
En
er

g
ie

-
u

n
d

U

m
w

el
tm

a
n

a
g

em
en

T
In

fo
r

m
a

ti
o

n
s-

 u
n

d

K
o

m
.-

te
c

h
n

o
lo

g
ie

n
M

a
te

r
ia

l-
 u

n
d

P

r
o

d
u

k
ti

o
n

st
ec

h
n

o
lo

g
ie

Le
h

r
-

u
n

d

Le
r

n
m

a
n

a
g

em
en

t
Lo

g
is

ti
k

M
a

n
a

g
em

en
t

u
n

d

In
n

o
v

a
ti

o
n

Op

ti
sc

h
e

Te
c

h
n

o
lo

g
ie

n

61THWildau
Wissenschaftliche Beiträge 2013

B
io

sy
st

em
te

c
h

n
ik

/
B

io
in

fo
r

m
a

ti
k

A metamodel-based ASN.1 editor and
compiler for the implementation of
communication protocols
Thomas Kistel, Ralf Vandenhouten

Zusammenfassung

In der Software-Industrie sind viele metamodell-basierte Werk-
zeuge entwickelt worden, um die Erstellung von Programmier-
sprachen und insbesondere domänenspezifischen Sprachen
(DSL) zu unterstützen. Ein Beispiel für diese Werkzeuge ist
Eclipse Xtext, welches eine große Popularität im Bereich der
modellgetriebenen Softwareentwicklung (MDSE) besitzt. In
diesem Beitrag untersuchen wir, inwieweit Xtext und andere
metamodell-basierte Ansätze zur Implementierung eines Edi-
tors und Compilers für die ASN.1 Spezifikation, welche von der
ITU-T standardisiert wurde, verwendet werden können. Der
metamodell-basierte Ansatz zur Implementierung der ASN.1
Spezifikation ermöglicht es, ASN.1-Dokumente softwaretech-
nisch wie ein Modell behandeln zu können, sodass dieses
ASN.1-Modell mit anderen Softwaremodellen (z. B. Zustands-
maschinen) verknüpft werden kann. Unsere Ergebnisse zeigen,
dass mit relativ geringem Aufwand eine Basisimplementierung
von ASN.1 zu erreichen ist, die bereits eine gute Werkzeugun-
terstützung liefert. Bei einigen Details der Implementierung
gerät man allerdings an die Grenze des Machbaren und diese
sind daher sehr schwer zu realisieren. Dies betrifft insbesonde-
re den Parser-Generator und das komplexe Metamodell.

Abstract

In the software industry many metamodel-based tools and ap-
proaches have been developed to support the creation of pro-
gramming and especially domain specific languages (DSL). An
example of these tools is Eclipse Xtext, which has gained much
popularity in the Model-Driven Software Engineering (MDSE)
community. In this article we investigate whether Xtext and
related metamodel-based approaches can also be used to im-
plement the ASN.1 specification that was standardized by the
ITU-T. The metamodel-based approach for the implementati-
on of the ASN.1 specification allows to treat ASN.1 documents
as software models, so that these ASN.1 models can be interre-
lated with other models (e.g. state machines). Our results show
that relatively little efforts are required to create a basic imple-
mentation of this standard with good tool support. However,
some details of the implementation are quite difficult to realize
because they touch the limits of feasibility. This concerns in
particular the parser generator and the complex metamodel.

» I.	Introduction

In software engineering small langua-
ges for different domains were gaining
popularity during the last years. These
small languages are also referred to as
Domain Specific Languages (DSLs) and
are promoted by the Model-Driven
Software Engineering (MDSE) com-
munity. On the other hand the Unified
Modeling Language (UML) (OMG,
formal/2011-08-06, 2.4.1), (OMG, for-
mal/2011-08-05, 2.4.1) was specified by
the Object Management Group (OMG)
to unify various graphical diagrams for
the description of software systems. The
development of UML has also led to the
specification of the Meta Object Facility
(MOF) (OMG, formal/2011-08-07, 2.4.1)
by the OMG. The extensibility mecha-
nism of UML, which is called UML pro-
files, can also be used to develop do-
main specific modeling languages (Selic

2007). Selic (Selic 2012) also remarked
that an alternative for developing DSLs
is MOF, which has, however, only a few
implementations (Scheidgen 2006).
The most popular implementation of
MOF is the Eclipse Modeling Framework
(EMF) (Steinberg et al. 2009). Many
metamodel-based tools for EMF have
been developed to support the creation
of DSLs and the corresponding domain-
specific workbench.

Eclipse Xtext (Xtext Project Website)
and JetBrains MPS (Meta Programming
System) (MPS (Meta Programming Sys-
tem) project website) are two mature
metamodel-based technologies for the
development of DSLs and surround-
ing tool support (Text editor, Parsers,
Syntax highlighting, Code completion
and generation, etc.). Andova (Ando-
va et al. 2012) and Völter (Völter 2011)
provide a good introduction into the

detailed concepts of Xtext and MPS as
well as related tools and approaches.
An advantage of Xtext is that it uses
EMF as the basis for its metamodels.
Therefore it can be easily integrated
with other EMF-based tools.

Besides the growing popularity of
DSLs, especially in the context of
MDSE, there already exist many DSLs
in different software domains, of which
the database query language SQL is
one popular example. The domain of
protocol engineering, which is predes-
tined for MDSE, also takes advantage
of several DSLs. The most important
is the Abstract Syntax Notation One
(ASN.1) (ITU, X.680, 11/2008), a DSL
for the description of data types and
data structures together with their cor-
responding encoding rules. ASN.1 was
standardized by the ITU-T. In protocol
engineering, ASN.1 is used to describe

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hochschulschriftenserver der TH Wildau

https://core.ac.uk/display/33985424?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

62 THWildau
Wissenschaftliche Beiträge 2013

the messages that are exchanged bet-
ween two communicating nodes.

In this article we investigate, how a
metamodel-based editor for ASN.1 can
be developed with the Eclipse Xtext
framework. Furthermore, we analyze
of how the created ASN.1 metamodel
can be used for code generation. The-
se steps mentioned have very much
in common with traditional compiler
construction. The research question of
this article is whether the new MDSE
tools around Eclipse Xtext can be used
for the development of a compiler for a
relatively complex language like ASN.1.
The intention for the use of a meta-
model-based approach for the imple-
mentation of the ASN.1 specification is
that it allows to treat ASN.1 documents
as regular software models. The ad-
vantage of this approach is that these
ASN.1 models then can be interrelated
with other software models - e.g. state
machines (Kistel 2012).

The remainder of this article is structu-
red as follows: In section 2 we discuss
related approaches for the implemen-
tation of an ASN.1 compiler, in section
3 we present the result of our prelimi-
nary solution, in section 4 we conclude
this paper.

» II.	Related work

The original developments of ASN.1
were already done in the 1980ies,
where ASN.1 was used to describe
data structures for most OSI applica-
tion protocols (Bochmann et al. 2010).
Therefore there already exist many
ASN.1 compilers from open source
or commercial vendors of which the
most important ones are listed on the
ASN.1 project site of the ITU (ITU ASN.1
Tools). To the very best knowledge of
the authors there is currently no imple-
mentation of the ASN.1 specification
with a metamodel-based approach
that allows the integration with other
existing MDSE tools. However, there
is some related work, which addresses
similar aspects compared to our imple-
mentation.

In the context of models and UML,
Ek (Ek 24/11/2002) proposed an UML
profile for ASN.1. UML profiles are a
lightweight mechanism to refine or ex-
tend the UML language with specific
notations. However, a UML profile for
ASN.1 is basically a mapping to a UML
class diagram, which allows modelers
to specify ASN.1 descriptions with
UML tools. The question is, how the-
se text-based descriptions can be ef-
fectively created and maintained with
existing UML tools or how UML profi-
les can be combined with declarative
approaches to specify UML diagrams
(Spinellis 2003, Torchiano et al. 2005).
More importantly with UML profiles is
that it is currently not easy to determi-
ne whether a particular specialization
of a UML concept is semantically ali-
gned with the base concept of UML,
so that UML tools will treat it correctly
(Selic 2012). This particularly applies to
the evaluation of expressions of ASN.1
data types, which need to analyze their
semantics.

Another issue, which has many influen-
ces on the compiler implementation,
concerns the parser technology that is
used to read an ASN.1 document and
to create the syntax tree. As we will see
in section 3.1 the parser technology of
the Xtext framework is ANTLR (ANo-
ther Tool for Language Recognition)
(ANTLR website). Different implemen-
tations of the ASN.1 specification with
ANTLR can be found on the grammar
list page of the project website of
ANTLR (ANTLR website). All these im-
plementations only target parts of the
ASN.1 specification. Furthermore, the-
se implementations only provide le-
xing and parsing capabilities for ASN.1
documents. They are not integrated
into editors, metamodels or code ge-
neration tools.

An implementation of an ASN.1 compi-
ler with the Xtext framework was alrea-
dy done in a master thesis (Wendlandt
2010) at Wildau University of Applied
Sciences in 2010. This implementation
is based on an older version of Xtext
(0.7) and also uses the Xpand frame-
work (Xpand project webiste) for code
generation. The present work can be
seen as a re-implementation of the
work in the master thesis.

» III.	Solution

3.1. Parsing and validation
The corner stone of implementing a
language with the Xtext framework is
to define an EBNF-like grammar file.
Xtext uses this grammar file to ge-
nerate Parser, Lexer, EMF Ecore meta
model, Editor and other Eclipse work-
bench functions. The underlying par-
ser/lexer technology of Xtext is ANTLR
(ANTLR website; Parr op. 2007), which
creates the concrete syntax of the lan-
guage. The Xtext framework translates
the Xtext grammar file, into a grammar
description of ANTLR. Then the lexer
and parser are generated from ANTLR
grammar file. ANTLR is a two phase
LL(*) parser. This has many influences
on the implementation of the gram-
mar, because the LL(*) parser does not
allow left recursions and the ASN.1
specification (ITU, X.680, 11/2008) in
contrast is highly left recursive. There-
fore all left recursions have to be “left-
factorized” to remove them. At the
time of writing this article we have
implemented a huge part of the ASN.1
specification, which allows for parsing
many ASN.1 protocol specifications.
The left refactoring of the ASN.1 rules
guarantees that the implementation of
the Xtext grammar does not need the
use of the ANTLR syntactic predicates
or backtracking options. However, the
current implementation does not cover
all parts of the Tags, Constraints
and Value Assignments of ASN.1.
Figure 1 shows the ASN.1 Editor that
was created by the Xtext framework
with our grammar implementation.

EN
ER

G
IE

-
U

N
D

U

M
W

EL
TM

A
N

A
G

EM
EN

T
IN

FO
R

M
A

TI
O

N
S-

 U
N

D

K
O

M
.-

TE
C

H
N

O
LO

G
IE

N
M

A
TE

R
IA

L-
 U

N
D

P

R
O

D
U

K
TI

O
N

ST
EC

H
N

O
LO

G
IE

LE
H

R
-

U
N

D

LE
R

N
M

A
N

A
G

EM
EN

T
LO

G
IS

TI
K

M
A

N
A

G
EM

EN
T

U
N

D

IN
N

O
V

A
TI

O
N

O
P

TI
SC

H
E

TE
C

H
N

O
LO

G
IE

N

63THWildau
Wissenschaftliche beiträge 2013

B
IO

SY
ST

EM
TE

C
H

N
IK

/
B

IO
IN

FO
R

M
A

TI
K

Fig. 1) ASN.1 editor with tool support

besides lexing and parsing, i.e. the
transformation of tokens into an abs-
tract syntax tree (sentences), another
important step in the frontend phase
of a compiler is the semantic analysis
of the language. in the Xtext frame-
work this can be done by validation ru-
les. We have implemented only some
simple validation rules for the AsN.1
language (e.g. check of case sensitivi-
ty in type names). moreover, we have
integrated the AsN.1 syntax checker
tool by oss Nokalva inc (http://www.
oss.com/asn1/products/asn1-syntax-
checker/asn1-syntax-checker.html).
this allows validating the complete
syntax of an AsN.1 document in the
background and reporting syntax er-
rors and warnings to the user. this so-
lution allows for parsing and validation
of almost any ASN.1 fi le.

3.2. Asn.1 metamodel
the Xtext framework not only genera-
tes a parser and lexer through ANtlr,
it also generates an emf metamodel,
which describes the abstract syntax
of the language. Xtext basically has
two implementation strategies for the
abstract syntax: 1) create the Xtext
grammar fi le and generate the abstract
syntax (i.e. emf metamodel) from it;
2) create the abstract syntax (i.e. emf
metamodel) fi rst and refer the model
elements in the Xtext grammar fi le. In
our implementation we have chosen
the fi rst strategy, because we are im-
plementing an existing language that
is specifi ed in an ITU recommendation
(itu, X.680, 11/2008). in contrast to
our strategy it could be useful to fi rst
defi ne the abstract syntax and then the

concrete syntax through the grammar
fi le, when one is implementing a new
language. Nevertheless, in both strate-
gies, there is always a one-to-one map-
ping between abstract and concrete
syntax in Xtext. this means that every
parser rule (except terminal and data
type rules) of the concrete syntax is re-
presented in the abstract syntax. the
opposite, every element of the abstract
syntax is represented in the concrete
syntax, is not true.

regarding our implementation, figu-
re 2 shows the model hierarchy of the
BuildinTypes of the ASN.1 specifi ca-
tion. in our compiler implementation
we have introduced a distinction of
BuildinTypes. the model element
SimpleType was introduced for ty-
pes that do not contain other types. in
contrast, ContainerType was intro-
duced for types that do contain other
types (see figure 3).

the Prefi xedType is an exception
here and is a new type which is isomor-
phic with another type, but has addi-
tional tags or encoding instructions.
SimpleType and ContainerType
are represented in the abstract syntax
(i.e. metamodel) but are not represen-
ted in the concrete syntax of our AsN.1
implementation.

in summary the direct mapping of the
concrete syntax to the abstract syntax
is not a problem for simple languages,
but results in large metamodels for
more complex languages. in our cur-
rent implementation of the AsN.1 lan-
guage, the metamodel contains 127
model elements, which is relatively
complex. This issue also has some infl u-
ences on the code generation, which
we will describe in the next section.

3.3. code generation
code generation is part of the backend
phase of a compiler, which usually
creates machine or interpreter code.
in our implementation the code ge-
neration phase creates a higher level
programming language (e.g. an im-
perative, object oriented language
like Java). in mdse terms, code gene-
ration is also referred to as a model
to text (m2t) transformation (flores
beltran et al. 2007), because generally
a m2t generator may not only create
programming code, but also other ar-
tifacts like confi gurations, database or
user-interface scripts.

in our implementation of the AsN.1
compiler we use the Xtend2 language
(Xtend project website), which is now

Fig. 2) Model hierarchy of ASN.1 BuildinTypes

builtintype

integertypebitstringtype

character
stringtype

octetstring
type

datetype

Nulltyperealtype

timetype booleantype

settype

Prefi xedType

sequenceof
type

sequencetype

setoftype

choicetype

64 THWildau
Wissenschaftliche Beiträge 2013

Fig. 3) Modified model hierarchy of ASN.1 BuildinType

the default generator language of the
recent version (2.3) of the Xtext frame-
work. The source of our code generati-
on is an EMF model instance, the target
language is Java7 (The Java™ Language
Specification 2012). Generally different
implementation subjects for the code
generation have to be distinguished.
These subjects are 1) the internal beha-
vior of the generator and 2) the output
configuration of the generated code.

Figure 4 shows the two different stra-
tegies for the internal behavior of the
generator. Strategy a) creates an in-
termediate model from the source
model, which can contain some opti-
mizations etc. of the source model and
then generates the target model. This
way code generation is done in Xbase,
which is part of Xtext and allows for
reuse of expressions in different DSLs.

During the code generation, the Xbase
model is inferred to a JVM types mo-
del, from which Java code is generated.

It is also possible to create a different
intermediate model than the JVM ty-
pes model, where necessary. In our
ASN.1 compiler implementation we
have done a direct conversion of the
EMF model to Java code. This is pos-
sible, because the ASN.1 syntax has a
strict type and naming (typereference)
convention. Each ASN.1 typereference
is translated into a Java class or field
name and each ASN.1 type is transla-
ted into a Java class or field type. A pro-
blematic issue in the code generation
is the complex traverse of the model. A
simpler model would be helpful for the
code generation.

The other subject (2) concerns the
output configuration. In traditional
compiler implementations these are
options that control the runtime beha-
vior or memory usage of the generated
code. These options are also valid for
code generation. The generated pro-
gramming code can also be optimized
for performance issues or memory ma-
nagement. The latter one also implies
whether the generated code depends
on a runtime library the generated
code depends on. Traditional imple-
mentations of ASN.1 compilers for Java
always use a runtime library (jar-file)
which defines Java classes for the stan-
dard ASN.1 types and their encoding
rules. For those ASN.1 compilers the
generated type classes inherit from the
ASN.1 library classes. This approach
has the advantage, that every genera-
ted ASN.1 type class is explicitly defi-
ned and has a strict semantics accor-
ding to the super class or its interface
definition. But this approach has also
some drawbacks. The most important
are 1) the library also defines classes
and methods that may not be requi-
red or should not be used in the target
environment and 2) the inheritance
reduces the flexibility of the generated
classes.

Fig. 4) Internal behavior strategies of a code generator

Source
Model
(ASN.1)

Source
Model
(ASN.1)

Target
Model
(Java)

Target
Model
(Java)

BuiltinType

OctetString
Type

Container
TypeSimpleType

SetType ChoiceType

PrefixedType

SetOfType Sequence
Type

SequenceOf
Type

BitStringType IntegerTypeDateType

RealType NullType

TimeType BooleanTypeCharacter
StringType

A

B

Intermediate
Model

EN
ER

G
IE

-
U

N
D

U

M
W

EL
TM

A
N

A
G

EM
EN

T
IN

FO
R

M
A

TI
O

N
S-

 U
N

D

K
O

M
.-

TE
C

H
N

O
LO

G
IE

N
M

A
TE

R
IA

L-
 U

N
D

P

R
O

D
U

K
TI

O
N

ST
EC

H
N

O
LO

G
IE

LE
H

R
-

U
N

D

LE
R

N
M

A
N

A
G

EM
EN

T
LO

G
IS

TI
K

M
A

N
A

G
EM

EN
T

U
N

D

IN
N

O
V

A
TI

O
N

O
P

TI
SC

H
E

TE
C

H
N

O
LO

G
IE

N

65THWildau
Wissenschaftliche beiträge 2013

B
IO

SY
ST

EM
TE

C
H

N
IK

/
B

IO
IN

FO
R

M
A

TI
K

our implementation of the AsN.1 code
generator includes generation of Java
classes for AsN.1 type assignments. li-
brary classes and functions are copied
into the target package as needed. this
reduces the amount of the target code,
because no runtime library is needed.
besides simple type assignments we
also generate code for Constraints.
currently we generate size cons-
traints and value ranges to Java
Annotations that are attached to the
corresponding Java fi eld. These An-
notations are then validated in their
equivalent setter and read methods.
figure 5 shows this concept in a simple
example for an AsN.1 sequence type.
the sequence type Absolutetime that
is part of the ASN.1 protocol specifi ca-
tion of (iso/ieee, 11073-20601, 2010)
is generated into a Java class, the child
elements of the sequence type be-
come fi eld members of this Java class.

» iV. coNclusioNs

in this article we have discussed the
different aspects on implementing an
AsN.1 editor and compiler. to achieve
this we have used the eclipse projects
Xtext and Xtend2. With these frame-
works we have implemented a huge
part of the ASN.1 specifi cation. We
have proved this implementation on
the AsN.1 data type description of the
ieee 11073-20601 standard (iso/ieee,
11073-20601, 2010), which defi nes an
exchange protocol for personal health
device communication.
our results show that the itu recom-
mendation AsN.1 can be implemented
with the metamodel-based tools Xtext
and Xtend2. With relatively little effort

the implementation provides a sophis-
ticated ide support, i.e. an editor with
syntax highlighting, code completi-
on, formatting and integration into
the eclipse workbench. A drawback
of this approach is the strict coupling
between Xtext and the ll(*) parser
generator ANtlr. this requires a com-
plex rewriting of the grammar rules
to be conforming to ll grammars. An
optional replacement of the parser ge-
nerator, like the possible replacement
of the code generator Xtend2 through
Xpand, Acceleo (both eclipse projects
on http://www.eclipse.org/modeling/
m2t) or others, would be helpful for
this issue.
in future we plan to extend the gram-
mar implementation of the AsN.1 spe-
cifi cation and to extend the code ge-
nerator to support different encoding
rules (e.g. mder schrenker, todd 2001
and ber).

Fig. 5) Example of the code generation for an ASN.1 Sequence type

66 THWildau
Wissenschaftliche Beiträge 2013

Acknowledgements

This work is funded by the German ministry for education
and research (BMBF) in the ongoing project MOSES –
Modellgetriebene Software-Entwicklung von vernetzten
Embedded Systems (FKZ 17075B10).

Bibliography

ANTLR website. Available online at http://www.antlr.org,
checked on 7/09/2012.

Xpand project webiste. Available online at http://wiki.
eclipse.org/Xpand, checked on 14/09/2012.

Xtend project website. Available online at http://www.
eclipse.org/xtend, checked on 23/07/2012.

Andova, S., van den Brand, M., Engelen, L., Verhoeff, T.
(2012): MDE Basics with a DSL Focus. In: Bernardo, M.,
Cortellessa, V., Pierantonio, A. (Eds.): Formal Methods for
Model-Driven Engineering. 12th International School on
Formal Methods for the Design of Computer, Communica-
tion, and Software Systems, SFM 2012, Bertinoro, Italy,
June 18-23, 2012. Advanced Lectures, vol. 7320. Berlin /
Heidelberg: Springer (Lecture Notes in Computer Science,
7320), 21–57.

Bochmann, G. v., Rayner, D.; West, C. H. (2010): Some
notes on the history of protocol engineering. In Comput.
Netw 54, 3197 3209. Available online at http://dx.doi.
org/10.1016/j.comnet.2010.05.019.

Eclipse Foundation: Xtext Project Website. Available online
at http://www.eclipse.org/Xtext, checked on 15/07/2012.

Ek, A. (2002): An ASN.1 Profile. Workshop on Language
Advisory Board. Geneva, 24/11/2002. Available online
at http://www.itu.int/itudoc/itu-t/workshop/laboard,
checked on 19/07/2012.

Flores Beltran, J. C., Holzer, B., Kamann, Th., Kloss, M.,
Mork, St., Niehues, Th., Thoms, K. (2007): Modellgetrie-
bene Softwareentwicklung. MDA und MDSD in der Praxis.
Edited by Jens Trompeter, Georg Pietrek. Frankfurt [Main]:
Entwickler.press.

ISO/IEEE 11073-20601: 11073-20601: Health informatics
– Personal health device communication – Application
profile – Optimized exchange protocol.

International Telecommunication Union (ITU): ITU ASN.1
Tools. Available online at http://www.itu.int/ITU-T/asn1/
links/index.htm, checked on 10/09/2012.

ITU X.680, 13/11/2008: Abstract Syntax Notation One
(ASN.1) – Specification of basic notation.

JetBrains: MPS (Meta Programming System) project web-
site. Available online at http://www.jetbrains.com/mps,
checked on 3/09/2012.

Kistel, Th. (2012): On the extension of message syntax lan-
guages for the development of communication protocols.
In: ACM/IEEE 15th International Conference on Model
Driven Engineering Languages & Systems. Doctoral
Symposium. MODELS. Innsbruck, 02.10.2012.

OMG formal/2011-08-07, August 2011: Meta Object
Facility (MOF) Core.

OMG formal/2011-08-05, August 2011: Unified Modeling
Language (UML) - Infrastructure.

OMG formal/2011-08-06, August 2011: Unified Modeling
Language (UML) - Superstructure.

Oracle America Inc. (2012): The Java™ Language Specifi-
cation. Java SE 7 Edition. With assistance of James Gosling,
Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley. Available
online at http://docs.oracle.com/javase/specs/jls/se7/jls7.
pdf, checked on 11/09/2012.

Parr, T. (op. 2007): The Definitive ANTLR reference guide.
Building domain-specific languages. Raleigh [etc.]: The
Pragmatic bookshelf.

Scheidgen, M. (2006): CMOF-model semantics and lan-
guage mapping for MOF 2.0 implementations. In: Ricardo
J. M. (Ed.): Fourth and Third International Workshop on
Model-Based Development of Computer-Based Systems
and Model-Based Methodologies for Pervasive and Em-
bedded Software, 2006. MBD/MOMPES 2006; 30 March
2006, Potsdam, Germany. Computer Society; Institute of
Electrical and Electronics Engineers (IEEE); Workshop on
Model-Based Development of Computer-Based Systems;
International Workshop on Model-Based Methodologies
for Pervasive and Embedded Software; MBD-MOMPES
2006. Los Alamitos, Calif: IEEE Computer Society, pp. 10.

Schrenker, R.; Todd, C. (2001): Building the Foundation for
Medical Device Plug-and-Play Interoperability. In: Medical
Electronics Manufacturing. Available online at http://
www.medicalelectronicsdesign.com/article/building-
foundation-medical-device-plug-and-play-interoperabili-
ty, checked on 20/07/2012.

Selic, B. (2007): A Systematic Approach to Domain-Speci-
fic Language Design Using UML. In: ISORC ‚07. 10th IEEE
International Symposium on : Object and Component-
Oriented Real-Time Distributed Computing, 2007, 2–9.

Selic, B. (2012): The Less Well Known UML. A Short User
Guide. In Bernardo, M., Cortellessa, V., Pierantonio, A.
(Eds.): Formal Methods for Model-Driven Engineering.
12th International School on Formal Methods for the
Design of Computer, Communication, and Software
Systems, SFM 2012, Bertinoro, Italy, June 18-23, 2012. Ad-
vanced Lectures, vol. 7320. Berlin / Heidelberg: Springer
(Lecture Notes in Computer Science, 7320), 1–20.

Spinellis, D. (2003): On the declarative specification of
models. Software, IEEE. In IEEE Software 20 (2), 96–95.

Steinberg, D., Budinsky, F., Paternostro, M., Merks, E,
(2009): EMF. Eclipse Modeling Framework. 2nd ed. Upper
Saddle River, NJ: Addison-Wesley.

Torchiano, M., Ricca, F., Tonella, P. (2005): A comparative
study on the re-documentation of existing software: code
annotations vs. drawing editors. In : International Sym-
posium on Empirical Software Engineering 2005 (ISESE
2005). Noosa Heads, Queensland, Australia, 277–287.

Völter, M. (2011): Language and IDE Modularization,
Extension and Composition with MPS. In: Lämmel, R.
Saraiva, J., Visser, J (Eds.): Generative and Transformational
Techniques in Software Engineering IV. International Sum-
mer School, GTTSE 2011. Pre-proceeding, 395–431.

Wendlandt, O. (2010): Entwurf und Realisierung eines
Konzeptes für modellgetriebene Softwareentwicklung
von Geräteschnittstellen. Master Thesis. University of
Applied Sciences Wildau, Wildau. Institute of Telematics

Authors

Thomas Kistel, M. Eng
Fachgebiet Telematik
Fachbereich Ingenieurwesen/Wirtschaftsingenieurwesen
TH Wildau [FH]
thomas.kistel@th-wildau.de

Prof. Dr. rer. nat. Ralf Vandenhouten
Fachgebiet Telematik
Fachbereich Ingenieurwesen/Wirtschaftsingenieurwesen
TH Wildau [FH]
ralf.vandenhouten@th-wildau.de

