
63

TH Wildau [FH], Wissenschaftliche Beiträge 2012

A model-driven concept for the automatic integration
of legacy protocols to distributed component-oriented
software systems

Ralf Vandenhouten, Thomas Kistel

Zusammenfassung

Die Implementierung von Kommunikationsprotokollen

zu externen Systemen ist eine wichtige Aufgabe, welche

häufi g in Softwareprojekten zu realisieren ist. Dieser Arti-

kel ist ein Ideenpapier, welches die Komponenten bishe-

riger Implementierungsstrategien und deren Pro bleme

beschreibt. Der Artikel führt die wesentlichen Techniken

zur Protokollimplementierung ein und stellt diese im

Kontext der modelgetriebenen Softwareentwicklung

dar. Zum Schluss wird eine Methode mit ASN.1 und SDL

vorgestellt, welche die automatische Generierung von

Manager-Schnittstellen für die Protokolle von Geräte-

Agenten ermöglicht und dabei den Einsatz in verteilten

komponentenbasierten Systemen erlaubt.

Der Artikel beschreibt die Zwischenergebnisse des vom

Bundesministerium für Bildung und Forschung (BMBF)

geförderten MOSES-Projektes (Modellgetriebene Soft-

ware-Entwicklung von vernetzten Embedded Systems).

In dem Projekt konzentrieren sich die Autoren auf die Be-

reiche Medizin- und Gebäudetelematik, worin sie beson-

dere Erfahrungen besitzen.

Abstract

The implementation of communication protocols is an

important development task that appears frequently

in software projects. This article is a vision paper that

describes the components of the currently available

implementation strategies and problems that arise.

The article introduces the main existing protocol en-

gineering techniques and puts them into the context

of model driven software development. At the end a

methodology is introduced for the automatic genera-

tion of manager interfaces of Device Agent protocols

for the use in a distributed component oriented envi-

ronment, using ASN.1 and SDL.

This article describes the preliminary results of the

MOSES project (model-driven software engineering

of distributed embedded systems) which is funded

by the German ministry of Education and Research

(BMBF). In this project the authors are concentrating

on medical and facility management areas where they

have particular experiences.

1 Introduction

The communication between systems is a frequent re-

quirement of development projects. In different verti-

cal industry sectors the interconnection to different

external devices (Device Agents) is often requested.

These Device Agents have more or less proprietary

communication protocols and are sometimes rather

old. An example in the hardware area is the serial con-

nector standard RS232 (EIA 232) which was originally

developed in the 1960s and is still widely used in many

industry systems, even though successor technologies

like USB or FireWire (IEEE 1394) have technical advan-

tages. This situation is also applicable to the software

application protocols (Legacy Protocols) that are used.

There are various reasons for the long life-cycle of com-

munication systems in the industry sector. Some of

these are:

 The systems need to be compatible with older sys-

tems.

 The product life-cycle of industry systems is relative-

ly long, e. g. an installed fi re alarm system in an offi ce

building cannot be easily replaced.

 The hardware environment of the embedded sys-

tems has limitations for the support of newer proto-

col stacks.

 The development of a protocol extension (i.e. a new

feature) is sometimes much cheaper than introduc-

ing a new protocol.

There are two reasons that custom protocols will con-

tinue to be used. The fi rst is that manufacturers produce

specifi c protocols for their applications and the second

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hochschulschriftenserver der TH Wildau

https://core.ac.uk/display/33985325?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

64

TH Wildau [FH], Wissenschaftliche Beiträge 2012

is that specifi c protocols are often technically advanta-

geous.

On the other hand it is necessary to effectively devel-

op connectors to Device Agents in a cost-effective way

and to integrate them into existing distributed systems.

Also there exists much research about the automatic

protocol defi nition and implementation, but they are

less or non-integrable in the context of distributed com-

ponent-oriented software development. In this article

we introduce an approach for the model-driven devel-

opment of manager software connectors to external De-

vice Agents. Therefore we fi rst give a short overview on

the history of protocol engineering and highlight the

concepts that are useful for a model-driven approach.

In section 3 we examine how current developments in

the MDD area have to be appraised in our context and

draw an outlook in section 4 how these concepts can be

adapted to component oriented software engineering.

2 Concepts of Protocol Engineering

The area of protocol engineering has been extensively

researched. The fi rst efforts of Protocol Engineering were

already done in the late 1960ies and ‘70ies, so Protocol

Engineering looks back at a relatively long history. The

article of Bochmann (Bochmann et al. 2010: 3197–3209)

provides a good overview of the history of Protocol Engi-

neering. It summarizes the different development stages

of the current protocol stacks and formalism techniques

that were successfully introduced and those that were

not widely accepted. In this section we give a short sum-

mary of this development and outline important aspects

for the current development in this area.

The fi rst link protocols that were developed in the late

1960ies were redesigned at the beginning of the ‘70ies.

In this redesign bit-oriented framing and sequence

numbering were introduced. This work concludes with

the development of the X.25 protocol. Another as-

pect of several research projects at this time was packet

switching which resulted in the development of the

well-known ARPANET, which were later adopted for the

TCP/IP protocol. The development of many application

protocols during the ‘70ies leads to the initiative of har-

monizing the interworking between such systems. This

initiative was the OSI standardization project at ISO,

which was started in 1977. One of the main outcome

of the OSI project was the layered architecture design of

protocol descriptions.

The most important OSI-Layer for Device-Agent pro-

tocol implementation is the application layer 7, because

most external devices describes their communication

protocol on that layer and rely on specifi c lower layer

protocols (e. g. IP, Serial). Generally a communication

protocol can be seen as a set of digital data that is trans-

ferred on different states. As of (Grimm 2009) digital

data are constituted by the following parameters:

1. Logical structure

2. Raw data

3. Presentation

4. Digital Encoding

For a formal description of these parameters the Ab-

stract Syntax Notation One (ASN.1) was developed.

ASN.1 was developed during the OSI standardization

process for the description of the OSI protocols and al-

lows the defi nition of primitive types and data struc-

tures of application layer protocols. A key advantage

of ASN.1 is that it not only describes the logical struc-

ture, raw data and presentation of protocol messages,

but also the encoding rules for transforming the mes-

sages into transferable byte data. ASN.1 describes a set

of common encoding rules which are used for different

purposes. The most frequently used examples of these

encoding rules are:

 BER – The Basic Encoding Rules uses the TLV (Type,

Length, Value) approach to encode the data. An im-

portant advantage of Basic Encoding Rules is that

they allow extension and different versions of proto-

cols, as each protocol item is identifi ed by its type and

length. For example Google Protocol Buffers, that we

introduce later, uses the TLV approach to encode the

data and to guarantee protocol compatibility. This

advantage comes at the cost of an higher overhead

required by the Encoding rules. Therefore the PER

were introduced.

 DER – The Distinguished Encoding Rules together

with CER (Canonical Encoding Rules) are basically

the same as BER with some restrictions on the encod-

ing. DER is mainly used in cryptography such as for

the encoding of the X.509 Certifi cates.

 PER – Packed Encoding Rules were developed for

producing compact transfer syntax. They are mainly

used in the mobile communications area.

 XER – XML Encoding Rules produce XML output for

the specifi ed data.

The encoding rules BER, DER, CER are the standard en-

coding rules of ASN.1, PER and XER are additional en-

coding rules. However, other encoding rules for ASN.1

65

TH Wildau [FH], Wissenschaftliche Beiträge 2012

can be defi ned by using the Encoding Control Notation

(ECN). ECN is particular useful to describe the Encod-

ing Rules of legacy protocols. ASN.1 and their Encoding

Rules are supported by many software tools of different

manufacturers. A list of ASN.1 tools (mostly commer-

cial) can be found on the ITU-T website (ITU 2011).

Another important ITU standard for protocol engi-

neering is the Specifi cation and Description Language

(SDL). It allows the specifi cation of the behavior of ex-

ternal systems and can be used together with ASN.1.

Both, ASN.1 and SDL, have gained much acceptance in

the telecommunications sector.

3 Model Driven Technologies

Besides the formal protocol engineering techniques,

mainly driven by the telecommunications sector,

which led to the development of standards like ASN.1,

SDL and others, there exist other technologies that al-

low an easy development of individual protocol imple-

mentations. Those technologies enable the effi cient

encoding and decoding of structured data into a spe-

cifi c format that can be used to implement a protocol

(e. g. for a client-server application). Two popular ex-

amples are Google Protocol Buffers (Google 2011b) and

Apache Thrift (Apache 2011). These »message defi ni-

tion languages« can also be used for message generation

in an RPC environment. They allow the abstract defi ni-

tion of protocol messages (PDUs) and the automatic

generation of executable programming code (e. g. Java,

C#, C++). Both technologies are widely used. Google

Protocol Buffers is used for many internal Google Web

protocols and fi les, the Thrift project that is now hosted

by Apache was formerly developed by Social Network

Provider Facebook.

In this article we want to compare different imple-

mentation aspects of ASN.1 tools and other technolo-

gies like Google Protocol Buffers. Therefore we created

a »simple Employee example« entity. The Employee

entity can be used by different applications (e. g. a web

application for managing the vacation accounts, a time

logging system) and their respective protocols. The Em-

ployee entity has the following attributes:

1. Employee number

2. Title and name

3. Date of hire

4. Name of spouse

5. List of children

Employee DEFINITIONS ::= BEGINEXPORTS;

PersonnelRecord ::= [APPLICATION 0] IMPLICIT SET {
 name Name,
 title [0]IA5String,
 number EmployeeNumber,
 dateOfHire [1]Date,
 nameOfSpouse [2]Name,
 children [3]IMPLICIT SEQUENCE OF ChildInformation
}

ChildInformation ::= SET {
 name Name,
 dateOfBirth [0] Date
}

Name ::= [APPLICATION 1] IMPLICIT SEQUENCE {
 givenName IA5String,
 initial IA5String,
 familyName IA5String
}

EmployeeNumber ::= [APPLICATION 2] IMPLICIT INTEGER

Date ::= IA5String

END

Listing 1: Description of the data structure in ASN.1

The listings show the defi ned data structure of this

Employee entity a) with an ASN.1 tool (Listing 1) that

was taken from Objective Systems and b) with Google

Protocol Buffers (Listing 2).

package employee;

message PersonnelRecord {
 optional Name name = 1;
 optional string title = 2;
 optional EmployeeNumber number = 3;
 optional Date dateOfHire = 4;
 optional Name nameOfSpouse = 5;
 repeated ChildInformation children = 6;
}

message ChildInformation {
 optional Name name = 1;
 optional Date dateOfBirth = 2;
}

message Name {
 optional string givenName = 1;
 optional string initial = 2;
 optional string familyName = 3;
}

message EmployeeNumber {
 optional int64 value = 1;
}

message Date {
 optional string value = 1;
}

Listing 2: Description of the data structure with Google Protocol Buffers

The listings show the defi nition of a Personnel-

Record that contains different subtypes like Em-

ployeeNumber, Name or ChildInformation. The

corresponding tools allow the generation of Java source

code from these abstract message defi nition.

The fi gures below show the class diagram of the gen-

erated source code in Java.

66

TH Wildau [FH], Wissenschaftliche Beiträge 2012

Date

Asn18BitCharString

Asn1CharString

Asn1Type

Asn1Integer

Asn1IAString

ChildInformation

_SeqOfChildInformation

Name

PersonnelRecord

EmployeeNumber

Fig. 1: Description of the data structure in ASN.1

Date

GeneratedMessage

ChildInformation

Name

PersonnelRecord

EmployeeNumber

Fig. 2: Description of the data structure with Google Protocol Buffers

Aside from the encoding aspects, Figure 1 and Figure

2 show that the class structures of the generated classes

are similar. The classes are derived from super classes

which provide basic functions for encoding and de-

coding the messages. These super classes (blue color in

the class diagram) are part of a Jar-Library of the corre-

sponding generation tool. The polymorphism here is a

fairly strict coupling of object oriented data representa-

tion and their encoding/decoding. This coupling makes

the classes less fl exible and their reuse as data objects

rather limited. To use these classes in the business logic,

adapter classes or other code generation techniques are

required. A better reuse can be reached by generating

POJO-classes. A POJO is an acronym for Plain Old Java

Object and is a class that does not have dependencies

to external libraries or other conventions. This is a key

issue which is not addressed properly in currently avail-

able tools.

In the next section we want to highlight some as-

pects that are relevant in component-oriented environ-

ments.

4 Component-Oriented Development

Beyond object-oriented design patterns (Gamma et al.

2009) Component Systems have gained much more ac-

ceptance in the software industry in the past decade.

Many of these component-oriented concepts are ex-

plained in (Szyperski 1999). One pioneer in this area is

the Java Component Framework OSGi which is stand-

ardized by the OSGi Alliance (OSGi Alliance 2011).

OSGi specifi es techniques to separate software modules

into different bundles that communicate through de-

fi ned services. Each bundle has its own lifecycle which

makes OSGi systems very fl exible. The defi ned serv-

ices can be accessed locally or from a remote system

(Vandenhouten et al. 2009: 142-146).

Another important paradigm is the »Inversion of

Control« (IoC) by Dependency Injection (DI) design

principle. Dependency Injection allows for the separa-

tion of object defi nition and its creation/wiring at runt-

ime. In the context of OSGi different DI-Frameworks

like Spring (Spring Source 2011), Google Guice (Google

2011a) or OSGi Declarative Services are used.

These technologies have led to more fl exible, scalable

and better unit-testable software systems. However, this

fl exibility, especially the lifecycle behavior of OSGi Bun-

dles and Services, comes at the cost of more complex

system integrity. This means that although the single

components are better unit-testable, the whole system

has more integrity states and is more diffi cult to test. In

the past years these concerns have been addressed by

research projects in the modeling area. SDL plays an

important role, as it provides methods to model state

behavior. However the automated generation of com-

ponent oriented application code for distributed sys-

tems from model description is an open challenge task.

In the context of the automated generation of protocol

implementations, as introduced in section 1, the re-

search task can be divided into three main categories:

1. Defi ne a way for the description of data structures

and encoding of application layer protocols. ASN.1

is important as it exactly provides methods for this;

however, it does not make any assumptions about

the structure (such as patterns in Gamma et al. 2009)

of the generated code since it generally depends on

the implementation of the ASN.1 compiler. These as-

sumptions and transformations must be defi ned.

2. Describe the communication behavior of the exter-

nal Device Agent systems using fi nite state machine

models. This can mainly be done with SDL and UML.

67

TH Wildau [FH], Wissenschaftliche Beiträge 2012

A research question concerns modeling the business

aspects of the protocol. This means that the real busi-

ness application that communicates with the device

does not need to know all internal aspects and states

that the protocol defi nes. A method to hide these as-

pects must be developed.

3. Integrate the generated application code into com-

ponent systems so that it can be accessed via defi ned

services. To achieve this, OSGi provides several fea-

tures (e. g. bundling and service defi nition). The re-

sult should be a Device Bundle that exposes its busi-

ness logic via Services and Connectors. For example,

the Generation of Software Connectors is described

in (Bures et al. 2008: 138-147). Another aspect is the

use of those Components in a distributed environ-

ment. For these implementations restrictions are

required in order to deploy these Components in a

distributed environment.

To realize these tasks, it is not generally necessary to

completely re-implement existing ASN.1- or SDL-Tools,

but to provide extensions for the model transformation

and code generation.

5 Example Implementation

An example how this methodology can be applied, is

the implementation of a manager device for an IEEE-

11073 compatible agent device. The ISO/IEEE 11073 is

a family of standards for medical device communica-

tion. Two important standards are described in (Health

Informatics 2004a) (Domain Information Model – i.e.

the data model of the IEEE-11073 standard) and (Health

Informatics 2004b) (Application profi le and Communi-

cation). In the following we will put the implementa-

tion of an IEEE-11073 manager device in the context of

the three main tasks listed above. Step 1 is to describe

the Domain Information Model of this standard with

ASN.1. These data description can also be used to gen-

erate business logic objects. These business objects

should be POJO’s if possible. In Step 2 the communi-

cation behavior of the IEEE 11073 standard has to be

modeled. The Communication Model of this standard

defi nes the sub-protocols ACSE (Association Control

Service Element), CMDISE (Common Medical Device

Information Service Element and extension of CMISE

– Common Management Information Service Element)

and ROSE (Remote Operation Service Element) that are

all OSI protocols.

The communication behavior of the IEEE-11073 is

an aggregation of these sub-protocols. Also these sub-

protocols can be hided to the business application

layer. Business functions are exposed via Services in a

Component System (Step 3). Communication errors

whether or not they internally rely on ACSE, CMDISE,

ROSE or lower layer protocols, are exposed via Service

errors that can result in a service deregistration from

the component system.

Figure 3 shows the modules of the proposed solution.

Here the protocol logic is modeled with existing ASN.1

and SDL tools. An upper Service layer will integrate this

protocol logic into the Business logic and Middleware.

The Service Layer also maps the Business logic objects

to the protocol objects and ensures the interaction.

Service Layer

Protocol Logic

Middleware

Business Logic
Integration

Logic

SDL & ASN .1

Fig. 3: Modules of the proposed solutions

The composition of these steps provides a more ef-

fective methodology for the implementation of the

relatively complex IEEE-11073 standard. The availabil-

ity of better modeling tools, especially in the Eclipse

area (Eclipse Foundation 2011), provides a good basis

to achieve this. For example, this enables the develop-

ment of domain specifi c languages (DSL) that allow for

additional descriptions of transformation procedures

etc.

6 Conclusion

The development tools that are available do not allow

for the automated development of software connectors

to industrial systems (Device Agents). In this article we

introduced a basic concept to refi ne the development

on the basis of standards that are widely used in the

telecommunications sector. The goal of these research

efforts is a more simplifi ed and natural development

process for engineering the protocol implementation

of manager connectors to external Device Agents.

68

TH Wildau [FH], Wissenschaftliche Beiträge 2012

Bibliography

Apache (2011): Apache Thrift Project Website, http://thrift.apache.

org, cited: 31.05.2011.

Bochmann, G.v., Rayner, D., West, C.H. (2010): Some notes on the his-

tory of protocol engineering. In: Comput. Netw 54, 3197–3209.

Bures, T., Malohlava, M., Hnetynka, P. (2008): Using DSL for Automat-

ic Generation of Software Connectors. In : Composition-Based

Software Systems, 2008. ICCBSS 2008. Seventh International

Conference on Composition-Based Software Systems, 138-147.

Eclipse Foundation (2011): Eclipse Project Website, http://www.

eclipse.org, cited: 31.05.2011.

Gamma, E., Riehle, D. (2009): Entwurfsmuster. Elemente wieder-

verwendbarer objektorientierter Software. Addison Wesley,

München.

Google (2011a): Google Guice Project Website, http://code.google.

com/p/google-guice, cited: 31.05.2011.

Google (2011b): Google Protocol Buffers Project Website, http://code.

google.com/p/protobuf, cited: 31.05.2011.

Grimm, R. (2009): Digitale Kommunikation. Oldenbourg Verlag,

München, Wien.

Health Informatics (2004a): Health Informatics –Point-of-Care Medi-

cal Device Communication –Part 10201: Domain Information

Model (2004). In: ISO/IEEE 11073-10201:2004(E).

Health Informatics (2004b): Health Informatics –Point-of-Care Medi-

cal Device Communication –Part 20101: Application Profi le –Base

Standard (2004). In: ISO/IEEE 11073-20101:2004(E).

ITU (2011): ITU ASN.1 Tools, http://www.itu.int/ITU-T/asn1/links/

index.htm, cited: 31.05.2011.

OSGi Alliance (2011): Offi cial Website, http://www.osgi.org, cited:

31.05.2011.

Spring Source (2011): Spring Framework Website, http://www.spring-

source.org, cited: 31.05.2011.

Szyperski, C. (1999): Component software. Beyond objetc oriented

programming. Addison Wesley, Harlow, England.

Vandenhouten, R., Kistel, T., (2009): Aus der Entfernung. Verteilte

Dienste mit R-OSGi. In: iX Magazin für professionelle Informati-

onstechnik (12), 142–146.

Authors

Prof. Dr. rer. nat. Ralf Vandenhouten

Fachgebiet Telematik

Fachbereich Ingenieurwesen/Wirtschaftsingenieurwesen

Technische Hochschule Wildau [FH]

T +49 3375 508-359

ralf.vandenhouten@th-wildau.de

Thomas Kistel, M. Eng.

Fachgebiet Telematik

Fachbereich Ingenieurwesen/Wirtschaftsingenieurwesen

Technische Hochschule Wildau [FH]

T +49 3375 508-615

thomas.kistel@th-wildau.de

