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Abstract 

 

Aside from hardware, a major component of a Brain Computer Interface is the 

software that provides the tools for translating raw acquired brain signals into 

commands to control an application or a device. There’s a range of software, some 

proprietary, like MATLAB and some free and open source (FOSS), accessible under 

the GNU General Public License (GNU GPL). OpenViBE is one such freely 

accessible software. This thesis carries out a functionality and usability test of the 

platform, looking at its portability, architecture and communication protocols. To 

investigate the feasibility of reproducing the P300 xDAWN speller BCI presented by 

OpenViBE, users focused on a character on a 6x6 alphanumeric grid which 

contained a sequence of random flashes of the rows and columns. Visual stimulus is 

presented to a user every time the character they are focusing on is highlighted in a 

row or column. A TMSi analog-to-digital converter was used together with a 32-

channel active electrode cap (actiCAP) to record user’s Electroencephalogram (EEG) 

which was then used in an offline session to train the spatial filter algorithm, and the 

classifier to identify the P300 evoked potentials, elicited as a user’s reaction to an 

external stimulus. In an online session, the users tried to spell with the application 

using the power of their brain signal. Aspects of evoked potentials (EP), both auditory 

(AEP) and visual (VEP) are further investigated as a validation of results of the P300 

speller. 
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1 Introduction: Human Computer Interaction 

1.1 Overview 

We live by interacting with the physical world around us. This interaction normally 

involves thought and action. The brain, through its output pathways; the peripheral 

nervous system and muscles, controls motor movement. This way we are able to 

move our arms, legs or any part of the body as a means of communication or 

performing day-to-day tasks – if we are healthy. 

However, people with severe neuromuscular injuries such as after an accident or 

those suffering from neurodegenerative diseases like Amyotrophic Lateral Sclerosis 

(ALS), brainstem stroke or cerebral palsy soon lose part or all of this voluntary 

muscular activity, the communication path between brain and effector muscles 

having been cut off, leaving only the cognitive function intact. This in medical terms is 

referred to as the locked-in syndrome: sufferers are left fully conscious of their 

surroundings but with little to no mobility in their bodies, making it impossible for them 

to live without external help. 

Advances in the fields of neuroscience, brain imaging technologies and computing 

have provided us with the opportunity to directly interface the brain with a computer 

[1] thereby creating a communication and control system that bypasses peripheral 

nerves and muscles to enable interaction through brain activity alone: the brain-

computer interface (BCI).  

BCIs can enable locked-in patients to still interact with their environment by solely 

harnessing the power of their brain activity. Devices including spelling applications for 

communication, input and navigation on a computer system such as moving a cursor 

or controlling a robotic arm have been tested with success. 

Real-time brainwave activity is beginning to be used to control digital movies, turn on 

music and switch lights on and off and to control virtual objects like an avatar1 [2], [3], 

[4], [5] Messages are conveyed by spontaneous or evoked EEG activity rather than 

by muscles contractions. In years to come, scientists want to reconnect the brain to 

paralyzed limbs to enable them to function again. 

                                            
1
 http://en.wikipedia.org/wiki/Avatar_(computing) 
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By integrating such applications into the routines of such patients as a method of 

assisted living, their quality of life can be greatly improved through giving them more 

independence as well as emotional stability. 

 

1.2 Aim and scope of the thesis 

The Heilbronn University of Applied Sciences (Hochschule Heilbronn) has recently 

acquired equipment that can be used for recording the Electroencephalogram (EEG) 

in the Bio-Signals Laboratory. These devices come with a fairly high price tag. The 

idea was to take advantage of the availability of non-proprietary open source 

software for real-time processing of brain signals, integrate it with the acquisition 

device and build a functional laboratory-based BCI application: the P300 visual 

speller.  

Currently there are not fewer than 10 such open source BCI platforms. Among them, 

OpenViBE was chosen basing on the functionality and usability analysis (See 

chapter 2) and the OpenViBE website [6]. 

 

1.3 The BCI Framework 

1.3.1 Principle of the BCI 

A typical BCI system involves acquisition of electrical signals from the brain’s neuron 

activity and transforming them into commands to control an application. The user’s 

brain activity is recorded using a single or multiple electrodes attached to the scalp 

for the EEG or directly onto the cortex, by surgical means, for the ECoG. Another 

method is to use depth electrodes implanted in the brain. The most common BCIs 

are EEG-based, as they are not only cheaper but also easier to set up. 

The acquired EEG signal is digitized by an analog-to-digital converter and fed into a 

computer for processing. Different characteristics can be observed in this ongoing 

oscillatory activity depending on varying degrees of the user’s mental or physical 

state (a relaxation EEG is different from the one recorded when the subject is 

performing a mental activity for example). Specific features like amplitudes of evoked 
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potentials are extracted and passed to translation algorithms for training. After a 

training period, the algorithms are able to identify these specific features (data mining 

and machine learning) in a subsequent ongoing EEG, which they can classify and 

translate into commands (which reflect the user’s intent) to control a simple word 

processing program, a robotic arm, control a wheel chair or any such devices (Figure 

1.1). This process involves little to no muscular activity and can be understood as an 

interface between the brain and an application. 

 

Figure 1.1: Illustration of a simple Brain-Computer Interface [7] 

BCIs can use signal features in the time domain, like amplitudes of evoked potentials 

or those in the frequency domain like mu (μ) and beta range (β) amplitudes [7] 

employed in motor imagery2 BCIs. 

 

1.3.2 Integrating Biofeedback 

Bruce Eugene [8] defines feedback as sensing of the output of a system and 

transmission of this signal back to the system input in order to influence the future 

output of the system. Through biofeedback, the user learns to control those features 

of the signal that reflect his or her intent by selectively influencing the amplitude and 

                                            
2
 Imagined movement causes the same brain activity as real movement: signals to control hand/leg      

BCIs like prosthetics and game control can be realized through thought. 
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power of their output. According to Birbaumer [9], most of the clinical BCI studies in 

human patients use feedback of EEG oscillations or of event-related potentials 

(ERPs). The subject receives visual or auditory online feedback of his or her brain 

activity and tries to voluntarily modify a particular type of brain wave: this is known as 

self-regulation (Figure 1.2).  

 

Figure 1.2: A block diagram of a Brain-Computer Interface. Adopted from [5] 

 

Sörnmo et al [5] found that the EEG exhibits variability due to factors such as time of 

the day, fatigue and hormonal level. The training phase of the user and that of the 

algorithms may not be a onetime event but may need to be repeated on a regular 

basis in order to achieve good performance. The user must develop and maintain 

good correlation between their intent and the features the algorithms extract for use 

in the BCI application.  
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1.3.3 History of the BCI 

BCI is a relatively new field. Research started several decades after Hans Berger first 

discovered the electroencephalogram in the 1920s. In the 1960s, applying easy-to-

use noninvasive methods, studies were done on the development of neuro-feedback 

in which monkeys would learn to voluntarily increase or decrease the power of their 

alpha waves, the predominant amplitudes in an EEG. They (monkeys) learnt to 

increase or decrease firing rates of the neurons in the motor cortex and could move a 

prosthetic arm simply by thinking about it. 

In the 1970s, Jacques Vidal published his work on a government sponsored 

research in bio cybernetics and human computer interactions, at the University of 

California Los Angeles (UCLA) Brain Research Institute. He showed how brain 

signals could be used to build up a mental prosthesis [10]. He is also credited with 

coining the term Brain-Computer Interfaces3.  

Lawrence Farwell and Emanuel Donchin developed an EEG-based BCI. In Talking 

off the top of your Head, published in 1988 [11], they outline an algorithm used in the 

decision making process of a P300 speller to identify target and non-target potentials 

in an ongoing EEG signal. This was the first time event related potentials (ERPs) 

were used in a BCI application. 

 

1.3.4 Other Methods of Signal Acquisition  

Signal acquisition for BCIs can be grouped into two, depending on whether a surgical 

procedure is required to implant electrodes in/on the brain to measure its electrical 

activity or not. Non-invasive methods require no surgery. However not all acquisition 

procedures involve the use of electrodes; some, like fMRI measure electrical activity 

by use of blood oxygenation level dependence (BOLD). The table below summarizes 

the different methods 

 

                                            
3
 . http://www.cs.ucla.edu/~vidal/vidal.html 
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Table 1: Signal acquisition methods in BCIs 

              

Method 

     

Measured quantity 

    

Invasive 

      EEG 

      ECoG 

      Micro-electrodes 

      MEG 

      fMRI 

      NIRS 

    Electrical potential 

    Electrical potential 

    Electrical potential 

    Magnetic field 

    BOLD 

    BOLD 

     No 

     Yes 

     Yes 

     No 

     No 

     No 

          

   Adapted from D’Albis [12] 

 

1.3.5 Classification of BCIs 

There’s no standard classification for BCIs. In some literature the acquisition modes 

are used, thus invasive and non-invasive BCIs. Other classifications are: 

I. Synchronous/Asynchronous BCIs 

II. Cued/Spontaneous BCIs 

III. Dependent/Independent BCIs 

Dependent vs Independent: Although it uses brain signals, a dependent BCI will still 

require the user to apply part of his/her peripheral system. A BCI built on visual 

stimuli involves the movement of the user’s eyes (and muscles). On the other hand 

independent BCIs rely on signals that can be triggered without involvement of muscle 

activity: with audio stimuli the tasks only involve thinking. 

Endogenous vs Exogenous: In endogenous BCI, a user spontaneously generates the 

brain signal used for control while in exogenous BCI the signal is generated as a 
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response to an external stimulus such as AEPs and VEPs. Exogenous systems do 

not require extensive training of the user compared to endogenous ones and are 

easier to set up. Endogenous BCIs often require the use of neural-feedback to 

enable the user to learn to generate specific wave patterns like slow cortical 

potentials or sensorimotor rhythms. Their advantage is that severely affected persons 

can learn to operate them [13].  

Synchronous vs Asynchronous: Asynchronous BCIs analyze an EEG patterns in a 

predefined time window leaving out anything that comes before or after. The user is 

only supposed to send commands during epochs determined by the system. 

Synchronous BCIs employ detection of specific events through continuous analysis 

of the user’s EEG. It offers a more natural interaction for the user. 

 

1.4 Physiology of the EEG 

1.4.1 Background 

Recorded work on neurophysiology goes back nearly 200 years to Carlo Matteucci 

(1811- 1868) and Emil Du Bois-Reymond (1818-1896) who were the first to register 

electrical signals emitted from muscle nerves using a galvanometer. The discoverer 

of the existence of human EEG signals however was Hans Berger (1873-1941), a 

German neurologist and psychiatrist. In 1929 he presented a report that included the 

alpha rhythm (8 – 13 HZ) as the major component of the EEG signals [14]. Work by 

other scientists in Europe and America, in the quest to understand the functioning of 

the brain and the central nervous system, the causes of diseases like brain tumors or 

epilepsy and finding treatment for them, has led to modern day methods of 

recognition, diagnosis and treatment, used in clinical encephalography [15]. This 

correlates CNS functions as well as dysfunctions and diseases with certain patterns 

of the EEG.  
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1.4.2 Electrical Activity in the Brain 

Brain tissue is made up of three components: 1. neurons (nerve cells), 2.glial cells, 

located between neurons, and 3.extracellular space, which is made up of mainly 

fluid containing other macro molecules. Glial cells make up the myelin sheath, which 

protects the axon. Neurons are responsible for intracellular and intercellular signaling 

which they do by generating and transmitting electrochemical impulses as a 

response to stimuli. The human brain contains over 25 billion neurons. Typically the 

neuron consists of dendrites, which act as receptors for signals from other neurons, a 

cell body and the ending called an axon. The axon is attached to other nerve cells 

through their dendrites or axon to form a synapse. The synapse acts as an interface 

between nerve cells. In the human brain, each nerve cell is connected to 

approximately 10.000 other nerve cells, mostly through dendritic connections. [16], 

[14], [17] 

            

        Figure 1.3: Structure of a neuron4
 

 

The dendrites, together with the cell body and part of the initial piece of the axon are 

the input surfaces of the cell (Figure 1.3). Impulses received through the dendrites 

are transported along the axon to its terminal branches through to the synapse where 

they are picked up by other connected neurons.   

                                            
4
 Source:http://springvisualculture1b.blogspot.de/  
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1.4.3 Neuron Activity 

The central nervous system (CNS) is generally an interconnection of neurons and 

glial cells to create a communication network of both chemical and electrical activity. 

The activities in the CNS are mainly related to the synaptic currents transferred 

between the junctions (synapses) of axons and dendrites, or dendrites and dendrites 

of cells. A negative potential of (60-70 mV) may be recorded under the membrane of 

the cell body compared to the extracellular environment. This potential changes with 

variations in synaptic activities relating to distributions of Na+, K+ and Cl- across the 

membrane (Figure 1.5). If an action potential travels along the fiber, which ends in an 

excitatory synapse, an excitatory post-synaptic potential (EPSP) occurs in the 

following neuron. If two action potentials travel along the same fiber over a short 

distance, there will be a summation of EPSPs producing an action potential on the 

post-synaptic neuron providing a certain threshold of membrane potential is reached. 

If the fiber end in an inhibitory synapse then hyper polarization will occur, indicating 

an inhibitory postsynaptic potential (IPSP) 

 

Figure 1.4: The neuron membrane potential changes and current flow during synaptic 

activation recorded by means of intracellular microelectrodes ( [14]) 
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Following the generation of IPSP (hyper polarization), there is an overflow of cations 

(+ve particles) from the nerve cell into the extracellular space or an inflow of anions (-

ve particles) into the nerve cell (figure 1.4). This flow ultimately causes a change in 

potential along the cell membrane. Primary currents generate secondary currents 

along the cell membrane in the intra- and extracellular space. The portion of these 

currents that flow through the extracellular space is directly responsible for the 

generation of field potentials. These field potentials, usually with frequencies of up to 

100 Hz are called EEGs if they possess a constant signal average. If there are slow 

drifts in the average signals this results into DC potentials which may mask the EEG 

[16], [14], [5]. 

 

1.4.4 Action Potentials 

Transmission of information from one neuron to another takes place at the synapse; 

the signal, initiated in the soma, propagates through the axon as a short pulse called 

the action potential (AP). Although the initial signal is electrical, it is converted in the 

presynaptic neuron to a chemical signal (neurotransmitter) which diffuses across the 

synaptic gap and is subsequently reconverted to an electrical signal in the 

postsynaptic neuron. APs are initiated by many different types of stimuli; sensory 

nerves respond to many types of stimuli, such as chemical, light, electricity, pressure, 

touch, and stretching. Conversely, nerves in the CNS are mostly stimulated by 

chemical activity in the synapses. 

A stimulus must be above a threshold level to cause the neuron to fire an AP. Very 

weak stimuli cause a small local electrical disturbance, but do not produce a 

transmitted AP. This results in the neuron acting as an ON/OFF-switch. As soon as 

the stimulus strength goes above the threshold, an action potential appears and 

travels down the nerve.  
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Figure 1.5: Changing the membrane potential of a giant squid by closing the Na
+
 channels 

and opening  K
+
 channels ( [14]) 

 

Not all neurons contribute to the excitation of the postsynaptic neuron; inhibitory 

effects can also take place due to a particular chemical structure associated with 

certain neurons. A postsynaptic neuron thus receives signals which are both 

excitatory and inhibitory, and its output depends on how the input signals are 

summed together [14] [5]. 

The intensity of the input signals is modulated by the firing rates of the action 

potentials. High firing rate in the sensory neurons is associated with considerable 

pain or, in motor neurons, with powerful muscle contraction [5] 

 

1.4.5 Characteristic Frequency Bands of the EEG 

The EEG has a typical amplitude of about 2 – 100 µV and a frequency spectrum of 

0.1 – 60 Hz. In healthy adults, the amplitudes and frequencies found in the EEG 

change from one state of a human to another, such as wakefulness and sleep. There 
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are five major brain waves (Figure 1.6) distinguished by their different frequency 

ranges and the power they contain. 

 

 

      Figure 1.6: Typical encephalographic rhythms and their frequencies [18] 

  

Alpha (α) rhythm, 8 – 13 Hz: This rhythm is most prominent in normal subjects who 

are relaxed and awake; the activity is suppressed when the eyes are open. The 

largest amplitude of this rhythm can be measured in the occipital region of the brain. 

Beta (β) rhythm, 14 – 30 Hz: This is a fast rhythm with low amplitude, associated 

with an activated cortex and which can be observed, for example, during certain 

sleep stages. The beta rhythm is typically observed in the frontal and central regions 

of the scalp. 
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Delta (δ) rhythm, < 4 Hz: This rhythm is typically encountered during deep sleep 

and has large amplitude, thus low frequency. It is usually not observed in the wake, 

normal adult, but is indicative of cerebral damage or brain disease (encephalopathy) 

Gamma (γ) rhythm, > 30 Hz: The gamma rhythm is related to a state of active 

information processing of the cortex. Using an electrode located over the 

sensorimotor area, this rhythm can be observed during finger movements. 

Theta (θ) rhythm, 4 – 7 Hz: This rhythm mainly occurs during drowsiness and in 

certain stages of sleep. 

High-frequency/low-amplitude rhythms reflect an active brain associated with 

alertness or dream sleep, while low-frequency/large-amplitude rhythms are 

associated with drowsiness and non-dreaming sleep states [5]  [14] 

 

1.4.6 Geography of the EEG Waves: Mapping Function to Region 

 Most of the neural activity is distributed near or around the outer surface of the brain, 

the cerebral cortex. It is perhaps the most important part of the CNS and the different 

regions of the cortex are responsible for processing vital functions such as sensation, 

learning, voluntary movement, speech and perception  (figure 1.7). 

Voluntary movement is primarily controlled by the area of the frontal lobe, just 

anterior to the central sulcus-the motor cortex. The motor cortex controls tasks 

requiring considerable muscle control, e.g. speech, facial expressions and finger 

movements. Sensory information is processed in various parts of the lobes; auditory 

in the superior parts of the temporal lobe, the visual cortex being situated at the 

posterior part of the occipital lobes, and the somatic sensory being located just 

posterior to the central sulcus of the parietal lobe. 
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   Figure 1.7: A functional map of the cerebral cortex5
 

   

1.5  Generation and Measurement of EEG 

1.5.1 Generation in the brain 

Collective activity of millions of cortical neurons produces an electrical field, which is 

sufficiently strong to be measured on the scalp. The electrical field is mainly 

generated by currents that flow during synaptic excitation of the dendrites, the 

excitatory postsynaptic potentials. In the cerebral cortex this current flow generates a 

magnetic field measurable by Electromyogram (EMG) and a secondary electrical field 

over the scalp measurable by EEG systems. The amplitude of the EEG signal is 

related to the degree of synchrony with which the cortical neurons interact: 

synchronous excitation produces a large amplitude signal on the scalp because the 

signals from individual neurons will add up in a time-coherent fashion, while 

asynchronous produces irregular looking EEG with low amplitude waveforms [14], 

[5]. 

                                            
5
 Source:http://www.wpclipart.com/ 
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1.5.2 Electrode positioning 

Clinical EEG is measured using the 10-20 International standardized system for 

electrode placement. The montage is with electrodes attached to the scalp at 

locations defined by certain anatomical reference points; the numbers 10 and 20 

signify relative distances between different electrode locations on the skull surface 

[5]. Electrode placements (Figure 1.8) are labeled according to adjacent brain areas: 

F(frontal), C(central), T(temporal), P(posterior), O(occipital) [19]. The numbering 

represents left lobe (odd) and right lobe (even) 

 

            

Figure 1.8: Original 10-20 elecrode placement system with 19 electrodes (B) the 

extended one has 70 (C). Adopted from ( [20]) 
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The actiCAP used in the experiments here follows the 10-20 system (see 3.1-

Hardware) however it follows an extended 32-active-electrode configuration with 

added Reference and Ground. 

 

1.5.3 Montage and measurement modes 

For all EEG acquisition in the experiments, a variation of the montage shown in figure 

1.9 was used: used electrodes are marked in yellow (see 4.1.2, 4.2.1 and 4.2.2). 

 

                                     

Figure 1.9: Positions of electrodes used for acquisition in the experiments [20] 

 

Besides the international 10-20 system, many other electrode placement systems 

exist for recording electric potentials on the scalp. Measurement of evoked potentials 

is usually done using either unipolar or bipolar placement. Bipolar measures the 

potential difference between two electrodes while unipolar measures the potential of 

an electrode referenced to a neutral electrode or to the average of all electrodes [21]. 

These two techniques are depicted in figure 1.10 below. 
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Figure 1.10: Illustration of (A) Bipolar and (B) Unipolar modes of measurement
6
 

  

                                            

6 Source: http://www.bem.fi/book/index.htm 
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2 The OpenViBE Platform 

2.1 Overview 

OpenViBE is a free and open source software platform for designing, testing and 

using Brain Computer Interfaces. The platform consists of a set of software modules 

that can be easily and efficiently integrated to develop fully functional BCIs for both 

real and virtual reality applications [22] [23]. 

Developed at the French National Institute for Research in Computer Science and 

Control (INRIA), OpenViBE is licensed under the GNU Lesser General Public 

License (version 2 or later) The platform is updated every 3 months (current version 

0.14.03) 

Modularity and Reusability: The platform is a set of software modules devoted to 

the main aspects of signal processing in BCI applications. These include: acquisition, 

pre-processing, processing and visualization of cerebral data, as well as enabling 

interaction with VR displays. Thanks to the box concept, users can easily add new 

software modules to suit their needs. 

Different Types of Users: Tools were designed for different types of users; VR 

developers, clinicians, BCI researchers, neurologists etc. can use the platform, 

depending on their programming skills and knowledge in brain processes. 

Portability: OpenViBE operates independently of software targets and hardware 

devices. An abstract level of representation allows it to be run with acquisition 

hardware such as EEG or MEG 

Connection with Virtual Reality: The software can be integrated with high-end VR 

applications throught the Virtual Reality Peripheral Network (VRPN) server. 

OpenViBE acts as an external peripheral (client) to any kind of real- and virtual 

environments from which it receives data for processing. 
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2.2 Installation and Compatibility 

OpenViBE can be installed on computers running Windows XP or higher for both 32 

and 64-Bit. However smooth running on 64-Bit architectures is not guaranteed as 

some drivers have yet to be included. It is advisable to use a 32-Bit system for 

example, if one intends to use the acquisition server for an online application. 

To install the Software on Windows one needs to have the .NET framework 

(Microsoft Visual Studio 2008 or 2010) on their machines. The easiest way would be 

to download and run the installer (win32-install_dependencies.exe) directly. 

OpenViBE also runs on Linux systems such as Ubuntu and Fedora, mainly the 

current versions. There is as yet no compatibility with the Mac OS architecture. Users 

having this platform would have to install a parallel Operating system like Windows or 

the Linux variants, which will probably impede efficiency as they can no longer make 

use of native UNIX capabilities. 

Before one purchases any acquisition device one has to look under the list of 

supported hardware to verify compatibility of the acquisition server drivers with 

OpenViBE. The alternative would be to write one’s own driver. However a good 

number of devices common on the market are supported. 

 

2.3 User Modes 

The platform has been designed for four different types of users. The developer and 

the application developer are both programmers; on the other hand the author and 

the operator do not need any programming skills.  

The Developer: OpenViBE comes with a Software Development Toolkit (SDK) that 

enables the programmer to design, test and add new functionality to the platform. 

These could be on the Kernel or Plug-in basis. 

The Application Developer:  Uses the SDK to create standalone applications using 

OpenViBE as a library. Applications range from visual scenario editors to VR 

applications that the BCI user can interact with.  
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The author: (non-programmer) uses the visual scenario editor to arrange existing 

boxes to form a scenario. He configures these scenarios in order to create a compete 

ready-to-use BCI system. They however need knowledge of the internals of the 

platform as well as of BCI systems including basic signal processing. 

The Operator: Also a non-programmer but with knowledge of neurophysiological 

signals, they would be generally a clinician or a practitioner. They simply run the pre-

built scenarios of the author. Aided by visualization components, they are able to 

monitor the execution of the BCI.  

The User: The user wears the acquisition gadget like the electrode cap and interacts 

with a BCI application by means of mental activity. The application could be a 

neurofeedback training program, a video game in virtual reality, a remote operation in 

augmented reality, etc. The user seldom directly uses the OpenViBE platform but 

rather they interact with it. 

 

2.4 The architecture 

The OpenViBE architectures, encapsulated in figure 2.1, is built around a kernel 

which employs a plug-in manager to ensure functional extensibility. 

                       

Figure 2.1: The OpenViBE software architecture [23] 
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The plug-in manager is able to dynamically load plug-in modules (e.g. DLL in 

Windows or .so files in Linux) and collect extensions from them. This allows for a 

quick and efficient expansion of functions and algorithms. Other managers around 

the kernel include: 

 Scenario manager for creating and configuring scenarios: boxes can be 

added/ removed and configured to build a pipeline. 

 Visualization manager for displaying graphical information. It relies on 

inbuilt libraries to render 2D and 3D graphical information in display 

windows. 

 Player manager for runtime control over scenarios: It allows for playback, 

stopping, pausing and fast-forwarding. 

 

 

 

 

 

 

2.5 Plug-ins 

Three types of plug-ins are used: 

1. The driver plug-in allows addition of acquisition devices to the acquisition 

server by using the SDKs or a physical connection. 

2. Plug-ins for the algorithms allows developers to create and add new 

algorithms to the platform and encourages sharing and reuse of existing 

ones. 

3. The box plug-ins generally rely on algorithm plug-ins to create different 

signal processing functionalities for the boxes. Among the boxes is one 

that accepts MATLAB code [23]. This is still under development by 

OpenViBE. Some boxes also support a scripting language called LUA for 

configuring the settings. These can be used for example to determine 

when to send stimulations in an application. 
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2.6 Tools 

The acquisition server provides a generic interface to various kinds of acquisition 

devices e.g. EEG or EMG systems. Server connection to the hardware is dependent 

on manufacturers’ specifications: some devices will be shipped with a specific SDK 

while others use a communication TCP/IP protocol over a network/serial/USB 

connection. Others will need proprietary acquisition software. 

The Designer (Figure 2.2) is used mainly by the author and helps him to build 

complete scenarios based on existing software modules, using a dedicated graphical 

language and a simple GUI. 

 

 

Figure 2.2: The designer showing a simple scenario 

  

The tools enable the graphical design of a BCI system by adding and connecting 

boxes representing processing modules without writing a single line of code. The 

author has access to a list of existing modules in a panel and can drag and drop 

them in the scenario window. Each module appears as rectangular box with inputs 

(at the top) and outputs (at the bottom). The boxes are connectable through their 

inputs and outputs. Double clicking on a box shows its configuration panel. An 
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embedded player engine allows the author to test and debug their scenario in real-

time. 

 

2.7 Existing Scenarions and Tutorials 

The platform comes with a number of ready-made scenarios to provide the 

uninitiated user with an overview of functionality, ranging from signal acquisition, 

analysis, visualization and rendering, through to complete BCIs that explore different 

aspects including integration with virtual reality. Relevant tutorials to some of these 

applications are also provided. There is clear in-scenario documentation as well as 

box documentation that can be accessed online. More information about these and 

new releases can be accessed on the OpenViBE website ( [6])   
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3 EEG Data Acquisition and Preprocessing 

Acquiring a good EEG signal for use in developing a functional BCI requires 

knowledge of the physiological processes involved and factors that could influence 

the quality of signal attained; sources of errors and how to deal with them. Necessary 

hardware must however be in place. Of paramount importance is the ability to 

correctly interface the various components in order to acquire the signal, process it 

and build an application.  

 

3.1 Hardware 

For the experiments in this thesis the following hardware (Figure 3.1) was used: 

1) A 32-Channel active electrode control box from Brain Products that comes with: 

 Electrodes (ch 1-32) and their connector 

 2 extra electrodes (Ref and Gnd) 

 A 32-channel actiCAP standard 2, based on the 10-20 system 

 Active shielding from 50Hz power line interference 

2) A TMSi Porti32 Refa: Amplifier (A/D converter)  from Twente Medical Systems 

International, with the following specifications: 

 24 unipolar recording ports 

 4 bipolar recording ports 

 Digital ports 

 Sampling frequency of up to 2048 Hz/Channel 

 Fibre optic cabel for speedy data transfer to the computer (Bluetooth for 

wireless transfer) 

3) Two DELL Optiplex 755 Desktop computers with : 

 Intel® Core™ 2 Duo CPU 2.66 GHz processor 

 4.0 GB RAM 

 32-Bit Windows Vista Service pac 2 Business 

 Both having OpenViBE and the actiCAP software installed. 
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Figure 3.1: Hardware layout for the experiments
7
 

 

When computers are used for recording EEG, the acquired analog signal has to be 

amplified since it is of very low amplitude, and digitized for further processing. Each 

channel is sampled repeatedly at a fixed time interval (sampling rate) and each 

sample is converted into its digital equivalent by the analog-to-digital converter 

(ADC). For quick and efficient streaming of these data samples to the computer, the 

TMSi Amplifier uses a bidirectional fiber optic cable instead of a wire connection. An 

inbuilt analog low pass filter tuned to a high sampling frequency is used as an anti-

aliasing filter during signal acquisition. Digital low pass filters are then used to set the 

bandwidth of the acquired signal by eliminating frequencies outside the operating 

range.  

                                            
7
 Sources: 1.Computer graphic from www.blogspot.de  

     2.Electrode cap graphic from www.brain-project.org  
     3. AEP graphic from www.clipart.com              
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3.2 Preparation and Interfacing 

3.2.1 Dealing with Impedance 

EEG has small amplitude (0.1 – 100 μV) because it undergoes attenuation through 

fluids, bone of the skull and skin before it can be picked up by the electrodes on the 

scalp. It is crucial that the recording gear helps to cleanly capture a quantity rather 

than distort it. High impedance may lead to distortions (artifacts) which can be difficult 

and costly to filter from the actual signal. The electrodes used with the actiCAP are 

Ag-AgCl disks (< 3 mm diameter) that are integrated with a tricolor LED system for 

showing the impedance of the skin-electrode interface. Embedded in the electrodes 

is an operational amplifier that acts as an impedance converter. Each electrode is 

connected with flexible leads to the TMSi amplifier through the router and control box 

as depicted in appendix A1(B). To achieve optimum recording, the electrode 

impedance has to be brought down to within 0 – 25 kΩ. After fitting the cap and the 

corresponding electrodes, before starting measurement, the control box is powered 

and the Z-button is pushed to start the impedance check-assisted by the actiCap 

software. The following color codes represent the three different classes of 

impedance levels: 

 Green – Impedance  < 25 kΩ (optimum for acquisition) 

 Yellow – Impedance 25 to 60 kΩ  

 Red – Impedance > 60 kΩ 

By applying a special conducting gel to the scalp using a syringe and needle, through 

the crevices on the electrode heads and gently massaging it in, the impedance is 

brought down to a working minimum (Appendix A1). This is indicated by transition of 

LED light from red; through yellow to green (It takes a while for the gel to act).  

Depending on the number of electrodes involved, this process could take anywhere 

between 15 – 30 minutes. During signal acquisition Impedance check should be 

turned off but it is good practice to verify levels at the end of every measurement.  
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3.2.2 Connecting the Server and the Designer 

The purpose of OpenViBE is to get data from the acquisition device through the 

acquisition server and send it to one or more clients for recording or processing [6]. In 

our experiments the client will be the OpenViBE designer, responsible for hosting the 

BCI application pipelines. As depicted in figure 3.2, the client(s) and server can run 

on the same machine or on different machines on a network. We use both 

interchangeably. 

                              

Figure 3.2: Client server setup in OpenViBE [23] 

 

After starting the acquisition client, the acquisition driver matching the hardware type 

has to be selected in the drop down list. We chose TMSi Refa32B, matching our 

amplifier (figure 3.3). The TMSi Refa32B driver is still rather unstable and crushed on 

several occasions. 
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Figure 3.3: Acquisition server interface. Hardware driver, number of electrodes  and their 

names, sampling frequency  and other settings can  be done here 

3.2.3 Channel Selection and Naming 

To get rid of unwanted noise in the signal, it is important that the number of channels 

be set to the number actually used in the acquisition (The default number is 32). 

Unused electrodes must also be decoupled from the amplifier. Appropriately naming 

the channels (Menus Driver properties and setting on the acquisition server) makes it 

easier for signal analysis and identification based on a given channel (Figure 3.3). 

  

3.2.4 Sampling Frequency  

An EEG signal as acquired by the electrodes from the scalp is an analogue quantity 

that needs to be digitized for further processing on a computerized system. The 

conversion is performed by means of the multichannel analogue-to-digital converter 

(ADC). The sample rate at which this is done must be enough to represent the 

change in the analog signal [24]. The effective bandwidth of the EEG signal is 

approximately 100 Hz. To satisfy the Nyquist criterion (equation 3), a minimum 

frequency of 200 Hz is recommended for sampling EEG signals in order to avoid 

distortions due to aliasing.  

Mathematically, sampling is equivalent to multiplying the input analog signal with a 

series of Dirac-impulses: 
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Where      is the input signal,      the sampled signal,      a Dirac impulse and    

the period. 

Multiplying the signals in the time domain amounts to a convolution in the frequency 

domain: 

          
 

  
       

 

  
   

 

  
      

 

  
 

 

    

 

    

                                    

 

There are periodicities in both time and frequency in the sampled signal, meaning 

that there should be symmetry or periodicity in the frequency domain to avoid       

overlaps [25], [26], [14], [27]. By the Nyquist criterion, the maximum frequency that 

can be sampled is half the maximum existing in the time domain. Thus: 

     
 

      
                                                                                                                             

Failure to adhere to this condition results in a permanently distorted signal. However 

in a multichannel recording, setting the sampling frequency too high will lead to 

significant increase in memory use over time. 

 

3.3 Artifacts in the EEG 

3.3.1 Definition 

 Artifacts are unwanted components  in a measured quantity that can be attributed to 

biological and technical processes involved  in the measurement chain, that are not 

related to the physiological or pathological aspect of the point of measurement and 

its immediate surroundings.  EEG signals must always be scanned for these 

distortions before they are processed for use in applications. The artifact in the 

recorded EEG may be either subject-related or technical. Subject-related artifacts are 

unwanted physiological signals that may significantly disturb the EEG. Technical 

artifacts include AC power line noise, electrode impedance, resistance in electrode 
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wires and other hardware specific noise. The most common EEG artifact sources can 

be classified in as follows: 

Subject related: 

 Artifacts related to minor body movements 

 EMG 

 ECG components (pulse, pacemaker) 

 Eye movements (EOG) 

 Sweat on the surface to be measured 

 

Technical sources: 

 50/60 Hz power supply 

 Impedance fluctuation 

 DC components due to measurement electrodes 

 Cable movements and broken wires [19] 

Physiological artifacts can be minimized by introducing extra electrodes for ECG, 

EOG for example in the measurement. These can be subtracted out by the amplifier 

at the acquisition level. While impedance or resistance can be minimized and wires 

shortened, it is harder to eliminate noise caused by heating in the amplifier for 

example. 

 

3.3.2 Filtering 

Filters are applied in the frequency domain to eliminate unwanted components or 

features from incoming signals and to minimize artifacts. The attenuation of 

unwanted components might be partial or complete, depending on the choice of filter 

(settings). The aim of filtering should be to improve signal quality (gain) by minimizing 

background noise or interference. Filters do have one drawback however; they are 

usually associated with some loss of information and used wrongly, they could lead 
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to total loss of the signal. Two filtering techniques are employed; spatial and temporal 

filtering. 

Spatial filters: combine data from two or more recording locations to derive features 

of a particular characteristic e.g frequency. 

Temporal filters: employ a combination of frequency and amplitude restriction 

methods like band pass filtering (frequency) and Fourier analysis (amplitude) [7]. 

Some common filters in EEG signal processing are: 

 Low pass filter – high frequencies are attenuated 

 High pass filter – low frequencies are attenuated 

 Band pass filter – passes in a given frequency range only 

 Notch filter – rejects just one specific frequency (example of band pass) 

 

3.3.3 Averaging 

Averaging is done to enhance a time-locked signal component (like an evoked 

potential) in noisy measurements. Signal averaging in the time domain (spatial) 

assumes that: 

1. Measured signal and noise are uncorrelated. 

2. The timing of the signal is unknown. 

3. A consistent signal component exists during measurement. 

4. Noise in the signal is purely random with zero mean 

For a measurement x consisting of signal s and noise n over N trials, 

                                                                                                                           

 represents the kth sample point in the jth trial. 

The mean of the N sampled trials is given by: 
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To reduce noise, we have to choose N large enough such that               

From equation 3.5 we can derive the variance; 

              
  
    

 

 
                                                                                                                                    

Indicating that the estimate of s in the average     improves with a factor of 
 

  
 [24] 

 

3.3.4 Signal to Noise Ratio 

It is generally impossible to make a noise-free signal measurement: if the 

measurement chain is free of errors, some will be introduced by the instruments used 

(amplifiers, electrodes etc.). The aim of filtering is to make the noise component 

comparably small, relative to the signal component. 

Signal-to-noise-ratio of a measurement;  

           
          

         
             

           

          
                                                             

is the comparison of their power or amplitudes, where in discrete time series,  

power is the mean squared amplitude : 

    
 

 
   

                                                                                                                           

 

   

 

And amplitude is the root of the mean squared amplitude: 

     
 

 
   

 

 

   

                                                                                                                     

For continuous time series, 
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A good measurement is one where SNR is high. This can be improved upon by 

signal processing. [24]. However if the power of the noise is greater than that of the 

signal, the noise will compete directly with the signal on the channel, resulting in 

reduction of the rate of data transfer or complete inability to read the signal.   

 

3.4 Evoked Potentials 

3.4.1 Definition and modalities 

Evoked potentials (EPs), sometimes called Event Related Potentials (ERPs), are low 

amplitude (0.1 to 10 μV) transient waveforms that appear in the ongoing background 

EEG as a (exogenous) response to an external stimulus the user was given. They 

are electrical responses in the brain (cortex) or the brainstem to various types of 

sensory stimulation of nervous tissues [5] therefore they tend to have a latency 

related to the time of stimulation presentation. Their amplitude is the sum of a large 

number of action potentials (APs) that are time locked to sensory, motor or cognitive 

events [14]  

Auditory Evoked Potentials (AEP): are generated in response to an auditory 

stimulus usually produced by a short sound wave. AEPs give an insight into the 

propagation of neural information by the acoustic nerve from the ear to the cortex and 

can be used to diagnose ailments and complications to this pathway, including 

hearing loss. 

Visual Evoked Potentials (VEP): There are two common methods for eliciting 

VEPs; in one the stimulus is given as a pattern reversal, for example alternating black 

and white squares of a chess board on a monitor display. The other stimulus is given 

as flashing sequences (see 4.3.1). The electrical response elicited by visual stimuli 

can be recorded from the scalp in the occipital region of the brain (Figure 1.7) and 

can serve as an evaluation for visual pathway functionality and diagnosis of ocular 

and retinal disorders.  
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Somatosensory Evoked Potentials (SEP): Elicited by electrical stimulation of 

peripheral nerves from the surface of the body, this type of EPs can offer valuable 

information about nerve conduction and the functionality between selected 

stimulation points from the spinal cord through to the cerebral cortex. It is a method of 

intraoperative monitoring during spinal cord surgery [5]. 

Measured amplitude of the EPs usually depends on the type and strength of the 

stimulus, electrode position on the scalp, including mental state of the user; i.e. 

varying degrees of attention and wakefulness. Commonly used in BCIs applications 

are auditory and visual stimulation, where the most common evoked potential used is 

the P300. EPs can also be elicited as a response to performing cognitive functions 

such those that require attention and memory processes. These responses are 

termed endogenous since they do not involve physical stimuli. 

 

3.4.2 Noise and EPs 

The recorded EEG contains P300 potentials as well as other brain activities, 

muscular and or ocular artifacts leading to a very low signal-to-noise ratio (SNR) of 

the P300 potential [28]. These brain activities are unrelated to the experiment and 

produce waves with higher frequency bands in comparison to the evoked potentials. 

The frequency content of muscular (movement) artifacts can usually not be removed 

by low-pass filtering. Further, the frequencies of the background EEG overlap 

(harmonics) with the evoked potentials such that conventional filtering cannot be 

used to achieve higher SNR [29]. To cancel out the noise, epochs of the evoked 

potential have to be averaged (see 3.3.3). Sampling more epochs improves SNR. 
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4 Experiments and Results 

4.1 The P300 Speller 

4.1.1 Experiment in brief 

The experiment is based on the “odd-ball” paradigm first developed by Farwell and 

Donchin (1988) and analyzed in [30] It utilizes the P300 event related potential (ERP) 

elicited by instructing a subject to focus on a character contained in a 6x6 grid of 

alpha-numeric characters; A-Z and 0-9 (Figure 4.1).The computer generates flashing 

sequences of rows and columns at a preset frequency (visual stimuli). The user is 

asked to distinguish between a common stimulus (non-target) and a rare stimulus 

(target) [28]. This can be done for example by mentally counting up each time the 

target flashes in a row or in a column and ignoring the non-targets. It is odd-ball 

because the events on which it depends can be classified into two categories, where 

one of them, the target event, is rarely presented. Also the task to be performed 

depends on these two events. The rare event elicits an ERP with a P300 component. 

Since the events are mixed, determining wanted results is purely statistical and is 

dependent on a classifier algorithm. On average nearly 20% of all flashes will contain 

the target character and the other 80% will not [5]. Theoretically, by determining 

which rows and columns elicited an ERP and further determining their intersection 

(cell), the computer is able to predict the character the user was focusing on. 

However the recorded EEG contains elicited ERPs as well as other brain activities 

(noise) including artifacts due to involuntary blinking, decreasing the signal-to-noise 

ratio (SNR) of the P300 waves. According to Donchin [30], increasing classification 

accuracy is done by averaging epochs over repeated trials. Many repetitions 

decrease the number of characters/minute the user can spell however. The xDAWN 

algorithm employs a Bayesian linear discriminant analysis to synchronize target 

stimuli with the evoked potentials and uses spatial filtering to enhance their power 

thereby increasing efficiency of classification. More on this in Rivet et al [28]. 



38 
 

 

Figure 4.1: The alphanumeric grid and visual stimulus; the subject focuses on a character [23] 

 

4.1.2 Method 

A black box test was carried out using an existing xDAWN P300 speller in OpenViBE. 

The experiment sought to reproduce the described results of the BCI using our 

acquisition hardware. This BCI is divided into four scenarios: 

1. Data acquisition 

2. xDAWN spatial filter training 

3. P300 classifier training 

4. Online use of the speller 

The experiment involved 5 able-bodied subjects (users) with no prior experience at 

the start: 4 male and 1 female, all above 18 years of age. All but the female subject 

repeated the experiment at least once on different days. Subjects were seated 

comfortably in a quiet with minimum illumination, at a distance approx. 1m away from 

the monitor.  

Step1 Acquiring data: After a background signal check, recording was done using the 

actiCAP and with 16 Ag-AgCl unipolar electrodes (FP1, FP2, F3, Fz, F4, C3, Cz, C4, P7, 

P3, Pz, P4, P8, O1, Oz, O2) whose impedance levels were brought to within (0 -25 kΩ) 
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– green (section 3.2.1). The cap has no Nasion electrode but offers in its place a 

Reference electrode. The signals were amplified and digitized using a grounded 

TMSi amplifier (see Hardware) at the OpenViBE default rate of  512 Hz and a sample 

count of 32 per block, delivering 512/32 = 16 blocks of data per second. We used 

one computer as the server and the other as the client on a network. In this session 

the subject is asked to focus on the character suggested by the computer 

(highlighted by blue) on the 6x6 grid (figure 4.1). They were further instructed to 

mentally count the number of times this character is intensified in a randomly flashing 

row or column. A total of 10 trials (number of characters) are done in each session. 

Each row/column is intensified for a duration of 100 ms (0.1 sec) with an interval of 

50 ms from one flash to the next. There are 12 flashes of each row and 12 of each 

column on the grid, so each character is intensified 24 times during every trial. From 

one trial to the next, there’s a delay of 4 seconds to allow the user to change focus 

on the next character. In the scenario, this is timed at about 30 seconds from the 

onset of one character to the next, translating to ca. 5 minutes for the entire session 

of 10 trials. The data was stored in signals folder (*ov format) with a time stamp. 

Step 2 Preprocessing and training: The recorded data file in step 1 is read with a 

generic stream reader. A 4th order Butterworth band-pass filter (1.0 – 20.0 Hz) was 

used to filter out unwanted signals components. Signal decimation is then used to cut 

a 1 second block of 16 samples into four blocks of 4 samples each. The blocks are 

sampled again in epochs of 250 ms each. 

Spatial filtering is then done using the xDAWN filter that reduces the signal space to 

3 dimensions, most significant for detecting a P300 ERP [23]. This is the offline 

training of the filter. 

 Step 3 Training the LDA classifier: In scenario 3 again the raw data file is read with 

the stream reader and fed into the one hand into the preprocessing pipeline and 

xDAWN spatial filter which has been trained in step 2, on the other hand nothing is 

done to the raw signal. Both signals are then fed into separate stimulus based 

epoching boxes set at duration of 600 ms each. The boxes synchronize the ERPs 

with the target event and the rest of the signal with the non-target event. The 

averages of these two blocks are computed every second, aggregated and used to 

train the linear discriminant algorithm of the classifier. The classifier should now be 
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able to detect a p300 (target) waves and discriminate it from the background (non-

target) waves. 

Step 4 Using the Speller online: Having trained the spatial filter and the classifier, a 

new signal was recorded for an online session: It was preprocessed in the same 

pipeline as in step 2. The output of the xDAWN filter was passed to 12 separate but 

identical pipelines, one for each repetition of row/column (step 3 above). At the end 

of the pipeline is a classifier (LDA) which after calibration, passes the output to a 

voting classifier, configured (default) to reject non-target input and pass the target 

character to the P300 speller visualization for rendering on the grid. A target 

character is intensified in green (Figure 4.2 below). This would be the character the 

algorithms have predicted as intended input from the user and is displayed as the 

result for each of the 10trials 

 

Figure 4.2: A typical output from the P300 speller application in the online session 

 

 

 

After a trial the target character chosen by the classifier algorithms is highlighted in 

green. At the end of the spelling session there are two rows at the bottom of the grid:  
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1. Target for the characters suggested by the computer and,  

2. Result for the characters the algorithms identified as input from the user. To the 

left,      the console output as classifier performance on each of the used 

electrodes including the mean and standard deviation. 

 

4.1.3 Performance 

The following performance values were observed for the five subjects in both the 

offline classifier training and the online trial with the speller. 

 

Table 2: Results of the experiment involving 5 subjects 

             

            Subject 

Average Classifier         

Performance (%) 

Number of Characters     

correct out of ten 

                  A               66.52               2/10 

                  B               68.26               1/10 

                  C (Female)               75.34               1/10 

                  D               77.45               0/10 

                  E               67.69               1/10 

 

The results depicted were all obtained with the default settings in the OpenViBE 

scenarios for the xDAWN speller. The documentation of the scenarios suggested that 

a performance of the classifier above 70% would be necessary for the user to 

achieve at least 80% score in the online session. Subject A’s classifier result is below 

the required result in comparison to Subject D’s 77.5% that is several points above. 

However  D achieves no score on the speller to A’s 2/10.The average score of 1/10 
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on the speller for all the participants is clearly very low and seems to suggest a 

randomness of result, rather than a correct performance of the classifier on 

target/non-target discrimination. 

 

4.1.4 Problems and Mitigation 

The failure to achieve satisfactory results could not be directly attributed to any one 

factor. The obvious exclusion here is subject related failure, as performance was 

poor for all of them. From hardware, to acquisition and settings in the algorithms of 

different pipelines in the scenarios, any of these could be the problem. It could well 

be the software platform itself.  

A first approach to validating the results was to try and adjust the speed of the 

row/column flashes in both the acquisition and online scenarios to find out whether it 

improved the subjects’ score on the speller: it was suspected that perhaps the rate of 

repetition, at 150 ms, was too fast, leading to an interference of the P300 response 

wave and the following stimulus. For two of the subjects, one male (B) and the 

female (C), the experiment was repeated with the flash duration set to 400 ms 

(Figure 4.3) making an inter repetition delay of 450 ms, a 200% slow down. The 

graphics in figure 4.4 show the obtained classifier performances. 
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 Figure 4.3: Flash duration in the flashing sequence settings changed from 100 to 400 

milliseconds 

Subject B 

 

 

Subject C 

 

Figure 4.4: Console Information from classifier performances of subject B (75.49%) and subject 

C (84.03%) with the inter-repetition duration of 450 milliseconds 
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Clearly there was a marked improvement in the classifier performance: 9.6% and 

8.7% for B and C respectively. However they both had a 0/10 score in the online 

spelling session. This is counterintuitive because the classifier seems to have 

identified the evoked potentials correctly. 

 

4.1.5 Inference 

While the results above indicate that slowing inter-repetition improves on classifier 

performance, a corresponding improvement on the score in the online sessions was 

not registered. It is probable that the output numbers of the classifier are misleading: 

that it has failed to discriminate the P300 components from the ongoing EEG signal 

therefore there’s no clear distinction of target and non-target stimuli. It has to be 

noted that evoked potentials are transient in nature and are in order of magnitude 10 

times smaller than the ongoing background EEG. In this case the EEG would be a 

noise masking the EPs, which the spatial filters have to actively eliminate.  If the 

algorithms (Spatial filter, LDA-classifier) are working well, it could be that the signal is 

leaking at some unknown point. Furthermore the speed of data transfer on the 

network is unknown and the latency of triggers for the stimuli may not be 

synchronized. 

 

4.2 Visualizing Evoked Potentials 

We consider the visualization of evoked potentials as validation for the proper 

functioning of the acquisition apparatus and the software platform. We seek to 

establish existence of the P300 EPs in the ongoing background EEG, which 

potentials are crucial to the success of P300 speller BCI application. 

  

4.2.1 Visual Evoked Potentials 

The experiment was set up using pattern reversal of a chessboard graphic displayed 

on a monitor as the stimulus (Figure 4.5).The subject was instructed to focus on the 

center as the squares alternately changed color between black and white. There was 
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minimal ambient light with the interstimulation interval set to 2 seconds in the LUA 

script. Using the actiCap, the subject’s EEG was recorded with electrodes ( Pz, O1, 

O2) placed in the region of the visual cortex (Figure 1.7). Cz was used as a reference 

electrode. The recorded signal was analyzed in MATLAB for the transient P300 

peaks. 

        

Figure 4.5: Visual stimulus, constantly timed pattern reversal as seen by subject 

  

According to Sörmno & Laguna [5], a normal subject’s VEP waveform is described by 

a small positive peak, a larger positive peak occurring about 75 ms after stimulus 

(N75), and a large positive peak about 100 ms after stimulus (P100). The duration of 

the VEP may extend beyond 300 ms. In figures 4.6 and 4.7 we observe all these 

three characteristics, which is proof that the hardware used and the software platform 

are capable of reproducing an expected response potential. 
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    Figure 4.6: Red is average over background EEG, blue is average over rare potential 

  

 

 

Figure 4.7: Characteristic P300 peak in 200 - 400 ms range 
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4.2.2 Auditory Evoked Potentials 

In this experiment the subject wore a set of stereo headphones. With his eyes closed, 

he was instructed to concentrate and mentally register the occurrence of a rare high 

frequency ton, the target stimulus, and ignore the normal low frequency ton, the non-

target. 2000Hz was used for the target and 1000 Hz for the non-target. The subject’s 

EEG was recorded with the same electrode placement as in 4.2.1 above and the 

signals analyzed in MATLAB.  

                 

Figure 4.8: High pass filtered (1 Hz on Cz - Pz). Red is target and blue non-target 

   

 

A normal AEP shows marked difference in signal properties, relating to the various 

structures located in the auditory pathway.  Figures 4.8 and 4.9 show the P300 wave 

as a response to the target stimulus and the normal wave train for the non-target. 
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Figure 4.9: Band pass filtered (1 - 70 Hz on Cz-Pz). Red is target, blue non-target 

 

4.3 Investigating Latencies 

We use two sinus wave audio signals, 200 Hz (target) and 100 Hz (non-target) in a 

scenario with two signal generators and stimulation to record and analyze the time 

dependencies in OpenViBE. 2 minutes of the signal was recorded at a sampling rate 

of 2048 Hz, with two variations: 

1. Unipolar recording (2 electrodes with 1 ground) 

2. Bipolar (1 bipolar pin with 1 ground) 

A visual inspection of the acquired signal in OpenViBE (Figure 4.10) indicates   a 

delay of about 0.2 seconds of the signal on the stimulation. Also, malformation of the 

wave suggests a signal leak in the amplifier or, more likely, a loss of samples during 

transmission over the TCP/IP protocol on the network. Another possibility is a 

replacement of missing samples by the OpenViBE-TMSi acquisition server. 
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Figure 4.10: Display of acquired bipolar audio signal in OpenViBE indicating latency and 
distortion 

  

 

We further analyzed the bipolar recording in matlab. 

Arrival of first epoch (8438/2048)   = 4.1201 seconds 

Arrival of first stimulation                = 4.0547 seconds 

 

Table 3: Bipolar AEP recording on network (1 client, 1 server) 

 Signal time (s)  Stimulus time (s)  Delay (ms)  

       4.1201        4.0547       65.4 

       7.1128        7.0547       58.1 

     10.1196      10.0547       64.9 

     16.1162      16.0547       61.5 

     19.1191      19.0547       64.5 
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Mean delay = 62.88 ms     

Standard deviation = 3.07 ms 

Latency     = 62.88 ± 3.07 ms 

    

Table 4: Bipolar AEP recording on same computer (client same as server) 

Signal time (s) Stimulus time(s) Delay (ms) 

     4.1064       4.0547     51.7 

     7.1079       7.0547     53.2 

   10.1074     10.0547     52.7 

   16.1035     16.0547     48.8 

   19.1074     19.0547     52.7 

                         

  Mean delay = 51.82 ms 

  Standard deviation = 1.77 ms 

  Latency = 51.82 ±1.77 ms    

These results suggest that for the Bipolar recording, the network connection slows 

down the signal by a minimum of 11 milliseconds. Moreover, the transport across the 

network between two different computers appears to increase the standard deviation 

of the latencies. 
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Table 5: Unipolar AEP recording on network 

Signal time (s) Stimulus time (s) Delay (ms) 

     4.1147      4.0547    60.00 

     7.1162      7.0547    61.50 

   10.1147    10.0547    60.00 

   16.1172    16.0547    62.50 

   19.1113    19.0547    56.60 

           

  Mean delay = 60.12 ms 

Standard deviation = 2.24 ms 

Latency = 60.12 ± 2.24 ms 

      

                   Table 6: Unipolar AEP recording on same computer (client same as server) 

Signal time (s) Stimulus time (s) Delay (ms) 

     4.1016      4.0547    46.9 

     7.1011      7.0547    46.4 

   10.1220    10.0547    67.3 

   16.1000    16.0547    45.3 

   19.1001    19.0547    45.4 
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We ignore the runaway value in row 3 to achieve: 

Mean delay = 46.00 ms 

Standard deviation = 0.79 ms 

Latency = 46 ± 0.79 ms      

 

We can infer that the unipolar signal is at least 14 ms faster on a same computer 

recording as compared to the network setup.  

Without analyzing hardware and software performance in these experiments, we can 

generally conclude from the results of tables 2, 3, 4 and 5 that signal acquisition will 

always have a time delay. It is also clear that unipolar recording delivers the signal 

faster than the bipolar recording and on the whole, network acquisition is slower than 

acquisition on the same computer. The smaller standard deviation values also 

indicate that the timing of the signals and stimuli is more exact compared to network 

acquisition. 

 How latency affects performance of a particular BCI application like the visual speller 

and what magnitudes would be admissible is not yet clear. Eliminating latency does 

not guarantee good performance however. According to Cecotti & Gräser [31], 

reducing BCI latency typically impairs accuracy. There has to exist a compromise 

between speed and accuracy. 
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5 Discussion of Results 

 

The aim of this thesis was to use the acquisition hardware available in the BioSig 

laboratory at Hochschule Heilbronn, to reproduce a P300 visual speller on an open 

source software platform. From the many freely available platforms, FieldTrip and 

OpenViBE were singled out because of their modularity approach, providing ready to 

use tools and algorithms. FieldTrip is a Matlab based Toolbox for EEG/EMG analysis 

that includes no graphical interface; therefore it relies on the Matlab console and still 

requires a good understanding of this programming language. OpenViBE on the 

other hand has an integrated graphical interface and uses a more simplified graphical 

language to enable the user to prepare pipelines for signal processing, visualization 

and applications like BCIs, without having to write any line of code (see chapter 2). 

Work started with an analysis of both platforms at the end of which OpenViBE was 

chosen. This was followed by a literature review, to get acquainted with the many 

aspects of brain computer interfaces, including signal processing, neuroscience and 

the EEG, human computer interaction and assisted living for the disabled. 

The approach taken in this thesis was not do develop an own visual speller but rather 

recreate an off-the shelf application from OpenViBE with the kind of hardware we had 

in the laboratory. On account of the results as indicated in (4.3 - 4.5) this experiment 

was not a success and the aim of the thesis was in part not achieved. On the other 

hand, invaluable insight was gained, through research, into the technical aspect of a 

brain computer interface. This has been documented in this thesis and it is hoped 

that it will provide a good basis for future works on this topic. The reason(s) for failure 

to produce satisfactory results in this experiment are yet unknown but a few can be 

singled out for future reference: The speller application involves four separate 

scenarios (see 4.1.2), each with its own characteristic pipeline and settings for boxes 

and algorithms. For the most part, we used these unchanged: It is likely that a few 

alterations could lead to better results but it also difficult to assess which part of the 

pipeline works well and which doesn’t. There was the question of loss of signal by the 

amplifier as evidenced by the sine waves in OpenViBE (figure 4.9) and further 

observed during analysis of the signal in MATLAB. We did not compare input to 

output results of the amplifier and where the inbuilt analog and digital filters were 

working well so it is unclear whether this was a contributing factor. We were able to 
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establish the existence of typical transient evoked potentials synchronized with their 

target stimuli (see 4.2.1) however the classifier algorithm in the online scenario did 

not identify these correctly. It is probable that the xDAWN spatial filter did not narrow 

down the space, to enhance the accuracy of the classifier algorithm. Accuracy of the 

classifier depends heavily on the signal-to-noise ratio of the evoked potentials so if 

the filters do not perform optimally, the classifiers will also falter. According to 

Bießmann [32], shortening inter stimulus interval (ISI) does not adversely affect the 

accuracy of the classifier. We used an ISI of 150ms (default setting) of which 50ms 

was no flash duration. Slowing down the flash duration three-fold to achieve ISI of 

450 ms improved the classifier performance but not that of the speller with the two 

subjects, as can be seen from the results (see 4.1.4). Latency in the acquired signal 

would seem to suggest that the evoked potentials are not synchronized with the 

stimuli therefore leading to improper classification. But the P300 wave has a latency 

of about 600ms and the highest recorded latency on our system was about 63ms 

which would shift the center of the wave from 300 to about 360 – 400 ms, which is 

within range. 

On evidence of the visualization experiments in 4.2.1 we can conclude that the 

hardware and the software platform together can be used to acquire a good EEG 

signal. It also has to be noted that visualization of the EPs in OpenViBE could not be 

achieved, hence the migration to MATLAB. On the flipside, OpenViBE will soon fully 

support MATLAB scripting, making it possible to replace some of the boxes in the 

pipelines with own algorithms. 
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6 Outlook 

 

Unsatisfactory results recorded in the visual speller notwithstanding, this thesis has 

undoubtedly covered aspects of the BCIs that will be of help to others researching 

this topic in the future. Basing on the results of the experiment it can be suggested 

that realizing an own spatial filter and classifier especially with a high level language 

like MATLAB, which in the future will be fully supported by the OpenViBE platform, 

with the added advantage of the LUA scripting language, could be the way to 

achieving better. 

Brain computer interfaces are a novel way to give disabled people and locked in 

patients the means to live a comparably normal life again. However the rates of data 

transfer in current applications is still very low; about 25 bits/minute according to 

Walpow [7] therefore they are only capable of basic communication and control 

functions. Visual spellers have been documented to achieve only 2-3 words per 

minute. With ever increasing computing power, transfer rates of the BCIs will also 

improve. For now word prediction algorithms like those used in phone messaging 

could be integrated to achieve a higher spelling rate on lower processing power. 
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APPENDIX 

 

A.1 Acquisition Hardware   

A   B 

C  D 

 

The pictures show the main Hardware used for signal acquisition in the experiments. 

A and B show the actiCAP electrode system consisting of the following: 

 In A: The cap, conducting gel and syringe in picture A 

 In B: (1) splitter box (2) 32 active electrodes (3 &4) ground and reference 

electrodes (5) actiCAP connector  (6) amplifier adapter (7) actiCAP control 

box8 

In C: The 32-channel TMSi analog to digital converter  

In D: Desktop Computer9. 

 

                                            
8
 Picture taken from the actiCAP user Manual by Brain Products 

9
 Picture taken from www.blogspot.de 
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A.2 Setting up the experiment and dealing with Impedance 

 

E  F 

 

Picture E:  a mounted actiCAP with the electrodes connected to the powered control 

box. The red light of the LED indicates high impedance of skin-electrode medium 

(see 3.2.1) 

Picture F: applying conducting gel through opening in the electrode head to reduce 

impedance. When the LED light changes from red through yellow to green, the 

operating impedance of the electrode has been attained10. 

                                            
10

 Picture taken from actiCAP user manual by Brain Products. 


