSum_Count = 50 ;

int potiValueSum_Counter ;
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78

int roomTemperature ; // PTC temperatur in t e rn

80 double roomTemperature_Sum ;

const byte roomTemperatureSum_Count = 200 ;

82 int roomTemperatureSum_Counter ;

boolean roomTemperatureInit = true ;

84

86 const double roomTemperatureCALslope = −0.099964;

const double roomTemperatureCALoffset = 83 .480492 ;

88 double roomTemperatureCelsius ;

unsigned int roomTemperatureCels iusInt ;

90 unsigned int roomTemperatureSetpointDif f ;

unsigned int roomTemperaturePlateDif f ;

92 unsigned int roomTemperatureSetpointDiffAbs ;

unsigned int roomTemperaturePlateDiffAbs ;

94 unsigned int roomTemperatureUsedDiff ;

96 const byte tempDisplayNormalIntensity = 9 ;

98 int f i n e ;

int coar s e ;

100

unsigned int temperaturePot i ;

102 int temperatureDif fAbs ;

int tempSend ;

104

int c u r r e n tP e l t i e r 1 ;

106 int c u r r e n tP e l t i e r 2 ;

int c u r r e n tP e l t i e r 3 ;

108 long currentPe l t i e r1Sum ;

long currentPe l t i e r2Sum ;

110 long currentPe l t i e r3Sum ;

int currentPe l t i e rSumTota l ;

112 int currentPeltierSum_Count = 100 ;

byte currentPelt ierSum_Counter ;

114

const double currentPelt ier1CAL = 185 .8280 ;

116 const double currentPelt ier2CAL = 168 .7825 ;

const double currentPelt ier3CAL = 174 .3662 ;

118

double currentPe l t i e r1Ampere ;

120 double currentPe l t i e r2Ampere ;

double currentPe l t i e r3Ampere ;
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122 double currentPe l t i e rTota lAmpere ;

int currentPelt ierTotalAmpereSend ;

124

volat i le byte Last_Digit ;

126 volat i le byte Digit_0_value ;

volat i le byte Digit_1_value ;

128 volat i le byte Digit_2_value ;

130 volat i le boolean Digit_0_DP = f a l s e ;

volat i le boolean Digit_1_DP = true ;

132 volat i le boolean Digit_2_DP = f a l s e ;

volat i le boolean Digit_Round ;

134

byte ledValue = 0 ;

136 int counter = 0 ;

byte d i rbyte = 0 ;

138

byte Outputarray [ 1 5 ] ;

140 byte tempBuffer [ 3 ] ;

142 double e , esum , ea l t , y ;

double AS = 0 ;

144

double Kp;

146 double Ki ;

double Kd;

148

double KpC = 1.187451E−01;

150 double KiC = 8.605826E−07;

double KdC = 4.755258E+02;

152

double KpH = 5.391898E−02;

154 double KiH = 1.966363E−07;

double KdH = 2.580668E+02;

156

unsigned long delayt ime=220;

158

byte textCounter ;

160

byte in i tMessage [ ] =

{0 ,0 ,254 ,78 ,118 ,61 ,1 ,119 ,5 ,5 , 119 ,59 ,0 , 15 ,79 ,118 ,103 ,79 ,5 , 119 ,15 ,28 ,5 , 79 ,

162 // Q C M D − A r r a y T e m p e r a t u r e

0 ,78 ,29 ,21 ,15 ,5 , 29 , 14 , 0 , 219 ,0 , 55 , 29 ,23 ,118 ,119 ,21 , 21 , 0 , 109 ,126 ,48 , 91 , 0 , 0 , 0} ;
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164 // C o n t r o l S . H o h m a n n 2 0 1 5

166 //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

// crea t e l i b a r y o b j e c t s

168 //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

170 t s i c Sensor1 (TempVssPin , TempSignalPin ) ;

172 LedControl tempDisplay = LedControl (MOSI,SCK, SS , 1 ) ;

// data , c lock , s e l e c t , number o f d e v i c e s

174 //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

// f u c t i on pro t o t ype s

176 //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

178 void initLEDstep ( byte s tep ) ;

void initFANstep ( byte s tep ) ;

180 void s c r o l l I n i tMe s s a g e ( ) ;

void parseTemp (unsigned int temp) ;

182 void getRoomTemperature ( ) ;

184 //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

// se tup func t i on

186 //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

188 void setup ( ) {

190 TCCR1B = TCCR1B & 0b11111000 | 0b00000001 ; // s e t t imer 1 d i v i s o r to 1

// f o r PWM frequency o f 31372.55 Hz

192

S e r i a l . begin (9600) ;

194

pinMode ( d i r e c t i onP in , OUTPUT) ;

196 pinMode ( enablePin , OUTPUT) ;

pinMode (Fan1Pin , OUTPUT) ;

198 pinMode (Fan2Pin , OUTPUT) ;

pinMode (Fan3Pin , OUTPUT) ;

200 pinMode (FanBackPin , OUTPUT) ;

202 tempDisplay . setScanLimit (0 , 2 ) ;

tempDisplay . shutdown (0 , f a l s e ) ;

204 tempDisplay . s e t I n t e n s i t y (0 , tempDisplayNormalIntens ity ) ;

tempDisplay . c l e a rD i sp l ay (0 ) ;

206

s c r o l l I n i tMe s s a g e ( ) ;
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208

delay (300) ;

210

d i g i t a lWr i t e (Fan1Pin , HIGH) ; // a l l on

212 d i g i t a lWr i t e (Fan2Pin , HIGH) ;

d i g i t a lWr i t e (Fan3Pin , HIGH) ;

214 d i g i t a lWr i t e (FanBackPin , HIGH) ;

analogWrite ( ledPinR , 255) ;

216 analogWrite ( ledPinG , 255) ;

analogWrite ( ledPinB , 255) ;

218 analogWrite ( led2PinR , 255) ;

analogWrite ( led2PinB , 255) ;

220 tempDisplay . s e t I n t e n s i t y (0 , 15 ) ;

tempDisplay . setRow (0 ,2 , 255) ;

222 tempDisplay . setRow (0 ,1 , 255) ;

tempDisplay . setRow (0 ,0 , 255) ;

224 delay (1000) ;

226 d i g i t a lWr i t e (Fan1Pin , LOW) ; // a l l o f f

d i g i t a lWr i t e (Fan2Pin , LOW) ;

228 d i g i t a lWr i t e (Fan3Pin , LOW) ;

d i g i t a lWr i t e (FanBackPin , LOW) ;

230 analogWrite ( ledPinR , 0) ;

analogWrite ( ledPinG , 0) ;

232 analogWrite ( ledPinB , 0) ;

analogWrite ( led2PinR , 0) ;

234 analogWrite ( led2PinB , 0) ;

tempDisplay . s e t I n t e n s i t y (0 , tempDisplayNormalIntensity ) ;

236 tempDisplay . c l e a rD i sp l ay (0 ) ;

238 d i g i t a lWr i t e (Fan1Pin , HIGH) ;

d i g i t a lWr i t e (Fan2Pin , HIGH) ;

240 d i g i t a lWr i t e (Fan3Pin , HIGH) ;

d i g i t a lWr i t e (FanBackPin , HIGH) ;

242

d i g i t a lWr i t e ( enablePin , HIGH) ;

244

getRoomTemperature ( ) ; // d i s ca rd f i r s t measurement

246 delay (500) ;

getRoomTemperature ( ) ;

248

t imeOf f s e t = m i l l i s ( ) ;

250 time = t imeOf f s e t ;

roomTemperatureSinceTime = time ;
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252 t imeLast = t imeOf f s e t − Ta ;

timeSend = 0 ;

254

}

256

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

258 // loop f u c t i on

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

260

void loop ( ) {

262

while ( time < timeLast + Ta) {

264

time = m i l l i s ( ) ;

266

}

268

t imeLast = time ;

270 timeSend = time − t imeOf f s e t ;

272 e r r o r = Sensor1 . getTSicTemp(&temperatur ) ;

temperature = temperatur ;

274

potiValueFine_Sum = 0 ;

276 potiValueCoarse_Sum =0;

278 for ( potiValueSum_Counter = 0 ; potiValueSum_Counter < potiValueSum_Count ;

potiValueSum_Counter++) {

280 potiValueFine_Sum += analogRead ( pot iPinFine ) ;

potiValueCoarse_Sum += analogRead ( pot iPinCoarse ) ;

282

}

284

pot iValueFine = ( int ) ( potiValueFine_Sum / potiValueSum_Count ) ;

286 pot iValueCoarse = ( int ) ( potiValueCoarse_Sum / potiValueSum_Count ) ;

288 f i n e = map( potiValueFine , 0 , 1000 , 0 , 9 ) ;

coa r s e = map( potiValueCoarse , 0 , 1000 , 20 , 40 ) ;

290

temperaturePot i = 10 ∗ f i n e + 100 ∗ coar s e ;

292

temperaturePot i ∗= 10 ;

294
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i f ( temperaturePot i > 40000) {

296 temperaturePot i = 40000 ;

}

298 i f ( temperaturePot i < 20000) {

temperaturePot i = 20000 ;

300 }

302 i f ( temperaturePot i != temperaturewanted ) {

304 se t t ingS inceTime = m i l l i s ( ) ;

temperaturewanted = temperaturePot i ;

306 roomTemperatureInit = true ;

308 tempDisplay . s e t I n t e n s i t y (0 , 15 ) ; // f u l l i n t e n s i t y

310 parseTemp ( temperaturewanted ) ;

312 tempDisplay . s e tD i g i t (0 , 0 , Digit_0_value , Digit_0_DP) ;

tempDisplay . s e tD i g i t (0 , 1 , Digit_1_value , Digit_1_DP) ;

314 tempDisplay . s e tD i g i t (0 , 2 , Digit_2_value , Digit_2_DP) ;

316 }

318

t empe ra tu r ed i f f e r en c e = temperaturewanted − temperature ;

320

i f ( t empe ra tu r ed i f f e r en c e < 0) { temperatureDif fAbs = 0 − t empe ra tu r ed i f f e r en c e ;

} else { temperatureDif fAbs = tempe ra tu r ed i f f e r en c e ; }

322

i f ( roomTemperatureInit == true ) {

324

roomTemperatureInit = f a l s e ;

326

roomTemperatureSetpointDif f = temperaturewanted − roomTemperatureCels iusInt ;

328 roomTemperaturePlateDif f = temperaturewanted − temperature ;

330 i f ( roomTemperatureSetpointDif f < 0) { roomTemperatureSetpointDiffAbs = 0 −
roomTemperatureSetpointDif f ; } else { roomTemperatureSetpointDiffAbs =

roomTemperatureSetpointDif f ; }

i f ( roomTemperaturePlateDif f < 0) { roomTemperaturePlateDiffAbs = 0 −
roomTemperaturePlateDif f ; } else { roomTemperaturePlateDiffAbs =

roomTemperaturePlateDif f ; }

332
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i f ( roomTemperatureSetpointDiffAbs > roomTemperaturePlateDiffAbs ) {

roomTemperatureUsedDiff = roomTemperatureSetpointDif f ; } else {

roomTemperatureUsedDiff = roomTemperaturePlateDif f ; }

334

i f ( roomTemperatureUsedDiff < 0) {

336

mainMode = f a l s e ; // coo l i n g

338

Kp = KpC;

340 Ki = KiC ;

Kd = KdC;

342

} else {

344

mainMode = true ; // hea t ing

346

Kp = KpH;

348 Ki = KiH ;

Kd = KdH;

350

}

352 }

354 e = tempe ra tu r ed i f f e r en c e ;

356 i f ( ( e >= AS) | | ( e <= (AS∗(−1) ) ) ) //

{

358 i f ( ( y < 255)&&(y > −255) ) // s top i n t e g r a t i o n on ove r f l ow

{ // an t i windup

360 esum = esum + e ; // i n t e g r a t e

}

362

y = (Kp∗e )+(Ki∗Ta∗esum)+(Kd∗ ( ( e−e a l t ) ) /Ta) ; // PID

364

e a l t = e ; // s t o r e l a s t e r ror f o r next ha r t b ea t

366 }

368 i f ( y > 255) // l im i t output va lue in t o range from

−255 to 255 (9 b i t PWM)

{

370 y = 255 ;

}

372 i f ( y < −255)

{
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374 y = −255;

}

376

sensorValue = y + 255 ;

378

i f ( sensorValue < 256) {

380

d i r = f a l s e ; // coo l i n g

382 outputValue = 255 − sensorValue ;

ledValue = outputValue ;

384 } else {

386 d i r = true ; // hea t ing

outputValue = 255 − ( sensorValue − 256) ;

388 l edValue = sensorValue − 256 ;

390 }

392

analogWrite (PWM1Pin, outputValue ) ; // ad j u s t PWM for motor c o n t r o l l e r s

394

396 i f ( d i r == true ) {

398 d i g i t a lWr i t e ( d i r e c t i onP in , HIGH) ;

400 analogWrite ( led2PinR , ledValue ) ;

analogWrite ( led2PinB , 0 ) ;

402

d i rbyte = 1 ;

404

} else {

406

d i g i t a lWr i t e ( d i r e c t i onP in , LOW) ;

408

analogWrite ( led2PinB , ledValue ) ;

410 analogWrite ( led2PinR , 0 ) ;

412 d i rbyte = 0 ;

414 }

416 i f ( time > roomTemperatureSinceTime + 60000) {
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418 roomTemperatureSinceTime = m i l l i s ( ) ;

getRoomTemperature ( ) ;

420 roomTemperatureInit = true ;

422 }

424 i f ( se t t ingS inceTime + 700 > time ) {

426 analogWrite ( ledPinR , 255) ; // pink

analogWrite ( ledPinG , 0) ;

428 analogWrite ( ledPinB , 180) ;

430 tempDisplay . s e t I n t e n s i t y (0 , 15 ) ;

432 parseTemp ( temperaturewanted ) ;

434 tempDisplay . s e tD i g i t (0 , 0 , Digit_0_value , Digit_0_DP) ;

tempDisplay . s e tD i g i t (0 , 1 , Digit_1_value , Digit_1_DP) ;

436 tempDisplay . s e tD i g i t (0 , 2 , Digit_2_value , Digit_2_DP) ;

438 } else {

440 tempDisplay . s e t I n t e n s i t y (0 , tempDisplayNormalIntens ity ) ;

442 tempSend = temperature ;

444 i f ( temperatureDif fAbs > 4999) {

446 analogWrite ( ledPinR , 255) ; // ro t

analogWrite ( ledPinG , 0) ;

448 analogWrite ( ledPinB , 0) ;

450 } else i f ( temperatureDif fAbs > 2499) {

452 analogWrite ( ledPinR , 224) ; // organge

analogWrite ( ledPinG , 30) ;

454 analogWrite ( ledPinB , 0) ;

456 } else i f ( temperatureDif fAbs > 999) {

458 analogWrite ( ledPinR , 174) ; // dunke l g e l b

analogWrite ( ledPinG , 109) ;

460 analogWrite ( ledPinB , 0) ;
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462 } else i f ( temperatureDif fAbs > 60) {

analogWrite ( ledPinR , 108) ; // gruenge l b

464 analogWrite ( ledPinG , 146) ;

analogWrite ( ledPinB , 0) ;

466 } else {

analogWrite ( ledPinR , 0) ; // gruen

468 analogWrite ( ledPinG , 255) ;

analogWrite ( ledPinB , 0) ;

470 tempSend = temperaturewanted ;

}

472

parseTemp ( tempSend ) ;

474

tempDisplay . s e tD i g i t (0 , 0 , Digit_0_value , Digit_0_DP) ;

476 tempDisplay . s e tD i g i t (0 , 1 , Digit_1_value , Digit_1_DP) ;

tempDisplay . s e tD i g i t (0 , 2 , Digit_2_value , Digit_2_DP) ;

478

}

480

delay (100) ; // wai t f o r RC pass to s e t t l e

482

currentPe l t i e r1Sum = 0 ;

484 currentPe l t i e r2Sum = 0 ;

currentPe l t i e r3Sum = 0 ;

486

for ( currentPelt ierSum_Counter = 0 ; currentPelt ierSum_Counter <

currentPeltierSum_Count ; currentPelt ierSum_Counter++) {

488

currentPe l t i e r1Sum += analogRead ( Sense1Pin ) ;

490 currentPe l t i e r2Sum += analogRead ( Sense2Pin ) ;

currentPe l t i e r3Sum += analogRead ( Sense3Pin ) ;

492

}

494

c u r r e n tP e l t i e r 1 = ( int ) ( currentPe l t i e r1Sum / currentPeltierSum_Count ) ;

496 c u r r e n tP e l t i e r 2 = ( int ) ( currentPe l t i e r2Sum / currentPeltierSum_Count ) ;

c u r r e n tP e l t i e r 3 = ( int ) ( currentPe l t i e r3Sum / currentPeltierSum_Count ) ;

498

currentPe l t i e r1Ampere = cu r r e n tPe l t i e r 1 / currentPelt ier1CAL ;

500 currentPe l t i e r2Ampere = cu r r e n tPe l t i e r 2 / currentPelt ier2CAL ;

currentPe l t i e r3Ampere = cu r r e n tPe l t i e r 3 / currentPelt ier3CAL ; ;

502

currentPe l t i e rTota lAmpere = currentPe l t i e r1Ampere + currentPe l t i e r2Ampere +

currentPe l t i e r3Ampere ;
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504 currentPelt ierTotalAmpereSend = ( int ) ( currentPe l t i e rTota lAmpere∗1000) ;

506

Outputarray [ 0 ] = lowByte ( timeSend ) ;

508 timeSend = timeSend>>8;

Outputarray [ 1 ] = lowByte ( timeSend ) ;

510 timeSend = timeSend>>8;

Outputarray [ 2 ] = lowByte ( timeSend ) ;

512 timeSend = timeSend>>8;

Outputarray [ 3 ] = lowByte ( timeSend ) ;

514

Outputarray [ 4 ] = lowByte ( temperature ) ;

516 temperature = temperature >>8;

Outputarray [ 5 ] = lowByte ( temperature ) ;

518

temperaturewantedSend = temperaturewanted ;

520

Outputarray [ 6 ] = lowByte ( temperaturewantedSend ) ;

522 temperaturewantedSend = temperaturewantedSend>>8;

Outputarray [ 7 ] = lowByte ( temperaturewantedSend ) ;

524

Outputarray [ 8 ] = lowByte ( t empe ra tu r ed i f f e r en c e ) ;

526 t empe ra tu r ed i f f e r en c e = tempera tu r ed i f f e r ence >>8;

Outputarray [ 9 ] = lowByte ( t empe ra tu r ed i f f e r en c e ) ;

528

sensorValueSend = currentPelt ierTota lAmpereSend ;

530 Outputarray [ 1 0 ] = lowByte ( sensorValueSend ) ;

sensorValueSend = sensorValueSend >>8;

532 Outputarray [ 1 1 ] = lowByte ( sensorValueSend ) ;

534 Outputarray [ 1 2 ] = d i rbyte ;

536 outputValueSend = outputValue ;

Outputarray [ 1 3 ] = lowByte ( outputValueSend ) ;

538 outputValueSend = outputValueSend>>8;

Outputarray [ 1 4 ] = lowByte ( outputValueSend ) ;

540

S e r i a l . wr i t e ( Outputarray , s izeof ( Outputarray ) ) ;

542 }

544 //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

// f u c t i on to determine the ambient temperature v ia the ntc

546 //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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548 void getRoomTemperature ( ) {

550 roomTemperature_Sum = 0 ;

552 for ( roomTemperatureSum_Counter = 0 ; roomTemperatureSum_Counter <

roomTemperatureSum_Count ; roomTemperatureSum_Counter++) {

554 roomTemperature_Sum += analogRead ( roomTemperaturePin ) ;

556 delay (1 ) ;

}

558

roomTemperature = ( int ) ( roomTemperature_Sum / roomTemperatureSum_Count ) ;

560 roomTemperatureCelsius = roomTemperature ∗ roomTemperatureCALslope +

roomTemperatureCALoffset ;

roomTemperatureCels iusInt = ( int ) ( round ( roomTemperatureCelsius∗10)∗100) ;
562

564 }

566

void initLEDstep ( byte s tep ) {

568

switch ( s tep ) {

570 case 4 :

analogWrite ( ledPinR , 255) ; // ro t

572 analogWrite ( ledPinG , 0) ;

analogWrite ( ledPinB , 0) ;

574 analogWrite ( led2PinR , 0) ; // b lau s t a r k

analogWrite ( led2PinB , 255) ;

576 break ;

case 9 :

578 analogWrite ( ledPinR , 224) ; // organge

analogWrite ( ledPinG , 30) ;

580 analogWrite ( ledPinB , 0) ;

analogWrite ( led2PinR , 0) ; // b lau m i t t e l

582 analogWrite ( led2PinB , 120) ;

break ;

584 case 14 :

analogWrite ( ledPinR , 174) ; // dunke l g e l b

586 analogWrite ( ledPinG , 109) ;

analogWrite ( ledPinB , 0) ;

588 analogWrite ( led2PinR , 0) ; // b lau schwach

analogWrite ( led2PinB , 23) ;
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590 break ;

case 19 :

592 analogWrite ( ledPinR , 108) ; // gruenge l b

analogWrite ( ledPinG , 146) ;

594 analogWrite ( ledPinB , 0) ;

analogWrite ( led2PinR , 17) ; // ro t schwach

596 analogWrite ( led2PinB , 0) ;

break ;

598 case 24 :

analogWrite ( ledPinR , 0) ; // gruen

600 analogWrite ( ledPinG , 255) ;

analogWrite ( ledPinB , 0) ;

602 analogWrite ( led2PinR , 90) ; // ro t m i t t e l

analogWrite ( led2PinB , 0) ;

604 break ;

case 29 :

606 analogWrite ( ledPinR , 255) ; // pink

analogWrite ( ledPinG , 0) ;

608 analogWrite ( ledPinB , 180) ;

analogWrite ( led2PinR , 255) ; // ro t s t a r k

610 analogWrite ( led2PinB , 0) ;

break ;

612 case 34 :

analogWrite ( ledPinR , 0) ; // aus

614 analogWrite ( ledPinG , 0) ;

analogWrite ( ledPinB , 0) ;

616 analogWrite ( led2PinR , 0) ;

analogWrite ( led2PinB , 0) ;

618 break ;

620 default :

622 break ;

}

624

}

626

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

628 // f u c t i on f o r fan con t r o l in i n i t

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

630

void initFANstep ( byte s tep ) {

632

switch ( s tep ) {
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634

case 30 :

636 d i g i t a lWr i t e (FanBackPin , HIGH) ;

break ;

638 case 33 :

d i g i t a lWr i t e (FanBackPin , LOW) ;

640 break ;

case 35 :

642 d i g i t a lWr i t e (Fan1Pin , HIGH) ;

break ;

644 case 37 :

d i g i t a lWr i t e (Fan1Pin , LOW) ;

646 d i g i t a lWr i t e (Fan2Pin , HIGH) ;

break ;

648 case 39 :

d i g i t a lWr i t e (Fan2Pin , LOW) ;

650 d i g i t a lWr i t e (Fan3Pin , HIGH) ;

break ;

652 case 41 :

d i g i t a lWr i t e (Fan3Pin , LOW) ;

654 d i g i t a lWr i t e (Fan2Pin , HIGH) ;

break ;

656 case 43 :

d i g i t a lWr i t e (Fan2Pin , LOW) ;

658 d i g i t a lWr i t e (Fan1Pin , HIGH) ;

break ;

660 case 45 :

d i g i t a lWr i t e (Fan1Pin , LOW) ;

662 d i g i t a lWr i t e (Fan2Pin , LOW) ;

d i g i t a lWr i t e (Fan3Pin , LOW) ;

664 break ;

666 default :

break ;

668 }

670 }

672 //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

// f u c t i on to p r i n t welcome message on 7 segment d i s p l a y

674 //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

676 void s c r o l l I n i tMe s s a g e ( ) {

xxviii



678 tempDisplay . s e t I n t e n s i t y (0 , 15 ) ;

680 for ( textCounter = 0 ; textCounter <48; textCounter++) {

682 tempDisplay . setRow (0 ,2 , in i tMessage [ textCounter ] ) ;

tempDisplay . setRow (0 ,1 , in i tMessage [ textCounter +1]) ;

684 tempDisplay . setRow (0 ,0 , in i tMessage [ textCounter +2]) ;

initFANstep ( textCounter ) ;

686 initLEDstep ( textCounter ) ;

de lay ( de layt ime ) ;

688

}

690 tempDisplay . s e t I n t e n s i t y (0 , tempDisplayNormalIntens ity ) ;

}

692

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

694 // f u c t i on to parse a number to d i s p l a y i t on 7 segments

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

696

void parseTemp (unsigned int temp) {

698

Digit_0_DP = f a l s e ;

700 Digit_1_DP = true ;

Digit_2_DP = f a l s e ;

702

temp = temp / 10 ;

704

Last_Digit = temp % 10 ;

706 i f ( Last_Digit < 5) Digit_Round = f a l s e ; else Digit_Round = true ;

temp = temp / 10 ;

708

Digit_0_value = temp % 10 ;

710

i f (Digit_Round ) {

712 i f ( Digit_0_value == 9) {

Digit_0_value = 0 ;

714 } else {

Digit_0_value++;

716 Digit_Round = f a l s e ;

}

718 }

temp = temp / 10 ;

720

Digit_1_value = temp % 10 ;
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722

i f (Digit_Round ) {

724 i f ( Digit_1_value == 9) {

Digit_1_value = 0 ;

726 } else {

Digit_1_value++;

728 Digit_Round = f a l s e ;

}

730 }

temp = temp / 10 ;

732

Digit_2_value = temp % 10 ;

734

i f (Digit_Round ) {

736 Digit_2_value++;

Digit_Round = f a l s e ;

738 }

Digit_Round = f a l s e ;

740

}

tempcontrol56.ino
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Source code for the programm to read the control parameters via

the USB interface

2 //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

// inc l ude l i b a r y s

4 //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

6 #include <s td i o . h>

#include <s t d l i b . h>

8 #include <windows . h>

#include <s t r i n g . h>

10 #include <conio . h>

#include <s td i n t . h>

12 #include <stdarg . h>

#include <s t r i n g . h>

14 #include <in t type s . h>

16 //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

// de f i n e cons tan t s

18 //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

20 #define ESC 27

#define MAXLINE 100 ;

22

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

24 // de f i n e v a r i a b l e s

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

26

int verbose = 0 ;

28 char∗ VIDstr ;

char∗ PIDstr ;

30 CHAR Fi l eFu l lPath [ ] = {"COM7"} ;

DWORD dwError ,mode ;

32 BOOL fSucc e s s ;

DCB dcb ;

34 HANDLE hCom;

FILE∗ comPortFileHandle ;

36

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

38 // f u c t i on pro t o t ype s

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

40

unsigned mainmenu (void ) ;
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42 void monitor (HANDLE hCom) ;

void warten (void ) ;

44 void strremove (char∗ source , char ch ) ;

46 //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

// main f u c t i on

48 //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

50 int main ( int argc , char ∗argv [ ] ) {

52

HANDLE keyboard = GetStdHandle (STD_INPUT_HANDLE) ;

54

56 CHAR ComPortFile [ ] = {"comports . l i s t "} ;

CHAR pu f f e r [ 1 0 0 ] ;

58

CHAR ∗comPortListe [ 9 ] ;

60

int i =1;

62 char ∗ptr ;
unsigned c , d , e , f ;

64 unsigned i npu tbu f f e r [ 1 0 ] ;

66

// s e t keyboard to raw read ing .

68 i f ( ! GetConsoleMode ( keyboard , &mode) )

p r i n t f ( " g e t t i n g keyboard mode" ) ;

70 mode &= ~ ENABLE_PROCESSED_INPUT;

i f ( ! SetConsoleMode ( keyboard , mode) )

72 p r i n t f ( " s e t t i n g keyboard mode" ) ;

74

hCom = CreateF i l e ( (LPCTSTR) Fi l eFu l lPath ,

76 GENERIC_READ | GENERIC_WRITE,

0 , // comm dev i c e s must be opened w/ e x c l u s i v e−acces s
78 NULL, // no s e c u r i t y a t t r i b u t e s

OPEN_EXISTING, // comm dev i c e s must use OPEN_EXISTING

80 0 , // not over lapped I /O

NULL // hTemplate must be NULL fo r comm dev i c e s

82 ) ;

84 i f (hCom == INVALID_HANDLE_VALUE)

{
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86 dwError = GetLastError ( ) ;

p r i n t f ( " Inva l i d va lue : %d\ r \n" , dwError ) ;

88 // handle error

}

90

f Suc c e s s = GetCommState (hCom, &dcb ) ;

92

i f ( ! f Suc c e s s )

94 {

96 p r i n t f ( "Error 1\n" ) ;

// Handle the error .

98 }

100 // F i l l in the DCB: baud=9600, 8 data b i t s , no par i t y , 1 s top b i t .

102 dcb . BaudRate = 9600 ;

dcb . ByteSize = 8 ;

104 dcb . Par i ty = NOPARITY;

dcb . StopBits = ONESTOPBIT;

106

f Suc c e s s = SetCommState (hCom, &dcb ) ;

108

i f ( ! f Suc c e s s )

110 {

p r i n t f ( "Error 2\n" ) ;

112 // Handle the error .

}

114

while ( c !=27) {

116

c = mainmenu ( ) ;

118

switch ( c )

120

{

122

case ' 1 ' :

124

system ( " l i stComPorts . exe > comports . l i s t " ) ;

126

comPortFileHandle = fopen ( ComPortFile , " r " ) ;

128

i = 1 ;
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130

system ( "Cls " ) ;

132 p r i n t f ( "\n\n" ) ;

134 while ( f g e t s ( pu f f e r , 100 , comPortFileHandle ) )

{

136

ptr = s t r t ok ( pu f f e r , "−" ) ;
138 while ( ptr != NULL) {

140 p r i n t f ( "%d : " , i ) ;

comPortListe [ i ]=ptr ;

142 strremove ( comPortListe [ i ] , ' ' ) ;

p r i n t f ( "%s " , comPortListe [ i ] ) ;

144 ptr = s t r t ok (NULL, "−" ) ;
p r i n t f ( "%s \n" , ptr ) ;

146 ptr = s t r t ok (NULL, "−" ) ;
ptr = s t r t ok (NULL, "−" ) ;

148 i++;

}

150

}

152

l a b e l :

154

do f = getch ( ) ; while ( ! ( ( i s d i g i t ( f ) ) | | ( f != 'ESC ' ) ) ) ;

156

i f ( f−48<i ) {

158 CloseHandle (hCom) ;

p r i n t f ( "%d\n" , f −48) ;

160 p r i n t f ( "%s " , comPortListe [ f −48]) ;

162 hCom = CreateF i l e ( (LPCTSTR) comPortListe [ f −48] ,

GENERIC_READ | GENERIC_WRITE,

164 0 , // comm dev i c e s must be opened w/ e x c l u s i v e−acces s
NULL, // no s e c u r i t y a t t r i b u t e s

166 OPEN_EXISTING, // comm dev i c e s must use OPEN_EXISTING

0 , // not over lapped I /O

168 NULL // hTemplate must be NULL fo r comm dev i c e s

) ;

170

i f (hCom == INVALID_HANDLE_VALUE)

172 {

dwError = GetLastError ( ) ;
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174 p r i n t f ( " Inva l i d va lue : %d\ r \n" , dwError ) ;

// handle error

176 }

178

f Suc c e s s = GetCommState (hCom, &dcb ) ;

180

i f ( ! f Suc c e s s )

182 {

184 p r i n t f ( "Error 1\n" ) ;

// Handle the error .

186 }

188 // F i l l in the DCB: baud=9600, 8 data b i t s , no par i t y , 1 s top b i t .

190 dcb . BaudRate = 9600 ;

dcb . ByteSize = 8 ;

192 dcb . Par i ty = NOPARITY;

dcb . StopBits = ONESTOPBIT;

194

f Suc c e s s = SetCommState (hCom, &dcb ) ;

196

i f ( ! f Suc c e s s )

198 {

p r i n t f ( "Error 2\n" ) ;

200 // Handle the error .

}

202

} else goto l a b e l ;

204

break ;

206 case ' 2 ' : monitor (hCom) ;

208 break ;

case ' 3 ' : monitorwr i te (hCom) ;

210

break ;

212 case ' 4 ' : return (0 ) ;

break ;

214 case 'ESC ' : return (0 ) ;

break ;

216 default : break ;
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218 }

}

220

CloseHandle ( keyboard ) ;

222 CloseHandle (hCom) ;

224 return 0 ;

}

226

void warten (void ) {

228

while ( ! ( kbhit ( ) ) ) ;

230

}

232

234 unsigned mainmenu (void ) {

236 unsigned c ;

238 system ( "Cls " ) ;

240 p r i n t f ( " ================================= \n" ) ;

p r i n t f ( " # QCM−Array Temperature Control # \n" ) ;

242 p r i n t f ( " # # \n" ) ;

p r i n t f ( " # programmed by # \n" ) ;

244 p r i n t f ( " # # \n" ) ;

p r i n t f ( " # S i e g f r i e d Hohmann , B. Sc . 2015 # \n" ) ;

246 p r i n t f ( " ================================= \n" ) ;

p r i n t f ( "\n\n" ) ;

248 p r i n t f ( " 1 . S e l e c t s e r i a l port \n" ) ;

p r i n t f ( " 2 . Monitor c on t r o l p roce s s \n" ) ;

250 p r i n t f ( " 3 . Monitor and wr i t e data to f i l e \n" ) ;

p r i n t f ( " 4 . Exit \n" ) ;

252

do c = getch ( ) ; while ( ! ( ( i s d i g i t ( c ) ) | | ( c != 'ESC ' ) ) ) ;

254

return c ;

256

}

258

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

260 // func t i on to monitor

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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262

void monitor (HANDLE hCom) {

264

unsigned c ;

266 unsigned d ;

byte i npu tbu f f e r [ 1 5 ] ;

268

uint32_t time ;

270 uint16_t temperature ;

uint16_t temperaturewanted ;

272 int16_t t empe ra tu r ed i f f e r en c e ;

uint16_t sensorValue ;

274 byte d i rbyte ;

uint16_t outputValue ;

276

278 DWORD read , wr i t t en ;

280 i f ( kbhit ( ) ) {

c = getch ( ) ;

282 }

284 do {

// check f o r data on por t and d i s p l a y i t on screen .

286 ReadFile (hCom, inputbu f f e r , s izeof ( i npu tbu f f e r ) , &read , NULL) ;

i f ( read ) {

288

time = inpu tbu f f e r [ 3 ] ;

290 time = time<<8;

time += inpu tbu f f e r [ 2 ] ;

292 time = time<<8;

time += inpu tbu f f e r [ 1 ] ;

294 time = time<<8;

time += inpu tbu f f e r [ 0 ] ;

296

temperature = inpu tbu f f e r [ 5 ] ;

298 temperature = temperature <<8;

temperature += inpu tbu f f e r [ 4 ] ;

300

temperaturewanted = inpu tbu f f e r [ 7 ] ;

302 temperaturewanted = temperaturewanted<<8;

temperaturewanted += inpu tbu f f e r [ 6 ] ;

304

t empe ra tu r ed i f f e r en c e = inpu tbu f f e r [ 9 ] ;
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306 t empe ra tu r ed i f f e r en c e = tempera tu r ed i f f e r ence <<8;

t empe ra tu r ed i f f e r en c e += inpu tbu f f e r [ 8 ] ;

308

sensorValue = inpu tbu f f e r [ 1 1 ] ;

310 sensorValue = sensorValue <<8;

sensorValue += inpu tbu f f e r [ 1 0 ] ;

312

d i rbyte = inpu tbu f f e r [ 1 2 ] ;

314

outputValue = inpu tbu f f e r [ 1 4 ] ;

316 outputValue = outputValue<<8;

outputValue += inpu tbu f f e r [ 1 3 ] ;

318

p r i n t f ( "Time : %.1 f s Temp: %.3 f SP : %.2 f D i f f : " , time /1000 .0 ,

temperature /1000 .0 , temperaturewanted /1000 .0 ) ;

320 i f ( t empe ra tu r ed i f f e r en c e >= 0) p r i n t f ( " " ) ;

p r i n t f ( "%.3 f " , t empe ra tu r ed i f f e r en c e /1000 .0 ) ;

322 i f ( d i rbyte == 0) { p r i n t f ( " c oo l i n g " ) ; } else { p r i n t f ( " heat ing " ) ; }

p r i n t f ( " PWM: " ) ;

324 i f ( outputValue < 10) p r i n t f ( " " ) ;

i f ( outputValue < 100) p r i n t f ( " " ) ;

326 p r i n t f ( " %d " , outputValue ) ;

p r i n t f ( " I : %.2fA\n" , sensorValue /1000 .0 ) ;

328 }

330 i f ( kbhit ( ) ) {

c = getch ( ) ;

332 }

334

} while ( c !=27) ;

336

}

338

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

340 // func t i on to monitor and wr i t e

//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

342

void monitorwr i te (HANDLE hCom) {

344

unsigned c ;

346 unsigned d ;

byte i npu tbu f f e r [ 1 5 ] ;

348 FILE ∗ fp ;
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char f i l ename [ 5 0 ] = {0} ;

350

system ( "Cls " ) ;

352

p r i n t f ( "Enter f i l e name : " ) ;

354

s can f ( "%s " , f i l ename ) ; //

356

fp = fopen ( f i l ename , "w" ) ;

358 i f ( fp == NULL) {

p r i n t f ( "Error opening %s f o r wr i t i ng . \ n" , f i l ename ) ;

360

}

362

p r i n t f ( "Writing to f i l e %s \n" , f i l ename ) ;

364

366 uint32_t time ;

uint16_t temperature ;

368 uint16_t temperaturewanted ;

int16_t t empe ra tu r ed i f f e r en c e ;

370 uint16_t sensorValue ;

byte d i rbyte ;

372 uint16_t outputValue ;

374 DWORD read , wr i t t en ;

376

do {

378

ReadFile (hCom, inputbu f f e r , s izeof ( i npu tbu f f e r ) , &read , NULL) ;

380 i f ( read ) {

382 time = inpu tbu f f e r [ 3 ] ;

time = time<<8;

384 time += inpu tbu f f e r [ 2 ] ;

time = time<<8;

386 time += inpu tbu f f e r [ 1 ] ;

time = time<<8;

388 time += inpu tbu f f e r [ 0 ] ;

390 temperature = inpu tbu f f e r [ 5 ] ;

temperature = temperature <<8;

392 temperature += inpu tbu f f e r [ 4 ] ;
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394 temperaturewanted = inpu tbu f f e r [ 7 ] ;

temperaturewanted = temperaturewanted<<8;

396 temperaturewanted += inpu tbu f f e r [ 6 ] ;

398 t empe ra tu r ed i f f e r en c e = inpu tbu f f e r [ 9 ] ;

t empe ra tu r ed i f f e r en c e = tempera tu r ed i f f e r ence <<8;

400 t empe ra tu r ed i f f e r en c e += inpu tbu f f e r [ 8 ] ;

402 sensorValue = inpu tbu f f e r [ 1 1 ] ;

sensorValue = sensorValue <<8;

404 sensorValue += inpu tbu f f e r [ 1 0 ] ;

406 d i rbyte = inpu tbu f f e r [ 1 2 ] ;

408 outputValue = inpu tbu f f e r [ 1 4 ] ;

outputValue = outputValue<<8;

410 outputValue += inpu tbu f f e r [ 1 3 ] ;

412 p r i n t f ( "Time : %.1 f s Temp: %.3 f SP : %.2 f D i f f : " , time /1000 .0 ,

temperature /1000 .0 , temperaturewanted /1000 .0 ) ;

i f ( t empe ra tu r ed i f f e r en c e >= 0) p r i n t f ( " " ) ;

414 p r i n t f ( "%.3 f " , t empe ra tu r ed i f f e r en c e /1000 .0 ) ;

i f ( d i rbyte == 0) { p r i n t f ( " c oo l i n g " ) ; } else { p r i n t f ( " heat ing " ) ; }

416 p r i n t f ( " PWM: " ) ;

i f ( outputValue < 10) p r i n t f ( " " ) ;

418 i f ( outputValue < 100) p r i n t f ( " " ) ;

p r i n t f ( " %d " , outputValue ) ;

420 p r i n t f ( " I : %.2fA\n" , sensorValue /1000 .0 ) ;

422 f p r i n t f ( fp , "%.1 f ,%.3 f ,%.2 f ,%.3 f , " , time /1000 .0 , temperature /1000 .0 ,

temperaturewanted /1000 .0 , t empe ra tu r ed i f f e r en c e /1000 .0 ) ;

i f ( d i rbyte == 0) { f p r i n t f ( fp , " coo l ing , " ) ; } else { f p r i n t f ( fp , "

heat ing , " ) ; }

424 f p r i n t f ( fp , "%d ,%.2 f \n" , outputValue , sensorValue /1000 .0 ) ;

426 }

428 i f ( kbhit ( ) ) {

c = getch ( ) ;

430 }

432 } while ( c !=27) ;
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434 f c l o s e ( fp ) ;

436 }

438 //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

// func t i on to remove a s t r i n g

440 //~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

442 void strremove (char∗ source , char ch ) {

char∗ t a r g e t=source ;

444 for ( ; ( ∗ t a r g e t=∗ source ) !=0; source++)

i f (∗ t a r g e t !=ch ) t a r g e t++;

446 }

main.c

xli



Declaration of authorship

I declare in lieu of an oath that the Master Thesis submitted has been pro-

duced by me without illegal help from other persons. I state that all passages

which have been taken out of publications of all means or un-published mate-

rial either whole or in part, in words or ideas, have been marked as quotations

in the relevant passage. I also con�rm that the quotes included show the ex-

tent of the original quotes and are marked as such. I know that a false

declaration will have legal consequences.

Date Siegfried Hohmann

xlii


	Title page
	Abstract
	Table of contents
	1 Introduction
	1.1 Motivation
	1.2 Aim of the work
	1.3 Structure of the thesis

	2 Materials and Methods
	2.1 Chemicals, consumables and devices
	2.2 Components
	2.2.1 QCM-D Sensors
	2.2.2 Peltier elements
	2.2.3 Motor driver
	2.2.4 Digital temperature sensor
	2.2.5 Seven segment driver
	2.2.6 Microcontroller board

	2.3 Software
	2.4 3D Printing
	2.5 Modifications of printed parts
	2.6 Valve development using test bodys
	2.7 Galvanization
	2.8 UV bonding
	2.9 Printed circuit board etching
	2.10 Determination of controller parameters
	2.11 Calibration of the current measurement
	2.12 Calibration of the room temperature sensor

	3 Results
	3.1 QCM-D Array
	3.1.1 Concept
	3.1.2 Ventiles
	3.1.3 Printed fluidic parts
	3.1.4 Flexible sample routing
	3.1.5 Cooling plate holder with fans

	3.2 Temperature control
	3.2.1 Concept
	3.2.2 Circuit
	3.2.3 Printed circuit board
	3.2.4 User interface
	3.2.5 Determination of the controller parameters
	3.2.6 Response of the controller to setpoint jumps
	3.2.7 Long term stability


	4 Discussion
	4.1 Fluidic design
	4.1.1 Integration of the temperature sensor
	4.1.2 Diffusion inside the cooling channels
	4.1.3 Inserting of the ventiles
	4.1.4 Manufacturing of the cooling plate

	4.2 PCB design

	5 Condluding Remarks
	5.1 Conclusion
	5.2 Outlook

	References
	Supplement
	Supplement A: List of chemicals
	Supplement B: List of consumables
	Supplement C: List of components
	Supplement D: List of devices
	Supplement E: List of abbreviations
	Supplement F: List of figures
	Supplement G: List of tables
	Supplement H: Complete circuit diagram of the temperature controller
	Supplement I: Source codes


