
|37|

Stefan Kubica, Hagen Ringshausen,
Jörg Reiff-Stephan, Marius Schlingelhoff (Hrsg.)
1. Automobil Symposium Wildau: Tagungsband
Technische Hochschule Wildau 2016

Towards Reducing the Complexity of Enterprise Architectures by
Identifying Standard Variants Using Variability Mining

Kenny Wehling, David Wille, Martin Pluchator, Ina Schaefer doi: 10.15771/ASW_2016_6

Abstract

For decades, Enterprise Architectures (EAs) of car ma
nufacturers have been constantly evolved to respond to
growing requirements. As a consequence, EAs have often
reached a very high level of complexity, which leads to
problems in adapting EAs to new environmental condi
tions. Such a new condition is, for instance, digitalization
of society (e.g., social media, Internet of Things) which
has a huge effect on the automotive industry and the
grown EA. Resulting changes in complex EAs have long
implementation cycles, require enormous communica
tion efforts, and lead to high development costs. To alle
viate these problems, in this paper, we present a concept
to reduce the complexity of grown EAs by adapting the
Family Mining approach. This approach is originally used
to compare blockoriented models, such as MATLAB/Si
mulink models, and to identify commonalities and diffe
rences between these models. In our concept, we utilize
the Family Mining approach to analyze the variability of
a particular EA and to identify the contained variants. All
information about the variability and the variants will be
used to derive standard variants representing default so

lutions for different issues. Using these standard variants,
the existing EA will be restructured involving economic
considerations (e.g., which standard variant yields best
benefits under certain circumstances). Hence, applying
this concept to a complex EA should allow reducing the
complexity of the EA, alleviating related problems and
making suitable design decisions for future extensions.

1. Introduction

For a long time, the automotive industry has worked on
optimizing its manufacturing and customer processes.
Thus, ITSystems and whole Enterprise Architectures (EA)
have been constantly evolved to respond to growing re
quirements. As a consequence, EAs of car manufacturers
have often reached a very high level of complexity, which
is reflected in thousands of components and correspon
ding relations as well as a vast heterogeneity. Such a
grown EA allows to execute automotive processes with
support of established ITSystems, also called »classic
IT«. Recently, the automotive industry has been influen
ced by digitalization of society, which has a huge impact
on the grown EA and requires comprehensive adaptions.

Fig. 1 The impact of digitalization on grown Enterprise Architectures of car manufacturers

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hochschulschriftenserver der TH Wildau

https://core.ac.uk/display/33985583?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

|38|

Due to the innovating driver digitalization, new IT (e.g.,
Cloud Computing and Car IT) arise and new fields (e.g.
Connected Car and Smart Factory) are available. Both,
new IT and new fields, need to be successfully integrated
in the grown EA to take advantage of digitalization. Fig. 1
shows this impact of digitalization on grown EAs of car
manufacturers. Established automotive processes and
classic IT are embedded in new fields and new IT. While
the grown EA keeps automotive processes moving, only
the integrated EA allows car manufacturers to utilize and
benefit from digitalization.
Grown EAs of car manufacturers are not prepared for
these enormous changes resulting from digitalization
and it’s new IT and new fields. The reasons are various
and there are only listed a few below. Firstly, grown EAs
of car manufacturers are too complex and too confu
sing in order to manage such large changes successfully.
Secondly, there is often no sufficient documentation of
the ITLandscape, the used ITSystems, and the relations
between them, which leads to long implementation
cycles, enormous communication efforts, and high de
velopment costs. Thirdly, artefacts for a specific context
in grown EAs are rather implemented new then reused
from an existing solution of another context. This ends
up in increasing the complexity of a grown EA and makes
it even more difficult to manage future changes.
In order to integrate the new IT and new fields into
grown EAs of car manufacturers without impairing pro
ductive systems and loosing knowledge, the complexity
of grown EAs has to be initially reduced to an approp
riate level. For this purpose, we introduce a concept in
this paper which has to be evaluated in future work. In
particular, we make the following contributions:

 � We propose an idea to automatically generate clusters
based on a grown EA to detect applications with simi
lar types of technical infrastructures.

 � We automatically analyze the variability of detected
clusters to emphasize commonalities and differences
of related technical infrastructures.

 � We identify standard variants to reduce the variability
within detected clusters which is the foundation for
restructuring a grown EA.

This paper is structured as follows: Section 2 provides
background on EAs, complexity of EAs and Family Mi
ning. Section 3 describes our concept to reduce comple
xity of EAs by Identifying standard variants using Family
Mining. Section 4 discusses related work and Section 5
concludes with an outlook to future work.

2. Background

In Section 2.1, we provide a definition for EA followed
by Section 2.2 which describes the complexity of EAs.
In the last Section 2.3, we introduce family mining, an
algorithm for variability mining.

2.1 Enterprise Architecture

The field of EA was first introduced by Zachmann in 1987.
In his work he developed a multiperspective approach
to information systems and their architecture (Zachman
1987). Similarly, Richardson et al. describe EA as a mul
tidimensional view to information systems consisting of
»interrelated data, hardware, software, and communi

Fig. 2 The four dimensions of Enterprise Architecture (adapted from Schütz et al. 2013a)

|39|

cations« (Richardson et al. 1990). Furthermore, Ross ex
tends the term EA with the dimension of the enterprise
and its business processes (Ross 2003). Based on these
preceding works, established EA frameworks, such as
The Open Group Architecture Framework (TOGAF), fo
cus on the four architecture dimensions Business Process,
Data/Information, Application, and Infrastructure (see
Fig. 2) (The Open Group 2011).
In this paper, we concentrate on the Infrastructure Archi
tecture, but we are planning to extend our concept to
the remaining dimensions of EA in future work.
From a system theoretical perspective, EA can be descri
bed as a system which consists of components and rela
tions between them (IEEE Architecture Working Group
2000). These components and relations can be found
in every dimension of EA. For instance, components in
an Infrastructure Architecture might be hardware or net
work equipment for the technical foundation of an ap
plication.

2.2 Complexity of Enterprise Architectures

Several approaches have been developed to determine
complexity of EAs. Schneider et al. present a good over
view about available methods (Schneider et al. 2014).
One of these approaches, which fits best to our concept,
has been evolved by Schütz et al. (2013b) and is descri
bed below. Based on the system theoretical view on EA,
Schütz et al. define Complexity (C) as a tuple that consists
of the number (N) and the heterogeneity (H) of compo-
nents (T) and relations (R) embedded in an EA:

To determine the number of components or relations in
an EA, it is only necessary to count them. For determina
tion of heterogeneity, Schütz et al. propose the Entrophy
Measure (EM) (see Equation 2). It contains the parameter

pi which states the relative frequency of characteristic i of
a specific element considered in an EA. The parameter pi
can be defined as seen bellow involving the parameter xi
which quantifies the absolute number of elements assi
gned to characteristic i (see Equation 3).

In Section 3, we give a motivating example that shows
the determination of complexity and demonstrates our
approach.

2.3 Family Mining

In previous work, we introduced family mining as a mi
ning technique to automatically analyze the variability
inherent in MATLAB/Simulink model variants (Holthusen
et al. 2014, Wille 2014, Wille et al. 2013). By comparing
a set of related models, this approach allows to identify
mandatory parts (i.e., common to all variants), optional
parts (i.e., only contained in particular variants), and al
ternative parts (i.e., mutually exclusive). The family mi
ning algorithm stores the results in socalled 150 % mo
dels containing all artefacts from the variants together
with their identified variability. Such 150 % models can
be visualized by showing all contained elements in their
standard notation together with visual elements deno
ting their variability. Mandatory elements are marked
with an exclamation mark (i.e., !), optional elements are
marked with a question mark (i.e., ?), and alternatives
are marked with double arrow (i.e., ⇔).
We plan to adapt the ideas of our family mining appro
ach in order to identify variability information in grown
EAs on different assets. For instance, we want to analyze
the variability information to identify standard variants
for technical architectures (TAs) (i.e., a common hardware
base). Another plan is to ascertain the variability of ap
plications in different business locations to determine
standard applications for equal business supports. Using
these ideas our overall goal is to reduce the complexity
of grown EAs and to alleviate relating problems.

3. Concept for Reducing the Complexity of Enterpri-
se Architectures

Below, we show the determination of EA complexity by
means of a motivating example which is also used for
our further consideration in this paper. Tab. 1 describes
three TAs from three different applications that repre
sent a simple EA. Each TA consists of a typical ClientSer
verArchitecture which is separated in the three layers

C N H with Y T RY Y Y= () ∈{ }, , , (1)

EM p pii

n
i= − ()=∑ 1

ln (2)

p x
x

i
i

jj

n=
=∑ 1

(3)

Tab. 1 Motivating example to demonstrate our approach

TA 1 TA 2 TA 3

Client Server Client Server Client Server

Presentation P1 — P2 — P3 —

Application Server —
A1

A2

— A1 — A1

Hardware & OS — H1 — H2 —
H3

H4

|40|

Presentation, Application Server, and Hardware & Opera-
ting System (OS). In this example, we focus on compo
nents and do not take relations into account, in order to
demonstrate our concept on a less complex use case. In
future work, we will also concentrate on these relations.
Thus, complexity in our example can be determined by
CT = (NT, HT) (cf. Section 2.2).
In Tab. 1, we added components to the layers by using
the first letter of the corresponding layer and a number
to distinguish between differing components. All TAs in
our example are related due to the application server A1

which is installed in each TA.
As seen in Tab. 2, the average complexity of our exemp
lary EA is C = (3.67, 0.86). The lower the values for NT and
HT are, the lower is the complexity of a given EA.
In the following, we want to introduce our concept to
reduce the calculated complexity for a given EA. The first
step is to identify clusters in a grown EA to distinguish
between sets of related TAs. This is shown in Section 3.1
and can be considered as a preprocessing step in our
example. The next step is to automatically analyze and
identify the variability of the resulting clusters by the Fa
mily Mining methodology which is described in Section
3.2. Based on this, the next step is to determine standard
variants within the detected clusters which is shown in
Section 3.3. How to use the identified standard variants
to reduce the variability of the detected clusters and,
thus, to reduce the complexity of a grown EA, is exp
lained in Section 3.4.

3.1 Clustering the Enterprise Architecture

To get valid information about the variability in the Infra
structure Architecture level of grown EAs, it is necessary
to group TAs first in types of similar characteristic. Such a
similar characteristic is determined by one or more com
ponents which are essential for that specific type. For in
stance, a group of TAs running a Java Application Server
might be determined by the component IBM WebSphe
re Application Server. If all available TAs were analyzed
at once without grouping, no commonalities would be
detected, because grown EAs of car manufacturers con
sist of thousands of TAs and the enormous variability
between them would be identified as optional elements.
For example, a comparison of a TA for a classic clientser
ver application with a TA for a web server would identify
large differences and, thus, most parts would be identi
fied as optional for a common TA base.

In our concept, we propose to cluster the set of availab
le TAs of a grown EA during a preprocessing step prior
executing the variability mining. The approach by Babur
et al. (2016) is one possible solution to cluster the given
TAs. Their approach uses a bigram vocabulary created
from the compared TA models and allows to calculate
the term incidence matrix for the compared models (i.e.,
to show the presence of bigrams in the models). Using
statistical methods, such as the Manhattan distance
(Krause 2012), the distance between the matrix vectors
can be calculated to cluster related models. Our exem
plary TAs have been clustered to a set of TAs which have
the Application Server A1 installed.

3.2 Mining the Variability of Detected Clusters

Once the clusters of TAs have been detected, the next
step of our approach is to automatically identify the vari
ability of each cluster using the Family Mining methodo
logy by comparing the related TAs with each other.
After analyzing the exemplary cluster of our TAs, the fol
lowing 150 % model has been created.
As we can see in Tab. 3, the 150 % model constitutes all
information about commonalities and differences of the
processed TAs from Tab. 1 in a single TA. At the Presen
tation Layer, the client has the component P1 or P2 instal

led. Both are alternative elements with the same functio
nality. At the Application Server layer, the server in each
TA within this cluster has implemented the component
A1, thus, it is a mandatory element. In contrast, compo
nent A1 is only optional as it solely appears in TA 1. At the
lowest layer Hardware & OS, the three alternative com
ponents H1, H2, and H3 are used for the server. Additio
nally, an optional component H4 has been detected for
the server on this level.

3.3 Identifying Standard Variants for Detected Clus-
ters

The next step of our approach is to identify standard va
riants for each cluster. These standard variants might be
one or more single standard components or an entire
standard TA for a given cluster. By identifying and using
these standard components within a cluster, it is possib
le to reduce the variability and, thus, the complexity of

Tab. 2 Determination of complexity for our motivating example

NT HT

Presentation 3 0.64

Application Server 4 0.56

Hardware & OS 4 1.39

Average 3.67 0.86

Tab. 3 150 % model of our motivating example

TA (150 % model)

Client Server

Presentation P1⇔P2 —

Application Server —
!A1

?A2

Hardware & OS —
H1⇔H2⇔H3

?H4

|41|

this cluster. In conclusion, each cluster with less variabili
ty options reduces the overall complexity of a grown EA.
Standard variants, based on a 150 % model, can be iden
tified by three different approaches:

 � manual decisions by an expert

 � semiautomatic decisions realized by a rule based sys
tem supported by an expert

 � fullyautomatic decisions realized by a rule based sys
tem containing comprehensive domain knowledge

For our motivating example, we identified standard va
riants using a manual approach as the other approaches
still have to be developed which is planned for future
work. As shown in Tab. 4, our standard variant for the
Presentation layer is P2, because it is equal in functiona
lity to P1 and is preferred. At the Application layer, the
mandatory component A1 has become a standard vari
ant. In contrast, component A2 has been deleted as it was
only optional and not needed for component A1. At the
layer Hardware & OS, component H4 has been erased for
the same reason like component A2. From the remaining
components on this layer, H1 and H2 have been identified
as alternative standards because of strategic reasons. Th
erefore, component H3 is not supported anymore.

3.4 Restructuring Detected Clusters Using the Iden-
tified Standard Variants

To reach our overall target of complexity reduction in
grown EAs, the identified standard variants need to be
realized. Therefore, each TA in a detected cluster has to
match the identified standard variants and, if necessary,
has to be restructured.
The restructured TAs of our exemplary cluster can be
seen in Tab. 5. Each TA implements the standard com
ponent P2 at Presentation layer and the standard com
ponent A1 at Application layer. At Hardware & OS layer,
only TA 3 had to be restructured and now uses standard
component H1.
After a successful restructuring, we have determined the
complexity of our exemplary EA once again. The results
are shown in Tab. 6 compared to the results prior rest
ructuring.

As we can see in Tab. 6, the complexity in our example
has been reduced at each single layer by restructuring
the related TAs using the identified standard variants.
Thus, the average complexity of our exemplary EA has
also been reduced from C1 = (3.67, 0.86) to C2 = (3, 0.21)
resulting in a percental reduction of ΔC = (−18.26 %,
−75.58 %).

4. Related Work

In literature, there are several works regarding design
principles for planning the tobearchitecture of EAs (i.e.,
Greefhorst & Proper 2011, Haki & Legner 2013, Richard
son et al. 1990). As these approaches only consider
tobearchitectures from a planning perspective and do
not take complexity of asisarchitectures into account,
they are not suitable for us. Additionally, Schütz et al.
(2013a) propose design principles which also include
consideration of complexity. Their design principles are
based on the introduced definition of complexity (see
Section 2.3) and have been evaluated by a project ap
plied the action design research (ADR) method. In con
clusion, Schütz et al. have extended their approach to a
set of seven design principles which include, for instan
ce, consideration of enduseracceptance and data quali
ty. Their definition of design principles is very interesting
for identifying standard variants in our approach and will
be considered in future work. However, our approach
focuses more on automatically analyzing the variability
of grown EAs and giving specific recommendations for
restructuring of these EAs to reduce their overall com
plexity.

5. Conclusion and future work

In this paper, we introduced a concept to reduce the
complexity of grown EAs by identifying standard vari
ants and using them to restructure a grown EA. We have
shown that a grown EA first has to be clustered in simi
lar types of TAs and afterwards has to be analyzed by
the Family Mining methodology in order to identify the
variability of detected clusters. Based on the variability
information of a 150 % model, showing commonalities
and differences of related TAs within a detected cluster,
standard variants can be identified for each cluster. The
se standard variants are used to restructure the detected
clusters and, thus, the grown EA. After a successful rest
ructuring, a reduced complexity of the grown EA can be
determined.
In all cases of our motivating example, reduction of com
plexity has been able to be achieved by either declaring
a nonmandatory element as a standard variant or er
asing it. In conclusion, identifying standard variants is
one of the most important steps in our approach and
should be executed with highest possible accuracy. Not
only domain knowledge has to be taken into account,
but also strategic and economic considerations as well
as potential costs for restructuring a grown EA. Further

Tab. 4 Identified standard variants for our motivating example

TA (150 % model)

Client Server

Presentation !P2 —

Application Server — !A1

Hardware & OS — H1⇔H2

|42|

more, our motivating example consists of only three TAs.
In contrast, grown EAs of car manufacturers consist of
thousands of different TAs. Hence, our approach needs
to be evaluated with significantly larger EAs from real
world scenarios.
In future work, we plan to evaluate our approach un
der more realistic circumstances with larger EAs from in
dustrial contexts. Furthermore, we want to extend our
approach to relations between components and to the
remaining levels of EA. Additionally, we plan to create an
appropriate methodology to identify standard variants
considering the mentioned aspects and design princi
ples. For this methodology, we also plan to develop a
semiautomatical solution.

References

Babur Ö, Cleophas L, Verhoeff T, van den Brand M (2016) To
wards Statistical Comparison and Analysis of Models. In:
Proc 4th Int Conf ModelDriven Engineering and Software
Development (MODELSWARD), 19–21 Feb 2016, Rome, p
84

Greefhorst D, Proper E (2011) Architecture Principles. The
Cornerstones of Enterprise Architecture. The Enterprise En
gineering Series, vol 4. Springer, Berlin, Heidelberg. ISBN:
9783642202780. doi: 10.1007/9783642202797

Haki MK, Legner C (2013) Enterprise Architecture Principles In
Research And Practice: Insights From An Exploratory Ana
lysis. In: Proc 21st Europ Conf Information Systems (ECIS)
Compl Res, 5–8 Jun 2013, Utrecht, p 204

Holthusen S, Wille D, Legat C, Beddig S, Schaefer I, Vo
gelHeuser B (2014) Family Model Mining for Function
Block Diagrams in Automation Software. In: Proc 18th Int
Software Product Line Conf (SPLC): 2nd Int Workshop Re
verse Variability Engineering (REVE), 15–19 Sep 2014, Flo
rence. ACM, ISBN: 9781450327398, pp 36–43. doi:
10.1145/2647908.2655965

IEEE Architecture Working Group (2000) IEEE Recommended
Practice for Architectural Description of SoftwareIntensive
Systems. IEEE Standard 14712000. IEEE, Piscataway. ISBN:
9780738125183. doi: 10.1109/IEEESTD.2000.91944

Krause EF (2012) Taxicab Geometry. An Adventure in NonEucli
dean Geometry. Dover Books on Mathematics. Dover, New
buryport. ISBN: 9780486252025

Richardson GL, Jackson BM, Dickson GW (1990) A PrinciplesBa
sed Enterprise Architecture. Lessons from Texaco and Star
Enterprise. MIS Quarterly 14(4):385. doi: 10.2307/249787

Ross JW (2003) Creating a Strategic IT Architecture Competen
cy: Learning in Stages. MIT Sloan Working Paper 431403,
Center for Information Systems Research Working Paper
335. SSRN Electron J. doi: 10.2139/ssrn.416180

Schneider AW, Zec M, Matthes F (2014) Adopting Notions of
Complexity for Enterprise Architecture Management. In:
20th Americas Conf Information System (AMCIS), 07–09
Aug 2014, Savannah, ISBN: 9780692253205

Schütz A, Widjaja T, Gregory R (2013a) Escape from Winches
ter Mansion – Toward a Set of Design Principles to Master
Complexity in IT Architectures. In: Proc 34th Int Conf Infor
mation Systems ICIS, 15–18 Dec 2013, Milan, ISBN: 9780
615933832

Schütz A, Widjaja T, Kaiser J (2013b) Complexity in Enterpri
se Architectures – Conceptualization and Introduction of a
Measure from a System Theoretic Perspective. In: Proc 21st
Europ Conf Information Systems (ECIS) Compl Res, 5–8 Jun
2013, Utrecht, p 202

The Open Group (2011) Welcome to TOGAF® Version 9.1, an
Open Group Standard. http://pubs.opengroup.org/archi
tecture/togaf9doc/arch. Accessed 16 Feb 2016

Wille D (2014) Managing Lots of Models: The FaMine Appro
ach. In: Proc 22nd ACM SIGSOFT Int Symp Foundations of
Software Engineering (FSE), 16–21 Nov 2014, Hong Kong,
pp 817–819. doi: 10.1145/2635868.2661681

Tab. 6 Determination of complexity for our motivating example prior and after restructuring

prior restructuring (C1) after restructuring (C2)

NT HT NT HT

Presentation 3 0.64 3 0

Application Server 4 0.56 3 0

Hardware & OS 4 1.39 3 0.64

Average 3.67 0.86 3 0.21

Tab. 5 Motivating example with standard variants

TA 1 TA 2 TA 3

Client Server Client Server Client Server

Presentation P2 — P2 — P2 —

Application Server — A1 — A1 — A1

Hardware & OS — H1 — H2 — H1

|43|

Wille D, Holthusen S, Schulze S, Schaefer I (2013) Interface Va
riability in Family Model Mining. In: Proc 17th Int Software
Product Line Conf (SPLC): Proc Int Workshop ModelDriven
Approaches in Software Product Line Engineering (MAPLE),
26–30 Aug 2013, Tokyo. ACM, ISBN: 9781450323253,
pp 44–51. doi: 10.1145/2499777.2500708

Zachman JA (1987) A framework for information systems archi
tecture. IBM Syst J 26(3):276–292. doi: 10.1147/sj.263.0276

Autors

Kenny Wehling
Volkswagen AG
kenny.wehling@volkswagen.de

David Wille
TU Braunschweig
d.wille@tubs.de

Martin Pluchator
Volkswagen AG
martin.pluchator@volkswagen.de

Ina Schaefer
TU Braunschweig
i.schaefer@tubs.de

This Article is licensed
under a Creative Commons
CC BYNCND License.

