
57

TH Wildau [FH], Wissenschaftliche Beiträge 2012

A software architecture for intelligent facility
management based on complex event processing

Ralf Vandenhouten, Ralph Holland-Moritz

Zusammenfassung

Dieser Beitrag präsentiert einen Architekturvorschlag für

ein intelligentes Management-System, das Daten mit Hil-

fe von künstlicher Intelligenz auswertet. Die Architektur

bedient sich dabei des Complex Event Processing, um

eine hohe Flexibilität bei der Verknüpfung der einzelnen

Komponenten zu erreichen. Die Komponenten und de-

ren Zusammenspiel werden am Beispiel eines Gebäude-

managementsystems illustriert.

Abstract

This article presents an architectural suggestion for an

intelligent management system which evaluates data

using artifi cial intelligence. The architecture uses com-

plex event processing in order to gain high fl exibility

when connecting the individual components. As an

illustration of the components and their interaction a

facility management system is used as an example.

1 Intelligent Management System

An intelligent management system can be divided into

four groups of components. These groups are input

components, intelligent components, data converters

and reporting components as it can be seen in Figure

1. A facility management system is used as an exam-

ple of such a system. In this environment the input

components are sensors which provide input data for

the intelligent system. Sensors are defi ned as technical

components measuring one or more physical or chemi-

cal properties or material type of goods in their envi-

ronment. The measured property is called a feature or

attribute of a sensor and has a specifi c value at a given

time.

Fig. 1: Components in a simple architecture

The reporting components, forming the output of

the intelligent management system, are generated re-

ports with status information or schematic representa-

tion like ground plans of the building with connected

state indicators. The reporting component is the inter-

face for the facility manager or security agent, giving

him an overview of the events inside the building or

location.

Between input and output components there is an

interlayer consisting of intelligent components. These

intelligent components evaluate the input data com-

ing from the events and generate output data as result

of the evaluation process with the help of their knowl-

edge. The intelligent components can be divided into

two types depending on how the knowledge is stored or

gained. These two types are the learning components

and the knowledge-based components.

A learning component is able to gain knowledge from

changing fi ndings and to draw conclusions from simu-

lation or normal operation. The learning component is

applicable for event sequences which are unknown or

not describable.

Under knowledge-based components we understand

systems which evaluate new statements with the help of

a knowledge base. The knowledge base is formed out of

statements which are defi ned as rules, logic statements

or semantic connections. With the help of this com-

ponent changes in the operational application can be

evaluated by means of a rule base, defi ned by a so called

expert. For evaluating the statements of the knowledge-

base and a subsequent conclusion a rule interpreter is

used which interprets the facts by means of predefi ned

rules. Knowledge-based components work well for the

reasoning of events by means of a knowledge base con-

sisting of elementary rules. It can be used where states

of the system are known a priori.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hochschulschriftenserver der TH Wildau

https://core.ac.uk/display/33985326?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

58

TH Wildau [FH], Wissenschaftliche Beiträge 2012

Different types of intelligent components need dif-

ferent types of input data and provide different types of

output data. Some intelligent components have their

own event memory, others don’t. The ones without

memory need a system state copy every time they are

executed. To connect the input data from the input

components with the intelligent systems and the out-

put data from the intelligent systems with the output

components we need data converters for input and out-

put conversion.

2 Requirements

In an intelligent management system with different in-

telligent components there are requirements to ensure

fl exibility and other non-functional requirements.

The fi rst non-functional requirement is the require-

ment of parallel processing. Under parallel processing

the parallel execution of the intelligent components is

understood. That means that the components should

work independently from each other. In an intelligent

management system the focus is on time dependant

events which have to be evaluated time-critically. Be-

cause of their different behavior the intelligent com-

ponents can evaluate events in different speed. Parallel

processing therefore means that one component is in-

dependently from another in the sense of not having to

wait for the other’s termination.

When dealing with different intelligent components

it is previously unknown how these components work

together. It cannot be determined whether component

»A« and »B« evaluate before »C« and if »C« uses the out-

put of »A« and »B« or whether they evaluate parallel or

in another way. Thus the intelligent components can-

not be connected in a fi xed way. This means that a loose

coupling is needed for connecting input and output of

the intelligent components.

In order to be not restricted to specifi c intelligent

components and to be able to further develop the in-

telligent system or extend the system with new intel-

ligent input or output components a requirement of

the system is to be easily extensible. This means that

the system should be extendable by other components

with little effort and without changing basic compo-

nents.

3 Solution

For connecting different components together with

loose coupling a possibility is to use the observer pat-

tern. With this behavioral pattern there are two cen-

tral types of objects called subject and observer. In the

example of a facility management system the subjects

would be sensor events and the observers would be the

intelligent components. Another form of this pattern

is known as publish-subscribe which focuses on a pub-

lisher which would be the event generator and on the

subscriber which would be again the intelligent com-

ponent (Gamma et. al. 2004). To facilitate the subject

from the publisher to the subscriber a middleware is

needed for registering the subscriptions and for receiv-

ing and forwarding or distributing the subjects.

For realizing the loose coupling in the form of publish

and subscribe two related approaches arise: message-

orientated and event-based middleware. With message-

orientated middleware (MOM) the communication

between the different components is made by abstract

messages with the help of an interlayer (Heinzl et. al

2005). For ensuring a defi ned access an interface defi -

nition was defi ned called Java Messaging Service (JMS).

Known implementations are Apache ActiveMQ, JBoss

Messaging and OpenJMS. With JMS we have to kinds

of roles a client can play. This is the message producer

and the message receiver. A server called JMS-Provider

acts as a broker between the clients. To achieve a loose

coupling between the clients the delivery of the clients

works with queues or topics under which a message can

be published or subscribed.

Message-based solutions are usually complete mid-

dleware systems. Middleware is often designed for the

operation of a distributed system on a high abstraction

layer and thus generates additional overhead in com-

munication. In addition they offer more features which

are beyond the pure communication (Heinzl et. al

2005). According to this the available implementations

of JMS are heavyweight. For allowing a lightweight im-

plementation a lower abstraction layer for the message

communication has to be seeked for, besides the resig-

nation of additional unnecessary features. As a solution

there is the communication on a lower abstract level by

means of events instead of messages.

The simplest solution to realize the communication

by means of events is to implement the observer pat-

tern with the help of regular Java structures like event

queues. This solution means additional implementa-

59

TH Wildau [FH], Wissenschaftliche Beiträge 2012

tion cost and involves the danger of error sources. In

particular, the observer pattern is inadequate for mes-

saging in distributed systems with an RPC middleware

like R-OSGi (Vandenhouten et. al. 2009). An alternative

solution of using events for the communication be-

tween local components is to use an event-orientated

architecture also known as Event-Driven Architecture

(EDA). Connected with EDA is the software technol-

ogy for the realization of EDAs called Complex Event

Processing (CEP). As CEP, besides the possibility to

communicate by means of events, offers additional fea-

tures which support further aspects of the intelligent

system CEP is the preferred choice for the communica-

tion layer of the intelligent system.

3.1 Event-Driven Architecture and

Complex Event Processing

The Event-Driven Architecture (EDA) represents a soft-

ware architecture pattern where events take center

stage. These events can occur inside or outside the sys-

tem and are published to all interested parties of the

system by a proper mechanism (Bruns et. al. 2010).

With the centric treatment of events EDA decisively

differs from the Service-Orientated Architecture (SOA)

where functions take center stages which are offered

as services. In this case one or more distributed appli-

cations communicate with help of provided services

which forms a SOA (Barry 2011). Despite the different

approaches or rather because of this fact both architec-

tures can be combined. Thus an EDA can be integrated

into a SOA (Charles et. al. 2010).

Besides EDA, which represents a general concept as

event-orientated design pattern, the Complex Event

Processing (CEP) exists as a concrete technology for

event processing which can be considered a core ele-

ment of an EDA.

The event processing which exists since more than

50 years is a subject of the computer engineering which

gains more and more importance. Started as a method

for changing threads in a processor by means of special

events, events in the event processing are considered

more general today. Thus in today’s event process-

ing more abstract events like sending a message or

changes on the fi nancial market like a purchase or sale

of a share are processed. The basis of the today’s event

processing forms the discrete event simulation of the

early 1950s. The idea was to simulate hardware con-

trol systems or natural phenomena with the help of a

simulation language. In this connection events where

generated which effected the generation of new events.

After the simulation the emerged event chain had to

be analyzed, which matches the today’s idea of event

processing. A second area, which decisively forwarded

the development of the event processing, is the devel-

opment of the packet-orientated network technology

in the late 1960s. The resulting TCP/IP protocol and the

OSI model which divides communication in differently

abstracted layer plays a central role in the development

of the complex event processing (Luckham 2007).

Events: In event processing events can represent any

kind of occurring activities. Thus the »Event Process-

ing Technical Society« (EPTS), which is a community

with an interest on event processing, defi nes an event

as follows: »Anything that happens, or is contemplated

as happening.« (Luckham et. al. 2008) As examples the

EPTS cites the following:

Fig. 2: Relationship between simple and complex events

60

TH Wildau [FH], Wissenschaftliche Beiträge 2012

 A fi nancial trade

 An airplane lands

 A sensor outputs a reading

 A change of state in a database or fi nite state machine

 A key stroke

 A natural occurrence such as an earthquake

A defi nition of a mapping of a real event in the informa-

tion technology as so-called event object, event mes-

sage or event tuple is defi ned by the EPTS as follows:

»An object that represents, encodes or records an event,

generally for the purpose of computer processing.«

(Luckham 2007)

Another defi nition of an event in the information

technology is given by David C. Luckham: »An event is

an object that is a record of an activity in a system. The

event signifi es the activity. An event may be related to

other events.« (Luckham 2001)

3.2 Complex Events

According to Luckham an event can be associated with

another event. When these events are merged the re-

sulting abstract event is called a complex event. David

C. Luckham defi nes a complex event as follows: »A

complex Event is an aggregation of other events, called

its members.« (Luckham 2001)

Events can be associated in different kinds. The most

important types of relationships are the time, the cau-

sality and the aggregation (Luckham 2001).

The time-dependent relationship of events means a

relationship of events related to their temporal occur-

rence. Thus different events can occur with a tempo-

ral offset or together. The causal relationship between

events means the dependency of an event to another

event that occurred before. If a subsequent event occurs

because of other events then these events are causally

associated. When different sub events are merged then

the relationship between the events is called aggrega-

tion. The resulting aggregated event forms a complex

event which represents an abstract image of the sub

events. An example of aggregated complex events can

be seen in Figure 2.

3.3 CEP as middleware

Because of the fact that Complex Event Processing al-

lows the distribution of events to a registered receiver

CEP will be used as middleware or rather communica-

tion channel for the single intelligent components of

the intelligent system. Thus the components, respec-

tively their input converters, register themselves as

receivers of elementary and complex events. After the

evaluation of the incoming events the components

publish the evaluation results as complex events to the

CEP system. Thus a steady fl ow of events at different

abstraction layers arises. Through the loose coupling of

the components by CEP the event fl ow through the sin-

gle intelligent components is not limited as you can see

Fig. 3: Example architecture using CEP

61

TH Wildau [FH], Wissenschaftliche Beiträge 2012

in Figure 3. This way a component can use the result of

another component and the resulting event can also be

used as input of a third component and so on.

For reporting the results of the evaluation which ex-

ist as events in the CEP system the presentation com-

ponent registers itself as a receiver of the events to be

displayed. Through the steady event fl ow in the CEP

system in form of elementary and abstract or complex

events, respectively, a real-time view of the complex

state of the intelligent system through all abstraction

layers is possible.

CEP used as middleware meets the requirement stat-

ed in Chapter II. It offers parallel processing of events

through its event processing engine because parallel

processing of many events is a basic need of CEP in

general. Loose coupling is realized with CEP acting like

a central anonymisation layer between the different

components of the intelligent system. The only entities

that are known to the components are events which act

as communication channel between the single compo-

nents and the CEP engine itself. Figure 4 illustrates the

relationship between two components with the help of

CEP.

Fig. 4: Loose coupling through CEP

3.4 Other roles of CEP

As already mentioned the different intelligent compo-

nents need and produce different types of data. Thus

input and output converters are needed for every single

intelligent component. These converters could be im-

plemented by means of programmatic structures. With

its capabilities to merge, group and aggregate events in

dependency of time or other attributes CEP is predes-

tinated for event conversion. This way converters can

be implemented in CEP once and be reused by different

components.

Besides other features CEP offers methods of evaluat-

ing events. When simple events are associated to each

other in the form of generating complex events then

the resulting event can be seen as a conclusion from the

simple events. Thus CEP can be used as intelligent com-

ponent reasoning from simple to complex events.

4 Conclusion

An architecture of an intelligent management system

has been presented that consists of input components,

intelligent components, and reporting components,

where the components are connected via converters.

CEP can be employed as the backbone of such an archi-

tecture, supporting the components by providing vari-

ous types of event related services. It allows for loose

coupling, extensibility and parallel processing. With

its event processing capabilities it can also be used to

implement converters for the different types of intel-

ligent components and act itself as an intelligent com-

ponent.

Biblography

Barry, D. K. (2011): Service-oriented architecture (SOA) defi nition,

http://www.service-architecture.com/web-services/articles/

service-oriented_architecture_soa_defi nition.html, cited:

05.09.2011.

Bruns, R., Dunkel, J. (2010): Event-Driven Architecture: Softwarearchi-

tektur für ereignisgesteuerte Geschäftsprozesse. Springer Verlag,

Berlin, Germany.

Charles, O., Schalk, M., Hollunder, B. (2010): CEP meets SOA: Kom-

plexe Ereignisse bringen Mehrwert in SOA-Infrastrukturen. In:

OBJEKTspektrum, 2010, vol. 5, 28-33.

Gamma, E., Helm, R., Johnson, R., Vlissides, J. (2004): Entwurfsmuster:

Elemente wiederverwendbarer objektorientierter Software.

Addison-Weslay, Munich, Germany.

Gualtieri, M., Rymer, J. R. (2009): The Forrester Wave™: Complex Event

Processing (CEP) Platforms, Q3 2009, Forrester Research, Inc.

Heinzl, S., Mathes, M. (2005): Middleware in Java: Leifaden zum Ent-

wurf verteilter Anwendungen – Implementierung von verteilten

Systemen über JMS – Verteilte Objekte über RMI und CORBA.

Friedr. Vieweg & Sohn, Wiesbaden, Germany.

Luckham, D. C. (2001): The Power of Events: An Introduction to

Complex Event Processing in Distributed Enterprise Systems.

Addison-Weslay, Boston, MA, USA.

Luckham, D. C. (2007): A Short History of Complex Event Process-

ing. Part 1: Beginnings, http://complexevents.com/wp-content/

uploads/2008/02/1-a-short-history-of-cep-part-1.pdf, cited:

05.09.2011.

Luckham, D. C., Schulte, R. (2008): Event Processing Glossary –Version

1.1, http://complexevents.com/wp-content/uploads/2008/08/

epts-glossary-v11.pdf, cited: 05.09.2011.

Vandenhouten, R., Kistel, T. (2009): Aus der Entfernung – Verteilte

Dienste mit R-OSGi. In: iX Magazin für Professionelle Informati-

onstechnik, 2009, vol. 9, 142–146.

62

TH Wildau [FH], Wissenschaftliche Beiträge 2012

Authors

Prof. Dr. rer. nat. Ralf Vandenhouten

Fachgebiet Telematik

Fachbereich Ingenieurwesen/Wirtschaftsingenieurwesen

Technische Hochschule Wildau [FH]

T +49 3375 508-359

ralf.vandenhouten@th-wildau.de

Ralph Holland-Moritz, M. Eng.

Fachgebiet Telematik

Fachbereich Ingenieurwesen/Wirtschaftsingenieurwesen

Technische Hochschule Wildau [FH]

T +49 3375 508-616

ralph.holland-moritz@th-wildau.de

