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Kurzfassung

Hunderttausende Patienten leiden jährlich an Therapieversagen oder uner-
wünschten Arzneimittelwirkung und können deswegen von pharmakogeno-
mischen Tests profitieren. Für die Anwendung der Pharmakogenomik im
klinischen Alltag wird automatisierte Entscheidungsunterstützung benötigt.
Momentant liegt das Wissen lediglich als Leitlinien vor, in Textform und
unstrukturiert.

Die vorliegende Arbeit evaluiert, ob ein hier entworfener Webservice kli-
nische relevante Genvarianten mit Informationen aus Leitlinien annotieren
kann. Das vorgestellte Programm gibt patientenspezifische Informationen
pharmakogenomischer Leitlinien in formalisierter Darstellung wider und er-
möglicht die Annotierung von Genomen im Variant Call Format (VCF)
mit Informationen der Pharmacogenomic Knowledge Base (PharmGKB)
und Leitlinien der Clinical Pharmacogenetics Implementation Consortium
(CPIC).

Die Eignung des Webservices, klinische relevante Genvarianten mit In-
formationen pharmakogenomischer Leitlinien zu annotieren, wird evaluiert,
indem fünf Leitlinien in den Webservice integriert werden und das Programm
auf öffentlich verfügbaren Genomen getestet wird. Der Workflow findet ge-
netische Varianten, die in CPIC Leitlinien beschrieben werden und durch
diese Genvarianten beeinflusste Medikamente.

Die Ergebnisse zeigen, dass der Webservice benutzt werden kann, um
schnell klinisch relevante Genvarianten mit aktuellen Informationen aus phar-
makogenomischen Leitlinien zu annotieren, wobei Hürden wie die Überset-
zung von Genvarianten in die Star Allele Nomenklatur oder das Fehlen einer
einzigen Haplotyp Nomenklatur die Anwendungen dieser Herangehensweise
an anderen Medikamenten und in der Klinik schwierig machen.
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Abstract

Every year, hundreds of thousands of patients are affected by treatment
failure or adverse drug reactions, many of which could be prevented by
pharmacogenomic testing. To address these deficiencies in care, clinics re-
quire automated clinical decision support through computer based systems,
which provide clinicians with patient-specific recommendations. The pri-
mary knowledge needed for clinical pharmacogneomics is currently being
developed through textual and unstructured guidelines.

In this thesis, it is evaluated whether a web service can annotate clini-
cally relevant genetic variants with guideline information using web services
and identify areas of challenge. The proposed tool displays a formal rep-
resentation of pharmacogenomic guideline information through a web ser-
vice and existing resources. It enables the annotation of variant call format
(VCF) files with clinical guideline information from the Pharmacogenomic
Knowledge Base (PharmGKB) and Clinical Pharmacogenetics Implementa-
tion Consortium (CPIC).

The applicability of the web service to annotate clinically relevant vari-
ants with pharmacogenomics guideline information is evaluated by translat-
ing five guidelines to a web service workflow and executing the process to
annotate publically available genomes. The workflow finds genetic variants
covered in CPIC guidelines and influenced drugs.

The results show that the web service could be used to annotate in real
time clinically relevant variants with up-to-date pharmacogenomics guide-
line information, although several challenges such as translating variants
into star allele nomenclature and the absence of a unique haplotype nomen-
clature remain before the clinical implementation of this approach and the
use on other drugs.
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Chapter 1

Background

It has been known for decades that the clinical response to drug treatments
can vary significantly between individuals [1]. This results in hundreds of
thousands of treatment failures or other adverse drug reactions (ADRs)
every year. A therapy can be effective and still cause serious adverse events
in one subgroup of patients, while delivering no response in terms of toxicity
or therapeutic effect in others [2].

The response rates of treatment in 14 therapeutic areas like Alzheimer’s
(30%), diabetes (57%), and cancer (25%) have varied from 25-80%, with an
average response rate of just over 50% [3]. This implies that the remain-
ing patient population does not receive optimal medication or suffers from
adverse events. To further illustrate this, approximately 0.24% of the popu-
lation receive treatment in emergency departments with adverse drug events
every year in the US [4].

Serious ADRs occur in 6.7% of hospitalized patients, while fatal ADRs
occur in 0.32% of hospitalized patients and represent a frequent event es-
timated to be between the fourth and sixth leading cause of death in the
USA, clearly posing challenges to the healthcare system in terms of patient
wellbeing and medical costs [5, 6]. Under the simplifying assumption that
the results of the US studies are applicable to Germany, the 16.5 million
hospital cases of the year 2001 resulted in 31.600 - 83.000 casualties due to
the undesired effects of medical interventions in hospitals. A recent study
estimated the costs related to ADRs in Germany at about €816 million[7].

Historically, the efficacy and safety of therapies in the “average patient”
have been obtained through randomized clinical trials on large cohorts. Re-
cent progress in genomics has lead to a much better understanding of spe-
cific molecular influence to variability in phenotypic response [8]. Part of the
variability in drug response can be explained by genetic variation between
patients, which can influence how each drugs is metabolized [9] - the focus
of the discipline called pharmacogenomics (PGx) [10]. The understanding of
PGx responses, which accounts for an estimated 24%-95% of the variability
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1. Background 2

in drug disposition and effects [11], made possible the optimization of out-
comes by individualizing therapy through dosing recommendations or a dif-
ferent selection of medication. Although many nongenetic factors influence
drug response, including age, drug-drug interactions, add-on treatments and
organ functions, there are many cases in which interindividual differences in
medication effects are attributable to sequence variants in drug-metabolizing
genes [1, 12, 13].

The objective of PGx is to develop ways to individualize therapies for
patients and thereby optimize outcomes through knowledge of the variability
of the human genome and its influence on drug response.

1.1 Variants & Haplotypes
This chapter describes details of interindividual genetic differences men-
tioned in the last section and their significance on drug response.

Our knowledge of the genetic influence on individual drug responses has
progressed through research on genes and medications relevant to a wide
range of diseases. A polymorphism is defined as a DNA sequence variant
present in >1% of the general population [14]. If a DNA sequence is present
in <1% of the population, it is defined as a mutation.

An allele refers to two different versions of the same gene at a certain
position on a chromosome [15] . Within a gene, variations of an individual
nucleotide can be considered alleles. Alleles include the wild type: The usual
sequence, mutations and polymorphisms of each gene. Two alleles of each
gene at a locus is defined as the genotype. The phenotype is the set of
characteristics or the clinical presentation of an individual, which results
from the particular genotype.

The genetic variations that have been examined include single-nucleotide
polymorphisms (SNPs), genomic insertions and deletions (INDELs), and
genetic copy-number variations (CNVs). SNPs are at 90% the most frequent
sequence variation [16]. SNPs that appear within the same region of the
DNA are often statistically associated in haplotypes (group of alleles). In
general, variants in haplotypes are <55 kilobases apart [17].

Drug efficacy is influenced by haplotypes in drug-metabolizing genes and
genes that encode for drug receptors, transport protein, and drug targets.
For example, the dose levels required by individual patients are strongly in-
fluenced by a common promoter variant in the molecular target of warfarin
(VKORC1). The haplotype VKORC1 encodes the vitamin K-epoxide reduc-
tase protein, which is the target enzyme of warfarin. Variants in VKORC1
alter a transcription factor binding site, which leads to lower protein expres-
sion, and thus altered warfarin sensitivity and reduced dose requirements
[18]. This makes it a candidate gene for the variability in warfarin response
[19].
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1.2 Variant and Haplotype Nomenclature
Even if comprehensive genetic test results are brought to clinicians that in-
clude variants and haplotypes as described in the last chapter, it remains
challenging to interpret the results consistently [20]. Reasons include the
rapid discovery and publication of new variants and the non-enforcement
and non-compliance of one single nomenclature [21], as well as variable an-
notation pipelines across institutions [22]. Therefore, and due to increasingly
complex and thus error-prone descriptions, unambiguous variant description
is of great importance. Often journals require compliance with specific rec-
ommendations, but rarely enforce them. In the following the three most
important description methods are presented.

1.2.1 dbSNP

Reference SNP cluster rs#’s are created by the National Center for Biotech-
nology Information (NCBI) during periodic builds of the Single Nucleotide
Polymorphism Database (dbSNP). A reference SNP cluster record has the
format rs[NCBI SNP ID] where ’rs’ is always lower case [23]. The SNP
nomenclature of dbSNP is widely adopted and referenced in the literature.

However, some historical variants may never be reported in dbSNP by
the investigator, thus some PGx variants may not appear in the database.
Another challenge is abandoned rs#’s due to regular clustering, which could
lead to ambiguity in publications [24].

1.2.2 HGVS nomenclature

A generic syntax has been recommended by the Human Genome Variation
Society1 (HGVS) [25] and has been adopted broadly. According to the pro-
posed standard, variants should be described by the following expression:

<Reference sequence><Type of concerned sequence><Position
of the variant in the reference sequence><Observed variation>

Conjunction of those four fields yields an unambiguous representation of
the variant.

Example:

Unique accession Number in NCBI RefSeq DB
@
@R

Substitution
�
�	

NC_000010.10:g.96541616G>A

Position in the reference sequence
@
@I

Genomic Sequence
��

��*

1The latest version can be found at the homepage of HGVS
http://www.hgvs.org/mutnomen

http://www.hgvs.org/mutnomen


1. Background 4

However, this nomenclature has not been universally adopted yet [24]
although it is widely used. One reason is the possibility of ambiguity of
names due to changes in the reference sequence as well as changes to the
syntax itself.

1.2.3 Star allele nomenclature

The star-allele nomenclature was created in order to standardize annotation
for haplotypes in the cytochrome P450 genes [26] and is used for many genes.
A star allele represents either a single genetic variant or a haplotype.

PGx studies require genetic testing of individuals for multiple variants in
drug metabolism enzyme and transporter genes. In order to understand the
phenotype, genotyping results must often be translated to the star (*) allele
nomenclature. Star alleles are haplotype patterns that have been defined at
the gene level and often have been connected with protein activity levels.
Typically *1 is the most commonly occurring wild-type allele. A patient who
carries two wild-type alleles for a gene would be described as having a *1/*1
genotype, which is associated with normal gene activity. Every other allelic
variant such as *2 etc. is in some way benign, nonfunctional, hyperactive,
or partially active.

It is crucial to know the combination of variants inside a given haplo-
type and the diploid content in an individual to study drug metabolism,
drug response, and adverse drug reactions . For example, carriers of two
reduced-function CYP2C19 alleles, such as *2/*2, are associated with low
gene activity. The drug clopidogrel requires activation by CYP2C19, which
means that patients with low gene activity have reduced active clopidogrel
metabolites compared to patients with normal metabolism [27].

It is often challenging to translate SNP combinations into star allele
nomenclature after finding novel or rare combinations of variants that do not
exactly match existing star alleles. Furthermore, since variants are shared
by multiple star alleles, finding a unique star allele combination can be
problematic. Also, due to the use of drug metabolizing assays in contrast to
whole genome sequencing (WGS) some variant markers could be missing,
which could lead to failure of the haplotype mapping and false negatives,
incorrectly identifying patients at risk of an ADR as not-at-risk.

1.3 Clinical Decision Support
The increasing number of clinically relevant genes and their corresponding
variants will soon make it impossible for a clinician to perform without
decision support. The challenges of reporting, organizing, and interpreting
PGx test results can be reduced by the increasing adoption of electronic
health records (EHR) [28]. Ideally clinicians are supported by alerts from
the clinical decision support (CDS) system, which allow for point-of-care
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(POC) interventions [29], and enable gene-based drug dosing years after
the genetic test result is reported [30]. CDS tools should warn users when
attempting to prescribe, dispense or administer high-risk affected drugs.
Effective CDS facilitates the use of PGx results like drugs with decreased
efficacy or increased toxicity over a patient’s lifetime [31]. Further possible
applications of CDS are dosing support, POC alerts, and displaying relevant
information at the right time in the right form to the right people. These
scenarios illustrate the invaluable importance of integration of medication
use with lab testing via CDS.

Shirts BH et al. [32] proposed an alert in the EHR at the time the
prescription is written, which would prompt the clinician to order a specific
genetic test to help predict response to drug therapy.

1.4 PharmGKB & CPIC Guidelines
In the presented method, PGx information is retrieved from a centralized
repository called Pharmacogenomic Knowledge Base (PharmGKB), funded
by the NIH[33]. PharmGKB was initiated in 2000 and uses peer-reviewed
published articles. It manually summarizes the clinical information into dos-
ing guidelines and drug labels; clinically actionable gene-drug associations
and genotype-phenotype relationships. The genetic variant annotations com-
prise population details of individual studies and use statistics like P-values,
ontologies such as DrugBank [34], and the HUGO Gene Nomenclature Com-
mittee (HGNC) [35] as well as standardized sentences, which allow for easy
comparison of results and quick acquisition of key information [33, 36].

It also offers a summary of all variant annotations between variant and
drug response, which includes the level evidence. There are four levels of ev-
idence ranging from preliminary (level 4) to high (level 1) with the majority
of evidence showing a variant-drug association, which must be replicated in
more than one cohort with significant P-value and strong effect size. Ad-
ditionally, PharmGKB provides haplotype – star allele mapping through
translation tables that can be downloaded for some genes.

CPIC was founded in 2009 to address a barrier to the clinical imple-
mentation of PGx [37]. CPIC guidelines are designed to help clinicians un-
derstand how available genetic test results should be used to optimize drug
therapy. Between 2011 and 2015 24 CPIC guidelines have been published2.
A consortium of PGx and domain experts write drug dosing guidelines as-
suming that the clinician has the relevant genotypes at hand. The CPIC
guidelines contain information regarding both the drugs and genes of inter-
est, with emphasis on tables mapping genotype to phenotype, and phenotype
to dosing/prescribing information [38–40].

2https://www.pharmgkb.org/page/cpic

https://www.pharmgkb.org/page/cpic
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1.5 MyVariant.info, JSON and VCF syntax
JavaScript Object Notation (JSON) is a compact data-interchange format
to transmit hierachically structured data objects, while maintaining the
readability for both human and computers. It was first introduced at the
JSON.org website in 2001. The MyVariant.info3 platform aggregates multi-
ple variant annotation sources like dbSNP and ClinVar (the complete data
sources are available on the metadata website of MyVariant.info4) into a
single web service API by merging all annotations relevant to a variant into
a single JSON object using HGVS nomenclature as key. Through commu-
nity efforts it succeeded in amassing annotations for more than 300 million
variants.

Genetic variants, such as SNPs, INDELs or larger structural variants,
are commonly stored in variant call format (VCF) files [41]. Besides the
reference base(s) and the alternate base(s), VCF files contain tab-delimited
fields to describe the call quality and additional information.

1.6 Using web services to annotate clinical guide-
lines

Below a potential mechanism shall be presented providing automated an-
notation of genetic variants using clinical guidelines through web services
and available databases and websites. The objective is also to identify the
challenges and difficulties in annotating PGx guidelines automatically with
available services and demonstrate utility. Despite the current limitations
described above, putting this workflow into clinical practice is still evalu-
ated.

3http://myvariant.info
4http://myvariant.info/metadata

http://myvariant.info
http://myvariant.info/metadata


Chapter 2

Methods

2.1 Systematic literature review
In order to assess the presence of such services being developed or already
in use, a literature review was conducted.To this end, a Pubmed search was
conducted covering the years from 2005 to 2016 and using a search strategy
adapted from previous systematic reviews of CDS [42, 43] and genetic health
services [44]. The final literature search was conducted on January 3, 2016.
The inclusion criteria for the review were as follows:

1. English or German article
2. human focus
3. manuscript in peer-reviewed journal
4. primary focus on the use of computers to deliver genetically guided,

patient-specific recommendations to guide decision making on drug
therapy

The final search query was:
1 ("Decision Making, Computer-Assisted"[Mesh] OR "Decision Support Systems

, Clinical"[Mesh] OR "Expert Systems"[Mesh] OR "Decision Making"[
Mesh:NoExp] )

2 AND (
3 "Drug Therapy"[Mesh]
4 AND (
5 "genetics"[Mesh] OR "genetic variation"[Mesh] OR "Genomics"[

Mesh] OR "genetic predisposition to disease"[Mesh]
6 )
7 OR "Precision Medicine"[Mesh]
8 OR "Pharmacogenetics"[Mesh]
9 )

10 AND ("2005"[dp] : "2016"[dp])
11 AND (english[la] OR german[la])

For all identified references the title, index terms, and available abstracts
were reviewed to determine if the articles have met all inclusion criteria. If

7
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Figure 2.1: General Workflow of the approach showing data input, annota-
tion and analysis and result presentation.
(E) rs# not available for all PGx variants

at this stage insufficient information made it impossible to make a decision,
the article was included for full-text retrieval. Each full-text article was then
reviewed to determine its final status.

For each of the articles that met the inclusion criteria above, the clin-
ical application area, article type, study location, and notable informatics
aspects were abstracted.

2.2 General workflow
The overall architecture of the proposed method is shown in Fig. 2.1. It
illustrates the translation of file types and variant descriptors to biologi-
cal entities like alleles and recommendations related to pairs of actionable
variant-drug associations. The general workflow consists of three basic steps:

1. The input on the left originating from a user or a sequencing instru-
ment

2. The computational workflow in the middle is written in Python, which
translates genetic information into PGx recommendations

3. The output on the right with the two result format possibilities: An
edited VCF file or JSON format

The remainder of this section describes the methods used to implement
these components in more detail. All resources and scripts described in this
section are freely available 1.

2.2.1 Translating HGVS identifiers to rs#’s

Users can enter the workflow using two different id keys, the genomic HGVS
nomenclature and the rs# (Figure 2.1 (A)). The reason for using rs# as
internal reference ID is the common use as reference for variants in the

1https://github.com/mjuchler/VCF-annotation-pharmacogenomics

https://github.com/mjuchler/VCF-annotation-pharmacogenomics
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Figure 2.2: Translation Table for CYP2C19 derived from the Human Cy-
tochrome P450 (CYP) Allele Nomenclature Database and downloaded from
PharmGKB.

context of our system, specifically PharmGKB. The specifics of entering
the workflow with a VCF file are described below. Since HGVS names are
unique and are required to be always mapped to a standard genome build
(currently hg19), they can be used as keys for describing variants. By using
MyVariant.info, the HGVS IDs are mapped to the rs# which will be used
as internal reference ID as seen in Figure 2.1 (E).

2.2.2 Mapping rs# to Star Alleles and Other Haplotypes

The haplotype translation tables from PharmGKB are used to map rs#’s
to star alleles (Figure 2.1 (B)). Each line in one of the Excel tables (Figure
2.2) describes one star allele as a list of rs#’s. The Python script downloads
the translation tables from PharmGKB and performs a search for the rs#
through all available translation Excel tables, and, if the rs# was found, it
returns a list of haplotypes. This list of haplotypes contains either one or
multiple haplotypes. Figure 2.2 shows an example for a translation table for
the gene CYP2C19. In this instance, a patient carries the variant rs4244285,
which is a substitution of guanine to adenine (G>A) at chr10:94781859.

A search for this variant is conducted. The results show a match in the
translation table. After checking that the patient has this specific SNP, the
haplotype *2 gets returned (see black arrows in Figure 2.2). The translation
tables, i.e. the translations from haplotypes to variants for all of the genes on
PharmGKB, come from human pharmacogene variant nomenclature com-
mittees or other resources. For example, the resource for the translation table
in Figure 2.2 is from the Human Cytochrome P450 (CYP) Allele Nomen-
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Listing 2.1: An example of returned dosing guidelines for a genetic variant,
in JSON syntax, highlighting the challenge of allele assignment from single
variants.

1 {
2 "_id": "rs4244825",
3 "pharmgkb": {
4 "rsid": "rs4244825",
5 "gene": "CYP2C19",
6 "haplotypes": [
7 "CYP2C19*2"
8 ],
9 "drugrecommendations": [

10 {
11 "drug": "clopidogrel",
12 "haplotypes": "*1*2",
13 "levelOfEvidence": "Level of Evidence: Moderate",
14 "recommendation": "Alternative antiplatelet therapy (if

no contraindication); e.g., prasugrel, ticagrelor"
15 },
16 {
17 "drug": "amitriptyline",
18 "haplotypes": "*1*2",
19 "levelOfEvidence": "Level of Evidence: Strong",
20 "recommendation": "Initiate therapy with recommended

starting dose"
21 }
22 ]
23 }
24 }

clature Committee 2.

2.2.3 Linking rs# to Relevant Guidelines

Now, the rs# match needs to be linked to guideline recommendations (if
present for this variant). For some gene-drug combinations PharmGKB pro-
vides downloadable genotype based dosing guidelines in JSON format on
their homepage 3. Most of these guidelines are based on star allele nomencla-
ture as a key for the drug recommendations, which were just received from
2.2.2. By using the Python script the phenotype, the metabolizer status,
implications and dosing recommendation texts, plus the level of evidence
can be then automatically retrieved when given a haplotype as an input
parameter (see Figure 2.1 C).

Listing 2.1 shows an example result that the system returns when a user
2http://www.cypalleles.ki.se/
3https://www.pharmgkb.org/downloads/

http://www.cypalleles.ki.se/
https://www.pharmgkb.org/downloads/
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enters the workflow with the variant rs4244285. This includes a drug rec-
ommendation for clopidogrel and another for amitriptyline, both of which
are inherited through the *1/*2 haplotype. Either include the CPIC rec-
ommendation text (“Alternative antiplatelet therapy...” or “Initiate therapy
with recommended starting dose”) and the level of evidence (“Moderate”
or “Strong”). Also included is the list of haplotypes where the variant is
present (“CYP2C19*2”).

2.2.4 Linking VCF files to relevant clinical guidelines

To insert PGx guideline information about a variant into a VCF file (Fig-
ure 2.1 (D)) the corresponding user extensible annotation (INFO) field is
edited, which is one of the fields in a variant-line. A meta-information line
in the header section has to be added to provide a description of tags and
annotations.

The INFO fields should be described as follows (all keys are required):

##INFO=<ID=DRUG,Number=.,Type=String,Description="In-
fluences response of mentioned drugs">

As ID of the PGx recommendation, ‘DRUG’ is proposed. The Number entry
is an Integer that describes the number of values that can be included with
the INFO field. When the INFO field contains only a single number, then
this value should be 1; if the INFO field describes a pair of numbers, then
this value should be 2, and so on. If the number of possible values varies this
value should be ‘.’ Since variants typically influence more than one drug, a
‘.’ i.e. ‘unknown’ is used.

Possible Types for INFO fields are: ’Integer’, ’Float’, ’Flag’, ’Character’,
and ’String’. In this case the type is ‘String’ because influenced drugs should
be added.

Eventually, the meta-information line about the newly added PGx in-
formation should look like this:

DRUG=clopidogrel,amitriptyline

The INFO fields are encoded as a semicolon-separated series of short keys
with optional values in the format: <key>=<data>[,data]. They typically
contain information about membership of the variant in databases like db-
SNP, HAPMAP or information about the ancestral allele. If there is more
than one influenced drug the separation gets added by a comma. Adding
PGx information to the INFO fields could therefore look like this:

In the future, more detailed PGx information like the dosage recom-
mendations could be added. The following line demonstrates how it was
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#CHROM POS ID REF ALT QUAL INFO FORMAT SAMPLE1 SAMPLE2 SAMPLE3
10 9... rs... G A . A... GT:GQ:DP 1|1:94:35 0|0:54:18 1|0:100:47

originally found in the VCF file. Before that comes the header line that
names the eight fixed, mandatory columns.

Before adding PGx recommendation, which has an influence on two
drugs to this variant, first the newly created meta-information line has to
be added to provide the necessary knowledge how to process and read the
newly added annotation. The line for the sequence variant itself, which now
contains information about the influenced drugs, needs to follow the newly
constructed meta-information line and gets information added into the INFO
field separated by a semicolon. This is how the VCF file could look like after
the proposed service (the newly added annotation is marked red):

##INFO=<ID=DRUG,Number=.,Type=String,Description="Influences response of mentioned drugs">
#CHROM POS ID REF ALT INFO FORMAT SAMPLE1
10 9... r... G A DP=105;DRUG=clopidogrel,amitriptyline;HM2 GT:GQ:DP 1|1:94:35

2.3 Application to existing genomes: Evaluation
To test the workflow this approach was applied to individuals in the personal
genome project (PGP4) [45]. The PGP is a public database of whole-genome
sequence data with phenotypic information from voluntary participants [46].

In order to do so, all available VCF files from participants were down-
loaded from the PGP website and analysed via the proposed workflow.

Three figures were calculated to quantify the prevalence of PGx variants
and to estimate the usefuleness of this proposal.

1. The number of rs#’s per participant is defined by how many of the
variants in the VCF files are found in the PharmGKB translation ta-
bles. This number is just an indicator to see if there are any rs#’s
found in the translation tables, as not all of the rs#’s influence drug
response. Since only some of these variants are subject to CPIC guide-
lines, the following data was collected:

2. The number of clinically actionable PGx variants per participant that
are covered in the CPIC guidelines and have an actual impact on drug
response.

3. The number of drugs, whose response is influence by the genetic varia-
tion found in a patient and that have drug dosing guidelines available.

After these numbers were calculated, they were averaged over all found
participants.

4https://my.pgp-hms.org/public_genetic_data

https://my.pgp-hms.org/public_genetic_data


Chapter 3

Results

3.1 Systematic literature review
The initial Pubmed search identified 373 potentially relevant articles. Dur-
ing the title and abstract review, one article was rejected because it did
not focus on humans, 17 articles were rejected for not being peer-reviewed,
and 344 articles were rejected because the primary focus of the work was
not on the use of computers to deliver genetically guided, patient-specific
drug therapy recommendations. The remaining eleven articles underwent
full-text review: At this stage another article was rejected because its full-
text was not retrievable; and four more articles were rejected because they
primarily did not focus on the use of computers to deliver genetically guided,
patient-specific medication guidance (Figure 3.1). The final set of included
manuscripts, all published between the years 2012 to 2014, consisted of 6
primary research articles.

Table 3.1 summarizes the six research articles identified. These studies
include a feasability study comparing warfarin dose prediction algorithms

Figure 3.1: Manuscript selection process

Records identified through
database searching (n=373)

Full-text articles
assessed for eligibility (n=11)

Records excluded (n=362)

Full text articles excluded
(n=5):
Excluded for missing full-text
(n=1)
Excluded because primary
focus was not CDS for PGx
(n=4)

Full-text articles included in
qualitative synthesis (n=6)
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[47]. Other investigators focused on how CDS for PGx could be integrated
with primary clinical information systems such as provider order entry sys-
tems [48–50], which would allow users to electronically write orders, track
online medication adminstration records, and review changes made to an
order [51]. The evaluated studies refer to web resources at POC in order to
gain information on the relevance of specific PGx results [31], make use of
the CPIC guidelines [31, 47, 49, 52], and use star allele nomenclature [47,
48].
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Table 3.1: Summary of research on CDS systems for PGx

Citation
and name
of system
(if applica-
ble)

Manuscript summary and
trial details

Users
and
study
location

Integrated
with pri-
mary
clinical in-
formation
system

CDS purpose and
clinical focus

Manu-
script
type

Notable informatics as-
pect

Bielinski,
2014 [49];
RIGHT
protocol

This study proposed a
multivariable prediction
model to identify pa-
tients with a high risk of
initiating statin therapy

Clinicians
in USA

Yes CDS is integrated
in the EMR and
flags patient-specific
drug-gene interac-
tions and provides
therapeutic guidance

System
de-
scrip-
tion

"Alert fatigue" is con-
sidered in the design
and exclusion criteria
are included in the rules
to avoid unnecessary
repetitive alerts.

Liu, 2012
[47]

This study compared the
performance of 8 PGx al-
gorithms to predict war-
farin dose

Clinicians
in China

No Therapeutic dose
guidance for war-
farin

Feasa-
bility
study

Single population algo-
rithms tended to per-
form better than mixed
ones

Goldspiel,
2014 [50]

System description of how
the National Institutes of
Health Clinical Center im-
plemented a CDS logic for
human leukocyte antigen
variants to predict severe
hypersensitivity reactions

Clinicians
in USA

Yes Providing PGx CDS
in the EHR during
order entry. The sys-
tem works for three
drugs and HLA vari-
ants.

System
de-
scrip-
tion

The CDS is pro-
grammed using Medical
Logic Modules with
Arden Syntax program-
ming language
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Bell, 2014
[31]

This study presents
how St. Jude Children’s
Research Hospital imple-
mented active CDS for
PGx test results

Clinicians
in USA

Yes Active CDS utilizes
automated alerts to
intercept the clini-
cian at the POC and
includes both pre-
and post-test alerts.

System
de-
scrip-
tion

In an effort to prevent
alert fatigue, they tar-
geted alerts only for the
relatively rare event of
prescribing a high-risk
drug to a patient with
a high-priority pheno-
type.

Gottesman,
2013 [52];
CLIP-
MERGE

Description of how the
Icahn School of Medicine
is preemptively genotyp-
ing a panel of germline
PGx variants, storing
data in an external data-
management platform
that interfaces with the
EHR, and delivering CDS
at the POC through the
EHR.

Clinicians
in USA

Yes CDS presents ge-
netic variants with
established clini-
cal significance (e.g.,
gene/drug pairs with
CPIC guidelines) to
internal medicine
physicians through
the EHR

System
de-
scrip-
tion

CDS rules are based
on actionable variants
extracted from each
patient’s genotype data,
and are combined with
relevant phenotypic
data in the project
database, which in-
cludes longitudinal
clinical data extracted
from the EHR

Pulley;
2012 [48];
PREDICT

Program description how
Vanderbilt University MC
implemented prospec-
tive PGx testing for
antiplatelet therapy and
cardiovascular stents

Clinicians
in USA

Yes Active CDS deploy-
ing POC decision
when clopidogrel is
prescribed for those
with variant geno-
types

System
de-
scrip-
tion

Genotype data is stored
in a separate DB from
the EHR
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3.2 Design
A method is demonstrated that can annotate genetic variants using up to
date CPIC guidelines and other current web resources. The data from Phar-
mGKB, namely the haplotype translation tables and the CPIC guidelines in
JSON format, provides powerful curated resources for translational research.
The workflow written in Python uses these resources to annotate a patients
VCF file, and results in personalized drug dosage recommendations.

3.3 Evaluation
To evaluate the accuracy and relevance of the workflow this approach was
applied to individuals in PGP. 14 participants had VCF files available. These
VCF files were downloaded from the PGP website and the workflow was
executed on this data. Table 3.2 shows the number of SNPs per participant,
the number of rs#’s found in translation tables per participant, the number
of clinically actionable PGx variants per participant that are covered in the
CPIC guidelines, and the number of drugs whose response is influenced by
the genetic variation found in a patient and that have drug dosing guidelines
available.

Table 3.2: Number of SNPs, PGx variants and influenced drugs per parti-
cipant

part ID SNPs rs#’s CPIC drugs
hu0B13B7 109085 17 7 31
hu250634 2391739 27 9 25
hu34D5B9 145012 28 12 31
hu4040B8 114863 14 8 21
hu448C4B 120481 22 10 31
hu4963A1 105835 10 4 19
hu555913 5194660 37 13 32
hu6ABACE 103986 20 6 36
hu80855C 3478763 18 5 13
hu97DB4A 112669 10 4 19
huA3A815 112881 8 5 21
huAA16BD 176044 21 7 31
huD7960A 104001 11 6 19

Shown in table 3.3 are the mean figures for these values. The mean
number of clinically actionable PGx variants per participant is 18.1. This
indicates that there are rs#’s in the participants VCF files that are found
in the PharmGKB translation table. Since only some of these variants are



3. Results 18

Table 3.3: Mean and median figures of SNPs, PGx variants and influenced
drugs per participant

part ID SNPs rs#’s CPIC drugs
mean 883837.4 18.1 7.1 24.9
median 113872.0 17.5 6.5 23.0
mean w/o 3 big 118960.1 15.5 6.6 25.3
median w/o 3 big 112669.0 14.0 6.0 21.0

subject to CPIC guidelines and therefore mostly have an actual impact on
drug response the next number is of higher importance.

The mean number of clinically actionable PGx variants per participant
that are covered in the CPIC guidelines and have an actual impact on drug
response is 7.1 with a median of 6.5.

The number of drugs with different generic names whose response is
influenced by the genetic variation found in a patient and that have drug
dosing guidelines available is 24.9.

Due to the big variation in SNPs in the three participants with IDs
hu250634, hu555913, and hu80855C, these participants were later removed
from the mean and median numbers, which decreased the standard deviation
from 1.559.098 to 21.285.

Table 3.4 describes all the gene-drug pairs with computable CPIC guide-
lines and translation tables available in PharmGKB. As of today there are
157 unique drugs and 65 unique genes with PharmGKB guidelines. There
are still hundreds of gene-drug pairs that will be transformed into CPIC
guidelines. Many of the CPIC guidelines cover multiple gene-drug pairs in
one guideline, which results in 168 alleles with CPIC guidelines.

Table 3.4: Table of Gene-Drug Pairs with computable CPIC guidelines and
available translation tables

Gene Drugs
CYP2C19 Amitriptyline, clomipramine, clopidogrel, doxepin, imipra-

mine, selective serotonin reuptake inhibitors, sertraline,
trimipramine, citalopram, escitalopram

CYP2D6 Amitriptyline, clomipramine, codeine, desipramine, doxepin,
fluvoxamine, imipramine, nortriptyline, paroxetine, selective
serotonine reuptake inhibitors, trimipramine

DPYD Capecitabine, fluorouracil, tegafur
TPMT Azathioprine, mercaptopurine, thioguanine
UGT1A1 Irinotecan, nilotinib



Chapter 4

Discussion

4.1 Discussion of literature review
The systematic review has provided an overview of the existing range of
CDS, delivering genetically-guided, patient-specific assessments or recom-
mendations to clinicians in order to guide decision-making on drug therapy.
The results enabled us to effectively design a web service, which provides
CDS with choosing drug dosing after finding genetic variants, and to over-
come drawbacks found in the studies. In conducting a literature search that
extends from the year 2005 to 2016, 373 manuscript were screened and six
primary research articles included. All of the articles describe genotype-
driven CDS.

The limitation of this study is that it only included manuscripts written
in either English or German, which may have led to the exclusion of other
manuscripts published in a different language. Second, some articles from
the years 2015 and 2016 may not have been indexed during the time of
the research and therefore possibly falsely excluded. Third, some relevant
studies may not have been found because the corresponding journals may not
be indexed by MEDLINE and thus do currently not include MeSH subject
terms. Finally, there is the issue of a potential publication bias concerning
clinical trials, i.e. studies with unsuccessful outcomes are less likely to be
published than studies with successful outcomes. The high success rate (6
out of 6) indicates such a bias, whereas the expected rate of success rate
would typically be in the range of around 60% [53]. The limited sample size
could explain this discrepancy. The high success might also stem from study
protocols, which required the use of these systems and thus, increases the
probability of its use.

So far, no study has evaluated the integration of means to keep the PGx
knowledge base, and therefore the CDS rules up-to-date, making the pro-
posed system unique among the included articles. Another aspect that is not
discussed in the presented studies is the direct use of the patients VCF file

19
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as a source of genetic variants at POC. Most of the investigators only store
the clinically actionable PGx variants in the patient EHR to drive POC
CDS. This involves a range of disadvantages. First, knowledge on newly dis-
covered clinically actionable PGx variants are not automatically integrated
into the saved actionable PGx variants in the EHR. Instead, they need to
be integrated manually, which could take a long time or never happen if
the development of PGx projects is discontinued. Second, the PGx knowl-
edge base about one previuosly known PGx variant could change through
further research, making its continued use potentially dangerous. A study
conducted in 2012 has shown that over the span of six years there were 214
classification changes to previously reported variants for genetic testing on
hypertrophic cardiomyopathy alone. These changes in variant classification,
if not quickly translated into the CDS, could lead to misclassifications and
ultimately the prescription of a drug or drug dosage that could lead to an
ADR.

As demonstrated in this study, both of these drawbacks are eliminated
with the proposed workflow by a) using topical PGx guideline information
like the CPIC guidelines, and b) using a patient VCF file as the source of
clinically actionable PGx variants instead of the variants stored in the EHR.

4.2 Discussion of web service
The web service fulfills key requirements to successful clinical implementa-
tion of PGx, such as consistent interpretation of test results and availability
of guidelines for drug prescription based on test results. A major advantage
is the topicality of the annotation results by querying online sources while
the system performs the search. Most similar attempts query data sources
once and then store the PGx data in databases where no new knowledge
becomes integrated.

Challenges for implementation exist. First and foremost, star allele no-
menclature is not centralized and highly difficult to implement. Second, rule
based decision workflows would tremendously improve CPIC guidelines for
implementation.

Further development would require the integration of the remaining
CPIC guidelines. Beyond that, the service should consolidate more PGx
knowledge sources and thus be expanded to a greater variant coverage. Speed
optimization is also planned.

4.3 Discussion of evaluation
The first observation is that all participants have actionable PGx variants,
which comes as no surprise since studies have shown that many people carry
actionable PGx variants [54–58] .
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Second, one of the most common observed variant was rs16947 in the
CYP2D6 gene, seen in 12 of the 14 (85,7%) participants. This variant has an
allele frequency of 65.67% in the population (EXaC [59]). Genotype quality is
93.24 in one case and 99 in the other cases (Phred quality scores). Seven out
of 12 participants carrying the variant rs16947 are homzygous for this allele,
while five are heterozygous. This common variant in CYP2D6 is among
others found in the CYP2D6*3 haplotype among others. Part of the result
output would be the recommendation that patients with CYP2D6*3 should
avoid codeine use due to the lack of efficacy.

The successful application of the workflow to the PGP data set confirmed
the ability of the proposed tool to annotate VCF files with clinical guideline
information from the PharmGKB and CPIC.



Chapter 5

Conclusion

In this project a workflow was built that can help clinical decision support in
determing drug dosing and selecint drug after finding a genetic variant using
the tools and resources MyVariant.info, PharmGKB and CPIC guidelines
as well as standards like HGVS nomenclature, VCF syntax and JSON. The
workflow was successfully validated on genomes from the PGP.

These are the most important conclusions during the development of this
project:

1. Automated real-time web service annotation of PGx guidelines is pos-
sible

2. Assignment of haplotypes remains a significant challenge
3. Structuring CPIC guidelines is recommended
4. Web services enable direct querying from the systems of record
5. HGVS nomenclature is close but imperfect for use as a unique key
This workflow could in the future help to find clinically actionable vari-

ants and annotate them with PGx information, such as drug recommen-
dations and haplotypes, where the variant is present. This is achieved by
either editing VCF files or printing the information in JSON format. The
workflow assists in the translation of PGx knowledge to clinical care. This
enables clinicians to use existing and future data to personalize treatment,
and identify patients at high risk of treatment failure due to excessive toxi-
city or inferior efficacy. It would lead to a paradigm shift in the practices of
clinicians if the EHR were to include PGx test results. Instead of, “I want to
prescribe drug X; to optimize outcome I should order a test for genes Y and
Z to test for genetic variants” the new normal would be “I want to prescribe
drug X; I should check PGx profile for this patient to see if there are genetic
variants influencing drug response for this patient” [37].
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