
A Potential-Field-Based Multilevel

Algorithm for Drawing Large Graphs

Inaugural-Dissertation
zur

Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultät

der Universität zu Köln

vorgelegt von
Stefan Hachul
aus Kerpen

Köln 2005

Berichterstatter: Prof. Dr. Michael Jünger
HD Dr. Bert Randerath

Tag der mündlichen Prüfung: 1. Februar 2005

Acknowledgment

I would like to thank everyone who supported me in writing this thesis. In particular,
many thanks are addressed to my supervisor Prof. Dr. Michael Jünger for giving me the
possibility to research in the field of force-directed graph drawing and for the constructive
and helpful discussions in the internal seminars.

I am very grateful to Dr. Sebastian Leipert for bringing me to the research field of
automatic graph drawing and to HD Dr. Bert Randerath and Claudia Schlesiger for their
proof-reading.

Many thanks go to Thomas Lange, Constantin Hellweg, Holger Flier, and Annette
Menze for supporting me in all technical questions. Without their assistance and profes-
sional work, this dissertation would probably still be in progress.

I thank Michael Belling and Ursula Neugebauer for helping me in the acquisition of
literature and all administrative processes.

A big thank goes also to Dr. Christoph Buchheim, Matthias Elf, Dr. Frauke Liers,
Merijam Percan, and all previous mentioned colleagues for their “open doors” in the last
years in Cologne.

Furthermore, I would like to thank Yehuda Koren, Daniel Tunkelang, and Roman
Yusufov for making me available the implementations of their algorithms.

Finally, I am very grateful to my girlfriend Claudia Schlesiger and my parents Gerda
Hachul and Paul Hachul for supporting me in all aspects of my life.

Abstract

The aim of automatic graph drawing is to compute a well-readable layout of a given graph
G = (V,E). One very popular class of algorithms for drawing general graphs are force-
directed methods. These methods generate drawings of G in the plane so that each edge
is represented by a straight line connecting its two adjacent nodes. The computation
of the drawings is based on associating G with a physical model. Then, the algorithms
iteratively try to find a placement of the nodes so that the total energy of the physical
system is minimal. Several force-directed methods can visualize large graphs containing
many thousands of vertices in reasonable time. However, only some of these methods
guarantee a sub-quadratic running time in special cases or under certain assumptions, but
not in general. The others are not sub-quadratic at all.

We develop a new force-directed algorithm that is based on a combination of an effi-
cient multilevel strategy and a method for approximating the repulsive forces in the system
by rapidly evaluating potential fields. The worst-case running time of the new method is
O(|V | log |V |+ |E|) with linear memory requirements. In practice, the algorithm generates
nice drawings of graphs containing up to 100000 nodes in less than five minutes. Fur-
thermore, it clearly visualizes even the structures of those graphs that turned out to be
challenging for other tested methods.

Zusammenfassung

Das Ziel beim Automatischen Zeichnen von Graphen besteht darin, zu einem gegebenen
Graphen G = (V,E) eine Zeichnung zu berechnen, welche seine Struktur leicht verständlich
visualisiert. Eine sehr verbreitete Klasse von Methoden zum automatischen Zeichnen von
allgemeinen Graphen sind die so genannten kräftebasierten Verfahren. Diese Verfahren
erzeugen Zeichnungen von G, bei denen Kanten durch Geraden repräsentiert werden. Dabei
wird zunächst G mit einem physikalischen Modell identifiziert. Anschließend versuchen
diese Algorithmen iterativ eine Platzierung der Knoten zu finden, so dass die Gesamt-
energie des induzierten physikalischen Systems minimal ist. Einige kräftebasierte Verfahren
können Graphen mit mehreren tausend Knoten in angemessener Zeit visualisieren. Aller-
dings garantieren nur manche dieser Verfahren in speziellen Fällen oder unter bestimmten
Annahmen — jedoch nicht im Allgemeinen — eine subquadratische Laufzeit. Die anderen
haben in keinem Fall ein subquadratisches Laufzeitverhalten.

Wir entwickeln einen neuen kräftebasierten Algorithmus, der auf der Kombination einer
effizienten Multilevelstrategie mit einer Methode zur approximativen Berechnung abstoßen-
der Kräfte durch eine schnelle Auswertung von Potentialfeldern basiert. Die obere asympto-
tische Laufzeitschranke ist O(|V | log |V |+ |E|) bei linearem Speicherplatzverbrauch. Prak-
tische Experimente zeigen, dass die neue Methode Graphen mit bis zu 100000 Knoten in
weniger als fünf Minuten übersichtlich darstellen kann. Zudem wird auch die Struktur
solcher Graphen, die anderen getesteten Verfahren Probleme bereiten, leicht verständlich
visualisiert.

Contents

Introduction 1

1 Preliminaries and Previous Work 5
1.1 Graphs and Their Drawings . 5

1.1.1 Undirected Graphs . 5
1.1.2 Weighted Graphs . 7
1.1.3 Directed Graphs . 7
1.1.4 Drawings of Graphs . 8

1.2 Force-Directed Graph Drawing . 10
1.2.1 The Basic Concepts . 10
1.2.2 Classical Force-Directed Methods . 11
1.2.3 The Freedom of Modeling . 16

1.3 Algorithms for Drawing Large Graphs . 17
1.3.1 Methods Based on Approximating the Repulsive Forces 17
1.3.2 Multilevel Methods . 18
1.3.3 Fast Algebraic Methods . 22
1.3.4 How to Display Drawings of Large Graphs 25

2 The Fast Multipole Multilevel Method 27
2.1 Motivation and Goals . 27
2.2 The Basic Concept . 30

2.2.1 The Input and Output Requirements 30
2.2.2 The Choice of the Force Model . 30
2.2.3 The Algorithm . 32

3 The Preprocessing Step and the Divide-Et-Impera Strategy 35
3.1 The Preprocessing Step . 35

3.1.1 Reduction to Positive-Weighted Undirected Simple Graphs 35
3.1.2 Drawing Graphs with Node Attributes 36
3.1.3 Formal Description of the Preprocessing Step 38

3.2 The Divide-Et-Impera Strategy . 39
3.2.1 Force-Directed Methods for Drawing Disconnected Graphs 39
3.2.2 The Disconnected-Graph Layout Problem: Complexity & Algorithms . 40
3.2.3 The Divide-Et-Impera Strategy for Solving (GDGL) 43

3.2.4 Formal Description of the Divide-Et-Impera Strategy 47

4 The Multilevel Step 49
4.1 Motivation and Goals . 49

4.1.1 Qualities of Multilevel Strategies . 49
4.1.2 Problems of Current Multilevel Strategies 50
4.1.3 A New Multilevel Strategy . 50

4.2 The Coarsening Phase . 51
4.2.1 Constructing Galaxies . 51
4.2.2 Collapsing of Solar Systems . 53

4.3 The Refinement Phase . 58
4.4 Formal Description of the Multilevel Step 59

5 The Force-Calculation Step 63
5.1 The Framework of the Force-Calculation Step 63

5.1.1 Motivation and Goals . 63
5.1.2 The Algorithm Embedder . 64
5.1.3 The Algorithm Grid Embedder . 67

5.2 N -body Simulations in Physics . 69
5.2.1 Spatial Data Structures . 70
5.2.2 A Lower Bound on PR Quadtree Construction Methods 78
5.2.3 The Method of Barnes and Hut . 79
5.2.4 The Fast Multipole Method . 81
5.2.5 An O(N log N) Multipole Method . 81
5.2.6 Related Work . 82

5.3 The New Multipole Method . 83
5.3.1 Motivation and Goals . 83
5.3.2 Construction of the Reduced Bucket Quadtree (Way A) 84
5.3.3 Construction of the Reduced Bucket Quadtree (Way B) 98
5.3.4 The Multipole Framework . 103
5.3.5 Formal Description of The New Multipole Method 122
5.3.6 Exception Handling . 123

5.4 Running Time of the Force-Calculation Step 125

6 The Postprocessing Step and Formal Description of FM3 127
6.1 The Postprocessing Step . 127

6.1.1 Motivation and Goals . 127
6.1.2 The Algorithm . 128
6.1.3 Formal Description of the Postprocessing Step 129

6.2 Formal Description of FM3 . 130

7 Experimental Results 133
7.1 General Remarks . 133
7.2 Experiments with the Divide-Et-Impera Strategy 134

7.3 Experiments with the Multilevel Step . 137
7.4 Experiments with the Force-Calculation Step 138

7.4.1 Experiments with the Tree Construction Methods 138
7.4.2 Experiments with Force-Approximation Methods 140

7.5 Experiments with the Postprocessing Step 144
7.6 Experiments with FM3 . 145

7.6.1 The Test Graphs and General Results 146
7.6.2 Drawing the Kind Graphs . 148
7.6.3 Drawing the Challenging Graphs . 151

7.7 Experimental Comparison of FM3 with Other Algorithms 157
7.7.1 Drawing the Kind Graphs . 157
7.7.2 Drawing the Challenging Graphs . 161
7.7.3 Further Important Algorithms . 169

7.8 Further Experiments . 169
7.8.1 But There Is a But! . 169
7.8.2 Are Energy-Minimum Drawings of Planar Graphs Crossing Free? . . . 170

Conclusion 173

Bibliography 175

Introduction

Wenn es nur eine einzige Wahrheit gäbe,
könnte man nicht hundert Bilder
über das selbe Thema malen. 1

“Ziemlich verknotet” is the headline of an article of the weekly journal DIE ZEIT from
February 2004 (see [112] page 33) describing the growing importance of network theory
in science. Networks or graphs are used to model information that can be described as
objects and connections between those objects. In a graph the objects are represented by
nodes and the connection between two objects by edges that link the corresponding nodes.

For example, the biochemical reactions of proteins in baker’s yeast, the ecosystem of
plankton, sea perch, and anchovy, the email correspondence of the students of a Ger-
man university, the American electricity network, the international air traffic, and the
world-wide web can be modeled as graphs and have recently been studied by network
analysts [112].

One fundamental tool for analyzing such graphs is the automatic generation of layouts
that visualize the graphs and are easy to understand. For example, software packages that
are used to analyze networks like Pajek [9] or visone [15] contain algorithms that generate
structural information associated with a given graph and algorithms that try to display
these graphs in an easy readable way. The latter is the field of research of automatic graph
drawing on which we will focus in the following.

In a drawing of a given graph in the plane, the nodes are often represented by points,
circles, or boxes, while the edges are represented by curves that connect the corresponding
nodes. In order to help evaluating whether a given drawing of a graph is nice, some criteria
have been defined that support this decision. Important criteria are the number of edge
crossings, the number of edge bends, the used drawing area, the sum of the edge lengths, the
uniformity of the edge lengths, the number of nodes that overlap each other, and the display
of symmetries. The relevance of most of these criteria for the understandability of the
drawings has been investigated and confirmed by several empirical studies [107, 108, 109].

An ideal drawing of a graph should have a minimum number of edge crossings, no edge
bends, and should use few drawing area. The length of the edges should be as uniform as

1Pablo Picasso

2 Introduction

possible, the nodes should not overlap, and the drawing should display the symmetries in
a graph if some exist. However, since some of these criteria are in conflict with each other,
such a two-dimensional drawing will never exist for all given graphs.

We will exemplify this in the following. Figure 1 shows different automatically generated
drawings of a graph with 8 nodes and 12 edges that represents a cube.

(a) (b) (c) (d)

Figure 1: Different drawings of the same graph that represents a cube.

The drawing 1(a) is a straight-line drawing that does not contain any edge crossings,
and the edges do not have any bends. However, the drawing contains some very short
and some long edges. As a consequence, the nodes are drawn very small. Therefore, when
scaling every drawing so that the nodes of each drawing are drawn in a predefined fixed
size, the used drawing area of this drawing will be relatively big.

The drawing 1(b) does not contain any edge crossings, and the nodes are quite large,
which indicates that the used drawing area will be relatively small, when scaling every
drawing so that the nodes of each drawing are drawn in a predefined fixed size. The edge
lengths are not uniform, and since the edges are drawn in an orthogonal style four edge
bends appear.

Unlike the drawing 1(c), both previous mentioned drawings do not display the symme-
try of the cube graph. Like the drawing 1(a), the drawing 1(c) is a straight-line drawing
that contains no edge crossings and has non-uniform edge lengths.

The drawing 1(d) is a straight-line drawing that displays the symmetry of the cube
graph and has uniform edge lengths. But unlike the other drawings, it contains two edge
crossings.

In general, the developers of graph-drawing algorithms and the users of these meth-
ods have to decide which criteria are most important to their applications. Therefore, a
big variety of graph-drawing methods have been developed for different kinds of graph
classes and aesthetic preferences. Some examples of different layout styles are presented in
Figure 2.

Figure 2(a) shows a typical tree layout of a graph that describes a family tree. These
layouts are generated for a special class of graphs called trees. They do not contain any
edge crossings and have straight-line edges.

Introduction 3

The layered layout, presented in Figure 2(b), is used to display hierarchical relationships
that are associated with the edges of so called directed graphs. Furthermore, developers of
algorithms that generate such layouts try to keep the number of edge crossings and edge
bends as small as possible.

A planarization-based layout of a graph is presented in Figure 2(c). This layout style
is used if it is very important that the number of edge crossings is minimized.

The graph shown in Figure 2(d) is drawn in the force-directed layout style. These
drawings are characterized by straight-line edges, tend to have uniform edge lengths, and
tend to display symmetries of the given graphs if some exist.

0

1 32

4 65 87

11 129 10

(a)

0

1

2

3

4

5

6

7

8

910

11

12

(b)

0

1

2

3

4

5

6

7

8

9

10

11

12

(c)

0
1

2

3

4

5

6

7

8
9

10

11

12

(d)

Figure 2: (a) A tree layout of a family tree. (b - d) Different layouts of the same directed graph:
(b) A hierarchical layout, (c) a planarization-based layout, and (d) a force-directed layout.

Several books are available that give a deeper introduction into the field of graph
drawing [82, 30, 123, 79]. In [76] some of the state-of-the-art graph-drawing software tools
are presented. The chapter Technical Foundations [77] in this book contains a short but
comprehensive introduction into the field of graph drawing, too. Latest research results
can be found in the annual conference proceedings of the Graph Drawing conferences that
appear in the Lecture Notes in Computer Science series of Springer-Verlag, and [29] gives
an overview of some of the most important publications in the field of graph drawing until
1994.

In the context of this dissertation, we will concentrate on algorithms that generate force-
directed layouts and are called force-directed methods. Since most force-directed methods
are very intuitive, easy to implement, applicable to nearly all kinds of graphs, and often
generate pleasing drawings — regarding the modeled criteria of the force-directed layout
style — they are quite popular.

These algorithms have in common that the computation of the drawings is based on
associating a given graph with a physical model. For example, many methods associate the
nodes with equally charged particles and the edges with springs. Then, these algorithms
try to find a placement of the nodes so that the total energy of the physical system has a

4 Introduction

(local) minimum value. Since the edges of the graph are drawn straight-line, the positions
of the nodes in the drawing plane are sufficient to determine the final drawing.

Unfortunately, early versions of force-directed algorithms are not suitable for drawing
large graphs containing several hundreds or thousands of vertices, since their running
times grow — at least — quadratic in the number of nodes of the given graph. To give
an impression what this could mean in practice, we present a simple arithmetic example:
Suppose that such a quadratic algorithm needs 0.1 seconds for drawing a graph containing
100 nodes. Then, the same method would need 27 hours and 46 minutes for drawing a
graph containing 100000 nodes. Another algorithm that needs 0.1 seconds for drawing a
graph with 100 nodes, but with a linear running time, would need only 1 minute and 40
seconds for drawing a graph that contains 100000 nodes.

Since the demand on algorithms that can generate drawings of such large graphs is
rapidly increasing, researchers have developed new force-directed methods that have im-
proved the running times and the quality of the drawings. These algorithms generate
pleasing drawings of several classes of large graphs in reasonable time. However, only some
of these methods guarantee a sub-quadratic running time in special cases or under certain
assumptions, but not in general. The others are not sub-quadratic at all.

This was the starting point of the presented dissertation and implied the following main
goals of our work: First, we wanted to develop a force-directed algorithm that is designed
for drawing general graphs and has a guaranteed sub-quadratic worst-case running time.
Second, the algorithm should be fast in practice, too. Finally, the algorithm should generate
pleasing drawings of a wide range of large graphs.

Whether we were able to realize these goals will be discussed in the following chapters.
In particular, in Chapter 1 we will introduce some basic terminology that will be needed in
this dissertation. Furthermore, we will give an overview about general force-directed graph
drawing and force-directed methods that are used for drawing large graphs. Chapter 2 will
sketch the basic algorithmic concept of a new force-directed graph-drawing method. In the
following Chapters 3, 4, 5, and Section 6.1, we will discuss the different algorithmic steps
in detail, before we will formulate our main theoretical result in Chapter 6.2. Finally, in
Chapter 7 a detailed experimental study of the new force-directed method and an experi-
mental comparison with state-of-the-art algorithms for drawing large graphs will evaluate
the practical use of the new approach. An extended abstract of some of the main parts of
this dissertation is [61].

Chapter 1

Preliminaries and Previous Work

Das Nicht-Haben ist der Anfang allen Denkens. 1

In the first section of this chapter we will introduce some basic terminology in graph
theory and graph drawing. The used notations are motivated by [77, 100, 31, 25, 30]. In
Section 1.2 we will explain the basic concepts of force-directed graph drawing and sketch
the most important classical force-directed algorithms. A detailed introduction to force-
directed methods can also be found in [14, 30, 123]. In Section 1.3 we will review state-of-
the-art force-directed methods that are designed for drawing large graphs and discuss the
asymptotic running times of these methods. Some other methods for drawing large graphs
that are related with force-directed methods will be presented in this section, too.

1.1 Graphs and Their Drawings

1.1.1 Undirected Graphs

An (undirected) graph G is a pair (V,E), where V is a finite set of nodes or vertices, and
E is a finite set of edges, where each edge e = (u, v) ∈ E consists of an unordered pair
of vertices u, v ∈ V . V is called the node set or vertex set of G, and E is called the
edge set of G. An edge e = (v, v) is called a loop. If a graph contains a set of edges
e1 = e2 = . . . = ek = (u, v), for a k ≥ 2, then, e1, . . . , ek are called multiple edges. A graph
that contains no loops and no multiple edges is called simple. In the remainder of this
sub-section, we will assume (unless otherwise stated) that the given graphs are simple.

Let e ∈ E be an edge and v ∈ V be one of its nodes, then e and v are called incident.
If e ∈ E has the incident nodes u and v, then u and v are called adjacent, and u is a
neighbour of v. The set of all adjacent nodes of a node v is denoted by adj (v). The degree
of a node v ∈ V is the number of its adjacent nodes and denoted by deg(v). A node is
called isolated if it has the degree zero.

1Robert Musil

6 1 Preliminaries and Previous Work

A graph G′ = (V ′, E ′) is a subgraph of G = (V,E) if V ′ ⊆ V , and E ′ ⊆ E ∩ V ′ × V ′.
For a node set V ′ ⊆ V we say that G′ is a vertex-induced subgraph of G = (V,E) if
E ′ = E ∩ V ′ × V ′ and also denote G′ by G[V ′].

A walk of length k in a graph is an alternating sequence of vertices and edges v1, e1, v2, e2,
. . . , vk, ek, vk+1, beginning and ending with the nodes v1 and vk+1, respectively, and ei =
(vi, vi+1) for all i = 1, . . . , k. This walk connecting v1 and vk+1 can also be denoted by
W = (v1, v2, . . . , vk+1). A walk is a path if all its nodes are distinct. A walk is called a
cycle if all vertices are distinct, except for v1 = vk+1, and k ≥ 3. A graph that does not
contain a cycle is called a forest. The (graph-theoretic) distance of two nodes u, v ∈ V is
the length of the shortest path connecting u and v and denoted by dist(u, v). If no such
path exists between u and v, the distance between these two nodes is set to infinity. The
largest distance between any two nodes of G is called the diameter of G and is denoted by
diam(G).

A graph G is connected if every pair of nodes is connected by a path. Otherwise the
graph is called disconnected. A component is a maximal connected subgraph of G. A
cut-vertex is a node, whose removal increments the number of components. A connected
forest is called a tree. A graph G = (V,E) is k-connected if at least k nodes must be
removed from V to make the resulting induced subgraph disconnected. If k = 2 and k = 3,
the graph is called biconnected and triconnected, respectively. The maximal biconnected
components of a graph are called blocks and intersect in the cut-vertices.

A subgraph T ′ of a tree T = (V,E) is called a subtree if T ′ is a tree. A tree T = (V,E)
is a rooted tree if one and only one node r ∈ V is distinguished from the other nodes. This
node r is called the root of the rooted tree T .

Let T = (V,E) be a rooted tree with root r and v ∈ V . Any node u on the unique
path connecting r and v is called an ancestor of v. If u is an ancestor of v, then v is a
descendant of u. If furthermore u 6= v, then u is a proper ancestor of v, and v is a proper
descendant of u. If u is an ancestor of v, and e = (u, v) is an edge in E, then u is called
the parent of v, and v is called the child of u. A node of a rooted tree that has no children
is a leaf, otherwise it is an interior node. The subtree rooted at v is the subtree of T that is
induced by v and the descendants of v, rooted at v. The length of the path from the root
node r to a node v ∈ V is the depth of v. The maximum depth of all nodes v ∈ V is the
depth of the rooted tree T . The child degree of a node v is the number of children of the
node v. A k-nary tree is a rooted tree with maximum child degree k. Binary trees and
quaternary trees are rooted trees with maximum child degree two and four, respectively.
A k-nary tree T = (V,E) is a complete k-nary tree if every node v ∈ V except the leaves
have child degree k and the depth of all leaves is identical. An ordered tree is a rooted tree
in which the children of each node are ordered.

A graph G = (V,E) is complete if every node v ∈ V is adjacent to every node w ∈
V \ {v}. A complete graph with n nodes is denoted by Kn.

Suppose that e = (u, v) is an edge of G = (V,E), then G/e is the graph that is
constructed by contracting, shrinking, or collapsing the edge e of G to a node ve. More
formally, we define G/e := (V ′, E ′) with V ′ := (V \ {u, v} ∪ {ve}) and E ′ := {(w, x) ∈ E |
{w, x} ∩ {u, v} = ∅} ∪ {(ve, w) | (u,w) ∈ E \ {e} oder (w, v) ∈ E \ {e}}. Suppose that

1.1 Graphs and Their Drawings 7

U ⊆ V , then G/U is the graph that is obtained from G by contracting all edges of the
vertex-induced subgraph G[U]. It has to be pointed out that G/e and G/U might contain
multiple edges, even if G is simple (see Figure 1.1).

s
t

u

v

w
x

y

e

(a)

s
t

w

x

y

ve

(b)

s
t

u

v

w

x

y
U

(c)

s
t

y

vU

(d)

Figure 1.1: (a) A simple graph G with a selected edge e. (b) The graph G/e that contains
multiple edges. (c) A selected node subset U = {u, v, w, x} of G. (d) The graph G/U that
contains multiple edges.

1.1.2 Weighted Graphs

An (undirected) weighted graph G is a triple (V,E, c), where (V,E) is a graph, and c : E →
R is a weight function or cost function. For an edge e ∈ E the value c(e) is called the
weight or cost of e. The length of a path P = (v1, . . . , vk) in a weighted graph G is defined
as c(P) =

∑k−1
i=1 c((vi, vi+1)). Hence, for unweighted graphs the length of a path has been

defined as c ≡ 1. The distance between two nodes u, v ∈ V in a weighted graph G is the
length of the shortest path connecting u and v. If no such path exists between u and v, the
distance between these two nodes is set to infinity. We define the graph-theoretic distance
between two nodes in a weighted graph as the (graph-theoretic) distance between these
nodes in the underlying unweighted graph. If c : E → R

+, we call G a positive-weighted
graph.

1.1.3 Directed Graphs

A directed graph or digraph D is a pair (V,E), where V is a finite set of nodes or vertices,
and E is a finite set of (directed) edges or arcs, where each edge e = (u → v) ∈ E consists
of an ordered pair of vertices u, v ∈ V . The edge e = (u → v) ∈ E is said to be directed
from u to v, and u is called the source node or initial vertex of e, while v is called the target
node or terminal vertex of e. Ignoring for every edge the order of the vertices, we get an
undirected graph that is called the underlying undirected graph of D. An edge e = (v → v)
is called a loop.

If a digraph contains a set of edges e1 = e2 = . . . = ek = (u → v), for a k ≥ 2, then
e1, . . . , ek are called parallel edges. A set of edges is called multiple edges if these edges

8 1 Preliminaries and Previous Work

are multiple edges in the underlying undirected graph. A digraph is simple if it contains
no loops and no multiple edges.

A directed graph D′ = (V ′, E ′) is a subgraph of a directed graph D = (V,E) if V ′ ⊆ V
and E ′ ⊆ E ∩ V ′ × V ′. For a node set V ′ ⊆ V we say that D′ is a vertex-induced subgraph
of D = (V,E) if E ′ = E ∩ V ′ × V ′ and also denote D′ by D[V ′].

A directed walk W of length k in a directed graph is a walk W = (v1, v2, . . . , vk+1) in
the underlying undirected graph of D with ei = (vi → vi+1) ∈ E, for all i = 1, 2, . . . , k.
A directed walk is a directed path if all its nodes are distinct. A directed walk is called
a directed cycle if all vertices are distinct, except for v1 = vk+1, and k ≥ 3. A directed
graph that does not contain directed cycles or loops is called acyclic digraph or dag. The
(graph-theoretic) distance between two nodes u, v ∈ V in a digraph is the length of the
shortest directed path connecting u and v. If no such path exists between u and v, the
distance between these two nodes is set to infinity. A digraph is called strongly connected
if each pair of vertices u, v ∈ V is connected by a directed path from u to v. A digraph is
(k)-connected if its underlying undirected graph is (k)-connected.

A (positive-) weighted directed graph D = (V,E, c) is defined analogue to the (positive-)
weighted undirected graph.

1.1.4 Drawings of Graphs

A graph G = (V,E) is generally visualized by a two-dimensional or three-dimensional
drawing Γ(G). In the context of this dissertation we restrict to two-dimensional drawings.

In a two-dimensional drawing Γ(G) of a graph G = (V,E) the nodes are visualized as
points, circles, ellipses, or polygons. We call the tightest axis-parallel rectangle that covers
the graphics of a node v the bounding box of the node v. The size (of the graphics) of a
node is given by the width and height of its bounding box. The edges are drawn as closed
Jordan curves that connect their incident vertices. Popular styles for drawing the edges in
automatic graph drawing are:

• straight-line drawings: Edges are drawn as straight lines.

• orthogonal drawings: Edges are drawn as polygonal chains of alternating horizontal
and vertical segments.

• quasi-orthogonal drawings: Edges are drawn as polygonal chains of alternating hor-
izontal and vertical segments, but the first and last edge bend is allowed to be non-
orthogonal.

• polyline drawings: Edges are drawn as polygonal chains.

Additionally, the edges of directed graphs may be drawn as arrows pointing from the
source nodes to the target nodes. The edge weights of weighted graphs or weighted digraphs
may be displayed as labels that are placed near the drawings of the edges. But adding
labels to the drawings of nodes and edges of unweighted graphs and digraphs is allowed,
too. Figure 1.2 exemplifies this terminology.

1.1 Graphs and Their Drawings 9

(a)

0

1

2 3

4

5

6 7

(b)

0

1

2 3

4

5

6 7

(c)

5
1

1
1

6
3

4
2

7

2 2

(d)

Figure 1.2: (a) A straight-line drawing with nodes drawn as points. (b) An orthogonal drawing
with nodes drawn as labeled rectangles of different sizes. (c) A quasi-orthogonal drawing of a
digraph with nodes drawn as labeled circles. (d) A polyline drawing of a weighted graph with
nodes in different sizes and shapes containing labeled edges.

A graph is called planar if it can be drawn in the plane so that no two edges cross each
other except at a common endpoint. An intersection of two edges in a drawing other than
at their endpoints is called an edge crossing. The crossing number ν(G) of a graph G is
the least integer k so that G can be drawn in the plane with at most k edge crossings.
We call the ratio of the shortest and the longest edge in a drawing the edge-length ratio
that can be used as a measure of the uniformity of the edge length. We call a drawing of
a graph symmetric if there exists a rotation at an arbitrary center point or a reflection at
an axis that fixes the drawing, i.e. that maps nodes to nodes and edges to edges. More
formal definitions of symmetries in graphs are given in [36, 40, 19].

Given a drawing Γ(G) of a graph G, the bounding rectangle of Γ(G) is the tightest
axis-parallel rectangle that covers Γ(G). The drawing area of Γ(G) is the product of the
width and height of the bounding rectangle of Γ(G). The aspect ratio of a drawing is given
by the ratio of the width and height of the bounding rectangle of the drawing. Given a
drawing Γ(G) and a constant r > 0 called desired aspect ratio, we call the area of a smallest
axes-parallel rectangle of breadth b and height h with r = b

h
that covers the drawing Γ(G)

the aspect-ratio area of Γ(G) according to the desired aspect ratio r. Figure 1.3 illustrated
these notations. The aspect-ratio area (ARA) according to the desired aspect ratio r of
a drawing Γ(G) can be obtained by calculating the width w, height h, and r′ = w

h
of its

drawing area and by using the following formula:

ARA =

{

w · h · r
r′

if r′ < r

w · h · r′

r
otherwise

(1.1)

As already mentioned in the introduction of this dissertation, important (aesthetic)
criteria that help evaluating the quality of a drawing are the number of edge crossings, the

10 1 Preliminaries and Previous Work

number of edge bends, the used drawing area, the used aspect-ratio area, the sum of the
edge lengths, the uniformity of the edge lengths, the number of nodes that overlap each
other, and the display of symmetries if some exist.

1

1

2

2 3 4

Figure 1.3: A drawing of a graph that contains 5 nodes. Its bounding rectangle (grey rectangle)
needs drawing area 1 · 2 = 2 and has aspect ratio 1

2 . The aspect ratio area of this drawing
according to the desired aspect ratio r = 2 is 4 · 2 = 8.

1.2 Force-Directed Graph Drawing

1.2.1 The Basic Concepts

Force-directed graph-drawing methods consist of two components: A force model that con-
sists of physical objects (e.g., repelling particles, springs) which are related with the given
graph G = (V,E) and an algorithm that tries to compute a placement of the nodes in the
plane so that the total energy of the related physical system has a (local) minimum value.
The underlying assumption is that the energy-minimum states of suitable defined physical
systems will correspond to pleasing drawings.

Depending on the desired aesthetic criteria, the force models are chosen in several
different ways, and often the models are only weakly related with the physical reality.
Therefore, one could also use the terminology drawing based on physical analogies (as used
by Brandes [14]) instead of force-directed graph drawing.

Force-directed methods are frequently used in graph drawing for several reasons. First
of all, they are designed to draw general graphs and, therefore, do not require the graphs to
have special structural attributes. The relation with the physical reality makes them easy
to understand, and — since many of the force-directed algorithms are comparatively simple
— these methods are also easy to implement. Furthermore, the generated drawings are
often satisfactory, regarding the modeled criteria. Finally, most of the methods can easily
be extended to methods that can handle constraints (e.g., fixed nodes or fixed subgraph
constraints) or requirements of special graph classes (e.g., directed graphs, graphs with a
recursive clustering structure over the node set called clustered graphs).

A modeled criterion of all force-directed methods are straight-line drawings that reflect
the desired edge length as well as possible. As a consequence — when the desired edge
lengths of all edges are equal — adjacent nodes should be drawn close to each other. It is

1.2 Force-Directed Graph Drawing 11

important to note in this context that it is impossible to generate a straight-line drawing
that preserves the desired edge length for each given graph G exactly (e.g., suppose G is a
complete graph with 3 nodes and the desired edge lengths are 1, 1, and 100).

Furthermore, the nodes should “spread well” in the drawing area (see [14] page 71). In
particular, the drawings of nodes should not overlap. As a consequence of combining these
two criteria, algorithms that are based on these models often display symmetries in graphs
if some exist. In particular, Eades and Lin [40] prove that — given a symmetric graph
G — there exist energy-minimal configurations of the nodes of G in the force models of
several force-directed algorithms [130, 35, 80] so that the induced drawings are symmetric.
Additionally, other criteria like the minimization of edge crossings [27] can be explicitly
taken into account in the models.

Since several of the optimization problems that arise in (force-directed) graph drawing
are NP-hard, heuristics are used as drawing algorithms. For example, detecting symme-
tries of an arbitrary graph is NP-hard [93, 19]. Fixed edge length straight-line graph
drawing in any number of dimensions and crossing-free fixed edge length graph drawing of
planar graphs are NP-hard [74, 41]. It is also an NP-complete decision problem, whether
the crossing number ν(G) of a given graph G is less than or equal k, for a fixed given
integer k ≥ 1 [53]. The used heuristics either try to generate a distribution of the nodes
that implies an (approximate) equilibrium configuration of the forces acting on each node
or they try to minimize the energy directly without calculating the forces.

1.2.2 Classical Force-Directed Methods

The Barycenter Method

The paper How to draw a graph by Tutte [130] can be seen as the starting point of both
graph drawing and force-directed graph drawing. In his method the node set is partitioned
into a set of a constant number of at least three fixed nodes that are assigned fixed positions
on a convex polygon and a set of free vertices. The edges are associated with springs and
the nodes with steal rings. The problem of calculating an equilibrium configuration of the
forces in the induced system is reduced to the problem of finding solutions of a system of
linear equations. The number of equations and the number of unknowns are both equal
to the number of free vertices. For planar graphs the matrix representing the equations is
sparse and, thus, the equations can be solved in time that is sub-quadratic in the number
of nodes [91, 14, 30]. Since the solution of this system corresponds to a drawing that
places every free node at the barycenter of its adjacent nodes, it is called Barycenter

Method. Another important property of the Barycenter Method is that if it is applied
on a 3-connected planar graph and the nodes of a face of some embedding are fixed in a
strictly convex planar drawing of this face, it generates a planar straight-line drawing.

In spite of these desirable properties the Barycenter Method is not frequently used
today. One reason is that the arbitrary choice of the fixed nodes has a very big influence on
the quality of the drawing, and the appropriate choice of these nodes is difficult for general
graphs. Furthermore, the algorithm of Tutte uses drawing area that can be exponential

12 1 Preliminaries and Previous Work

in the number of nodes [39], which is undesirable. Additionally, for planar graphs several
linear time algorithms were developed that generate crossing-free straight-line drawings
with linear drawing-area requirements [28, 121, 60]. Figure 1.4(a) shows a drawing of a
planar graph containing 10 nodes and 24 edges that is generated with the Barycenter

Method. Many free nodes overlap due to the exponential usage of drawing area. This
drawing also contains very long and extremely short edges.

(a) (b) (c)

Figure 1.4: (a) A drawing of a planar graph that is generated by the Barycenter Method. The
black circles are fixed nodes and the white circled free nodes. (b) An equilibrium configuration
of the forces in the Spring Embedder model and (c) the corresponding drawing of the associated
graph.

The Spring Embedder and Related Methods

Several publications in the research field of VLSI design describe force-directed methods
that are developed for the problem of placing cells on a circuit board [111, 118, 43]. Nev-
ertheless, the article A heuristic for graph drawing by Eades [35] is often referred as the
seminal publication in the field of force-directed graph drawing. Since several methods are
similar to this method (that is called Spring Embedder) we describe it in greater detail
here. The used model associates the nodes with equally charged particles that repel each
other and the edges with springs. The model abstracts from physical reality by defining
logarithmic springs and allowing only nonadjacent nodes to repel each other. In particular,
suppose that nodes u and v are placed at positions pu and pv ∈ R

2 and are not adjacent.
Then, the repulsive forces induced by u and acting on v are defined as

F u
rep(v) = cr

pv − pu

‖pv − pu‖2
, with a suitable constant cr > 0.

If the nodes u and v are connected by an edge e = (u, v), then the force that acts on v
due to the spring e is defined as

1.2 Force-Directed Graph Drawing 13

F e
spring(v) = cs log

(‖pv − pu‖
l

)

(pu − pv) , with suitable constants cs > 0 and l > 0.

This definition of the spring forces implies that a spring is in a zero-energy state if the
distance between its adjacent nodes is l. Therefore, one can interpret l as the desired edge
length of every edge.

Starting with an initial random distribution of the particles, the algorithm iteratively
tries to find a distribution of the particles in the plane that induces an equilibrium config-
uration of the forces that act on each particle. This is realized by iteratively moving each
particle in the direction of the resulting force that acts on it. Figure 1.4(b) shows a Spring

Embedder model that is in an equilibrium configuration of the forces, and Figure 1.4(c)
shows the corresponding drawing of the associated graph. The pseudo-code of this method
is given in Algorithm 1, and its running time is O((|V |2 − |E|) + |E|) = O(|V |2).

Algorithm 1: Spring Embedder

input : a graph G = (V,E), an integer constant max iter, and a small constant δ

output: a placement p(V) = (pv)v∈V

begin
foreach v ∈ V do pv ← random coordinate;
for i = 1 to max iter do

foreach v ∈ V do

F (v) ←
∑

u:(u,v)/∈E

F u
rep(v) +

∑

(u,v)∈E

F
(u,v)
spring(v);

foreach v ∈ V do pv ← pv + δ · F (v);

end

Fruchterman and Reingold [47] define a force-directed method that is similar to the
Spring Embedder of Eades [35]. In their force model the repulsive forces are defined for
any pair of distinct nodes u and v and the absolute value of these forces is inverse to
the Euclidean distance between u and v. The spring forces acting between two adjacent
nodes grow quadratically with their Euclidean distance. Furthermore, the drawing area is
restricted to a rectangle of predefined size. The drawing algorithm is constructed similar
to the Spring Embedder, too, and its running time is O(|V |2 + |E|).

The most costly part of the Spring Embedder variant of Fruchterman and Reingold [47]
is the calculation of the repulsive forces acting between all pairs of distinct nodes. This takes
Θ(|V |2) time. Therefore, Fruchterman and Reingold [47] introduce a faster variant of their
method that has a better best-case running time and call it Grid-Variant Algorithm.
The Grid-Variant Algorithm does only calculate the repulsive forces acting between
nodes that are placed relatively near to each other. This is done by restricting the nodes

14 1 Preliminaries and Previous Work

of the graph to be placed in a rectangular drawing area that is subdivided into a regular
⌊
√

|V |/g⌋ × ⌊
√

|V |/g⌋ grid. The parameter g that indicates the coarsening of the grid is
set to the fixed value two. The repulsive forces that act on a node v that is contained in
a grid box B are approximated by summing up only the repulsive forces that are induced
by the nodes contained in B and the nodes in the grid boxes that are bordering on B.
Such ideas for approximating the repulsive forces by laying out a regular grid on the
rectangular simulation area are also known as particle-in-cell codes or PIC codes in the
physical literature [105]. The best-case running time of the Grid-Variant Algorithm is
O(|V | + |E|) if in every iteration of the force calculation each grid box contains only a
constant number of nodes (see Figure 1.5(a)). If, for example, in one iteration of the force
calculation nearly all nodes are contained in one grid box (see 1.5(b)), the running time
remains O(|V |2 + |E|).

v

(a)

v

(b)

Figure 1.5: Distribution of the nodes that induce a linear (a) and a quadratic (b) running time in
the actual iteration of the grid-variant algorithm. The edges are not drawn here. The nodes that
are used for approximating the repulsive forces that act on the node v are the nodes contained
in the grey shaded grid boxes.

It is interesting to note that Fruchterman and Reingold [47] mention the existence of a
more accurate algorithm for approximating the repulsive forces acting between all pairs of
distinct particles that is based on approximating potential fields by evaluation multipole
expansions and has been developed by Greengard and Rokhlin [59]. This work will be of
fundamental importance for our graph-drawing algorithm that will be developed later.

Another refinement of the Spring Embedder method is the algorithm GEM of Frick et
al. [45]. One main difference to the Spring Embedder and to the methods of Fruchterman
and Reingold [47] is that integer arithmetic is used to speed up the computations. Addi-
tionally, the integration of a gravitational force that drags the vertices to the barycenter
makes it possible to generate drawings of disconnected graphs. Several other features like
an approach that should prevent the drawing to oscillate and rotate are added to increase
the drawing quality and to reduce the running time. The maximum number of iterations
is set to 4|V |. The algorithm stops either if the maximum number of iterations is reached

1.2 Force-Directed Graph Drawing 15

or if the forces acting on every node are approximately in an equilibrium configuration.
Hence, the total running time of GEM is O(|V |(|V |2 + |E|)).

Modeling Graph-Theoretic Distances in a Complete Spring Model

Kamada and Kawai [80] introduce a model that does not identify the nodes with charged
particles. Instead, between each pair of distinct vertices u and v a spring with a zero-energy
length that is proportional to the graph-theoretic distance between u and v is defined. The
potential energy of this system of n(n− 1) springs for a given placement p(V) of the nodes
is defined as

EKK (p(V)) =
∑

v∈V

∑

u∈V,u 6=v

(‖pv − pu‖ − l · dist(u, v)

dist(u, v)

)2

.

The idea is that the ideal distance between two nodes u, v is the product of the graph-
theoretic distance dist(u, v) between these nodes and the desired ideal edge length l of all
edges. The algorithm finds a local energy-minimum configuration of the nodes by first
setting all partial derivatives of EKK to zero, which is a necessary condition for a local
energy-minimum configuration. This results in a system of dependent nonlinear equations.
Then, an iterative method is used that chooses a node v with the largest gradient and moves
it in the direction of the gradient while all other positions of the nodes are temporarily
fixed. The algorithm terminates if the size of the gradient falls below some threshold.
Kamada and Kawai do not give an upper bound on the running time of their method.
However, the worst-case running time that is needed for computing the shortest distances
between all pairs of nodes is Ω(|V |2). The memory requirements for storing these distances
are quadratic, too.

Methods that Use General Energy Functions

Davidson and Harel [27] develop a force model with a general energy function that is the
weighted sum of several modeled criteria. As the model of Eades [35] and Fruchterman
and Reingold [47], they identify nodes with charged particles and edges with springs. They
also define a potential that penalizes nodes that are placed close to the boundaries of the
drawing area and a potential that penalizes short distances between nodes and edges.
Both potentials are added to the energy function. Finally, they add a term that counts the
number of edge crossings to the energy function. In order to obtain a local minimum of
the defined energy function, they use an optimization technique called simulated annealing.
Starting with an initial random distribution pact(V) of the nodes, first the induced energy
Eact of the system is calculated. Then, their algorithm iteratively selects only a single node
v ∈ V and places it at a new random position. We denote the resulting new placement
by pnew(V). If the energy Enew induced by the new placement pnew(V) is less than Eact,
the new placement is taken as the actual placement pact. If the energy induced by the
new placement Enew is greater than Eact, the new placement is taken only with a certain
probability as the actual placement pact(V). Then, the next node of the node set is assigned

16 1 Preliminaries and Previous Work

a new random position. When all nodes of the node set have been touched, a temperature
value t is reduced. The algorithm terminates when t is less than a predefined threshold.
Assuming that convergence is reached after a constant number of temperature changes, the
running time of this method is O(|V |2|E|) [27]. A refined version of a simulated annealing
approach has been invented by Tunkelang [126].

1.2.3 The Freedom of Modeling

The methods that we have introduced in the previous section indicate that there is a big
freedom in the definition of the force model and the design of the algorithm for generating
a placement of the vertices that corresponds to a energy-minimal state in the associated
force model. Therefore, several authors developed force-directed algorithms for special
graph classes or tuned their methods to take constraints into account. In the following, we
give some examples of such methods.

Harel and Sardas [67] and Bertault [11] introduce techniques for generating force-
directed drawings of planar graphs that avoid edge crossings. Both methods first generate
a planar straight-line drawing of the given graph that can be fast obtained in linear time,
for example by using the methods described in [28, 121, 60]. Starting with this drawing
as an initial placement, Harel and Sardas [67] use simulated annealing and Bertault [11]
uses a modified Spring Embedder method to obtain a planar drawing with more uniform
edge length. The running times of the methods of Harel and Sardas [67] and Bertault [11]
are O(|V |3) and O(|V |2), respectively. Both methods can be applied to general graphs by
computing a planar subgraph and using edge re-insertion techniques [67].

For directed graphs it is sometimes desirable that the directed edges point into roughly
the same direction in order to recognize the dependencies easily. Therefore, the edges in the
model of Sugiyama and Misue [124] are identified with magnetic springs and an external
magnetic field is introduced to the model that forces the springs to point in the desired
direction. Variants of force-directed methods that generate drawings of clustered graphs
are presented in [135, 72].

Wang and Miyamoto [135], Harel and Koren [65], Tunkelang [128], and Chuang et
al. [23] present methods that are designed to create drawings of graphs with nodes of non-
uniform sizes. The most important aspects for the layout of such graphs are that the nodes
should not overlap and that the desired edge lengths are preserved. We will concentrate
on the force-directed layout of graphs with nodes and edges of different sizes in Section 3.1
in greater detail.

Many presented force-directed methods can be modified to take into account other
simple constraints like fixed-node constraints or fixed-subgraph constraints, see for exam-
ple [135, 81]. A general survey on constraints in graph drawing is presented in [125].

Finally, several of the ideas that we have described can be easily extended to three-
dimensional models and methods. For example, Bruß and Frick [18] present a three
dimensional version of the GEM algorithm of Frick et al. [45], while Cruz et al. [26] and
Monien et al. [96] present a three-dimensional and a parallel three-dimensional version of
the simulated annealing algorithm of Davidson and Harel [27], respectively.

1.3 Algorithms for Drawing Large Graphs 17

1.3 Algorithms for Drawing Large Graphs

An experimental comparison of the basic algorithm of Fruchterman and Reingold [47], the
GEM algorithm of Frick et al. [45], the method of Kamada and Kawai [80], the method
of Davidson and Harel [27], and the simulated annealing approach of Tunkelang [126]
was carried out by Brandenburg et al. [13]. The experiments show that all algorithms
generate comparable good drawings of small graphs with (|V | + |E|) < 180 in less than
two minutes and that GEM and the method of Kamada and Kawai [80] are the fastest upon
these classical methods. Since the best-case and worst-case running time of these methods
is at least quadratic, they are not suited for drawing graphs containing several thousands
of nodes. For example, the GEM algorithm needs 71 seconds for drawing a graph containing
256 nodes that represents a regular square grid [45]. An estimated running time for drawing
a graph containing 25600 nodes on the same machine and relying on the cubic running
time of GEM would be more than two years. Since Brandenburg et al. [13] did not test the
Grid-Variant Algorithm of Fruchterman and Reingold [47], one might hope that this
method scales better in practice, since it has a quadratic worst-case but a linear best-case
running time. Our experiments that we will present in Section 7.7 will demonstrate that,
in practice, the running times of the Grid-Variant Algorithm are unsatisfactory for large
graphs, too.

Consequently, researchers started to develop new concepts that enable force-directed
methods to draw large graphs that contain several thousands of nodes in reasonable time.
In the following, we will present state-of-the-art force-directed algorithms that are used to
draw large graphs.

1.3.1 Methods Based on Approximating the Repulsive Forces

The most time consuming step in Spring Embedder-like algorithms (see Algorithm 1) is
the calculation of the repulsive forces acting between all pairs of distinct particles/nodes.
The naive exact calculation of these forces needs Θ(N2) time.

The problem of efficiently approximating these forces has been widely studied in physics,
since these approximations are needed in the interior loops of N -body simulations [1],
where N denotes the number of particles (here, N := |V |). The PIC code used in the
Grid-Variant Algorithm of Fruchterman and Reingold [47] is a simple — but inaccurate
— way of approximating the repulsive forces acting between all pairs of distinct particles.
More appropriate approximative methods have been invented in the physical literature
that are faster and more accurate than PIC codes, in practice [105].

One very popular method is the algorithm of Barnes and Hut [8]. We will only sketch
some ideas of this method here, while more details of the algorithm of Barnes and Hut [8]
and other force-approximation methods will be described in Section 5.2: The idea is that
the forces that act on a particle v due to particles placed in the near surrounding of v are
calculated directly, while the force contribution of a group of particles S := {w1, . . . , wk} ⊆
V that are placed far away from v is only approximated. In particular, the force that acts
on v due to the particles in S is replaced by a group force that is induced by one group

18 1 Preliminaries and Previous Work

particle wS of charge k that is assumed to be placed at the center of mass of the particles
in S. The suitable choice of the group particles wS that act on a particle v is done by
using a spatial data structure that is called quadtree and will be explicitly introduced in
Section 5.2.1. Unlike otherwise stated, the asymptotic running time of this method is not
O(N log N) in general. Even worse, Aluru et al. [2] have proven that the running time of
this method cannot be bounded by a function that depends on the number of particles
only. However, it can be shown that the running time of the algorithm of Barnes and Hut
is O(N log N) in some special cases (see Section 5.2.3).

The graph-drawing algorithms JIGGLE of Tunkelang [127, 128] and FADE of Quigley
and Eades [110] use the method of Barnes and Hut [8] for approximating the repulsive
forces in their Spring Embedder-like force models. Tunkelang [127, 128] assumes that in
each iteration the depth of the quadtree is bounded by O(log N) — in order to obtain a
O(N log N) scaling — but does not explain how this restriction is realized in his algorithm.
Quigley and Eades [110] do not make any assumptions on the distribution of the particles.
Hence, the worst-case running times of both methods are given by the worst-case running
time of the method of Barnes and Hut [8].

Practical experiments in [110] show that FADE generates well-structured drawings of
graphs containing up to 4700 nodes, but the authors do not announce the total running
times that are needed to draw these graphs. Instead, they show that their implementation
of the Barnes-Hut method [8] for approximating the repulsive forces is significantly faster
than the naive quadratic algorithm on a not defined distribution of particles. The speed up
factor is 92.6 for a graph containing 6000 particles. The largest graph drawn in practical
experiments with JIGGLE [128] is a cycle containing 1024 nodes and the reported running
time is roughly five minutes. The quality of the drawings is comparable with that generated
in the tests of FADE.

A variant of the method FADE that constructs a recursive Voronoi diagram instead
of the quadtree data structure and has an O(|V |2) worst-case running time is presented
in [106].

1.3.2 Multilevel Methods

Besides the quadratic running time of calculating the repulsive forces naively, one major
problem of classical force-directed methods is that for large graphs lots of iterations of the
outer loop of the iterative force-directed algorithms are needed to generate a local energy-
minimum configuration, when starting from an initial (mostly random) placement of the
nodes. This statement is confirmed by observations of Harel and Koren (see [66] page 216),
by Frick et al. [45] who defined the number of iterations as a function linear in |V |, and by
our own experimental studies that we will present Section 7.3. Therefore, one might try
to find an initial distribution of the nodes that is already close to a drawing of the graph,
which induces an energy-minimal state in the associated force model. Starting from such
an initial placement, the number of iterations that is needed by a force-directed algorithm
to generate an energy-minimal configuration of the nodes will be comparatively small.
One way to realize this goal is to integrate multilevel or multi-scale ideas into classical

1.3 Algorithms for Drawing Large Graphs 19

force-directed algorithms that we denote by single-level methods to separate them from
the multilevel algorithms. In principle, force-directed multilevel algorithms consist of two
basic components:

• A coarsening phase that, starting with the initial graph G =: G0, generates a sequence
of graphs G0, G1, . . . , Gk of decreasing sizes by constructing Gi+1 from Gi for i =
0, . . . , k − 1 so that the graphs are closely related. The graph Gi+1 at (multi)level or
refinement level i + 1 can be seen as a coarse representation of the fine graph Gi at
multilevel i.

• In the refinement phase, a force-directed single-level algorithm is used to generate a
drawing of the coarsest graph Gk. Then — starting with the layout of the coarsest
graph Gk — the layout of the coarse graph Gi is used to obtain an initial layout of
the finer graph Gi−1, for i = 1, . . . , k. A force-directed layout of Gi−1 is generated
by using the single-level algorithm that already has been used to draw Gk. In the
lowest multilevel the graph G = G0 is drawn.

The Fast Multi-scale Method

The first authors that introduced multilevel ideas into the field of graph drawing were
Hadany and Harel [62] motivated by previous work in particle physics [16, 17]. An improved
and simplified version of this method (called Fast Multi-scale Method) was developed
by Harel and Koren [64]. It is suited for drawing connected unweighted graphs and its
basic components are described in the following.

In order to create the sequence of coarse graphs, an O(k|V |) algorithm that finds a
2-approximative solution of the NP-hard k-center problem [54] is used. The optimization
goal of this problem is to determine a subset S ⊆ V of size k in a graph G = (V,E) so
that max v∈V mins∈S dist(s, v) is minimized. The node set Vi of a graph Gi in the sequence
G0, . . . , Gk is determined by the approximative solution of the ki-center problem on G with
ki > ki+1 for all i ∈ {1, . . . , k − 1}.

Harel and Koren [64] use a variation of the algorithm of Kamada and Kawai [80] (see
Section 1.2.2) as force-directed single-level algorithm. In order to speed up the computa-
tion of this method, they modify the energy function of Kamada and Kawai [80] that is
associated with a graph Gi with i ∈ {0, . . . , k − 1} to

EHK (p(Vi)) =
∑

v∈Vi

∑

u∈Nci (v)

(‖pv − pu‖ − l · dist(u, v)

dist(u, v)

)2

.

Here p(Vi) = (pv)v∈Vi
is a placement of the nodes of Gi, l is the desired edge length of

an edge, and (for a suitable chosen integer ci) N ci(v) is the ci-neighborhood of v, defined as
N ci(v) = {u ∈ Vi | 0 ≤ dist(u, v) ≤ ci}. The difference to the original energy of Kamada
and Kawai [80] is that only some of the n − 1 springs that are connected with a node v
are considered. The single-level algorithm that is used to obtain a local energy-minimum

20 1 Preliminaries and Previous Work

configuration of the nodes is the one proposed by Kamada and Kawai, but the induced
system contains fewer nonlinear equations.

Harel and Koren [64] state that the asymptotic running time of the Fast Multi-scale

Method is Θ(|V ||E|). Since the distances between all pairs of nodes have to be memorized,
the memory requirements are Θ(|V |2). Practical experiments in [64] illustrate that pleasing
drawings of the tested graphs, containing up to 6400 nodes, can be generated in less than
one minute.

The Method GRIP

Motivated by [62, 64] Gajer et al. [49] and Gajer and Kobourov [50] developed the multilevel
algorithm GRIP. In this method, the coarsening phase is based on the construction of a
maximum independent set filtration or MIS filtration of the node set V . They define a MIS
filtration as a family of sets {V =: V0, V1, . . . , Vk} with ∅ ⊂ Vk ⊂ Vk−1 . . . ⊂ V0 so that each
Vi with i ∈ {1, . . . , k} is a maximal subset of Vi−1 for which the graph-theoretic distance
between any pair of its elements is at least 2i−1 + 1. Note that this definition implies that
V1 is a maximal independent set of V (which is a maximal subset of non-adjacent nodes in
V) and that the problem of computing a maximum independent set is NP-hard [52]. An
example of a MIS filtration is shown in Figure 1.6.

(a) V0 (b) V1 (c) V2 (d) V3

Figure 1.6: The MIS filtration of a graph that has the structure of a regular square 10× 10 grid.
The black nodes are the nodes that are contained in the MIS filtrations.

Gajer and Kobourov. [50] use a Spring Embedder-like method as single-level algorithm.
They define the force that acts on a node v ∈ Vi at multilevel i as

F i
GK (v) =

∑

u∈Ni(v)

(‖pv − pu‖
l2 · dist(u, v)

− 1

)

(pu − pv) .

This force vector is similar to that used in the Kamada Kawai method [80], but is restricted
to a suitable chosen subset of Vi that is denoted by Ni(v).

Other notable specifics of GRIP are that it computes the MIS filtration only and no
edge sets of the coarse graphs G0, . . . , Gk that are induced by the filtration. Furthermore,

1.3 Algorithms for Drawing Large Graphs 21

it is designed to place the nodes in an n-dimensional space n ≥ 2, drawing the graph in
this space, and then projecting it into two or three dimensions.

Gajer et al. [49] prove that the asymptotic running time of their algorithm — excluding
the time that is needed to construct the MIS filtration — is Θ(|V |(log diam(G)2)) for graphs
with bounded maximum node degrees, where diam(G) denotes the diameter of G. The
total running time of GRIP for drawing arbitrary graphs — including the construction of
the MIS filtration — has not been proven to be sub-quadratic. The authors state that
their algorithm does generate good results for sparse graphs and graphs with a bounded
maximum node degree. In practice (compare [49, 50]), the largest tested graph containing
16000 nodes could be drawn in less than a minute.

A Matching-Based Multilevel Method

Maybe the conceptually simplest, but fastest multilevel method in practice is the matching-
based multilevel method of Walshaw [132, 133] that is designed for connected graphs. The
method is motivated by multilevel ideas in the field of graph partitioning [68, 134].

A matching M in a graph G = (V,E) is a subset S ⊆ E so that each node v ∈ V
is adjacent to at most one edge e ∈ M . In order to create a coarse graph Gi+1 from a
coarse graph Gi, first a maximal matching Mi in Gi is created by using a simple linear time
heuristic of Hendrickson and Leland [68]. Gi+1 is obtained from Gi by first making Gi+1 a
copy of Gi, contracting all edges e ∈ Mi in Gi+1 to nodes, and finally deleting all multiple
edges from Gi+1. Figure 1.7(a)-(c) demonstrate the coarsening process at an example.

(a) G0 (b) G1 (c) G2 (d)

Figure 1.7: Coarsening by edge contraction: (a) A graph G =: G0 that represents a regular square
grid. The shaded regions mark the edges in M0. (b) The graph G1 that is obtained from G0 and
the edges in M1. (c) The graph G2 that is obtained from G1. (d) A star graph that allows only
one edge to be matched at each multilevel.

The single-level algorithm that is used to draw the graphs Gi is a variation of the
Grid-Variant Algorithm of Fruchterman and Reingold [47]. Walshaw (see [133] page
265) states that the running time of the Grid-Variant Algorithm for drawing a sparse
graph Gi = (Vi, Ei) is “close to” O(|Vi| + |Ei|). Since the construction of Gi+1 from Gi

needs O(|Vi| + |Ei|) time, the best-case running time of the total algorithm — assuming
that the number of nodes and edges decrease by a factor two at each level — is linear. The

22 1 Preliminaries and Previous Work

practical experiments in [133] demonstrate that the algorithm generates well-structured
drawings of the tested graphs containing up to 100000 nodes in less than seven minutes.

Unfortunately, the worst-case running time is not analyzed in [132, 133], although this
is not difficult: In the worst case, for example, when G is a star graph (see Figure 1.7(d)),
only a constant number of edges is contained in Mi for every graph Gi. Therefore, the
number of multilevels is Θ(|V |), and Θ(|V |) coarse graphs Gi = (Vi, Ei) exist with |Vi| =
Θ(|V |). Since the worst-case running time of the Grid-Variant Algorithm is O(|V 2

i | +
|Ei|) (see Section 1.2.2) the worst-case running time of the multilevel algorithm of Walshaw
is O(|V |(|V |2 + |E|)). Consequently, it is likely that this algorithm is not well suited for
drawing graphs that contain nodes with a very high degree nor for drawing graphs that
induce a placement of Θ(|V |) nodes in a tiny subregion in a local energy-minimum state of
the associated force model. This assumption is confirmed by remarks of Walshaw (see [132]
page 182).

1.3.3 Fast Algebraic Methods

Besides force-directed methods, other algorithms that are based on techniques of linear
algebra have been introduced into the field of graph drawing. These methods create
straight-line drawings of general large graphs and (like force-directed methods) strive for
the aesthetic criterion that the drawings should preserve the desired edge length as well as
possible. However, these methods do not use models that are based on physical analogies.

High-Dimensional Embedding

Harel and Koren [66] introduce a very fast method for drawing unweighted graphs. It is
based on a two phase approach that first generates an embedding of the graph in a very
high-dimensional vector space and then projects this drawing into the plane.

The high-dimensional embedding of the graph is generated by first using the linear time
algorithm for approximatively solving the k-center problem that has been used in [64]. A
fixed value of k = 50 is chosen, and k is also the dimension of the high-dimensional vector
space. Then, breadth-first search starting from each of the k center nodes is performed
resulting in k |V |-dimensional vectors that store the graph-theoretic distances of each v ∈ V
to each of the k centers. These vectors are interpreted as a k-dimensional embedding of
the graph.

In order to project the high-dimensional embedding of the graph into the plane, the
k vectors are used to define a covariance matrix S. The x- and y-coordinates of the
two-dimensional drawing are obtained by calculating the two eigenvectors of S that are
associated with the two largest eigenvalues of S. This is done by using the iterative power-
iteration method [138].

Assuming fast convergence of the power-iteration method, they can prove that this
algorithm terminates in linear time. The algorithm can be modified for drawing weighted
graphs by replacing breadth-first search with Dijkstra’s algorithm (see e.g. [100]) resulting
in an asymptotic O(|V | log |V | + |E|) running time. Practical experiments [66] prove that

1.3 Algorithms for Drawing Large Graphs 23

this algorithm generates drawings of graphs containing up to 106 nodes in less than a
minute, which is significantly faster than any force-directed method. The quality of the
selected tested graphs is often comparable with that of force-directed methods, although
the authors note that “frequently, the static 2-D results are inferior to those of the force-
directed approach” and that their algorithm “is not suitable for drawing trees” (see [66]
pages 218 and 216, respectively).

The last is not surprising, since it is easy to see that the positions of nodes in a
k-dimensional embedding of a non-biconnected graph are not necessarily distinct (see
also [15]). We will demonstrate this statement by giving an example:

c1

c2

c3

u1

u2

u3

B

v1

v2

x y

Figure 1.8: A graph that is not biconnected. The cut vertices are x and y. The black nodes c1, c2

and c3 are the k := 3 selected center nodes. B is a block that does not contain any center node.

Suppose, we have given a non-biconnected graph as shown in Figure 1.8 and the black
nodes c1, c2, and c3 are the k := 3 center nodes. Furthermore, suppose that block B does
not contain any center node. (Such a block does always exist if k is smaller than the number
of blocks of the given graph.) The coordinates of each node v ∈ V in the k-dimensional
embedding are defined by (dist(v, c1), dist(v, c2), . . . , dist (v, ck)). Since in Figure 1.8 all
paths that connect a center node ci with a node contained in B visit the cut-vertex y,
we get that all nodes wi, wj ∈ B with dist(y, wi) = dist(y, wj) are assigned the same k-
dimensional coordinates. In particular, u1, u2, and u3 are assigned the coordinate (5, 6, 2)
while v1 and v2 are assigned the coordinate (6, 7, 3).

The Method ACE

Another fast but more complicated algorithm for drawing large (weighted) graphs is the
method ACE of Koren et al. [86, 87]. Motivated by a quadratic placement algorithm of
Hall [63], they define the quadratic optimization problem

(P) min xT Lx so that xT x = 1 in the subspace xT 1n = 0 .

Here n = |V |, wij is the weight of an edge e = (vi, vj), and L is the Laplacian matrix of G
that is defined as

24 1 Preliminaries and Previous Work

Lij =

{

∑n
k=1 wik if i = j

−wij if i 6= j
i, j = 1, . . . , n.

The minimum of (P) is obtained by the eigenvector that corresponds to the smallest
positive eigenvalue of L and is called Fiedler vector. The problem of drawing the graph G
in two dimensions is reduced to the problem of finding the two eigenvectors of L that are
associated with the two smallest eigenvalues of L.

Instead of calculating the eigenvectors directly an algebraic multigrid algorithm is cre-
ated. Similar to the multilevel ideas, the idea is to express the originally high-dimensional
problem in lower and lower dimensions, solving the problem at the lowest dimension,
and progressively solving a high-dimensional problem by using the solutions of the low-
dimensional problems.

In practical experiments [86, 87], ACE generates drawings of selected graphs containing
up to 7000000 nodes in less than two minutes. The quality of the presented drawings is
comparable with that of force-directed methods, but the authors mention that “there is
nothing in Hall’s energy that prevents nodes from being very close. Hence, the drawings
might show dense local arrangements” (see [87] page 669). The authors do not give an
upper bound on the asymptotic running time of ACE in the number of nodes and edges,
but Harel and Koren argue (see [66] page 218) that the running time of ACE depends on
the graph’s structure. This can be confirmed by concentrating only on one particular step
of the used multigrid method:

In order to transform a high-dimensional problem into a low-dimensional problem an
interpolation matrix is created. The authors develop two ways for constructing such matri-
ces. One of this methods (that is also used as the standard method in the implementation
of ACE which can be obtained from [88]) calculates these matrices by using an edge con-
tracting method. An interpolation matrix is computed by fining a maximal matching in
a graph and then contracting these edges to nodes in order to obtain a new graph. Start-
ing with the given graph G, this is repeated until the smallest graphs contains only a
constant number of nodes. Analogue to the force-directed graph-drawing method of Wal-
shaw [132, 133], this can result in a quadratic running time (e.g. if the graph is a star
graph).

Related Methods

Several methods that are related to the previous mentioned algebraic methods have been
published:

In [85] Koren introduces a two-phase method for drawing graphs that is based on first
generating a subspace that captures a desired good layout of a graph and then solving
optimization problems in the subspace by using algebraic methods. The solutions of this
optimization problems determine the drawings. As suitable subspaces he identifies the
high-dimensional embedding that he developed in [66] and the first k eigenvectors of the
Laplacian that he already used in the context of the algorithm ACE [86, 87].

1.3 Algorithms for Drawing Large Graphs 25

Furthermore, the method ACE is used as an important part of an algorithm that is
designed to generate layered drawings of directed graphs [22, 21].

A variation of the high-dimensional embedding approach of Harel and Koren [66] and
a method that is based on ideas of the algorithm of Hall [63] have been implemented in
the framework of the software package visone [15].

1.3.4 How to Display Drawings of Large Graphs

In this sub-section we assume that the straight-line drawing of the graph (that is completely
described by assigning each node a position in R

2) has already been calculated. One
remaining problem is that it is impossible do display each graphical detail of arbitrary large
graphs on a display medium with a bounded resolution. Therefore, several techniques have
been developed to deal with this problem and are sketched in the following.

For example, in many software tools zoom and pan techniques are used that allow the
user to zoom in a region of interest and to navigate through the graph.

Fisheye views are also common techniques in image visualization and graph drawing.
These techniques imitate the fisheye-lens effect by enlarging an area of interest and showing
the remainder of the image/graph less detailed [48, 117, 83].

Another way to display drawings of large graphs is to use multilevel visualization tech-
niques. They have been introduced into graph drawing by Eades and Feng [38] to display
clustered graphs. The methods have in common that, additionally to the given original
drawing of the graph G, drawings of smaller graphs are generated and displayed. The
drawings of the smaller graphs are obtained from the drawings of the larger graphs by
using clustering methods [33, 34, 110]. It is important to note in this context that such
multilevel drawings can be generated by force-directed multilevel methods as a by-product.

A technique that combines a fisheye view technique with that of multilevel visualization
techniques has recently been developed by Ganser et al. [51].

Incremental exploration techniques display only a small subgraph of a given graph,
which fits into a visible window and allow the user to move this window. In contrast to
the zoom and pan techniques, these methods are used if a drawing of the whole graph
does not exist. They incrementally calculate only the drawings of the subgraphs that fit
into the visible window (see for example [73, 72, 37]). A survey on graph visualization and
navigation techniques is [69].

26 1 Preliminaries and Previous Work

Chapter 2

The Fast Multipole Multilevel
Method

Modelle sollten sich bemühen,
dem Porträt ähnlich zu sehen. 1

In Section 2.1 we will motivate the development of a new force-directed method that is
designed for drawing large graphs, and the main goals of this approach will be formulated.
The basic concept of this method will be sketched in Section 2.2.

2.1 Motivation and Goals

The previous discussion has shown that several force-directed algorithms exist that, in
practice, generate well-structured drawings of selected classes of large graphs fast. But
there remain some challenges:

First of all, none of the force-directed algorithms guarantees a sub-quadratic running
time in general. Additionally, the running time of the algebraic method “ACE (like that
of force-directed methods) depends on the graph’s structure” (see [66] page 218). This is
undesirable for algorithms that are designed for drawing general graphs.

Second, there exist classes of graphs for which the quality of the drawings might be
improved. For example, C. Walshaw states that it “is likely that very dense graphs or even
those which have a dense substructure are never going to be good candidates for any force-
directed placement algorithm, and ours is no exception” (see [132] page 182). Gajer et al.
(see [49] page 220) state that their algorithm “works very well for sparse graphs and graphs
of low degree”, but “it does not produce high quality drawings for all graphs”. Harel and
Koren (see [66] page 216) mention that their “algorithm is not suitable for drawing trees”.

1Salvador Dali

28 2 The Fast Multipole Multilevel Method

Third, several of the algorithms that we introduced in Section 1.3 assume that the
given graphs are connected or unweighted, and that all nodes have the same sizes and
shapes. These restrictions should be avoided, since one important property of force-directed
methods is that they should be able to draw general graphs.

An example of general graphs that arise in real-world applications are social networks.
There, nodes correspond to persons, and family relationships can be modeled by edges of
different weights that reflect the importance of the family relationships. For example, the
edge that connects a father f and his child c has a different weight as the edge between
f and his niece. The intuition is that strong familiar relationships should be displayed
by nearby positions of the corresponding persons/nodes in the drawing. It might appear
that the social relationship between a person p and a person q is not unique. For example,
p might be the husband of q but also the cousin of q. Such multiple edges appear quite
frequently in several social networks of the medieval German town Esslingen that has been
extensively studied by C. Lipp (a complete list of all related publications of C. Lipp is
available from [90]). Additionally, the nodes might store information like the name, sex,
profession, and age of a person. Hence, the size and shape of the nodes is predefined.

Figure 2.1: A disconnected weighted graph — displaying the family relationships of members of
a political committee in the German town Esslingen in the early 19th century — that was drawn
with an early version of a new force-directed method (FM3) in cooperation with C. Lipp [90]. The
edge weights are hidden.

2.1 Motivation and Goals 29

Figure 2.1 and Figure 2.2 are examples of weighted disconnected graphs with nodes
of predefined shapes and sizes. The graphs describe the family relationship in a political
committee in the German town Esslingen (Figure 2.1) and clubs and societies in this town
(Figure 2.2), respectively.

VAUK

VBGS

VBGS48

VBUG

VBW

VDBO

VEHR

VGUST

VGWS

VHARM

VHDW

VHOLZ

VLDW

VLEICH

VLKR27

VLKR48

VLKRAL

VMSK

VMSM

VMSM2

VPOLEN

VREKR

VSPAR

VTUR
VULK

VVET

VWOA

VWOB

VWOH

203

359

422

726

835

936

1118

1155

1257

1313

1435

1612

1719

1857

1927

20138

21214

30051

40334

50121

50130

50189

50244

50261

50270

50498

50557

50727

50844
51142

810001

888834

888835

888853

1

3

20

21

26

28

33

92

133

161

233

263

294

331

369

393

396

397

409

453

461

503

508

513

526

531

544

551

565

569

584

593

601

602

610

617

626

628

641

649

671

687

688

692

724

733

736

753

767

798

822

825

844

859

877

883

895

921

923

931

932

994

1000

1007

1008

1010

1015

1029

1034

1052

1053

1079

1109

1145

1154

1185

1208

1224

1230

1233

1236

1237

1238

1240

1243

1251
1260

1261

1278

1279

1300

1307

1314

1315

1317

1323

1331

1362

1366

1402

1408

1424

1449

1464

1467

1469

1470

1487

1503

1515

1530

1531

1541

1548

1552

1562

1564

1565

1571

1573

1600

1611

1615

1618

1645

1646

1667

1681

17121727

1745

1754

1786

1797

1817

1818

1845

1847

1864

1884

1886

1899

1900

1909

1943

1961

1976

2073

2120

2158

2179

2212

11942

20217

20250

20472

20667

20847

21106

30087

30347

30462

30544

30620

50009

50014

50031

50032

50066

50075

50120

50162

50250

50256

50375

50389

50482

50494

50502

50528

50534

50570

50635

50637

50679

50708

50737

50793

50801

50808

50813

50832

50857

50871

50892

50896

50898

5091450924

50935

50941

51031

51044

51052

51200

51218

51285

51391

51467

724835

800195

800605

801704

801973

802065

802213

802828

812162

815772

818635

833261

833372

834771

872739

872937

888805

888820

888821

888822

888831

888839

888844

999538

2

14

22

190

237

239

243

270

275
323

402

407

413

476

506
510

522

552

557

561

562

572

579

607

622

629

630

651

658

660

661

666

667

672

676

686

707

711

737

762

777

778

782

783

805

807

808

827

828

829

854

856

858

861

863

864

874

876

892

922

959

962
964

996

1016

1033

1038

1043

1080

1101

1122

1123

1126

1156

1171

1180

1192

1193

1194

1198

1205

1207

1214

1218

1250

1292

1329

1344

1355

1378

1385

1392

1445

1455

1494

1526

1527

1528

1533

1534

1551

1556

1569

1579 1584

1589

1593

1609

1623

1638

1641

1642

1656

1657

1658

1666

1680

1782

1790

1800

1827

1836

1855

1895

1913

1916

1928

2016

2058

2096

2147

2177

2195

10647

11543

20421

30660

50102

50240

50619

50647

800010

800025

800089

800376

800379

800639

800675

800920

800988

801063

801306

801514

801534

801550

801555

801738

801745

801806

801837

801886

801927

802063

802066

802374

802394

802439

802458

802599

805177

810012

811043

811238

814721

816179

817130

832160

833148

833200

833221

833236
833241

833341

833382

833416

834048

834550

834586

834784

871465

888801

888802

888803

888806

888808

888809

888811

888813

888814

888815

888816

888817

888841

774

927

1231

1466

1586

1749

2017 50177

50421

50497

50636

50910

50996

51207

51330
802789

872750

500

497

50626

12

473

475

481

482

523

643

873

2123

1017

1539

800965

801585

801688

335

425

477

1557

17761861

2003

2213

50063

50345

50353

51278

51405

801485

341

558

757

784

1019

98

234

235

246

589

732

1022

1057

1113

1693

2066

50263

50338

50984

51049

51268

51284

801893

805212

999350

545

549

563

30515

30857

30914

800350

800695

831527

999535

238

269

1254

1266

2219

800065

800466

800467

801473

801768

870028

116

173

550

568

573

664

700

738

1037

1107

1523

1546

1674

1750

2239

21183

30904

30929

51382

800238

800401

800547

800673

801424

801544

801762

810161

811111

814349

815448
832019

832123

832125

832157

832471

834722

888830

888832

888833

888842

888845

888846

19

180

268

305

324

484

496

518

530

532

603

605

802

813

884

1048

1195

1241

1281

1316

1353

1478

1538

1575

1608

1801

2000

2116

2137

21260

30124

30642

30927

50205

50212

50332

50649

50854

50886

51156

51250

801432

801493

802279

802641

885161

888272

5

13

59

84

112

157

254

262

278

286

332

333

365

378

404

439

483

485

505

528

529

546

547

581

616

631

743

745

789

817

839

853

866

872

956

997

1045

1049

1061

1083

1146

1163

1178

1190

1201

1216

1244

1270

1276

1291

1302

1338

1348

1368

1397

1409

1417

1446

14571480

1483

1500

1501

1514

1519

1542

1574

1582

1583

1596

1606

1635

1640

1684

1728

1758

1783

1856

1887

1906

1917

1920

1922

1972

1990

2019

2027

2053

2141

2149

2233

10110

10282

10529

11982

12007

12105

20032

21301

30015
30054

30086

30248

30261

30829

30899

31006

46046

50081

50331

50444

50453

50460

50561

50642

50678

50705

50794

50834

50972

51038

51150

51155

51352

51356
51379

800043

800064

800495

800647

800685

801077

801385

801391

801858

802185

802247

802287

802329

802356

802426

802466

802829

810000

815670

816083

830256

831045

831267

831352

832026

832047

832082

832092

832100

832156

832192

832212

832219

832251

832306

832337

832344

832371

832389

832437

832451

832459

832522

833054

833117

833167

833180

833403

833494

834251

834444

834588

834712

834804

855202

858226

888025

888109

888204

888804

888807

888838

999178

999293

64

241

258

756

878

1716

1809

1983

2030

2152

802464

255

524

553

566

865

1044

1104

1106

1297

1364

1365

1592

1828

11368

11550

20447

21077

30175

30688

30752

30878

30880

30926

31005

50160

50445

50479

50522

50785

50831

50835

50919

51263

51305

802700

810015

810857

833203

857505

888812

276

507

669

965

1535

1549

10999

11545

20578

30249

30399

30402
30500

30906

3090950101

50159

50483

50520

50550

657067

657100

657120

657349

657400

657503657568

657720

657803

660066

660089

660228

660665

660801

662160

802323

802778

803092

803164

858761

872671

872940

872984

872987

873023

873065

873100

30207

1391

800097

785

517

520

1262

1543

1902

50485

50565

50607

50716

50744

50786

50799

50800

50933

51187

810005

810006

810007

810008

888840

386

800523

800589

801379

999155

330

435

486

960

1209

1211

2242

11351

519

1288

939

1189

1333

Figure 2.2: A disconnected weighted graph — displaying clubs and societies in the town Esslingen.
The red nodes correspond to the clubs while the white nodes represent the people that are
members of the clubs. The sizes of the nodes display the sizes of the clubs. This graph was
drawn with a new force-directed method (FM3) in cooperation with C. Lipp [90]. The edge
weights are hidden.

Since another important goal of graph-drawing algorithms is the minimization of the
used drawing area, we would expect that a good graph-drawing algorithm should take this
criterion into account, too. Additionally, it is often desirable that the drawing should fit
into a rectangular drawing area of a predefined fixed aspect ratio r. The latter is important
in practice, since the aspect ratio of the drawing area will be restricted — by preferences
of the user or by output devices like the shape of the computer screen or the page format
of the plotter — in any case. Hence, it is reasonable to design graph-drawing algorithms
that try to minimize the used aspect-ratio area according to a desired aspect ratio r.

Motivated by the previous observations, we strive for a force-directed method that
should achieve the following goals:

30 2 The Fast Multipole Multilevel Method

• The algorithm should be designed for drawing general graphs and should not restrict
on special graph classes only.

• Besides typical aesthetic requirements (like preserving the desired edge length, non-
overlapping nodes, and the display of symmetry) the aspect-ratio area of the drawing
should be minimized.

• The algorithm should guarantee a sub-quadratic worst-case running time.

• The algorithm should be fast in practice, too.

• The algorithm should generate well-structured drawings of a wide range of graphs.

2.2 The Basic Concept

We will now give an overview of the basic concept of a new force-directed method that we
called Fast Multipole Multilevel Method or shorter FM3. It has been developed to reach
the previously stated goals.

2.2.1 The Input and Output Requirements

Since the algorithm is designed to generate drawings of general graphs, the input instances
are graphs G = (V,E) that are connected or disconnected, directed or undirected, weighted
or unweighted. For weighted graphs, we interpret the edge weight of each edge as its
desired edge length, while the desired edge length of all unweighted graphs are assumed
to be identical for all edges and can be chosen by the user. This interpretation of the
edge weight is only reasonable under the assumption that the edge weights are positive. If
the graph contains edges with negative or zero edge weights, one can obtain positive edge
weights by adding an appropriate positive offset on all edge weights.

Furthermore, the nodes of the graph may have predefined shapes and sizes, and the
user is allowed to determine a predefined aspect ratio r of the desired rectangular drawing
area.

FM3 is designed to generate a drawing Γ(G) of G in the plane with non-overlapping
components. Except self-loops (that are drawn as loops) all edges are drawn as straight
lines. Multiple edges are drawn parallel. Directed edges are drawn as arcs.

2.2.2 The Choice of the Force Model

Next, we have to choose a suitable force model. On the one hand, the force model should
allow the development of a sub-quadratic algorithm that is used to find a energy-minimal
configuration of the nodes. One the other hand, it should model the most important
aesthetic requirements on force-directed drawings (preserving the desired edge length, non-
overlapping nodes, display of symmetry).

Therefore, we choose a simple model which identifies the nodes with equally charged
particles that repel each other and that identifies edges with springs, similar to many

2.2 The Basic Concept 31

classical force-directed methods (see Section 1.2.2). If in R
2 two charged particles u, v

are placed a distance d from each other, the repulsive forces acting between u and v are
proportional to 1/d. Our choice of the spring forces is not strictly related to physical
reality. We found that choosing the spring force of an edge e = (u, v) to be proportional
to log(d/lzero(e)) · d2 gives very good results in practice. Here d is the distance between
u and v, and lzero(e) (with lzero(e) > 0) denotes the zero-energy length of a spring e ∈ E.
The appropriate choice of lzero(e) will be discussed in Section 3.1 and in Chapter 4.

The spring force of a spring e = (u, v) is defined so that an energy-minimum state of
the spring is reached — when ignoring all other springs and charged particles in the system
— if the distance between u and v is equal to lzero(e). Furthermore, this model allows to
assign each edge its individual zero-energy length, which will be of fundamental importance
in the preprocessing step (see Section 3.1) and the multilevel step (see Chapter 4).

The repulsive forces of the particles imply that the nodes “spread well”(compare [14]
page 71) in the plane. We try to illustrate the meaning of this fuzzy attribute at an
example: Suppose that the given graph is a star graph that consists of five nodes, four
edges, and all edges have the equal desired edge length l, and lzero(e) := l. Then, an
energy-minimum configuration of the nodes in our force model would distribute the four
edges symmetrically around the center of the star like in Figure 2.3(a). Suppose, the same
definition of the spring forces would be used, but no repulsive forces between the nodes
would be defined. Then, even a placement of the nodes, in which all but the center of the
star are placed at one point with distance l to the center, would induce an energy-minimum
configuration in this model (see Figure 2.3(b)). And, of course, a good drawing should not
contain nodes that overlap.

v0v1

v2

v3

v4

(a)

v0 v1,2,3,4

(b)

Figure 2.3: (a) An energy-minimum drawing of a star graph in our force model. (b) An energy-
minimum drawing of the same graph in a variation of our model that does not define repulsive
forces acting between all pairs of nodes.

We do not distinguish between directed and undirected graphs in this model. But this
could be done, for example, by introducing a magnetic force field and magnetic springs
like in [124].

32 2 The Fast Multipole Multilevel Method

Like all other state-of-the-art methods for drawing large graphs, we did not model an-
other important criterion, the reduction of the number of edge crossings, explicitly. In some
cases (e.g. if G is a grid graph and the zero-energy length lzero(e) are identical for all e ∈ E)
an energy-minimum placement of the nodes does necessarily imply a planar drawing in our
model. In general, however, one cannot expect that an energy-minimum configuration of
the nodes in a model that does only rely on identifying nodes with charged particles and
edges with springs will imply a crossing-free straight-line drawing of an associated planar
graph. This is confirmed by our experimental results in Section 7.8.2.

Nevertheless, as can be seen in in Section 7.6, even the choice of such a simple force
model — in combination with a suitable energy-minimization algorithm — implies energy-
minimal placements of the nodes that correspond to well-structured drawings of planar
and non-planar graphs.

2.2.3 The Algorithm

Now we sketch the basic components of the algorithm FM3 that is used to find an energy-
minimal configuration of the nodes. The detailed description of these components will be
formulated in Chapters 3, 4, 5, and Section 6.1. Additionally, the inclusion relationships
of these steps are illustrated in Figure 2.4.

multilevel step

force−calculation step

postprocessing step

force−calculation step

divide step

divide−et−impera strategy

impera step

preprocessing step

FM3

Figure 2.4: Inclusions of the basic algorithmic steps of FM3.

First, all requirements like the desired edge length and the node attributes have to be
represented in the force model. This is done in the preprocessing step that we will describe

2.2 The Basic Concept 33

detailedly in Section 3.1. There, we will reduce the problem of drawing a weighted or
unweighted graph G with nodes of different fixed sizes and shapes to the problem of
drawing a positive-weighted undirected simple graph without node attributes using our
force model.

In this model, an energy-minimum configuration of the nodes of a disconnected graph
would require the components to be placed infinitely far away from each other. On the
other hand, we require from a good drawing that it should use only a small amount of
aspect-ratio area. This problem is solved using a divide-et-impera strategy (Chapter 3.2).
In the divide step we find the components of the given graph. Then, drawings of the
induced maximal connected subgraphs are generated in the multilevel step (Chapter 4). A
refinement of these drawings is made in the postprocessing step (Section 6.1). Finally, in
the impera step these drawings are put together in order to obtain a drawing in which the
components do not overlap and that uses few aspect-ratio area.

In the multilevel step we can assume that the given graphs G are connected positive-
weighted undirected simple graphs. Each of these graphs is drawn using a multilevel
strategy that first creates a series of graphs G =: G0, G1, . . . , Gk with decreasing sizes.
Then, the smallest graph Gk is drawn using a force-directed algorithm that is introduced
in the force-calculation step (Chapter 5). This drawing is used to get an initial layout of
the next larger graph Gk−1 that is drawn afterwards. This process is repeated until the
original graph G0 is drawn.

In the postprocessing step the force-calculation step is reused to optimize the drawings
of each maximal connected subgraph of the original graph.

Finally, in Chapter 5, we will introduce an iterative algorithm that tries to find an
energy-minimal configuration of the nodes/particles. The most important part of this step
is the accurate approximation of the repulsive forces acting between all pairs of charged
particles. This is done by evaluating the field of potential energy in the system of charged
particles using so called multipole expansions and a hierarchical data structure called re-
duced bucket quadtree.

34 2 The Fast Multipole Multilevel Method

Chapter 3

The Preprocessing Step and the
Divide-Et-Impera Strategy

Um das Große zu schätzen und zu lieben,
musst du dich erst an dem Kleinen üben. 1

In Section 3.1 we will explain how to transfer the problem of drawing a general graph
G = (V,E) — that is weighted or unweighted, directed or undirected, and that may
contain nodes of different sizes and shapes — into the problem of drawing a positive-
weighted undirected simple graph without node attributes. In Section 3.2, we will address
the problem of drawing disconnected positive-weighted undirected simple graphs.

3.1 The Preprocessing Step

3.1.1 Reduction to Positive-Weighted Undirected Simple Graphs

In the last chapter we already pointed out that, for simplicity, we do not distinguish
between directed or undirected graphs in our model. Therefore, in the following, we can
assume that the given graph G is undirected by ignoring the orientation of the edges in
the complementary case.

If the given graph G = (V,E) is weighted and the edge weight w(e) of each edge e ∈ E
is positive, we interpret the edge weight of each edge e ∈ E as its individual desired edge
length and set desired edge length(e) := w(e) for all e ∈ E. If the graph is weighted, some
edge weights are not positive, and wmin is the smallest non-positive edge weight of all
edges, then we set desired edge length(e) := w(e) + |wmin | + ǫ for all e ∈ E, where ǫ > 0 is
a constant. Finally, if the given graph is unweighted, it is natural to assume that all edges
should have the same non-negative desired edge length l that can be chosen by the user.
Hence, we can set desired edge length(e) := l for all edges e ∈ E.

1Georg Keil

36 3 The Preprocessing Step and the Divide-Et-Impera Strategy

If G is not simple, we do the following: Multiple edges e1, . . . , ek that connect two nodes
u and v are replaced by exactly one edge enew = (u, v), and the desired edge length of enew

is set to the average of the desired edge length of e1, . . . , ek. Self-loops e = (v, v) can be
deleted from G since their drawing is determined only by the position of v in the drawing
Γ(G) of G.

3.1.2 Drawing Graphs with Node Attributes

Now we explain how it is possible to integrate the desired edge length and the fact that
nodes may have predefined fixed sizes and shapes into our force model.

In the easiest case the nodes are represented by points, and we can simply set the
zero-energy length of each edge e ∈ E to lzero(e) := desired edge length(e).

In the remaining case the nodes may have different shapes of predefined fixed sizes.
The problem that arises here is that node overlaps might appear in the drawing of the
graph G. Additionally, edges might cross the graphics of the nodes more likely than in the
case that nodes are represented by points. Both eventualities are undesirable.

Wang and Miyamoto [135] have invented a force-directed model that tries to overcome
this problem by modifying the force model of Fruchterman and Reingold [47]. In particular,
they modify the definition of the strength of the spring force (Fspring(u, v)) of an edge (u, v)
and the definition of strength of the repulsive force (Frep(u, v)) acting between two nodes
u and v as follows:

‖Fspring(u, v)‖ =

{

0 if u and v overlap
d2
out

l+din

otherwise
; ‖Frep(u, v)‖ =

{

C l2

d
if u and v overlap

l2

d
otherwise

Here l is the desired edge length of all edges e ∈ E, C > 1 is a constant, d is the
distance between the centers of u and v, dout is the distance between the boundaries of the
graphics of node u and v, and din = d − dout . The idea of this revised model is that for
an edge e = (u, v) the forces Fspring(u, v) and Frep(u, v) cancel each other if dout and l are
equal. Vertex overlaps shall be reduced by increasing the repulsive forces and canceling
the spring forces for each pair of nodes that overlap.

One drawback of this model is that it requires to determine whether each pair of nodes
is overlapping or not. Doing this naively requires Θ(|V |2) time. Furthermore, this model
does not allow to assign each edge its individual desired edge length.

Harel and Koren [65] and Tunkelang [128] developed other force-directed techniques for
drawing graphs with node attributes that are related to that of Wang and Miyamoto [135].
They define suitable spring forces and repulsive forces in a Spring Embedder-like force
model. Another model that is presented by Harel and Koren [65] is a modification of the
complete spring model of Kamada and Kawai [80] and defines the zero-energy length of
each edge e = (u, v) ∈ E for a given actual placement of the nodes as the sum of the global
desired edge length l and the length of the line segment that connects the nodes u and v and
lies inside the graphics of u and v, respectively. A method that is designed to handle nodes

3.1 The Preprocessing Step 37

of different sizes in two and three dimensions that is based on placing charged particles
on the boundaries of the nodes is presented in Chuang et al. [23]. All these methods and
models are based on the assumption that all edges have the same desired edge length.

Since our method should be more flexible and allow each edge to have its individual
desired edge length, we choose a different way to handle the problem of drawing graphs
with node attributes: We do neither change the definition of the spring forces nor the
definition of the repulsive forces in our model. Instead, we simply set the zero-energy
length lzero of each edge e = (u, v) ∈ E to:

lzero(e) = rad(u) + rad(v) + desired edge length(e)

Here rad(v) denotes the radius of the smallest circle that surrounds the graphics of
node v. Figure 3.1 illustrates the definition of the zero-energy length at an example.

u ve

rad(u) rad(v)

lzero(e)

desired edge length(e)

Figure 3.1: Definition of the zero-energy length of a spring e = (u, v) with nodes of different
shapes and sizes and a given desired edge length.

One advantage of this model — besides its simplicity and flexibility — is that the
calculation of the zero-energy length of the springs has to be done only once, whereas in
all previous introduced methods the graphical information of each node has to be used at
each iteration of the used force-directed algorithms.

Furthermore, the fact that our definition of the repulsive forces does exclusively depend
on the positions of the nodes will allow the development of an extremely fast and accurate
method for approximating the repulsive forces that act between all pairs of nodes/particles.

On the other hand, it might be possible that the other more complicated techniques are
better suited for representing nodes of different sizes and shapes (regarding the quality of
the generated drawings) in practice. However, our method is designed for drawing graphs
containing several thousands of nodes and, therefore, has to be optimized concerning the
running time. Figure 3.2 shows example drawings of a weighted graph with nodes of
different sizes. One drawing (see Figure 3.2(a)) has been generated with a force-directed
algorithm that ignores edge weights and node attributes and contains overlapping nodes.
The other drawing (see Figure 3.2(b)) has been generated with FM3 and displays the edge
weights in an appropriate way.

38 3 The Preprocessing Step and the Divide-Et-Impera Strategy

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1.5

1

1

1

1

1

1

1.5

1.5

2

1

1

1

1

1.5

1.5

2

2

4

1

1.5

2

4

(a)

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1.5

1

1

1

1

1

1

1.5

1.5

2

1

1

1

1

1.5

1.5

2

2

4

1

1.5

2

4

(b)

Figure 3.2: Two drawings of a weighted undirected graph with nodes of different sizes. (a) A
drawing that is generated with a force-directed algorithm that ignores edge weights and node
attributes. (b) A drawing that is generated with FM3.

3.1.3 Formal Description of the Preprocessing Step

Theorem 3.1 (Preprocessing Step). In Function Preprocessing Step an (un)weight-
ed (un)directed graph G = (V,E) that may contain nodes of different fixed sizes and shapes
is transfered into a positive-weighted undirected simple graph without node attributes G′ =
(V ′, E ′, lzero) with V ′ = V and E ′ ⊆ E in O(|V |+ |E|) time. The memory requirements of
Function Preprocessing Step are O(|V | + |E|).

Proof. The only non-trivial part of the preprocessing step is the transformation of a graph
G = (V,E) into a simple Graph G′ in linear time. This can be done as follows:

Suppose, the nodes of G have the indices 1, 2, . . . , |V |, and that we mark for each edge
e = (i1, i2) the node with the larger index as the large node of e and the other node as the
small node. If e is a self-loop the choice of the larger/smaller node is arbitrary.

Suppose that L is a list of the edges contained in E. First, we sort L in order to obtain
a list in which multiple edges are in consecutive order. This can be done in O(|V | + |E|)
time by using a variation of bucket sort:

We create a set Blarge of |V | buckets that represent the values {1, . . . , |V |} and assign
each edge e ∈ E to the bucket that corresponds to the index of its large node. We create a
second set Bsmall of |V | buckets that represent the values {1, . . . , |V |}. Then, we traverse
the buckets of Blarge in increasing order (according to the bucket indices) and insert each
edge e into the bucket of Bsmall that corresponds to the index of the small node of e.

3.2 The Divide-Et-Impera Strategy 39

Finally, we traverse Bsmall in increasing order (according to the bucket indices) to obtain
the sorted list of edges L.

In order to delete all self-loops and to replace each set of multiple edges in E by one
new edge we only have to traverse L in increasing order. The running time and memory
requirement of this procedure are linear in |V | + |E|.

Function Preprocessing Step(G)

input : an (un)weighted (un)directed graph G = (V,E) that may contain nodes of
different fixed sizes and shapes

output: a positive-weighted undirected simple graph G′ = (V ′, E ′, lzero) without
node attributes

begin
G′ ← G;
if G′ is directed then make G′ undirected;
if G′ is not positive weighted then make G′ positive weighted;
if G′ is not simple then make G′ simple;
foreach e ∈ E ′ do

calculate the zero-energy length lzero(e);

end

3.2 The Divide-Et-Impera Strategy

In this section we will address the problem of drawing disconnected graphs and will re-
view existing methods for drawing these graphs. After analyzing the complexity of the
disconnected-graph layout problem that asks for a drawing of a graph with non-overlapping
components, which uses a minimum amount of aspect-ratio area, we will present a simple
heuristic to solve this problem.

3.2.1 Force-Directed Methods for Drawing Disconnected Graphs

In many force models an energy-minimum configuration of the nodes of a disconnected
graph would require the components to be placed infinitely far away from each other.
For example, this situation arises in all force models that only rely on identifying nodes
with equally charged particles and on identifying edges with springs. Hence, force-directed
algorithms that are based on theses models are not suited for drawing disconnected graphs.
One way to solve this problem is to fix the drawing area in advance, like in the force
models of Fruchterman and Reingold [47] or Davidson and Harel [27]: Fruchterman and
Reingold [47] have interpreted the boundaries of the fixed drawing area as elastic or plastic
walls that cannot be passed by the nodes. In contrast to this, Davidson and Harel [27]

40 3 The Preprocessing Step and the Divide-Et-Impera Strategy

have added a term to their energy functional that forces the nodes to be placed not too
near to the borders of the drawing area.

These models are sufficient to keep the components close to each other. But they also
have several disadvantages: First, these heuristics do not guarantee that the components
will not overlap, which is undesirable. Second, the drawing of each component of a graph is
influenced by the forces induced by the other components and the restricted drawing area.
From the graph drawing viewpoint it is more desirable to draw a graph G always in the
same way (modulo rotations and translations) — independent whether G is a component of
a larger graph or whether G defines already the entire graph. Finally, it might be difficult
to estimate a reasonable size of the drawing area without having any knowledge about the
structure of the given graph.

3.2.2 The Disconnected-Graph Layout Problem: Complexity &
Algorithms

The problems that are stated in the previous section can be avoided by first drawing each
maximal connected subgraph G1, . . . , Gc of a given graph G with a suitable algorithm and
then putting these drawing together to obtain a drawing of the entire graph G. Here
C is the set of components of G and c := |C|. In the following, we presuppose that the
terms bounding rectangle, drawing area, aspect ratio, and aspect-ratio area that have been
defined in Section 1.1.4 are known.

An informal description of the disconnected-graph layout problem is as follows: Given
a graph G that contains c ≥ 1 maximal connected subgraphs G1, . . . , Gc, a desired aspect
ratio r, and for each Gi a drawing Γ(Gi), i ∈ {1, . . . , c}. Find a drawing Γ(G) with non-
overlapping components that requires minimum aspect-ratio area according to r.

Identifying the drawing of each component with a polygon, we can now formally define
the general disconnected-graph layout problem (GDGL):

(GDGL)

Given a set S = {S1, . . . , Sc} of polygons, an aspect ratio r > 0, and integer
constant k1, k2, k3 ≥ 0. Find a placement of S1, . . . , Sc in the plane with non-
overlapping Si that uses a minimum amount of aspect-ratio area according
to r. Translations, k1 reflections on the x-axes, k2 reflections on the y-axes,
and k3 rotations with predefined fixed angles are allowed for each Si.

We additionally define the constraint disconnected-graph layout problem (CDGL) that
does not allow reflections and rotations:

(CDGL)

Given a set S = {S1, . . . , Sc} of polygons and an aspect ratio r > 0. Find
a placement of S1, . . . , Sc in the plane with non-overlapping Si that uses a
minimum amount of aspect-ratio area according to r. Only translations of
the Si are allowed.

Theorem 3.2 (The Disconnected-Graph Layout Problem). The Problems (GDGL)
and (CDGL) are NP-hard.

3.2 The Divide-Et-Impera Strategy 41

Proof. First, we prove that the following decision problem is NP-complete:

(P)

Given a set R = {R1, . . . , Rc} of axis parallel rectangles and positive con-
stants r and A. Does there exist a placement of R1, . . . , Rc in the plane with
non-overlapping Ri that uses at most A aspect-ratio area according to the
desired aspect ratio r? The rectangles must be placed orthogonally and may
not be rotated.

The strip-packing problem (S) that is also known as minimum height two-dimensional
packing problem is NP-complete [7, 119] and defined as follows:

(S)

Given a set R = {R1, . . . , Rc} of axis parallel rectangles with breadth bi ≤ 1
and height hi > 0 for i = {1, . . . , c} and a constant H > 0. Does there exist
a packing of R1, . . . , Rc with non-overlapping Ri into a strip of breadth 1
and height of at most H? The rectangles must be packed orthogonally and
may not be rotated.

Clearly, (P) is in NP. Now we reduce (S) to (P):
Let R = {R1, . . . , Rc}, H be an instance of (S). Then, R = {R1, . . . , Rc}, r := 1

H
,

A := H is an instance of (P). Suppose that there exists an overlapping-free placement of
the Ri into a strip of breadth 1 and height at most H. Then, there exists a rectangle
of breadth 1 and height H that covers this placement, uses H area, and has aspect ratio
1
H

. Hence, there exists a packing of the Ri with aspect ratio r = 1
H

that uses at most
A = H area. Now suppose that there exists an overlapping-free placement of the Ri that
uses at most A = H aspect-ratio area according to aspect ratio r = 1

H
. Therefore, all Ri

are covered by a rectangle that uses H area and has aspect ratio exactly 1
H

. Hence, the
breadth and height of this rectangle are exactly 1 and H, respectively. This implies that
there exists an overlapping-free placement of the Ri into a strip of breadth 1 with height
at most H.

Since (P) is NP-complete, the decision problems that correspond to (CDGL) and
(GDGL) are NP-complete, too (this can be seen by setting S := R = {R1, . . . , Rc} in
(CDGL) and by additionally setting k1 = k2 = k3 = 0 in (GDGL)). Since both (CDGL)
and (GDGL) are in NPO, they are NP-hard.

Since we are interested in fast algorithms and not even thought about trying to prove
that P = NP , it is reasonable to concentrate on heuristic solutions of the problems
(GDGL) and (CDGL) in the following.

Motivated by classical methods for solving two-dimensional packing problems [7, 24,
119, 89], several heuristics have been invented to solve (CDGL) by Dogrusoz [32] and
Freivalds et al. [44]. Theorem 3.2 justifies the development of heuristics for this problem.

Dogrusoz [32] identifies the drawing of each component of a graph with its bounding
rectangle. These rectangles are denoted by R1, . . . , R|C| in the following. Dogrusoz [32]
introduces three heuristics for placing these rectangles:

42 3 The Preprocessing Step and the Divide-Et-Impera Strategy

In the strip-packing method, first a fixed width of the drawing area is calculated. This
is done by taking the desired aspect ratio and the sizes of the rectangles into account.
Then, a simple strip-packing heuristic called best-fit decreasing-height is used to place the
rectangles: First, the rectangles are sorted by non-increasing height. Then, the rectangles
are placed left-justified into levels/rows. Each rectangle is placed into the row that implies
the minimum left space to the right border of the strip. A new row is created if the actual
rectangle does not fit in any existing row. The problem of this method is that the width
of the strip has to be fixed in advance, and a bad choice of this width might result in a
placement of the components that uses much aspect-ratio area. The running time of this
method is O(|C| log |C|).

This problem is avoided in the tiling method in which the rectangles are placed into
rows, too. The tiling method starts by creating an initial row and placing the first rectangle
R1 in this row. Then, a decision is made whether the next rectangle should be placed into
one of the existing rows (that with the least utilization) or into a newly created row. The
chosen placement is the placement that uses the fewest aspect-ratio area according to the
desired aspect ratio r. Experimental results in [32] show that the aspect-ratio area could be
reduced by adding a preprocessing step that sorts the rectangles by non-increasing height.
Therefore, this method can also be seen as a variant of the strip-packing method with a
dynamically changing width. The running time of the tiling method is O(|C| log |C|).

The alternate-bisection method recursively subdivides the set of rectangles as follows:
The set of rectangles is split into two sets using the area of the rectangles as a metric and
each partitioning is recursively laid out. This is repeated until a partitioning consists only
of a constant number of rectangles whose placement is trivial. When placing two already
placed partitions relatively, the orientation is alternated from left and right to top and
down. For this step ordered 1D packing is used. For example, ordered 1D packing along
the x-axis corresponds to the process of ordering the rectangles with respect to their x-
coordinates without any overlaps and by preserving the relative position of the rectangles
in order to minimize the width of the drawing area. The running time of this method is
O(|C| log2 |C|).

In contrast to the previous sketched methods, in the polyomino packing approach
Freivalds et al. [44] identify the drawing of each component with a special kind of polygons.
In particular, they assume that the graph is laid out in a plane with an underlying rectan-
gular grid and define a polyomino of a component of a graph as the set of all grid boxes that
are covered or partially covered by the drawing of this component. The algorithm sorts
the polyominos by non-increasing sizes and, then places the polyominos iteratively on a
rectangular grid. In order to prevent overlaps, each grid box that is covered by a polyomino
is marked as occupied, and the algorithm searches for a placement of each polyomino that
covers only non-occupied grid boxes. Freivalds et al. [44] prove that the running time of
the polyomino packing approach is O(|C|2) if a reasonable grid resolution is assumed.

A practical comparison of the strip-packing, tiling, and alternate bisection method
shows “that the tiling method clearly produces the most compact drawings” (see [44] page
385). In practice, only the polyomino packing method uses fewer aspect-ratio area, but
needs significantly longer running times [44].

3.2 The Divide-Et-Impera Strategy 43

3.2.3 The Divide-Et-Impera Strategy for Solving (GDGL)

The previously sketched methods are heuristics that are developed for solving the con-
strained disconnected-graph layout problem. These methods are useful in some applica-
tions, for example, when it is already known that the components are rooted trees, and the
user wants these trees to be drawn oriented so that each parent has a larger y coordinate
than its children. However, our graph-drawing algorithm is designed for drawing general
graphs. Hence, it is reasonable to allow reflections and rotations of each component, in
order to obtain more compact drawings. An example that demonstrates the use of rotation
operations to reduce the aspect-ratio area of a drawing is given in Figure 3.3.

1

1

2

2 3 4

(a)

1

1

2

2

(b)

Figure 3.3: Two drawings of the same graph. Both drawings require the same drawing area 2.
Choosing the desired aspect ratio r = 2, the drawing (a) needs 4 · 2 = 8 aspect-ratio area, while
the drawing (b) that is obtained by translating and rotating drawing (a) with angle π

2 needs only
2 · 1 = 2 aspect-ratio area. This is optimal for this graph and the desired aspect ratio r = 2.

In the following, we will describe a heuristic for solving the general disconnected-graph
layout problem (GDGL).

The Divide Step

Recall that in the postprocessing step we have generated a positive-weighted undirected
simple graph G′ = (V ′, E ′, lzero) that is associated with the original graph G. Furthermore,
a desired aspect ratio r is given by the user. In the divide step the set of components C of
G′ are computed. This can be done by using depth-first search. For later use, we denote
the associated maximal connected subgraphs by G′

1, . . . , G
′
|C|.

The drawings Γ(G′
1), . . . , Γ(G′

|C|) of G′
1, . . . , G

′
|C| will be generated in the multilevel step

and the postprocessing step that are introduced in the following chapters. Hence, we can
assume that these drawings are given in the impera step that succeeds these steps.

The Impera Step

We now describe the algorithm that is designed to obtain a drawing Γ(G) with non-
overlapping components that uses few aspect-ratio area according to the desired aspect

44 3 The Preprocessing Step and the Divide-Et-Impera Strategy

ratio r. It is based on combining the tiling method of Dogrusoz [32] with suitable rotation
operations and works in six phases.

Phase 1: Importation Phase

In the importation phase for each component G′
i = (V ′

i , E
′
i, l

zero) of G′ = (V ′, E ′, lzero)
the drawing Γ(G′

i) is used to obtain a drawing of the corresponding maximal connected
subgraphs Gi = (Vi, Ei) of the original graph G = (V,E). This is done by simply assigning
each node v ∈ Vi the coordinate of the corresponding node v′ ∈ V ′

i . Note that in contrast
to G′ the nodes of G may have predefined non-zero sizes. In order to obtain fast running
times in the following rotation phase, we identify the drawing of each node v by the smallest
circle that surrounds the graphics of v. These circles have already been calculated in the
preprocessing step (see Figure 3.1).

Phase 2: Rotation Phase

In the rotation phase, if G is connected, the drawing of G is rotated so that it uses few
aspect-ratio area (see Figure 3.3). If G is disconnected, the drawings of each Gi are rotated
in order to minimize the drawing area of each component. The idea is that one could expect
to obtain more compact drawings if each components needs a minimum amount of drawing
area. The following lemma is useful to speed up the calculation of the rotation phase.

Lemma 3.3. Given a drawing Γ(G) of a connected graph G and an arbitrary fixed angle α.
In order to transfer Γ(G) into a drawing Γmin(G) — by allowing reflections, translations,
and rotations of Γ(G) — that uses a minimum amount of drawing area (or aspect-ratio
area), rotations of Γ(G) centered at the origin in the range

[

α, α + π
2

)

(or [α, α + π),
respectively) are necessary and sufficient.

Proof. It is obvious that translations, reflections on the x-axis, and reflections on the y-axes
do neither change the area nor the aspect-ratio area of the drawing. Hence, it is sufficient
to concentrate on rotations.

It is clear that rotating a point P = (x, y) with the angle π and π
2

centered at the origin
results in points P ′ = (−x,−y) and P ′′ = (−y, x), respectively. Hence, rotations with angle
π do neither change the drawing area nor the aspect-ratio area of Γ(G), while rotations
with angle π

2
do not change the drawing area of Γ(G) but possibly the aspect-ratio area.

Thus, it suffices to rotate Γ(G) in the range
[

α, α + π
2

)

or [α, α + π) to obtain a drawing
that uses a minimum amount of drawing area or aspect-ratio area, respectively. It is not
possible to obtain drawings that use a minimum amount of drawing area or aspect-ratio
area by rotations with angles in smaller ranges in general, as can be seen in Figure 3.4:
The angle α is set to 0 without loss of generality. The initial drawing Γ(G) of the given
graph G is shown in the right down quadrants of Figures 3.4(a) and 3.4(b). G is nearly
drawn axis parallel to the y-axis. The minimum drawing area of Γ(G) in Figure 3.4(a) is
5 and is obtained by rotating the drawing by angle π

2
− ǫ. The minimum aspect-ratio area

according to the desired aspect ratio 1
5

is also 5 and is obtained by rotating Γ(G) by angle
π − ǫ (Figure 3.4(b)).

3.2 The Divide-Et-Impera Strategy 45

5

5

−5

−5

(a)

5

5

−5

−5

(b)

Figure 3.4: (a) An example in which a rotation with angle π
2 − ǫ is necessary to obtain a drawing

with minimum drawing area. (b) An example in which a rotation with angle π − ǫ is necessary
to obtain a drawing with minimum aspect ratio area according to the desired aspect ratio 1

5 .

Using Lemma 3.3, we calculate a constant number of rotations of each component in the
range

[

0, π
2

)

or [0, π) if G is disconnected or connected, respectively. Then, the placement
that results in the least drawing area or aspect-ratio area, respectively, is stored. In the
following, we associate the drawings of the components {G1, . . . , G|C|} of G with their
bounding rectangles denoted by {R1 . . . , R|C|}. If the given graph G is connected, we
proceed with phase 6, otherwise we proceed with phases 3, 4, 5, and 6.

Phase 3: Alignment Phase

First, in order to avoid that the drawings of two components are drawn too close to each
other, an offset is added to the width and height of the bounding rectangles. Then, each
rectangle Ri with breadth bi and height hi is aligned in the following way: If the desired
aspect ratio r and bi

hi
are both at least one or both smaller than one, nothing is done. In the

complementary case Ri is tipped over by angle π
2
, which is realized by simply exchanging

bi and hi. After this phase all rectangles Ri are aligned so that bi

hi
is at least one (if r ≥ 1)

or less than one (if r < 1).

Phase 4: Sorting Phase

Now the set of all rectangles is sorted by non-increasing height.

Phase 5: Packing Phase

This phase is a variation of the strip-packing method of Dogrusoz [32] in which we addi-
tionally (in some cases) allow each rectangle to be tipped over:

The rectangles are placed orthogonally and left justified into rows in the order that has
been created in the sorting phase. We define the height of a row as the maximum height

46 3 The Preprocessing Step and the Divide-Et-Impera Strategy

among all rectangles that have been inserted into that row. The width of a row is the sum
of the width of all rectangles that are placed in that row. Note that — since the rectangles
are sorted by non-increasing height — the height of a row is the height of the first rectangle
that has been inserted into that row.

The algorithm starts by inserting rectangle R1 into the first row. Three alternatives
are allowed for placing a rectangle Ri, i ≥ 2: First, it could be placed left justified into
a new row. Second, it could be placed left justified into an existing row with minimum
width. Third, in contrast to the method of Dogrusoz [32], Ri could be tipped over by
angle π

2
before placing it left justified into an existing row with minimum width. The last

alternative is only allowed as long as the tipping operation does not increase the height of
this row. For each Ri, we choose the placement alternative that results in the minimum
aspect-ratio area of the actual packing among the three placement alternatives. Figure 3.5
demonstrates this decision process at an example.

1

1

(a)

1

1

(b)

1

1

(c)

Figure 3.5: Possible placement positions when packing the dark rectangle R into an existing
packing. The desired aspect ratio is one. The dashed lines indicate the aspect ratio area of the
different packing alternatives. (a) Packing R into a new row. (b) Packing R into the row with
minimum width. (c) Packing R into the row with minimum width but previously tipping R over.
The minimum aspect-ratio area is obtained by packing alternative (c).

Phase 6: Placement Phase

After the packing phase, an overlapping-free placement of the rectangles Ri is determined.
Since each Ri is dedicated to the drawing of a maximal connected subgraph Gi of G and
the placement of each node v of Gi has been stored in the rotation phase, it is trivial
to calculate the final position of each node v of G. Note that for these calculations we
also have to store whether a rectangle Ri has been tipped over in the alignment phase
or packing phase. Figure 3.6 shows a disconnected graph that has been drawn using the
divide-et-impera strategy.

3.2 The Divide-Et-Impera Strategy 47

Figure 3.6: A disconnected graph with 829 components that is taken from [6] and drawn with
FM3. The desired aspect ratio is 1.5.

3.2.4 Formal Description of the Divide-Et-Impera Strategy

Function Divide Et Impera Strategy shows the pseudocode of the divide-et-impera strat-
egy. Experimental results to the divide-et-impera strategy can be found in Section 7.2

Theorem 3.4 (Divide-Et-Impera Strategy). Suppose that G = (V,E) is a general
graph that may contain nodes of different fixed sizes and shapes, and G′ = (V ′, E ′, lzero)
is the positive-weighted undirected simple graph that is obtained from G in the prepro-
cessing step. Suppose that the set of components of G′ is C, the maximal connected
subgraphs of G′ are G′

1, . . . , G
′
|C|, the aspect ratio of the desired drawing area is r, Adraw

is the algorithm that is used to generate a drawing of all G′
i = (V ′

i , E
′
i, l

zero), and Adraw
needs tdraw(|V ′

i |, |E ′
i|) time and mdraw(|V ′

i |, |E|′i) memory to generate a drawing of graph
G′

i. Then, Function Divide Et Impera Strategy generates a drawing Γ(G) of G with

non-overlapping components in O(|V |+ |E|+ |C| log |C|+∑|C|
i=1 tdraw(|V ′

i |, |E ′
i|)) time using

O(|V | + |E| + |C| + ∑|C|
i=1 mdraw(|V ′

i |, |E ′
i|)) memory.

Proof. In the divide step, the components of G′ = (V ′, E ′, lzero) can be found in O(|V ′| +
|E ′|) = O(|V | + |E|) time using depth-first search, and O(|V | + |E|) memory is needed to
store {G′

1, . . . , G
′
|C|}.

The importation phase of the impera step needs O(|V | + |E|) time. In the rotation
phase only a constant number k of rotations of the maximal connected subgraphs Gi of G
are performed. Hence, this phase can be done in O(

∑|C|
i=1(k · |Vi|)) = O(|V |) time. The

memory requirements of the rotation phase are O(
∑|C|

i=1 |Vi|) = O(|V |). The alignment

48 3 The Preprocessing Step and the Divide-Et-Impera Strategy

phase needs O(|C|) time. The sorting phase can be realized in O(|C| log |C|) time using
merge sort. The packing phase can be realizes in O (|C| log |C|) time by using a heap
data structure [100] for finding and updating the row with the minimum width. Note that
deciding which of the three packing alternatives for a rectangle Ri has to be used can
be done in constant time by storing and updating the width and height of the bounding
rectangle of the actual packing in combination with Formula (1.1) in Section 1.1.4. The
memory requirements for storing the breadth and height of a row are bounded by O(|C|).
Finally, the placement phase needs O(|V | + |E| + |C|) time.

In summary, the total running time of Function Divide Et Impera Strategy is O(|V |+
|E| + |C| log |C| + ∑|C|

i=1 tdraw(G′
i)) and the memory requirements are O(|V | + |E| + |C| +

∑|C|
i=1 mdraw(|V ′

i |, |E ′
i|)).

Function Divide Et Impera Strategy(G,G′, r)

input : a positive-weighted undirected simple graph G′ = (V ′, E ′, lzero) that is
associated with the original graph G = (V,E) and a desired aspect ratio r
of the drawing area

output: a drawing Γ(G) of G with non-overlapping components; except self-loops
(that are drawn as loops), all edges are drawn as straight lines; multiple
edges are drawn parallel; directed edges are drawn as arcs

begin
let C denote the set of components of G′;
begin{Divide Step}

Find the maximal connected subgraphs G′
1, . . . , G

′
|C| of G′;

end
foreach G′

i ∈ {G′
1, . . . , G

′
|C|} do

Γ(G′
i) ← Adraw(G

′
i);

begin{Impera Step}
let {G1, . . . , G|C|} denote the maximal connected subgraphs of G;
for i = 1 to |C| do Γ(Gi) ← Import(Γ(G′

i));
for i = 1 to |C| do Γ(Gi) ← Rotations(Γ(Gi));
if |C| > 1 then

let {R1, . . . , R|C|} be the bounding rectangles of {Γ(G1), . . . , Γ(G|C|)};
for i = 1 to |C| do calculate Ri and Ri ← Align(Ri);
{R1, . . . , R|C|} ← Sort({R1, . . . , R|C|});
P ← Pack({R1, . . . , R|C|});

Γ(G) ← Place(P, {Γ(G1), . . . , Γ(G|C|)})
end

end

Chapter 4

The Multilevel Step

Je höher du wirst aufwärtsgehen,
dein Blick wird immer allgemeiner.
Stets einen größeren Teil wirst du vom Ganzen sehn,
doch alles Einzelne immer kleiner. 1

In this chapter we will present a new multilevel strategy for drawing connected positive-
weighted undirected simple graphs. After some remarks that will motivate the development
of the new multilevel strategy in Section 4.1, we will describe its coarsening phase and its
refinement phase in Section 4.2 and Section 4.3, respectively. Finally, we will give a formal
description of the whole multilevel step in Section 4.4.

4.1 Motivation and Goals

4.1.1 Qualities of Multilevel Strategies

We have already seen in Section 1.3.2 that the existing multilevel methods [49, 50, 64,
132, 133] share the following basic ideas: Given a graph G = (V,E) they create a series
of graphs G =: G0, G1, . . . , Gk with decreasing sizes (the coarsening phase). Then, the
smallest graph Gk at level k is drawn using (a variation of) a classical force-directed single-
level algorithm that we denote by Asingle. This drawing is used to obtain an initial layout
of the next larger graph Gk−1 that is drawn afterwards using Asingle. This process (the
refinement phase) is repeated until the original graph G0 is drawn.

Multilevel methods have been used successfully to speed up force-directed algorithms in
practice. In summary, the fast running times of these methods — in comparison with single-
level algorithms — is caused by the fact that the initial placements of the multilevel graphs
Gi (in particular that of the original graph G0 = G) are frequently close to placements that
induce local energy minima. Hence, only few iterations have to be calculated in Asingle.

1Friedrich Rückert

50 4 The Multilevel Step

This statement is confirmed by experimental results (see Section 7.3) with our multilevel
strategy that will be developed in this chapter.

Another feature of multilevel strategies is that the multilevel graphs are coarse repre-
sentations of the original graph and can be used to visualize the structure of the graph at
several levels of abstraction (see also Section 1.3.4).

4.1.2 Problems of Current Multilevel Strategies

However, the multilevel strategies [49, 50, 64, 132, 133] have some disadvantages regarding
the asymptotic worst-case running time, which is discussed in the following.

Suppose that Asingle needs time tsingle(|V |, |E|) to generate a drawing of a graph G =
(V,E). Then, it is clear that the total running time of any multilevel strategy — which uses
Asingle for drawing the graphs at the multilevels — is bounded below by Ω(tsingle(|V |, |E|)).
Hence, one cannot expect that a multilevel method has a better worst-case running time
as the used single-level algorithm. But what is the worst-case running time of the existing
multilevel methods [49, 50, 64, 132, 133] in relation to the running time of the used force-
directed single-level algorithm?

The coarsening phase of the multilevel method of Walshaw [132, 133] works by suc-
cessively finding maximal matchings and shrinking these edges to nodes. If, for example,
G = (V,E) is a star graph, only one edge is shrunk at each multilevel. Hence, the number
of nodes and edges of the multilevel graphs G0 = (V0, E0), . . . , Gk = (Vk, Ek) are |V0| :=
|V |, |V1| := |V | − 1, . . . , |Vk| := 1, and |E0| := |E|, |E1| := |E| − 1, . . . , |Ek| := 0. We know
from the analysis in Section 1.3.2 that the worst-case running time of the used force-directed
single-level algorithm is O(|V |2 + |E|). Thus, the worst-case running time of Walshaw’s

method [132, 133] is
∑|V |−1

i=0 Asingle(|Vi|, |Ei|) = O(|V |(|V |2 + |E|)) = O(|V | · Asingle(V,E)).
Suppose now one could improve Asingle so that it needs only linear time. Then the multilevel

strategy of Walshaw [132, 133] would need
∑|V |−1

i=0 Asingle(|Vi|, |Ei|) = O(|V |(|V | + |E|) =
O(|V | · Asingle(|V | + |E|) time. Hence, in both cases the worst-case running time of the
multilevel strategy is a factor |V | slower than that of the used single-level algorithm.

The construction of the MIS-filtration that is used in the coarsening phase of the method
GRIP by Gajer and Kobourov [50] and Gajer et al. [49] has not been analyzed in terms of
the size of the input graph. Hence, the asymptotic running time of the multilevel strategy
is unknown.

The multilevel strategy of Harel and Koren [64] is based on a Θ(|V |2) preprocessing
step which makes further analysis of its running time marginal.

4.1.3 A New Multilevel Strategy

As the previous discussion has shown, the best we could do is to develop a multilevel
strategy that provably has the same asymptotic running time as the single-level algorithm
Asingle that is used to draw all multilevel graphs Gi with i = 0, . . . , k.

Since each multilevel graph Gi should be closely related to the next smaller and next
larger graph Gi−1 and Gi+1, respectively, all multilevel methods [49, 50, 64, 132, 133] exploit

4.2 The Coarsening Phase 51

the structure of the given graph (by calculating a MIS-filtration, approximating k-centers,
and finding maximal matchings, respectively) to reach this goal. All these strategies are
based on the implicit assumption that the used force-directed single-level algorithm tends
to preserve the desired edge length. And, of course, this assumption is reasonable, because
this is one of the most important goals of force-directed methods.

Our multilevel strategy is also based on this assumption, but is designed to require
only the same asymptotic running time as the used force-directed single-level algorithm.
The basic idea of our multilevel strategy is as follows: In the coarsening phase we will
construct a series of connected positive-weighted undirected simple graphs G =: G0, . . . , Gk

with decreasing sizes by partitioning the node set of each graph Gi so that the induced
subgraphs are disjoint, connected, and have small diameter. These subgraphs are shrunk
to nodes in order to obtain the next smaller graph Gi+1. Thereby, reasonable values of the
edge weights of the multilevel graphs Gi+1 are calculated. Furthermore, useful information
is generated that is needed to obtain good initial placements in the refinement phase.

4.2 The Coarsening Phase

As a result of the divide-et-impera step we can suppose that the given graph G = (V,E,
lzero) is a connected positive-weighted undirected simple graph. In the remainder of this
chapter (according to the notation in Section 1.1.2) we denote the distances in the under-
lying unweighted graph that corresponds to G by the graph-theoretic distances in G. We
first explain how G can be partitioned into disjoint small subgraphs that we will denote by
solar systems, before describing the use of this partitioning for constructing the multilevel
graphs.

4.2.1 Constructing Galaxies

Definition 4.1 (Galaxies, Solar Systems, and Their Elements). Suppose that G =
(V,E, lzero) is a connected positive-weighted undirected simple graph, and U ⊆ V . The
vertex-induced subgraph S := G[U] is called solar system if the following conditions hold:
Exactly one node in U is marked as sun node (or s-node). Each of its neighbors is marked
as planet node (p-node) or as planet-with-moon node (pm-node) and is also contained in
U . The other nodes in U are marked as moon nodes (or m-nodes), each m-node is required
to have graph-theoretic distance two to the s-node in U , and each m-node is assigned to
exactly one pm-node in U . Furthermore, for each pm-node exists at least one m-node that
is assigned to it.

A galaxy is a partitioning of the node set V of a connected positive-weighted undirected
simple graph G = (V,E, lzero) into disjoint subsets U1, . . . , Ul so that the vertex-induced
subgraphs Si := G[Ui] for i ∈ {1, . . . , l} are solar systems. All edges e = (vi, vj) with
vi, vj ∈ Ui are called intra solar-system edges, while all edges e = (vi, vj) with vi ∈ Ui, and
vj ∈ Uj and i 6= j are called inter solar-system edges.

52 4 The Multilevel Step

In the remainder of this chapter we will visualize these terms for a better understanding
as follows: The s-nodes are drawn as big yellow disks, p-nodes as medium sized blue disks,
pm-nodes as medium sized dark-blue disks, and m-nodes as small grey disks. The intra
solar-system edges are drawn as black solid edges, while the inter solar-system edges are
drawn as red dotted edges. An intra solar system edge that connects an m-node with its
associated pm-node is drawn as a directed edge indicating that this m-node is associated
with this pm-node. Figure 4.1 demonstrates these terms at an example. Figure 4.1(b)
shows a solar system of the undirected simple graph of Figure 4.1(a). Figure 4.1(c) shows
a galaxy partitioning of a connected undirected simple graph.

(a) (b) (c)

Figure 4.1: (a) A part of a graph G and (b) a solar system S of G, induced by one s-node, three
p-nodes, two pm-nodes, and two m-nodes. (a) A galaxy consisting of 13 solar systems.

Lemma 4.2 (Galaxy Partitioning (1)). A galaxy partitioning of a connected positive-
weighted undirected simple graph G = (V,E, lzero) can be constructed in O(|V | + |E|) time
using O(|V |) memory, and the graph-theoretic distance between any two nodes of a solar
system is at most four.

Proof. The statement on the graph-theoretic distance between two nodes in a solar system
follows directly from the definition of solar systems. The other part of the statement will
be shown by describing a construction algorithm:

First, the algorithm creates the sun nodes. Therefore, a candidate set V ′ that is a
copy of V is created, and a first sun node s1 is selected from V ′ randomly with uniform
probability. An alternative technique for selecting the sun nodes from V ′ is described in
Section 4.2.2. Then, s1 and all nodes that have graph-theoretic distance at most two to s1

in G are deleted from V ′. Afterwards, the algorithm iteratively selects the next sun nodes
in the same way, until V ′ is empty, and Suns = s1, . . . , sl ⊂ V is the list of all sun nodes.
Second, for each si ∈ Suns all its neighbors in V are labeled as planet nodes. Finally, there

4.2 The Coarsening Phase 53

might exist a subset M ⊂ V that consists of nodes, which are neither labeled as planet
nodes nor as sun nodes. Each node m ∈ M is neighbor of at least one node v ∈ V that
has been marked as planet node. (It is clear that m is no neighbor of a sun node since
otherwise it would have been marked as planet node. If m would have only unmarked
neighbors, the construction procedure of the sun nodes and planet nodes would imply that
every sun node would have graph-theoretic distance at least 3 to m. Hence, m or one of
its neighbors would have been marked as sun node, which is a contradiction.) Thus, the
nodes in M can be marked as moon nodes. Each moon node is assigned to the planet
node that is its nearest neighbor in G, and this planet node is relabeled as pm-node. It
is clear that this algorithm needs O(|V | + |E|) time using O(|V |) memory for storing the
candidate set V ′.

4.2.2 Collapsing of Solar Systems

We now describe how the series G =: G0, . . . , Gk of connected positive-weighted undirected
simple multilevel graphs is constructed by using galaxy partitionings. Given a galaxy
partitioning of Gi = (Vi, Ei, l

zero
i), we construct a smaller graph Gi+1 = (Vi+1, Ei+1, l

zero
i+1)

by collapsing (shrinking) the node set of each solar system into one single node and deleting
multiple edges. It remains to be described how the edge weights of Gi+1 are created. This
is done by measuring the length of special paths in Gi that connect the sun nodes of two
distinct solar systems. It is important to note that (as a product of the preprocessing step)
the given edge weights of G = G0 are the zero-energy length of the springs in our force
model which are defined to reflect the desired edge length. Hence, the new edge weights
should reflect the desired edge length, too.

Definition 4.3 (Inter Solar-System Path, Ancestor, Descendant). Suppose that
e = (v, w) is an inter solar-system edge in a connected positive-weighted undirected simple
graph G = (V,E, lzero) and that v belongs to the solar system of sun node s, and w belongs
to the solar system of sun node t of G. The inter solar-system path Pe that corresponds
to edge e is defined as follows: If both v and w are planet nodes or pm-nodes, then Pe :=
(s, v, w, t). If v is a moon node with dedicated pm-node u and w is a planet or pm-node,
then Pe := (s, u, v, w, t). If v is a planet or pm-node and w is a moon node with dedicated
pm-node x, then Pe := (s, v, w, x, t). Finally, if v is a moon node with dedicated pm-node
u and w is a moon node with dedicated pm-node x, then Pe := (s, u, v, w, x, t).

Suppose that a node si+1 of Gi+1 is obtained by collapsing a solar system Si of Gi.
Then, si+1 is called the descendant of each node that is contained in Si, while each node
that is contained in Si is called an ancestor of si+1.

We initialize the edge weight of an edge ei+1 = (si+1, ti+1) of Gi+1 as follows: Suppose
that Si and Ti are solar systems of Gi and that si+1 and ti+1 are obtained by shrinking Si

and Ti, respectively, to nodes. Three cases can arise:
If Si and Ti are not connected by an inter solar-system edge in Gi directly, si+1 and

ti+1 also will not be connected by an edge in Gi+1, and, hence, no edge weight has to be
calculated. If Si and Ti are connected by exactly one inter solar-system edge ei in Gi,

54 4 The Multilevel Step

then si+1 and ti+1 will be connected by an edge ei+1 = (si+1, ti+1) in Gi+1, and we set
lzeroi+1 (ei+1) := lzeroi (Pei

). If Si and Ti are connected by more than one inter solar-system
edge in Gi (namely by {e1

i , . . . , e
k
i }), then si+1 and ti+1 will be connected by an edge

ei+1 = (si+1, ti+1) in Gi+1, and we set lzeroi+1 (ei+1) := (lzeroi (Pe1
i
) + . . . + lzeroi (Pek

i
))/k.

Figure 4.2 demonstrates the initialization of the edge weights at an example: Only one
inter solar-system edge ei = (ui, vi) connects the two solar systems of Gi in Figure 4.2(a).
The corresponding inter solar-system path is Pei

= (si, ui, vi, ti) and has length 4. Suppose
that si+1 and ti+1 are nodes of Gi+1 that are obtained by shrinking the two solar systems
that are shown in Figure 4.2(a) to nodes. Then, si+1 and ti+1 are the descendants of the
nodes of these two solar systems and the edge weight of the edge ei+1 = (si+1, ti+1) is set to
lzeroi (Pei

) = 4 (Figure 4.2(b)). In Figure 4.2(c) three inter solar-system edges (e1
i = (ui, vi),

e2
i (xi, vi), and e3

i = (xi, yi)) connect the two shown solar systems of Gi. The corresponding
paths are Pe1

i
= (si, ui, vi, ti), Pe2

i
= (si, wi, xi, vi, ti), and Pe3

i
= (si, wi, xi, yi, ti), and their

length are 4, 6, and 5, respectively. Hence, the weight of the edge ei+1 = (si+1, ti+1) of
Gi+1 is set to 4+6+5

3
= 5 (Figure 4.2(d)).

The Stopping Criterion

The partitioning and collapsing process can be iterated until the actual graph Gi contains
less than a constant number c of nodes. However, motivated by arguments that will be
explained in Section 4.3, the partitioning and collapsing process is stopped, whenever either
the actual graph Gi contains less than a constant number c of nodes or if the following
statement holds:

Given a positive integer constant d and a rational constant s with 1 < s ≤ 2. There
exist more than d multilevel graphs Gj ∈ {G0, . . . , Gi−1} so that |Ej+1| > |Ej|/s.

Improving the Partitioning Process

We concentrate on the partitioning process again. In the proof of Lemma 4.2, we have
described an algorithm that creates a galaxy partitioning by choosing the set of sun nodes
from the candidate set V ′ randomly with uniform probability. This process will work in
any case, however, practical experiments have shown that the quality of the generated
drawings could be improved by introducing a different strategy for selecting the sun nodes
from the candidate set V ′. The goal of the new strategy is to select the sun nodes from V ′

so that the coarsening process does not need too few multilevels. We need the following
definitions:

Definition 4.4 (Mass, Star Mass). Suppose, G0, . . . , Gk is a series of multilevel graphs
that is created by successively collapsing solar systems, like described above. The mass of
a node v0 of the multilevel graph G0 is set to one. For i ∈ {0, . . . , k − 1} The mass of a
node vi+1 of the multilevel graph Gi+1 is defined as the sum of the masses of its ancestors
in Gi. We define the star mass of a node vi in the multilevel graph Gi as the sum of the
masses of vi and its neighbors.

4.2 The Coarsening Phase 55

si ti

ui vi
1 12

(a) A part of Gi

si+1 ti+1

4

(b) The corresponding part of
Gi+1

si ti

ui vi

wi

xi
yi

1 1

1
1

1

2

2

3

(c) A part of Gi

si+1 ti+1

5

(d) The corresponding part of
Gi+1

Figure 4.2: Two examples that visualize the calculation of the edge weight of an edge of Gi+1

using the length of inter solar-system paths of Gi.

For example, assuming that i = 0 in Figure 4.2, the masses of the nodes si+1 and ti+1

in Figure 4.2(d) are 7 and 6, respectively. Under the same assumption the star masses of
the nodes si and ti in Figure 4.2(c) are 6 and 6, respectively. This example also shows that
the star mass can serve as a coarse approximation of the mass of an entire solar system.
Note that for each multilevel graph Gi the sum of the masses of all its nodes is equal to
the number of nodes of G = G0.

The new strategy for selecting the sun nodes (that we denote by Select By Star Mass)
is a greedy method that iteratively selects a sun node s from V ′ so that the solar system of
s will probably have a comparatively low mass. Hence, one can hope that the coarsening
process will not be too fast. Select By Star Mass works as follows:

Let Gi = (Vi, Ei, l
zero
i), and the candidate set V ′ is a copy of Vi. First, the star mass

of each node of Gi is calculated. Then, the algorithm randomly selects a constant number
of nodes of V ′ and selects this node s of the sample as sun node that has the lowest star
mass. After deleting s and all nodes that have graph-theoretic distance at most two to

56 4 The Multilevel Step

s from V ′, the next random sample of constant size is chosen from V ′ and so forth. The
process ends, when V ′ is empty.

Corollary 4.5 (Galaxy Partitioning (2)). A galaxy partitioning of a connected positive-
weighted undirected simple graph G = (V,E, lzero) with a given mass of each node v ∈ V
can be constructed in O(|V | + |E|) time with O(|V |) memory requirements by using the
strategy Select By Star Mass for creating the sun nodes.

Proof. Creating the star masses can be done O(|E|) time. Since each random sample
contains only a constant number of nodes, finding the node with the minimum star mass
in this random sample can be done in constant time. Hence, all sun nodes can be found in
linear time. The memory requirements for storing the masses and star masses are linear
in |V |. The remainder of the proof follows from Lemma 4.2 and the fact that the other
parts of the construction algorithm are identical to those of the algorithm described in the
proof of Lemma 4.2.

Generating useful Information for the Refinement Phase

In the refinement phase we have to generate an initial placement of the nodes of Gi using
the placement of the nodes of Gi+1. In order to do this satisfactory, we will additionally
store information about the relative positions of the p-, pm-, and m-nodes of Gi on the
inter solar-system paths of Gi.

In particular, suppose a p-, pm-, or m-node v is contained in an inter solar-system path
P = (s, . . . , v, . . . , t) connecting the sun nodes s and t. If P has length p, and the distance
from s to v in P is l, then we store the quadruple (v, s, t, l

p
). This quadruple indicates that

the length of the sub-path (s, . . . , v) of the inter solar-system path P = (s, . . . , v, . . . , t) is
exactly l

p
of the length of the path P . If v belongs to more than one inter solar-system

path, such a quadruple is stored for each path that contains v. For later use we denote the
list of a node v that contains these quadruples by the relative-path-position list of node v
and the last entry of a quadruple as the position factor of this quadruple.

For example, the relative-path-position lists of the nodes ui and vi in Figure 4.2(a) are
{(ui, si, ti,

1
4
)} and {(vi, si, ti,

3
4
)}, respectively. The relative-path-position lists of the nodes

wi and xi in Figure 4.2(c) are {(wi, si, ti,
1
6
), (wi, si, ti,

1
5
)} and {(xi, si, ti,

2
6
), (xi, si, ti,

2
5
)},

respectively. Figure 4.3 exemplifies the coarsening phase.

Lemma 4.6 (The Coarsening Phase). Suppose, Gi = (Vi, Ei, l
zero
i) is a connected

positive-weighted undirected simple graph. Then, a connected positive-weighted undirected
simple graph Gi+1 = (Vi+1, Ei+1, l

zero
i+1) and for each node vi ∈ Vi a relative-path-position list

can be constructed by using the previously described partitioning and collapsing methods in
O(|Vi|+ |Ei|) time using O(|Vi|+ |Ei|) memory. Furthermore, if |Vi| ≥ 2, then |Vi+1| ≤ |Vi|

2
.

Proof. It follows from Corollary 4.5 that a galaxy partitioning of Gi can be constructed
in O(|Vi| + |Ei|) time using O(|Vi|) memory. The collapsing of the solar systems and the
deletion of the multiple edges from Gi+1 in the collapsing phase can be done in linear

4.2 The Coarsening Phase 57

time, too. The latter can be realized by using the same techniques as described in the
proof of Theorem 3.1. Since the graph-theoretic distance between any two nodes in a solar
system is at most four (see Lemma 4.2), each inter solar-system path contains at most five
edges. Since there exist at most |Ei| inter solar-system edges, the number of inter solar-
system paths is at most |Ei|, too. Hence, all nodes of the inter solar-system paths can be
identified in O(|Ei|) time, and the sum of the length of all relative-path-position lists is
bounded above by O(|Ei|). Each quadruple in a relative-path-position lists of a node can
be generated in constant time. Thus, the construction of Gi+1 and the construction of the
relative-path-position lists can be done in O(|Vi| + |Ei|) time. The memory requirements
for storing these lists are O(|Ei|).

The second statement can be seen as follows: Every node of Gi belongs to a solar
system in the galaxy partitioning of Gi. Furthermore, since Gi is connected — under the
assumption that |Vi| ≥ 2 — every solar system of Gi contains at least two nodes. Thus,

by the description of the collapsing process |Vi+1| ≤ |Vi|
2

.

(a) G =: G0 (b) A galaxy partitioning
of G0

(c) G1

(d) A galaxy partitioning
of G1

(e) G2

Figure 4.3: The coarsening phase on a grid graph with 64 nodes. The edge weights are hidden.

58 4 The Multilevel Step

4.3 The Refinement Phase

Suppose, the series of multilevel graphs that was created in the coarsening phase is G =
G0, . . . , Gk. Furthermore, suppose we have given a force-directed single-level algorithm
Asingle that will be used to generate a drawing of each multilevel graph Gi = (Vi, Ei, l

zero
i).

Then, the refinement phase works as follows:

First, the smallest graph Gk is drawn with Asingle starting with a random initial place-
ment. Afterwards, the next larger graph Gk−1 is drawn. This is done in two steps. First,
a good initial placement of the nodes of Gk−1 is created by using the placement of the
nodes in the drawing of Gk and by using the information that is stored in the relative-
path-position lists of the nodes of Gk−1. Second, Asingle is used to generate a drawing
of Gk−1 starting with the generated initial placement. Then, the next larger graphs are
successively drawn, until a drawing of the original graph G = G0 is obtained.

Since the force-directed single-level algorithm Asingle will be detailedly explained in
Chapter 5, we only have to explain how the initial placements of the nodes of a multilevel
graph Gi with i ∈ {0, . . . , k − 1} are generated.

Suppose, we have given a drawing of Gi+1 = (Vi+1, Ei+1, l
zero
i+1) and the relative-path-

position list of each node of Gi = (Vi, Ei, l
zero
i). The initial placement of the nodes of Gi is

obtained in two steps:

First, each sun node si of Gi is placed at the position of its ancestor si+1 in the drawing
of Gi+1.

Second, the other nodes of Gi (that are p-, pm-, or m-nodes) are placed. This is done by
using the positions of the already placed sun nodes of Gi in combination with the relative-
path-position lists. To be more precise, suppose, the next node that has to be placed is
vi ∈ Vi, its dedicated sun node is si ∈ Vi, and pos(si) denotes the position of si. Three
cases can arise: In the first case the relative-path-position list of vi is empty. In this case
vi is placed randomly on a circle with radius lzeroi (si, vi) with center pos(si). In the second
case the relative-path-position list of vi contains exactly one quadruple (vi, si, ti, λi). Then,
vi is placed on the line that connects the sun nodes si and ti in the actual drawing of Gi.
The exact position of vi on this line is given by the following formula:

pos(vi) := pos(si) + λi(pos(ti) − pos(si)) (4.1)

Finally, if the relative-path-position list of vi contains more than one quadruple (namely
{q1, . . . , ql}), first for each quadruple qj a position pj is calculated according to For-
mula (4.1). Then, vi is placed at the barycenter of these positions (namely pos(vi) :=
(p1 + . . . + pl)/k). Additionally, in all three cases a small random noise is added to the
calculated positions of the p-, pm-, and m-nodes.

Figure 4.4 exemplifies the calculation of an initial placement of the nodes of a graph
Gi. The sun nodes s1, s2, and s3 of Gi in Figure 4.4(c) are placed at the positions of their
ancestors (see Figure 4.4(a)). The relative-path-position list of node u in Gi is empty,
and u has distance one (see Figure 4.4(b)) to its dedicated sun node s1. Hence, u is
placed at a random position with radius one centered at s1 (see Figure 4.4(c)). Node v is

4.4 Formal Description of the Multilevel Step 59

part of exactly one inter solar-system path of Gi (that connects s1 and s2). Its relative-
path-position list contains one quadruple (v, s1, s2,

1
3
). Hence, v is placed on the line that

connects s1 and s2 as shown in Figure 4.4(c). Node w is part of two inter solar-system
paths of Gi (that connect the solar systems of s1 with that of s2 and s3, respectively). Its
relative-path-position list contains the two quadruples (w, s1, s2,

1
4
) and (w, s1, s3,

1
3
). The

resulting barycenter position of w is shown in Figure 4.4(c). The other planet nodes of Gi

are placed analogue. A complete example of the refinement phase is shown in Figure 4.5.

3

3.53.5

(a)

11

1 1
1

1 1 1

11

1
2 2 u

v

w
s1

s2

s3

(b)

1
1 1

1

1

1

1

1
1

1

1

22
uv

w s1

s2

s3

(c)

Figure 4.4: (a) A drawing of Gi+1. (b) The graph Gi. (c) The initial placement of the nodes of
Gi.

Lemma 4.7 (Refinement Phase). Given a series of connected positive-weighted undi-
rected simple graphs G0, . . . , Gk as described in the coarsening phase, an integer i ∈
{0, . . . , k − 1}, a drawing of Gi+1, for each node of Gi = (Vi, Ei, l

zero
i) a relative-path-

position list, and a force-directed single-level algorithm Asingle. Suppose that Asingle needs
time tsingle(|Vi|, |Ei|) and memory msingle(|Vi|, |Ei|) to generate a drawing of Gi starting
with an arbitrary initial placement of the nodes of Gi. Then, the refinement phase needs
time O(|Vi|+ |Ei|) + tsingle(|Vi|, |Ei|) to generate a drawing of Gi and uses msingle(|Vi|, |Ei|)
memory.

Proof. If i = k, a random initial placement of the nodes of Gi can be found in O(|Vi|)
time. If i 6= k, only constant time is needed to obtain an initial placement of each sun
node of Gi. The time that is needed to obtain initial placements of the other nodes of
Gi is proportional to the sum of the length of all relative-path-position lists of the nodes
of Gi, which is bounded above by O(|Ei|) (see proof of Lemma 4.6). Except the memory
requirements of Asingle, no additional memory is needed.

4.4 Formal Description of the Multilevel Step

Now we have everything on hand to give a formal description of the multilevel step (see
Function Multilevel Step). An experimental study of the multilevel step will be presented
in Section 7.3.

60 4 The Multilevel Step

(a) Drawing of G2 (b) Initial placement of G1 (c) Drawing of G1

(d) Initial placement of G0 (e) Drawing of G0 (f) The final drawing of G

Figure 4.5: The refinement phase on a grid graph with 64 nodes. The edge weights are hidden.

Theorem 4.8 (Multilevel Step). Suppose that G is a connected positive-weighted undi-
rected simple graph and Asingle is a force-directed single-level algorithm that needs time
tsingle(|V |, |E|) and memory msingle(|V |, |E|) for drawing a graph G = (V,E) starting with
an arbitrary initial placement p(V) := (pv)v∈V of the nodes of G. Furthermore, suppose
that Asingle is used for drawing the multilevel graphs in the refinement phase of the mul-
tilevel step. Then, Function Multilevel Step generates a straight-line drawing Γ(G) in
Θ(tsingle(|V |, |E|)) time using O(|V | + |E|) + msingle(|V |, |E|) memory.

Proof. Suppose that the multilevel graphs that are generated in the multilevel step are
G =: G0 = (V0, E0, l

zero
0), . . . , Gk = (Vk, Ek, l

zero
k). The total running time tmult of the

multilevel step is given by the following formula:

tmult(|V |, |E|) =
k−1
∑

i=0

tcoarse(|Vi|, |Ei|) + tsingle(|Vk|, |Ek|) +
k−1
∑

i=0

trefine(|Vi|, |Ei|) (4.2)

4.4 Formal Description of the Multilevel Step 61

Here tcoarse (|Vi|, |Ei|) denotes the time that is needed to create the multilevel graph Gi+1

from Gi in the coarsening phase, and trefine(|Vi|, |Ei|)) denotes the time that is needed to
obtain a drawing of Gi in the refinement phase.

We know from Lemma 4.6 that tcoarse(|Vi|, |Ei|) = O(|Vi|, |Ei|) and from Lemma 4.7
that trefine(|Vi|, |Ei|) = O(|Vi| + |Ei|) + tsingle(|Vi|, |Ei|). Hence, Formula 4.2 simplifies to

tmult(|V |, |E|) ≤
k

∑

i=0

(O(|Vi|, |Ei|) + tsingle(|Vi|, |Ei|)). (4.3)

Furthermore, we know from Lemma 4.6 that if |Vi| ≥ 2, then |Vi+1| ≤ |Vi|
2

for all

i = 0, . . . , k − 1. Let us for a moment assume that additionally |Ei+1| ≤ |Ei|
2

for all
i = 0, . . . , k − 1. Then, Formula 4.2 becomes

tmult(|V |, |E|) ≤
k

∑

i=0

(

O

(|V |
2i

,
|E|
2i

)

+ tsingle

(|V |
2i

,
|E|
2i

))

≤
(

k
∑

i=0

1

2i

)

· (O(|V |, |E|) + tsingle(|V |, |E|))

≤ 2(O(|V |, |E|) + tsingle(|V |, |E|))
= O(tsingle(|V |, |E|)).

(4.4)

The last equality in Formula 4.4 holds since tsingle(|V |, |E|) = Ω(|V |+ |E|), and the sec-
ond inequality holds for sufficiently large values of |V | and |E|. Thus, since tmult(|V |, |E|) =
Ω(tsingle(|V |, |E|), we get that tmult(|V |, |E|) = Θ(tsingle(|V |, |E|)).

Certainly, the assumption |Ei+1| ≤ |Ei|
2

for all i = 0, . . . , k − 1 cannot be guaranteed in

general. Let us weaken this assumption so that |Ei+1| ≤ |Ei|
s

for all i = 0, . . . , k − 1 and
some rational constant s with 1 < s ≤ 2. In this case the same argumentation that has
been used to transfer Formula 4.3 to Formula 4.4 can be used to obtain

tmult(|V |, |E|) ≤
(

s

s − 1

)

(O(|V |, |E|) + tsingle(|V |, |E|)) = O(tsingle(|V |, |E|)). (4.5)

Thus, even under the weakened assumption we get that tmult(|V |, |E|) = Θ(tsingle(|V |, |E|)).
If this assumption is weakened further so that |Ei+1| ≤ |Ei|

s
for all but a constant number

d of i ∈ {0, . . . , k − 1}, the equality tmult(|V |, |E|) = Θ(tsingle(|V |, |E|)) holds as well.
Hence, in order to guarantee that tmult(|V |, |E|) = Θ(tsingle(|V |, |E|)), we modeled the

stopping criterion of the while-loop in the coarsening phase (see Section 4.2.2 and Func-
tion Multilevel Step) so that the coarsening phase stops if the weakest assumption is
violated.

Since this assumption (respectively the stopping criterion) implies that
∑k

i=0(|Vi|,
|Ei|) = O(|V | + |E|), the memory requirements of the multilevel step are linear in |V | +
|E| + msingle(|V |, |E|).

62 4 The Multilevel Step

Remark 4.9. Finally, we want to examine the running time of a variation of the multi-
level step, in which our stopping criterion is replaced by a naive criterion that stops the
coarsening process if and only if the actual multilevel graph Gi contains less than a con-
stant number c ≥ 2 of nodes: Since it is known from Lemma 4.6 that |Vi+1| ≤ |Vi|

2
for

all i = 0, . . . , k − 1 with |Vi| ≥ 2, the number k of multilevel graphs is bounded above by
log |V0| = log |V |. Hence, if — in the worst case — additionally |Ei| = Θ(|E|) for all
i = 0, . . . , k, the total running time of the variation of the multilevel step would be bounded
above by tmult(|V |, |E|) = O(log |V | · tsingle(|V |, |E|)).

Function Multilevel Step(G,Asingle)

input : a connected positive-weighted undirected simple graph G = (V,E, lzero)
and a force-directed single-level algorithm Asingle

output: a straight-line drawing Γ(G) of G

begin
begin{Coarsening Phase}

i ← 0;
Gi ← G;
while not Stopping Criterion(Gi) do

create a galaxy partitioning of Gi using Select By Star Mass;
create Gi+1 by collapsing the solar systems of Gi;
create the relative-path-position list for each node of Gi;
i ← i + 1;

end
begin{Refinement Phase}

let {G0 = (V0, E0, l
zero
0), . . . , Gk = (Vk, Ek, l

zero
k)} be the set of multilevel

graphs;
generate a random initial placement p(Vk) := (pv)v∈Vk

of the nodes of Gk;
Γ(Gk) ← Asingle(Gk, p(Vk));
i ← k − 1;
while i ≥ 0 do

generate an initial placement p(Vi) := (pv)v∈Vi
of the nodes of Gi by using

Γ(Gi+1) and the relative-path-position lists of the nodes of Gi;
Γ(Gi) ← Asingle(Gi, p(Vi));
i ← i − 1;

end
end

Chapter 5

The Force-Calculation Step

Niemand weiß, wie weit seine Kräfte gehen,
bis er sie versucht hat. 1

In this chapter we will describe the force-directed single-level algorithm that is used in
the refinement phase of the multilevel step. After the description of the basic framework
of this algorithm in Section 5.1, we will concentrate on its most important part — the
approximation of the repulsive forces acting between all pairs of nodes. We will review
existing methods for solving this problem in Section 5.2, before we will describe a new
approximative method in Section 5.3 and summarize our results in Section 5.4.

5.1 The Framework of the Force-Calculation Step

5.1.1 Motivation and Goals

As we have seen in Section 1.2.2, the classical force-directed single-level algorithms are not
suited for drawing large graphs because their asymptotic running time is at least quadratic
in general. Hence, these algorithms are also not suited to serve as parts in multilevel
frameworks. Consequently the other multilevel methods (that have been sketched in Sec-
tion 1.3.2) use variations of these classical methods in the refinement phases:

Gajer et al. [49, 50] and Harel and Koren [64] use variations of the complete spring
model of Kamada and Kawai [80], which ignore lots of the Θ(|V |2) springs that are defined
in the original model [80], to speed up the computation. In particular, no spring forces are
calculated between nodes that have a large graph-theoretic distance.

The force model of Walshaw [132, 133] is based on pairwise repelling particles and
identifying edges with springs, like in the methods of Eades [35] and Fruchterman and

1Johann Wolfgang von Goethe

64 5 The Force-Calculation Step

Reingold [47]. In order to speed up the computation, the Grid-Variant Algorithm of
Fruchterman and Reingold [47] is used that ignores the repulsive forces acting between
particles that are placed geometrically far away from each other.

In summary, all these variations of the classical single-level algorithms are only crude
approximation schemes, since the forces that act on a node v due to all nodes that are
far away (either in a graph-theoretic sense or in a geometrical sense) are ignored. As a
consequence of this, the energy minimization in the refinement phases of the corresponding
multilevel frameworks is only local. This obvious circumstance has already been noted by
Harel and Koren (see [66] page 216), who have stated that the methods [49, 62, 64, 132]
“improve running times by rapidly constructing a simplified initial globally nice layout and
then refining it locally”.

In contrast to this, Tunkelang [127, 128] and Quigley and Eades [110] have used the
repulsive-force-approximation method of Barnes and Hut [8] to approximate the repulsive
forces acting in their model of charged particles and springs accurately. In particular, the
force contribution of particles that are placed far away is calculated as a part of a group
force (see Section 1.3.1). However, they did not embed their algorithm in a multilevel
framework.

Our force model is also based on a system of pairwise repelling particles and on identify-
ing edges with springs (see Section 2.2.2), and our single-level algorithm is motivated by the
work of Tunkelang [127, 128] and Quigley and Eades [110]. The idea of our force-directed
single-level algorithm is to overcome the quadratic running time of a naive approach for
calculating the repulsive forces acting between all pairs of charged particles by inventing
a method that approximates the repulsive forces in sub-quadratic time — but without
ignoring the forces of particles that are placed far away. This goal has not been reached
by any force-directed algorithm (compare Sections 1.2 and 1.3) we are aware of. As a
consequence of this — in contrast to the other multilevel methods [49, 50, 64, 132, 133]
— the energy minimization in the refinement phase in our multilevel framework can be
described as a global refinement phase. We will examine in Section 7.7 if — in practice
— the combination of our multilevel step with an accurate approximative single-level al-
gorithm is advantageous in comparison with other multilevel methods that are based on
local refinement phases only.

5.1.2 The Algorithm Embedder

Suppose, we have given a positive-weighted undirected simple graph G = (V,E, lzero) and
an initial placement p(V) := (pv)v∈V of the nodes of G (as a result of the multilevel step
that we have described in Chapter 4). Furthermore, suppose that G is the multilevel graph
at level l ∈ {0, . . . , k} in a series of k + 1 multilevel graphs.

According to the definition of the absolute values of the forces in our force model (see
Section 2.2.2), we define the repulsive forces that act on a node v at position pv due to
a node u at position pu and the spring forces that act on v due to a spring e = (u, v) as
follows:

5.1 The Framework of the Force-Calculation Step 65

F u
rep(v) =

{

pv−pu

‖pv−pu‖
2 if pu 6= pv

0 otherwise

F
e=(u,v)
spring (v) =

{

− log
(

‖pv−pu‖
lzero(e)

)

· ‖pv − pu‖ · (pv − pu) if pu 6= pv

0 otherwise

(5.1)

Definition 5.1 (Resulting Forces, Equilibrium State of the Forces, and Others).
Suppose, p(V) = (pv)v∈V is a placement of the nodes of a positive-weighted undirected
simple graph G = (V,E, lzero). For each node v ∈ V we define

Frep(v) =
∑

u∈V \v

F u
rep(v) and Fspring(v) =

∑

u∈adj(v)

F
(u,v)
spring(v)

as the repulsive force and spring force, respectively that act on v in the system induced by
p(V) and G. If λrep and λspring are positive constants, called repulsion factor and spring
stiffness factor, then Fres(v) = λrep · Frep(v) + λspring · Fspring(v) denotes the resulting (or
total) force that acts on v in the system induced by p(V) and G. A node v is in an
equilibrium state of the forces if Fres(v) = 0.

Algorithm 5: Embedder(G, p(V), l, k)

input : a positive-weighted undirected simple graph G = (V,E, lzero), an ini-
tial placement p(V) := (pv)v∈V of the nodes of G, a repulsive-forces-
approximation algorithm Aapprox, and integer constants l, k that indicate
that G is the multilevel graph at level l ∈ {0, . . . , k} in a series of k + 1
multilevel graphs

output: a straight-line drawing Γ(G)

begin
initialize λspring , λrep , δ and t;
calculate Max Iter(l, k);
i ← 1;
repeat

foreach v ∈ V do Fspring(v) ← ∑

u∈adj (v) F
(u,v)
spring(v);

Frep ← Aapprox(p(V));
foreach v ∈ V do Fres(v) ← λrep · Frep(v) + λspring · Fspring(v);
foreach v ∈ V do Fdispl(v) ← Displ Factor(v, i, δ) · Fres(v)/‖Fres(v)‖;
foreach v ∈ V do pv ← pv + Fdispl(v);
avg force ← ∑

v∈V Fdispl(v);
i ← i + 1;

until ((i > Max Iter(l, k)) or (avg force < t));
end

66 5 The Force-Calculation Step

We call the algorithm that is used to obtain a drawing Γ(G) Embedder, and its pseu-
docode is shown in Algorithm 5. Like other single-level algorithms, it iteratively tries to
find a placement of the nodes, in which all nodes are nearly in an equilibrium state of
the resulting forces (which means that for each v ∈ V the resulting force Fres(v) is very
small). Starting with the given placement p(V), the algorithm first calculates the spring
force Fspring(v) for each node v ∈ V . Then, like in [127, 128, 110] a repulsive-forces-
approximation algorithm Aapprox (that does not ignore forces that are placed far away)
is used to obtain an approximation of the repulsive forces Frep(v) that act on each node
v. These forces are used to calculate the resulting forces Frep(v) that act on each node
v ∈ V . After this, the position of each node v ∈ V is updated by moving v in direction
of Frep(v). The calculation of the optimal length (the displacement factor) of this vector
(the displacement vector Fdispl(v)) is discussed next.

An Adaptive Displacement Factor

The easiest way to define the displacement factor is to set Displ Factor(v) := δ ·‖Fres(v)‖,
where δ is a suitable positive constant, like in [35]. In order to obtain control on the
absolute length of the resulting displacement vector, Fruchterman and Reingold [47] define
the displacement factor as a global cooling function that depends on the actual iteration of
their algorithm and set Displ Factor(v, i) := min{‖Fres(v)‖, cool(i)}. Here, i is the actual
iteration of the algorithm, and cool is a monotonously decreasing function with positive
values. Frick et al. [45] have introduced the idea of a local cooling function that is defined
for each node v. It is used for calculating the displacement factor of each node v and takes
previous calculated forces into account. This is done in order to avoid oscillations and
rotations and to accelerate the convergence behavior of their algorithm.

The definition of the displacement factor that is used in our framework is motivated by
that of Frick et al. [45], but it is less technical. The length of this displacement factor is
determined depending on the direction and length of the displacement vector of v in the
last iteration. The calculation of the displacement factor is described in the following.

Suppose that F i
res(v) is the resulting force acting on node v at iteration i and that

F i−1
displ(v) is the displacement vector of node v in iteration i − 1. If the angle between

these vectors is α(i, v) := ∢(F i
res(v), F i−1

displ(v)) and if δ is a suitable positive constant,
then the displacement factor of a node v in iteration i is given by Displ Factor(v, i, δ) =
δ · Adaptive Cool(v, i), with

Adaptive Cool(v, i) =

{

ci,v · ‖F i−1
displ(v)‖ if ‖F i

res(v)‖ > ci,v · ‖F i−1
displ(v)‖ > 0

‖F i
res(v)‖ otherwise

, and

ci,v =































2 if − 1
6
π ≤ α(i, v) ≤ 1

6
π

3
2

if 1
6
π < α(i, v) ≤ 2

6
π or − 2

6
π ≤ α(i, v) < −1

6
π

1 if 2
6
π < α(i, v) ≤ 3

6
π or − 3

6
π ≤ α(i, v) < −2

6
π

2
3

if 3
6
π < α(i, v) ≤ 4

6
π or − 4

6
π ≤ α(i, v) < −3

6
π

1
3

otherwise

.

5.1 The Framework of the Force-Calculation Step 67

Hence, consecutive movements of a node in the same direction can result in longer
displacement vectors than consecutive movements of a node in different directions. For
example, suppose that at the last iteration i − 1 node v has been moved into direction
F i−1

displ(v) and that the length of this displacement was ‖F i−1
displ(v)‖. Then, if in iteration i

node v has to be moved into the opposite direction of F i−1
displ(v), the displacement factor

implies that the length of the displacement vector is bounded above by 1
3
· ‖F i−1

displ(v)‖.

The Stopping Criterion

After all nodes in the actual iteration have been moved, the average length of all displace-
ment vectors Fdispl(v) is calculated and the algorithm either stops, when the average length
of these vectors falls below some fixed threshold value t or when the maximum number of
iterations is reached. Instead of setting the maximum number of iterations to the same
constant for any multilevel graph G, we define it as a function of the actual multilevel. In
particular, let clarge > csmall > 0 be constants and let Max Iter(l, k) denote the maximum
number of iterations in Algorithm Embedder if G is a multilevel graph at level l of k + 1
multilevel graphs. Then, we set Max Iter(0, k) = clarge , Max Iter(k, k) = csmall and define
for l ∈ {0, . . . , k} Max Iter(l, k) as a function with values that are linear decreasing from
clarge to csmall . This choice of Max Iter(l, k) is motivated by the fact that (in order obtain
faster running times) the maximum number of iterations for the smaller multilevel graphs
can be chosen larger than for the larger multilevel graphs.

Lemma 5.2 (Embedder). Suppose that G = (V,E, lzero) is a positive-weighted undirected
simple graph, p(V) := (pv)v∈V is an initial placement of the nodes of G, and that G
is the multilevel graph at level l ∈ {0, . . . , k} in a series of k + 1 multilevel graphs. If
Aapprox is a repulsive-forces-approximation algorithm that uses time tapprox(|V |) and memory
mapprox(|V |) to approximate the repulsive forces that act in a system of |V | charged particles,
then Algorithm Embedder needs O(|V |+ |E|+ tapprox(|V |)) time to generate a straight-line
drawing Γ(G) of G and uses O(mapprox(|V |)) memory.

Proof. The initialization of the constants λspring , λrep , δ, t and the calculation of Max Iter(l,
k) take constant time. In each iteration of the repeat-loop, the calculation of the spring
forces can be done in O

(
∑

v∈V deg(v)
)

= O(|E|) time, and all other operations (except
possibly Aapprox) need O(|V)| time. Since by construction Max Iter(l, k) is a constant,
the Algorithm Embedder needs O(|V | + |E| + tapprox (|V |)) time and uses O(mapprox (|V |))
additional memory.

5.1.3 The Algorithm Grid Embedder

For later use, we introduce a variant of Algorithm Embedder that is called Grid Embedder

and forces the nodes to be placed on an integer grid with a resolution that is polynomial
in the number of nodes.

In particular, we want to restrict the particle positions to an integer grid in the range
[−d1N

d2 , d1N
d2] × [−d1N

d2 , d1N
d2] for some positive integer constants d1 and d2. This

68 5 The Force-Calculation Step

can be done by introducing Function Restrict to Grid that updates the position p(v) of
each node v ∈ V as follows: If p(v) is already an integer in the given range, nothing is
done. If p(v) is a position in the given range, but not whole-numbered, then we assign
p(v) = (px(v), py(v)) := (⌊px(v)⌋, ⌊py(v)⌋). If p(v) is not contained in [−d1N

d2 , d1N
d2] ×

[−d1N
d2 , d1N

d2], then p(V) := p′(v), where p′(v) is an integer position in [−d1N
d2 , d1N

d2]×
[−d1N

d2 , d1N
d2] so that the Euclidean distance between p′(v) and p(v) is comparatively

short. Such a position p′(v) can be found for example by calculating the intersection point
i(v) of the line that connects the origin and p(v) and one of the four line-segments that
bound the integer grid. If i(v) is already integer p′(v) := i(v), otherwise i(v) is rounded so
that the resulting point p′(v) is integer and contained in the integer grid. The pseudocode
of Algorithm Grid Embedder is given in Algorithm 6.

Algorithm 6: Grid Embedder(G, p(V), l, k)

input : a positive-weighted undirected simple graph G = (V,E, lzero), an ini-
tial placement p(V) := (pv)v∈V of the nodes of G, a repulsive-forces-
approximation algorithm Aapprox, integer constants l, k that indicate that G
is the multilevel graph at level l ∈ {0, . . . , k} in a series of k + 1 multilevel
graphs, and positive integer constants d1 and d2

output: a straight-line drawing Γ(G) so that in Γ(G) and before each call of
Aapprox all nodes are placed on an integer grid in the range [−d1N

d2 ,
d1N

d2] × [−d1N
d2 , d1N

d2]

begin
initialize λspring , λrep , δ and t;
calculate Max Iter(l, k);
i ← 1;
repeat

p(V) ← Restrict To Grid(p(V), d1, d2);

foreach v ∈ V do Fspring(v) ← ∑

u∈adj (v) F
(u,v)
spring(v);

Frep ← Aapprox(p(V));
foreach v ∈ V do Fres(v) ← λrep · Frep(v) + λspring · Fspring(v);
foreach v ∈ V do Fdispl(v) ← Displ Factor(v, i, δ) · Fres(v)/‖Fres(v)‖ ;
foreach v ∈ V do pv ← pv + Fdispl(v);
avg force ← ∑

v∈V Fdispl(v);
i ← i + 1;

until ((i > Max Iter(l, k)) or (avg force < t));
p(V) ← Restrict To Grid(p(V), d1, d2);

end

Corollary 5.3 (Grid Embedder). Suppose that G = (V,E, lzero) is a positive-weighted
undirected simple graph, p(V) := (pv)v∈V is an initial placement of the nodes of G that
G is the multilevel graph at level l ∈ {0, . . . , k} in a series of k + 1 multilevel graphs,

5.2 N -body Simulations in Physics 69

and d1 and d2 are positive integer constants. If Aapprox is a repulsive-forces-approximation
algorithm that uses time tapprox(|V |) and memory mapprox(|V |) to approximate the repulsive
forces that act in a system of |V | charged particles, then Algorithm Grid Embedder needs
O(|V | + |E| + tapprox(|V |)) time to generate a straight-line drawing Γ(G) of G and uses
O(mapprox(|V |)) memory. Before each call of Aapprox and in the final drawing Γ(G), all
nodes are placed on an integer grid in the range [−d1N

d2 , d1N
d2] × [−d1N

d2 , d1N
d2]

Proof. The claim follows from the fact that one call of Function Restrict To Grid needs
O(|V |) time in combination with Lemma 5.2.

5.2 N-body Simulations in Physics

In the next Sections 5.2 and 5.3 we will concentrate on the problem of approximating the
repulsive forces that act between all pairs of |V | particles/nodes of a graph G for a fixed
given placement p(V). For simplicity, we will assume in Sections 5.2 to 5.3.5 that the
positions of all nodes/particles are distinct. In Section 5.3.6 we will generalize our results
to the unrestricted case in which any two nodes are allowed to be placed at identical
positions.

In the following, we set N := |V |, identify V with a set C = {c1, . . . , cN} of charged
particles with charges q(C) := {q1 := 1, . . . , qN := 1}, and let p(C) = (pi)i∈{1,...,N} := p(V)
denote the distinct positions of these charges in the plane. We call an algorithm that
approximates the repulsive forces that are induced by a fixed placement p(C) in a system
of N charged particles C a (repulsive-)force-approximation method.

We have already noted in Section 1.3.1 that this problem has been widely studied in
physics and is part of the interior loop of iterative N -body simulation algorithms [1]. These
algorithm try to simulate the movements of N masses or charged particles in a specified
time interval by iteratively calculating the forces acting in the system and updating the
positions of the objects. An introduction into the field of force-approximation methods is
the book Many-body tree methods in physics by Pfalzer and Gibbon [105] that presents
some of the most important force-approximation methods. However, the remarks on the
asymptotic running times of several algorithms that are sketched in this book should not
be taken for granted (compare [3, 2]). The first kind of force-approximation methods (the
particle-in-cell codes or PIC codes) are based on laying out a regular grid on the simulation
area and on grouping particles that are placed in the same cell together. These groupings
of the charges are used to calculate the forces (see [105]). Since PIC codes turned out to
be useful only for distributions in which each cell contains approximately the same number
of particles, so called hierarchical methods or tree codes have been developed. The most
important hierarchical methods are introduced in the following. These methods have in
common that they are based on a two phase approach. In the first phase, a hierarchical
space-decomposition data structure is built up that is used to calculate an approximation
of the forces acting in the system in the second phase.

Since the use of efficient data structures is of fundamental importance in order to
obtain fast running times, we will introduce the hierarchical space-decomposition data

70 5 The Force-Calculation Step

structures that are used by the presented N -body methods in Section 5.2.1. There, we
will additionally present some construction methods and discuss their running times. We
will formulate a lower bound on construction times for some hierarchical data structures
in Section 5.2.2. The tree codes that use these data structures will be sketched in the
subsequent Sections 5.2.3 to 5.2.6.

5.2.1 Spatial Data Structures

In general, hierarchical space-decomposition data structures or shorter spatial data struc-
tures are a class of data structures whose common property is the recursive decomposition
of space. They can be differentiated on the following bases (see [116]):

• The type of data that they are used to represent (e.g., points, curves, surfaces, or
volumes)

• The principle that guides the decomposition process

• The resolution (i.e., the number of times the decomposition process is applied)

We can restrict on spatial data structures that are designed to represent point data,
since our data are the distinct positions p(C) = (pi)i∈{1,...,N} of the N charged particles
that we will for simplicity often denote by (data) points. We will focus on regular space
decomposition techniques that are represented by point-region quadtrees or shorter PR
quadtrees according to the notation of H. Samet [116]. These methods are based on re-
cursively subdividing a square region into four sub-squares of equal size. Furthermore, the
data points are stored at the leaves of these trees. In order to help distinguishing the sev-
eral different kinds of PR quadtrees (that are mostly denoted by quadtree in the literature)
we will classify them in the following.

Other spatial data structures (like point quadtrees, pseudo point quadtrees, k-d trees,
or adaptive k-d trees) and their application in computational geometry are detailedly de-
scribed in the books The Design and Analysis of Spatial Data Structures [116] and Appli-
cations of Spatial Data Structures: Computer Graphics, Image Processing, and GIS [115]
by Samet.

The Quadtree

The simplest and most popular kind of a PR quadtree that we denote by quadtree is defined
after introducing some terminology.

Definition 5.4 (Cell, Box). If D is a square, then a (sub)-cell or (sub)-box is a quadratic
sub-region of a D that can be generated by a recursive decomposition of D into four squares
of equal size.

Suppose, {p1, . . . , pN} is a set of N data points that are distributed within a square D.
The principle guiding the decomposition is as follows: If D contains more than one data

5.2 N -body Simulations in Physics 71

point, D is subdivided into four squares of equal size D1, D2, D3, and D4. Every box Di

with i ∈ {1, . . . , 4} that contains more than one data point is recursively subdivided into
four smaller boxes. The decomposition stops, when the actual box contains at most one
data point. The decomposition is represented by an orderer rooted tree T of maximum
child degree four. Each node v of T is associated with a sub-box of D that is denoted
by box (v). The box of the root is D. Furthermore, each node v can be associated with
the subset of the points in {p1, . . . , pN} that are covered by box (v). The order of the
children of an internal node v is defined by the relative positions of the four boxes that
subdivide box (v) (e.g., the first child corresponds to the left top sub-box, the second child
corresponds to the right top sub-box, the third child corresponds to the left bottom sub-
box, and the fourth child corresponds to the right bottom sub-box). If a point is located on
a horizontal or vertical line that separates two sub-boxes, it belongs to the uppermost or
rightmost sub-box, respectively. The data points are stored in the leaves of the quadtree,
and often leaves that contain no data points (that we call empty leaves) are not stored in
T for memory reasons. Unless otherwise stated, we will not represent empty leaves in the
presented hierarchical data structures. Figure 5.1 shows an example of a quadtree.

1

2

3

4 5

6

7

8 9
10

11

(a)

1 2

3

4

5

6 7

8

9 1011

(b)

1 2

3

4

5

6 7

8

9 1011

(c)

Figure 5.1: (a) The recursive decomposition of a square region that contains point data. (b) The
corresponding quadtree in which white leaves represent empty sub-boxes. (c) The quadtree that
corresponds to (a) but that does not contain empty leaves.

Maybe the first authors who used this data structure were Anderson [4] and Rosenfeld
et al. [113]. They applied it for storing endpoints of line segments and in a geometric
information system, respectively. In the context of force-approximation methods, this
data structure was used by Barnes and Hut [8] first.

The definition of the quadtree data structure naturally implies a tree construction
algorithm that we denote by A1 here. It works as follows: First, a root node is created,
which represents the square D that contains all data points. Then, if this square contains
more than one data point, the four sub-boxes and the four children are created and the
contained data points are shifted from the actual node to the appropriate children. This
process is recursively repeated until no further subdivisions can be carried out.

An alternative quadtree construction algorithm (presented in [8, 116, 128] and denoted

72 5 The Force-Calculation Step

by A2 here) starts by inserting each data point iteratively into the quadtree starting at the
root node: First, T consists of only one root node that represents the region D and contains
the first data point. Then, the next data points are successively added to T starting at the
root. If the actual visited node v is an internal node, the algorithm visits the child node
that corresponds to the sub-box in which the data point is contained. If the actual visited
node v is an empty leaf, the new data point is added to v. If v is a leaf so that box (v)
already contains a data point, recursively four new children of v are created, and the two
data points are assigned to those children in which corresponding sub-box of box (v) they
are contained. This recursive subdivision process is repeated as long as both points are
contained in the box of the same leaf.

Aluru et al. [3, 2] proved that the running time of these tree construction methods is
bounded below by Ω(N log N) and that no upper bound on the construction times can be
given that depends only on the number of data points.

We will demonstrate at an example that there exist distributions of the data points
that imply a Θ(N2) construction time for both algorithm, even though the corresponding
quadtree contains only O(N) nodes: Suppose, we have given a distribution of the point data
like in Figure 5.2 that we call converging distribution. Suppose that the down left corner of
D is (0, 0) and the upper right corner of D is a point p, then such a distribution is formally
given by assigning the i-th data point the position pi = 3

4
p

2i−1 for all i ∈ {1, . . . , N}.
Figure 5.2 shows a converging distribution, the recursive space decomposition, and the
corresponding quadtree.

1

2

3
45

6

(a)

1

2

3
45

6

(b)

1

2

3

4

56

(c)

Figure 5.2: (a) A converging point distribution of N = 6 points. (b) A recursive space decompo-
sition according to the point distribution in (a). (c) The associated quadtree.

Lemma 5.5 (A Pathologic Distribution for Some Quadtree Construction Meth-
ods). Suppose that {p1, . . . , pN} is a converging point distribution of N data points. Then,
the described quadtree construction methods A1 and A2 need Θ(N2) time to build up the
associated quadtree that contains O(N) nodes.

Proof. In the method A1 all N particles are assigned to the root node, which takes Θ(N)
time. Then, N − 1 particles are assigned to the child node v that corresponds to the left

5.2 N -body Simulations in Physics 73

bottom sub-box of D and one point is assigned to the child node that corresponds to the
right top sub-box of D. This also takes Θ(N) time. Now the four children of v are created,
N − 2 points are assigned to the child node that corresponds to the left bottom sub-box of
box (v), while only one child is assigned to the child node that corresponds to the right top
sub-box of box (v). This needs Θ(N − 1) time. Repeating this subdivision and assigning
process leads to the total running time of

∑N
i=1 Θ(i) = Θ(N2).

We define the total leaf-path length of a tree as the sum of the length of all paths that
connect the root of the quadtree with each leaf. By definition of the iterative quadtree
construction method A2, it is easy to see that the running time is proportional to the

total leaf-path length (see also [128]), which is
(

∑N
i=1 i

)

− 1 = Θ(N2) for converging

distributions.

The Bucket Quadtree

Suppose, we have given an arbitrary set {p1, . . . , pN} of N points that are distributed within
a square region D and define a data structure that is exactly defined as the quadtree data
structure, with one exception: Instead of stopping the decomposition process, whenever
the actual sub-box contains at most one point, one could stop the decomposition, when
the actual sub-box contains at most l points, where l is a positive integer that is called the
bucket capacity or leaf capacity. We call the resulting data structure (bucket) quadtree with
leaf capacity l. Note that the previously introduced quadtree is a bucket quadtree with
leaf capacity one. This data structure has the property that all leaves contain at most l
points. We call a path P = (v1, . . . , vk) in a bucket quadtree degenerate path if v1 and
vk have at least two nonempty children and v2, . . . , vk−1 each have exactly one nonempty
child. The nodes v2, . . . , vk−1 are called degenerate nodes. For example, Figure 5.3 shows a
bucket quadtree with leaf capacity 2 that contains the degenerate path (v1, v2, v3) in which
v2 is the unique degenerate node.

1

2

3

4 5

6

7

8 9
10

11

(a)

3

4

5

8

9 10 11{6, 7}

{1, 2}

v1

v2

v3

(b)

Figure 5.3: (a) The recursive decomposition of a square region that contains point data. (b) The
corresponding bucket quadtree with leaf capacity l = 2.

74 5 The Force-Calculation Step

This data structure has been invented by Matsuyama et al. [94] and is used by the
adaptive force-approximation method of Greengard [58].

It is obvious that bucket quadtrees with leaf capacity l > 1 can be constructed by gen-
eralizing the quadtree construction methods A1 and A2. If we assume that the leaf capacity
l of bucket quadtrees is a constant, it is also easy to see that these tree construction meth-
ods would need Θ(N2) time to construct the bucket quadtrees in the case that the point
data is distributed convergingly. The formal proof is analogue to the proof of Lemma 5.5
and left to the reader.

The Truncated Quadtree and Truncated Bucket Quadtree

Suppose, we have given a positive integer d and we construct a quadtree decomposition
of the square D (with width width(D)) according to the given point data in D. If the
recursive decomposition of the sub-boxes is stopped either if the actual sub-box contains
at most l = 1 point or if the sub-box has width at most width(D)/(2d), the data structure is
called truncated quadtree with maximal depth d. If l > 1, the corresponding data structure
is called truncated bucket quadtree with leaf capacity l and maximal depth d. This data
structure has the properties that the depth of the tree is bounded above by d and that
all leaves of depth smaller than d contain at most l points, while the leaves of depth d
might contain more than l points. We call a path P = (v1, . . . , vk) in a truncated bucket
quadtree degenerate path if v1 has at least two nonempty children, v2, . . . , vk−1 each have
exactly one nonempty child, and vk has at least two nonempty children or is a leaf. The
nodes v2, . . . , vk−1 are called degenerate nodes. For example, Figure 5.4 shows a truncated
bucket quadtree with leaf capacity 2 and maximal depth 2 that contains the degenerate
path (v1, v2, v3) in which v2 is the unique degenerate node. This data structure will be
useful in Section 5.3.3.

1

2

3

4 5

6

7

8 9
10

11

(a)

3

4 8{5, 6, 7} {9, 10, 11}

v1

v2

v3

{1, 2}

(b)

Figure 5.4: (a) The recursive decomposition of a square region that contains point data. (b) The
corresponding truncated bucket quadtree with leaf capacity l = 2 and maximal depth d = 2.

5.2 N -body Simulations in Physics 75

The Truncated Pseudo Quadtree

Suppose, we have given a positive integer d, the square D (with width width(D)), and
the point data in D, but — in contrast to the definition of the truncated quadtree —
every sub-box is subdivided until it has width at most width(D)/(2d). Then, the resulting
data structure is called truncated pseudo quadtree of depth d. Note that by this definition,
the recursive subdivision is also performed in the case that the actual sub-box contains
no points. Hence, the truncated pseudo quadtree of depth d is a complete tree with child
degree 4 and depth d, in which each leaf possibly stores an arbitrary number of data points.
We denoted this data structure by pseudo quadtree, since — unlike the previous types of
PR quadtrees — the decomposition is not guided by the distribution of the point data in
D. Figure 5.5 shows an example of a truncated pseudo quadtree of depth 2.

1

2

3

4 5

6

7

8 9
10

11

(a)

1 2 3 4 5
6
7

8 9
10
11

(b)

Figure 5.5: (a) The recursive decomposition of a square region that contains point data. (b) The
corresponding truncated pseudo quadtree of depth d = 2.

Ohya et al. [99] used this data structure that they called quaternary tree for constructing
Voronoi Diagrams, while it has been used in the context of force-approximation methods
as a part of the Fast Multipole Method of Greengard and Rokhlin [59] and by the tree
code of Xue [139].

A truncated pseudo quadtree of depth d can be constructed by first building a complete
tree of depth d and child degree 4 and then assigning each data point to the leaf that
corresponds to the sub-box at level d in which it is placed (compare [59, 58, 99]). Since the
structure of the tree is predefined and since it contains O(4d) nodes, the construction of
the tree and the assignment of the N data points to the leaves can be done in O(N + 4d)
time.

The Reduced Quadtree, Reduced Bucket Quadtree, and Reduced Truncated
Bucket Quadtree

A reduced quadtree can be obtained from a quadtree T by shrinking all degenerate paths
P = (v1, . . . , vp) in T to edges (v1, vp). This data structure has been invented by Aluru et

76 5 The Force-Calculation Step

al. [3, 2], who called it modified tree, in the context of their force-approximation method.
Similar, a reduced bucket quadtree with leaf capacity l and a reduced truncated bucket
quadtree with leaf capacity l and maximal depth d can be obtained from a bucket quadtree
with leaf capacity l and a truncated bucket quadtree with leaf capacity l and maximal
depth d, respectively by shrinking all degenerate paths P = (v1, . . . , vp) to edges (v1, vp).
Figures 5.6 and 5.7 show a reduced bucket quadtree with leaf capacity 2 and a reduced
truncated bucket quadtree with leaf capacity 2, respectively. These data structures will be
used in Section 5.3.

1

2

3

4 5

6

7

8 9
10

11

(a)

3

4

5

8

9 10 11{6, 7}

{1, 2}

v1

v3

(b)

Figure 5.6: (a) The recursive decomposition of a square region that contains point data. (b) The
corresponding reduced (bucket) quadtree with leaf capacity l = 2.

1

2

3

4 5

6

7

8 9
10

11

(a)

3

4 8{5, 6, 7} {9, 10, 11}

v1

v3

{1, 2}

(b)

Figure 5.7: (a) The recursive decomposition of a square region that contains point data. (b) The
corresponding reduced truncated (bucket) quadtree with leaf capacity l = 2 and maximal depth
d = 2.

In contrast to the quadtree and bucket quadtree data structures in which the distri-
bution of the point data possibly implies that the corresponding trees contains a huge
number of degenerate nodes, the following estimation on the number of nodes in a reduced
quadtree holds.

5.2 N -body Simulations in Physics 77

Lemma 5.6. Suppose, {p1, . . . , pN} is an arbitrary set of N points in a square region D,
then a reduced quadtree T = (V,E) for this point set contains 4

3
N − 1

3
≤ |V | ≤ 2N − 1

nodes.

Proof. If N = 1 we are done. Otherwise, since T is a tree, we get that

2(|V | − 1) = 2|E| =
∑

v∈V

deg(v). (5.2)

Since T is a reduced quadtree and N > 1, the root r has degree deg(r) ∈ {2, 3, 4}, each
other interior node v ∈ V has degree deg(v) ∈ {3, 4, 5}, while all leaves have degree
deg(v) = 1. Let I(T) denote the set of all interior nodes of T (excluding the root) and
L(T) denote the set of the leaves of T , then (5.2) can be formulated as

2(|V | − 1) = deg(r) +
∑

v∈I(T)

deg(v) +
∑

v∈L(T)

deg(v), (5.3)

and the following estimation holds:

2 · 1 + 3 · (|V | − N − 1) + 1 · N ≤ 2(|V | − 1) ≤ 4 · 1 + 5 · (|V | − N − 1) + 1 · N (5.4)

Trivial simplifications of (5.4) lead to

|V | ≤ 2N − 1 and |V | ≥ 4N − 1

3
, (5.5)

which completes the proof.

Corollary 5.7 (Node-Number in Reduced Bucket Quadtrees). Suppose, {p1, . . . ,
pN} is an arbitrary set of N points in a square region D, then for any given positive integer
constant l, a reduced bucket quadtree with leaf capacity l contains O(N) nodes.

Note that this property will be of fundamental importance in the design of our force-
approximation method in Section 5.3.

Aluru et al. [2] present a method for constructing the reduced quadtree in O(N log N)
time, which is cost optimal — as we will prove in Theorem 5.8. This method is based on a
merging strategy that first builds up roughly N/2 reduced quadtrees that contain at most
two data points. Then, pairwise two of these reduced quadtrees are merged in order to
obtain roughly N/4 reduced quadtrees that contain at most 4 data points. After the next
merging operations the number of reduced quadtrees decreases to roughly N/8 reduced
quadtrees that contain at most 8 data points, and so forth. In order to merge two subtrees
a box-shrinking technique has been invented that is non-trivial and will be explained in
greater detail in Section 5.3.2. Since the total running time of the merging operations at
each level is O(N) and the number of recursion levels is bounded by O(log N), the total
running time is O(N log N) (compare [2]).

A reduced bucket quadtree with leaf capacity l > 1 can be constructed in O(N log N)
time, by first constructing a reduced quadtree T in O(N log N) time using the method of

78 5 The Force-Calculation Step

Aluru et al. [2]. Then, one could shrink all maximal subtrees of T that contain at most l
data points in their leaves to one leaf that contains all these points. This can be one in
O(N) time since T has O(N) nodes (see Corollary 5.7). Alternative ways for constructing
reduced bucket quadtrees will be developed in Sections 5.3.2 and 5.3.3. In Section 5.3.3,
we will also introduce a method for constructing reduced truncated bucket quadtrees with
maximal depth d in O(N + 4d) time.

5.2.2 A Lower Bound on PR Quadtree Construction Methods

Aluru et al. [2] state that the construction of a reduced quadtree for an arbitrary given
distribution {p1, . . . , pN} of N points is Ω(N log N). Since they do not present a formal
proof of this claim, we will prove a more general result in the following.

Theorem 5.8 (A Lower Bound on (Reduced) Bucket Quadtree Construction).
Suppose, {p1, . . . , pN} is an arbitrary set of N points that are contained in an arbitrary fixed
square region D, then for any given positive integer constant l, neither a bucket quadtree
with leaf capacity l nor a reduced bucket quadtree with leaf capacity l can be constructed in
o(N log N) time.

Proof. We prove this theorem by contradiction. Let us for simplicity assume that T =
(V,E) is a reduced bucket quadtree with leaf capacity l = 1, and that T can be constructed
in o(N log N) time. Suppose that S = {s1, . . . , sN}; si ∈ N is a set of keys. Then, we create
an algorithm A that sorts the keys in S as follows:

We define a mapping f : S −→ S2 so that i 7→ (i, i) and assign each key si ∈ S a
position in the plane according to f (see Figure 5.8(a)). Then, we build up a reduced
bucket quadtree with leaf capacity l = 1 for the resulting point set (see Figures 5.8(b) and
(c)), initialize an empty list L, and visit the nodes of T by a pre-order traversal. If (during
this traversal) a leaf is visited, the x-coordinate of the contained point is appended at the
beginning of L as a new element. Since the children of each internal node in the tree are
ordered (like defined in Section 5.2.1), L does contain the keys of S in nondecreasing order
after the traversal.

Using Corollary 5.7, all parts of this algorithm, except possibly the construction of the
tree, need O(N) time. Thus, Algorithm A sorts the keys in S in o(N log N) time. This is a
contradiction, since it is known that any general sorting algorithm needs Ω(N log N) time
for sorting N arbitrary keys in the worst case [100].

Now let us suppose that T is a reduced bucket quadtree with leaf capacity l > 1.
Then, we can construct a contradiction by an analogue argumentation. The only thing
that changes in the argumentation is that the points that are contained in a leaf of T
have to be pre-sorted by non-increasing x-coordinates before appending the x-coordinates
consecutively in this order to L. Since the number of points that are contained in a leaf is
bounded by the constant l, for each leaf this sorting can be done in constant time. After
the tree traversal, the resulting list L is a sorted list of the keys, and the total running
time of the sorting algorithm is o(N log N)— a contradiction.

5.2 N -body Simulations in Physics 79
replacemen

1
2

3

4
5
6 7

8 9

10

(a) (b)

1 2

3

4 5

6

7

8 9

10

(c)

Figure 5.8: (a) Assigning N = 10 keys positions in the plane according to f . The positions are
labeled according to the relative values of their x-coordinates (e.g., the point with the smallest
x-coordinate has label 1). (b) A recursive decomposition of the quadratic drawing plane D. (c)
The reduced quadtree that corresponds to this decomposition. A pre-order traversal of the tree
will visit the leaves from right to left (i.e., first the leaf that contains point 10, finally the leaf
that contains point 1).

If T is a bucket quadtree with leaf capacity l, we can assume that the number of nodes
in T is o(N log N) (otherwise we already obtain a contradiction, since each node of T has
to be created somehow). Under this assumption the contradiction proof is analogue to the
previous one.

5.2.3 The Method of Barnes and Hut

Maybe caused by its simplicity, the force-approximation method of Barnes and Hut [8] is
one of the most popular methods that is used as part of N -body simulation algorithms. It
works as follows: For the given set C = {c1, . . . , cN} of equally charged particles that are
placed at distinct positions p(C) = {p1, . . . , pN}, first a quadtree decomposition of a square
region that contains all particles is calculated according to the construction algorithm A1
in Section 5.2.1. Each internal node of the quadtree stores additional information, a so
called group particle. In particular, suppose that an internal node v of the quadtree T
corresponds to a sub-box that contains k particles that are placed at positions p1, . . . , pk.
Then, a group particle c with group charge qc := k and position pc := (

∑k
i=1 pi)/k is

assigned to v.
In the second phase of the algorithm the forces are approximated by calculating particle-

(group particle) interactions for each particle ci ∈ C that is stored in a leaf of T . This
is described next. First, a precision parameter α > 0 is fixed that is used to steer the
accuracy of the approximation. Then, the quadtree T is traversed top down starting at
the root on the following basis: Suppose, we want to calculate the force F (ci) that acts on
a particle ci ∈ C that is placed at position pi and stored in a leaf u of T . Furthermore,
suppose that the actual visited node of T is v and box (v) contains a group particle cv with

80 5 The Force-Calculation Step

charge qc at position pc. Suppose that the width of the sub-box that is represented by v is
dv and that di,c denotes the Euclidean distance between pi and pc. Then, if u = v nothing
is done. If the sub-box of v covers the sub-box of u the algorithm proceeds to the children
of v. If the sub-box of v does not cover the sub-box of u and v is a leaf, then the force
that acts on pi due to the particle that is stored in v is added to F (ci). If the sub-box of
v does not cover the sub-box of u, v is an interior node, and (dv/di,c) < α, the force that
acts on ci due to the group particle c is calculated and added to F (ci). If the sub-box of
v does not cover the sub-box of u, v is an interior node, and (dv/di,c) ≥ α the algorithm
proceeds to the children of v.

Aluru et al. [3, 2] have proven that the tree construction time is bounded below by
Ω(N log N) and that no upper bound on the construction time can be given that depends
only on the number of particles. Nevertheless, one could think about the possibility of using
other methods for constructing the quadtree in order to obtain a sub-quadratic running
time of the force approximation. In the following theorem we will show that the worst-case
running time of the method of Barnes and Hut [8] will never become sub-quadratic, even
if one could build up the quadtree efficiently.

Theorem 5.9 (The Method of Barnes and Hut Will Never Become Sub-Qua-
dratic). There exists a distribution of N particles in the plane so that the second phase of
the force-approximation method of Barnes and Hut needs Θ(N2) time for approximating
the forces for any given precision parameter α > 0.

Proof. Suppose that the particles C = {c1, . . . , cN} are distributed convergingly, like de-
fined in Section 5.2.1 and that the corresponding quadtree T has already been built up in
the first phase of the algorithm (see Figure 5.2). Suppose, the particles in C are ordered
so that c1 is the particle with the smallest x-coordinate and cN is the particle with the
largest x-coordinate.

It is easy to see (by the definition of the second phase of the method of Barnes and
Hut) that in order to approximate the forces that act on a particle ci each node of the
tree will be visited at most once. Hence, at most 2N − 1 nodes of T will be visited for
each ci ∈ C. Of course, the exact number of nodes that have to be visited depends on
the precision parameter α. But, due to the inclusion relationships of the sub-boxes for the
converging distribution (and by the definition of the second phase of the method of Barnes
and Hut) 2i − 1 is a lower bound on the number of nodes that have to be visited in order
to obtain the approximation of the forces that act on a particle ci.

Hence, we obtain that the second phase of the method of Barnes and Hut needs O(N ·
(2N − 1)) = O(N2) and Ω(

∑N
i=1(2i − 1)) = Ω(N2) time for approximating the forces for

the given converging distribution of particles.

For completeness, we would like to note that the asymptotic running time of the method
of Barnes and Hut [8] is O(N log N) in the special case that the placement of the parti-
cles implies a depth of the quadtree that is O(log N) (see [114, 56]). In particular, the
expected running time of the method of Barnes and Hut [8] is O(N log N) if the particles
are distributed randomly with uniform probability.

5.2 N -body Simulations in Physics 81

5.2.4 The Fast Multipole Method

Other popular force-approximation methods are so called multipole methods that are based
on building up a hierarchical data structure and approximating the forces by evaluating the
field of potential energy at the positions of the charged particles using multipole expansions.

The pioneer work is the Fast Multipole Method of Greengard [58] and Greengard and
Rokhlin [59]. In the first phase of the algorithm a truncated pseudo quadtree of depth
⌊log4 N⌋ is constructed in O(N) time according to the investigated construction algorithm
in Section 5.2.1.

In the second phase of the algorithm coefficients of so called p-term multipole expansions
are calculated for the set of particles that are contained in each leaf. We will introduce
the formal descriptions of multipole expansions as well as many of the analytical tools that
have been invented by Greengard [58] and Greengard and Rokhlin [59] for working with
these series in Section 5.3.4. Now it is sufficient to know that these are truncated Laurent
series (consisting of only the first p terms) with complex values. Each series describes the
field of potential energy that is induced by the contained particles.

After the coefficients of the p-term multipole expansions of the particles in the leaves
have been calculated, the tree is traversed bottom up, and thereby coefficients of p-term
multipole expansions of the interior nodes are obtained. Afterwards, the tree is traversed
top down, and suitable coefficients of p-term multipole expansions are used to calculate
coefficients of special truncated power series that are called p-term local expansions. Finally,
these expansions are evaluated to obtain the repulsive forces.

The best-case running time of the Fast Multipole Method is O(N), while it has an
O(N2) worst-case running time (see [58]). In particular, the expected running time of the
Fast Multipole Method is linear if the particles are distributed randomly with uniform
probability.

A more complicated Adaptive Algorithm that is based on first building up a bucket
quadtree with constant leaf capacity l > 1 was developed by Greengard [58]. Then, this
tree is traversed bottom up and top down in order to obtain an approximation of the field
of the potential energy in the system. This is done by using similar techniques as in the
Fast Multipole Method.

Aluru et al. [3, 2] proved that the Adaptive Algorithm of Greengard is Ω(N log N) and
that no upper bound on the running time can be given that depends only on the number
particles due to the tree construction procedure.

Despite these drawbacks of the Fast Multipole Method and the Adaptive Algorithm,
the “excellent exposition” (see [20] page 86) of Greengard [58] motivated lots of research
in the field of N -body simulation methods and in particular important parts of this dis-
sertation.

5.2.5 An O(N log N) Multipole Method

One of the most remarkable algorithms that are based on the work of Greengard [58] and
Greengard and Rokhlin [59] is the force-approximation method of Aluru et al. [2] that is

82 5 The Force-Calculation Step

sketched next.
First, a reduced quadtree is built up in O(N log N) time according to the algorithm

that we have described in Section 5.2.1. Then, similar to [58, 59], the tree is traversed
bottom up in order to calculate coefficients of p-term multipole expansions. Afterwards,
the tree is traversed top down using suitable coefficients of p-term multipole expansions
in order to calculate coefficients of p-term locale expansions. Finally, these expansions are
evaluated at the leaves to obtain an approximation of the forces.

Since Aluru et al. [2] prove that the second phase of their algorithm needs O(N) time,
the total running time of their algorithm is O(N log N).

5.2.6 Related Work

A large number of other publications are related with the previously sketched methods
and, hence, we can only mention some of them.

Notably, Petersen et al. [103] invented a new version of the Fast Multipole Method [58,
59] that is a factor 1.2 faster than the original version in practice, while Hrycak and
Rokhlin [71] improved the experimental running time of the Adaptive Algorithm of Green-
gard [58] by a factor 2 to 4.

Warren and Salmon [136] integrated multipole ideas into their Barnes-Hut-like tree
code. This is done by calculating particle-multipole interactions instead of particle-(group
particle) interactions like in the original method of Barnes and Hut [8]. Grama et al. [56]
extended these ideas, by keeping the multipole degree variable in order to reduce the
error of the computation. Board et al. [12] have invented another hybrid version that
is a combination of the Fast Multipole Method [58, 59] and the method of Barnes and
Hut [8] and runs on parallel machines. Since the data sets of practical applications can be
enormous, many other parallel versions of tree codes have been invented (see e.g., [137, 92,
55, 122, 141]).

Xue [139] improved one of the oldest tree codes of Appel [5] by building up a truncated
pseudo quadtree in linear time. Under the assumption that the particles are distributed
randomly with uniform probability, the running time of this method is linear.

Theoretical error estimations for the Fast Multipole Method were presented by Peter-
son et al. [104, 102], and a multipole method that uses a relaxed version of a k-d tree data
structure (called fair split tree) was presented by Callahan and Kosaraju[20].

We have concentrated on approximation methods in two-dimensional systems that con-
tain charged particles here. It is clear that variations of the presented techniques are also
used in the context of astrophysical simulations and in three dimensions. In three dimen-
sions, the PR quadtree concept is transfered into an analogue PR oct-tree concept. The
transfer of the tree construction methods is straight forward, like the use of Barnes-Hut-like
tree codes that rely on PR oct-trees decompositions. In contrast to this, the variations
of multipole based tree codes are technically more complicated in three dimensions due
to the used mathematical tools (see Greengard [58]). As a consequence of this, three-
dimensional versions of the Fast Multipole Method turned out to be slow in practice
(see [137, 120]). In particular, for uniformly distributed particles and in two dimensions,

5.3 The New Multipole Method 83

the Fast Multipole Method is faster than the naive exact force-computation method for
instances containing more than few hundreds particles. In contrast to this, the crossover
point of the three dimensional version of the Fast Multipole Method is at around 70000
particles in practice [137, 120].

5.3 The New Multipole Method

5.3.1 Motivation and Goals

We have seen in Section 5.2 that several force-approximation methods have been developed
in order to reduce the quadratic running time of a naive exact calculation of the forces
acting in a system of N charged particles. Some of these methods guarantee an O(N log N)
or an O(N) running time under certain assumptions on the given distribution, but not in
general. In particular, these methods perform well if the particles are distributed randomly
with uniform probability. In contrast to this, the multipole-based force-approximation
method of Aluru et al. [2] guarantees an O(N log N) scaling in general. Hence, it would
be sufficient to use the method of Aluru et al. [2] in order to keep the running time of our
force-calculation step sub-quadratic.

However, we will invent a new variant of a multipole method in order to obtain an
O(N log N) method that is faster than the method of Aluru et al. [2] in practice. We will
call this multipole method New Multipole Method or shorter NM2. Like other tree codes
it is based on a two phase approach: First, a reduced bucket quadtree with fixed constant
leaf capacity l > 1 is built up. Then, this data structure is used for approximating the
repulsive forces in a multipole framework in the second phase.

Why Do We Construct a Reduced Bucket Quadtree?

We have decided to use the reduced bucket quadtree data structure because of the following
reasons: First, we know from the previous discussion that this data structure can be built
up in O(N log N) time, which is cost optimal.

Second, it provides some properties that will be important for the design of the multi-
pole framework in the second phase of the approximation method that runs in O(N) time.
Most notably are the properties that it has O(N) nodes that all leaves contain at most l
particles and that the decomposition is based on a regular subdivision of the space.

Third, since this data structure is related to the bucket quadtree data structure and to
the reduced quadtree data structure, many analytical tools that are provided by Green-
gard [58], Greengard and Rokhlin [59], and Aluru et al. [2] can be reused as parts of our
multipole framework in the second phase. If, instead, we would use other spatial data
structures that are based on different subdivision and data storage techniques — like point
quadtrees [42], pseudo point quadtrees [101], k-d trees [10], adaptive k-d trees [46], or
BD trees [97, 98] — we would lose several of the useful properties of the reduced bucket
quadtree and, therefore, we would have to invent a completely new multipole framework

84 5 The Force-Calculation Step

from scratch. Additionally, to our knowledge, none of the construction methods of these
other data structures has been proven to be o(N log N) in general.

In Section 5.2.1 we have already sketched a method for constructing reduced bucket
quadtrees that is based on the method of Aluru et al. [2]. However, such a simple approach
has two disadvantages. First, the tree construction method of Aluru et al. [2] which is non-
trivial has to be used. Second, this approach would perform unnecessary work by first
creating a tree with leaf capacity 1 (which in general contains more nodes than a reduced
bucket quadtree with leaf capacity l > 1) and then deleting the unnecessary nodes from this
tree. Consequently, we have developed alternative ways for constructing reduced bucket
quadtrees and will present them in Sections 5.3.2 and 5.3.3.

Why Do We Develop a Multipole Method?

Aluru et al. [2] extended the multipole techniques of Greengard [58] and Greengard and
Rokhlin [59] so that the running time of their algorithm is proportional to the number of
nodes of the used reduced quadtree data structure. However, it can be observed that lots of
time-consuming mathematical operations with the coefficients of the multipole expansions
are needed in the second phase of the method of Aluru et al. [2] due to the large size of
the tree.

Therefore, we wanted to generalize the second phase of the approach of Aluru et al. [2]
so that the running time is proportional to the number of nodes in the reduced bucket
quadtree with any fixed constant leaf capacity l ≥ 1. On the one hand, this will guarantee
that the second phase of our algorithm is O(N). On the other hand, this approach will
keep the hidden constant of this bound comparatively small in practice (see Section 7.4).
The reason for this time saving is simple: Since a bucket quadtree with leaf capacity
l > 1 contains at most as many nodes as a reduced quadtree, fewer calculations with
multipole expansions have to be done. Furthermore — if the constant leaf capacity l is
chosen appropriate — in our experiments (see Section 7.4) it has turned out to be faster to
calculate the forces acting between all particles that are covered by the box of a single leaf
exactly than approximating these forces by using multipole expansions. The second phase
of NM2 will be presented in Section 5.3.4, and a formal description of NM2 will be given in
Section 5.3.5.

5.3.2 Construction of the Reduced Bucket Quadtree (Way A)

In the following, let us suppose that the particles C = {c1, . . . , cN} are distributed at
distinct positions p(C) = {p1, . . . , pN} and that a fixed constant leaf capacity l ≥ 1 is
given. The tree construction method that we will present next is based on combining a
box-shrinking technique of Aluru et al. [2] with techniques that are motivated by ideas of
Callahan and Kosaraju [20] in their construction method of the fair split tree. First, we
will sketch the box-shrinking technique of Aluru et al. [2], before we will give an informal
and a formal description of the algorithm.

5.3 The New Multipole Method 85

A Box-Shrinking Technique

We concentrate on the following problem: Given a square D with width width(D), left bot-
tom corner at position (xmin(D), ymin(D)), and right top corner at position (xmax (D), ymax

(D)). Suppose, R is a rectangle of width width(R), height height(R), left bottom corner at
position (xmin(R), ymin(R)), right top corner at position (xmax (R), ymax (R)), and D covers
R. We want to determine the smallest sub-box B of D so that B covers R. Figure 5.9(a)
shows an example.

D
B

R

(a)

R

D = B

(b)

Figure 5.9: (a) A black rectangle R that is contained in a square D. The grey box B is the
smallest sub-box of D that can be constructed by a recursive decomposition of D into four boxes
of equal size so that B covers D. (b) Shifting R to a different position in D results in B = D.

A simple way to calculate B is given by recursively decomposing D into four sub-boxes,
until R does not fit into one of the generated sub-boxes for the first time. For example,
in Figure 5.9(a) four such subdivisions are needed to determine the size and position of
B, while in Figure 5.9(b) only one decomposition of D is needed. In general, such a
naive approach would need up to ⌈log2(width(D)/max {width(R), height(R)})⌉ recursive
subdivisions of D.

In contrast to this, Aluru et al. [2] have developed a way to find B with a fixed constant
number of operations for any values of D and R. We will not discuss the details of this
strategy here, since it is very technical. Instead, we will present the needed formulas in
order to enable an easy implementation. The readers that are interested in more details
are referred to the paper of Aluru et al. [2].

It is clear that the width of the box B and the coordinate of its down left corner can
be obtained by

width(B) := width(D)
2max sub ,

xmin(B) := xmin(D) + ⌊xmin (R)−xmin (D)
width(B)

⌋ · width(B) , and

ymin(B) := ymin(D) + ⌊ymin (R)−ymin (D)
width(B)

⌋ · width(B) ,

(5.6)

86 5 The Force-Calculation Step

where max sub denotes the maximum number of recursive subdivisions of D that can be
performed so that after each subdivision one of the four constructed sub-boxes covers R.
For example, in Figure 5.9(a) max sub = 3 and in Figure 5.9(b) max sub = 0. Let

jx :=
⌈

log2
width(D)
width(R)

⌉

, a1
x :=

⌈

(xmin (R)−xmin (D))·2jx

width(D)

⌉

, a2
x :=

⌊

(xmax (R)−xmin (D))·2jx

width(D)

⌋

,

jy :=
⌈

log2
width(D)
height(R)

⌉

, a1
y :=

⌈

(ymin (R)−ymin (D))·2jy

width(D)

⌉

, a2
y :=

⌊

(ymax (R)−ymin (D))·2jy

width(D)

⌋

,

ax :=











a1
x if a1

x = a2
x

a1
x if a1

x 6= a2
x and a1

x is even

a2
x if a1

x 6= a2
x and a2

x is even

, ay :=











a1
y if a1

y = a2
y

a1
y if a1

y 6= a2
y and a1

y is even

a2
y if a1

y 6= a2
y and a2

y is even

,

kx := jx − log2((ax ⊕ (ax − 1)) + 1), and ky := jy − log2((ay ⊕ (ay − 1)) + 1),

where ⊕ is the bitwise exclusive or operation. Then, B can be calculated by setting
max sub := min{kx, ky} in Formula (5.6). Since only a constant number of operations
are needed to determine xmin(B), ymin(B), and width(B), the total running time of the
box-shrinking technique is O(1).

The Basic Strategy of the Tree Construction Algorithm

The basic strategy of this algorithm is to first compute a partial reduced bucket quadtree
T 1 that is a subtree of the desired reduced bucket quadtree T . In T 1, each leaf corresponds
to a box that contains at most max{l, ⌊N/2⌋} particles. Then, recursively for each leaf v of
T 1, which contains more than l particles, a subtree of the reduced bucket quadtree T that
is rooted at v is built up. Each leaf of these subtrees corresponds to a box that contains at
most max{l, ⌊N/4⌋} particles. The recursion ends, when all leaves correspond to regions
that contain at most l particles. In the following, we will present a detailed description
of the tree construction algorithm and illustrate it at an example in which we set the leaf
capacity l to 2.

Part 1: Initialize the square D

First, we have to define the square D that covers the particles in C. This can be done by
calculating the maximum and minimum values of the x- and y-coordinates of all particles
(namely {xmin , xmax , ymin , ymax}) and using this information to obtain a small square D
with width width(D) := max{xmax −xmin , ymax −ymin}+ ǫ (where ǫ > 0 is a constant) that
covers the particles in C. Figure 5.10(a) shows the square D that has been created for a
distribution of N = 11 particles.

Part 2: Create Sorted Coordinate Lists Sx and Sy

Now two lists Sx and Sy of length N are created. Each element of the list Sx contains
a different particle of C and two other entries that are initialized as empty entries and

5.3 The New Multipole Method 87

will be used later. Analogue, each element of the list Sy contains a different particle of C
and two other entries that are initialized as empty entries. The list elements of Sx and
Sy that contain the same particle are linked by a cross reference to enable efficient access
operations. Then, the lists Sx and Sy are sorted according to increasing x-coordinates and
y-coordinates of the positions of the contained particles, respectively. Table 5.1(top) shows
the sorted Sx and Sy lists of the particle distribution of Figure 5.10(a).

2 8 4 5 1 6 7 11 3 9 10
Sx ∅, ∅ ∅, ∅ ∅, ∅ ∅, ∅ ∅, ∅ ∅, ∅ ∅, ∅ ∅, ∅ ∅, ∅ ∅, ∅ ∅, ∅

11 8 9 10 6 7 4 5 2 3 1
Sy ∅, ∅ ∅, ∅ ∅, ∅ ∅, ∅ ∅, ∅ ∅, ∅ ∅, ∅ ∅, ∅ ∅, ∅ ∅, ∅ ∅, ∅

Cx(v1) 2 8 4 5 1 6 7 11 3 9 10
Cy(v1) 11 8 9 10 6 7 4 5 2 3 1

Table 5.1: (top) The sorted lists Sx and Sy of the particle distribution of Figure 5.10(a) and
(bottom) the corresponding lists Cx(v1) and Cy(v1) of root node v1.

1

2

3

4 5

6

7

8 9
10

11

(a)

1

2

3

4 5

6

7

8 9
10

11

(b)

1

2

3

4 5

6

7

8 9
10

11

(c)

v1

v2

(d)

Figure 5.10: (a) A distribution of N = 11 particles in a square D that is associated with the root
node v1 of T . (b) Subdividing D = box (v1) into two halves. The left half of box (v1) contains
more particles than the right half. (c) Subdividing the left half of D into two boxes. The left
bottom box contains more particles than the left top box. The dashed rectangle is the smallest
rectangle that covers all particles contained in the grey sub-box of D. (d) Creating a new child
v2 of v1 that corresponds to the left bottom sub-box of box (v1).

Part 3: Create the Root Node and Copies of Sx and Sy

The root node of the reduced bucket quadtree T (which corresponds to the square D) is
created next. Since this node is also the actual visited node, we denote it by vact , and the
corresponding square region is box (vact) := D.

88 5 The Force-Calculation Step

Furthermore, a copy of Sx and a copy of Sy are created. In contrast to Sx and Sy, they
contain the particle entries only. These lists are assigned to the root node and are denoted
by Cx(vact) and Cy(vact). To enable efficient access operations, for each i ∈ {1, . . . , N} the
i-th entry in Sx is linked with the i-th entry of Cx(vact) and vice versa. Analogue, the i-th
entry in Sy is linked with the i-th entry of Cy(vact) and vice versa. Additionally, like for Sx

and Sy, cross references between elements of Cx(vact) and Cy(vact) that contain the same
particle are created. If N < l we assign all particles in C to v1 and are done, since v1 is
already the reduced bucket quadtree. Otherwise, we proceed with the next parts of the
algorithm.

For example, Table 5.1(bottom) shows the lists Cx(v1) Cx(v2) of the root node v1 and
the distribution of Figure 5.10(a). Since N = 11 > 2 = l, the algorithm proceeds to the
next part.

Part 4: Alternating Cx(vact) Traversal

Suppose, vact is the actual visited node and box (vact) is the sub-box of D that is represented
by vact . Then, Cx(vact) is traversed alternating from the beginning and the end of Cx(vact)
heading toward the middle. This is done in order to decide which particles of Cx(vact)
belong to the left half of box (vact) and which particles belong to the right half of box (vact).

Let M = {c1, . . . , ck} ⊆ C be the set of particles in Sx that are contained in the half of
box (vact) that contains the fewest particles. Then, for each particle ci ∈ M a link to vact

and an index that identifies that ci belongs to the left (index l) or right (index r) part of
box (vact) is added to the elements containing ci in Sx and Sy.

Afterwards, all elements of Cx(vact) and Cy(vact) that contain a particle ci ∈ M are
deleted from Cx(vact) and Cy(vact), respectively.

For example, let v1 be the root node that corresponds to the box box (v1) = D shown
in Figure 5.10(a). Then, the 7 particles {2, 8, 4, 5, 1, 6, 7} are contained in the left half
of box (v1) and the 4 particles {11, 3, 9, 10} are contained in the right half of box (v1) (see
Figure 5.10(b)). Hence, each element of Sx and Sy that contains a particle of the set
{11, 3, 9, 10} is assigned a link to node v1 and the index r. Afterwards, the elements that
contain the particles 11, 3, 9 and 10 are deleted from Cx(vact) and Cy(vact) (see Table 5.2).

2 8 4 5 1 6 7 11 3 9 10
Sx ∅, ∅ ∅, ∅ ∅, ∅ ∅, ∅ ∅, ∅ ∅, ∅ ∅, ∅ v1, r v1, r v1, r v1, r

11 8 9 10 6 7 4 5 2 3 1
Sy v1, r ∅, ∅ v1, r v1, r ∅, ∅ ∅, ∅ ∅, ∅ ∅, ∅ ∅, ∅ v1, r ∅, ∅

Cx(v1) 2 8 4 5 1 6 7
Cy(v1) 8 6 7 4 5 2 1

Table 5.2: The lists Sx, Sy, Cx(v1) and Cy(v1) after the alternating Cx(v1) traversal.

5.3 The New Multipole Method 89

Part 5: Alternating Cy(vact) Traversal

Let large half (vact) be the half of box (vact) that contains the most particles. Then, analogue
to the Cx(vact) traversal, Cy(vact) is traversed alternating from the beginning and the end
of Cy(vact) heading toward the middle in order to decide which particles of Cy(vact) belong
to the bottom half of large half (vact) and to the top half of large half (vact). Note that
these regions are boxes of equal size.

Let M = {c1, . . . , ck} ⊆ C denote the set of particles in Sy that are contained in the
box of large half (vact) that covers the fewest particles. Then, for each particle ci ∈ M a
link to vact and an index that identifies that ci belongs to the top half or bottom half of
large half (vact) is added to the entries of ci in Sx and Sy. In particular, if large half (vact)
is the left half of box (vact), the indices are lt for left top sub-box and lb for left bottom
sub-box. If large half (vact) is the right half of box (vact) the indices are rt for right top
sub-box and rb for right bottom sub-box. Afterwards, all entries in Cx(vact) and Cy(vact)
that contain a particle ci ∈ M are deleted from Cx(vact) and Cy(vact), respectively.

In our example, the 5 particles {8, 6, 7, 4, 5} are contained in the left bottom sub-box
of box (v1) and the 2 particles {2, 1} are contained in the left top sub-box of box (v1) (see
Figure 5.10(c)). Hence, each element of Sx and Sy that contains a particle of the set {2, 1}
is assigned a link to node v1 and the index lt. Afterwards, the elements that contain the
particles 2 and 1 are deleted from Cx(vact) and Cy(vact) (see Table 5.3).

2 8 4 5 1 6 7 11 3 9 10
Sx v1, lt ∅, ∅ ∅, ∅ ∅, ∅ v1, lt ∅, ∅ ∅, ∅ v1, r v1, r v1, r v1, r

11 8 9 10 6 7 4 5 2 3 1
Sy v1, r ∅, ∅ v1, r v1, r ∅, ∅ ∅, ∅ ∅, ∅ ∅, ∅ v1, lt v1, r v1, lt

Cx(v1) 8 4 5 6 7
Cy(v1) 8 6 7 4 5

Table 5.3: The lists Sx, Sy, Cx(v1) and Cy(v1) after the alternating Cy(v1) traversal.

Part 6: Create a Child Node

As a result of parts 5 and 6, we know that the particles that are stored in Cx(vact) and
Cy(vact) are exactly the particles that are contained in one sub-box of sqaure(vact). Now a
child node vchild of vact is created that corresponds to this sub-box of box (vact) (denoted by
box (vchild)). Furthermore, Cx(vact) and Cy(vact) are assigned to vchild and labeled Cx(vchild)
and Cy(vchild), respectively. If the box box (vchild) contains at most l particles we proceed
with part 8 of this algorithm, otherwise we proceed with part 7.

In our example, a child node v2 of v1 that corresponds to the left bottom sub-box of
box (v1) is created (see Figures 5.10(c) and (d)). Since box (v2) contains more than l = 2
particles, we proceed with part 7 of the algorithm.

90 5 The Force-Calculation Step

Part 7: Use the Box-Shrinking Technique

Let R be the smallest axis parallel rectangle that covers all particles that are contained in
box (vchild). Since more than l particles are contained in box (vchild), we have to decompose
box (vchild) further in order to construct the reduced bucket quadtree. Additionally, we have
to avoid that the constructed tree contains degenerate nodes. Hence, the box-shrinking
technique of Aluru et al. [2] can be used to find the smallest sub-box B of box (vchild) so
that B covers R. Finally, we set box (vchild) := B.

In our example, box (v2) is already the smallest sub-box of box (v2), which covers the
smallest rectangle that contains the particles {8, 6, 7, 4, 5} (see Figure 5.10(c)).

Part 8: Create a Path

The previously described parts 4 to 7 can be reused to create a path P in our reduced
bucket quadtree T by setting vact := vchild and by repeating parts 4 to 7, until the box of
the actual node (box (vact)) contains less than l particles and, hence, is a leaf of T . Finally,
the remaining particles of Cx(vact) are assigned to the leaf vact .

In our example, after performing parts 4 to 5 of our algorithm on node v2, we obtain
the Sx, Sy, Cx(v2), and Cy(v2) lists that are shown in Table 5.4. In parts 6 and 7 a new
child v3 of v2 is added to the tree (see Figure 5.11(a)) that corresponds to the shaded box
shown in Figure 5.11(b).

2 8 4 5 1 6 7 11 3 9 10
Sx v1, lt v2, l v2, l ∅, ∅ v1, lt ∅, ∅ ∅, ∅ v1, r v1, r v1, r v1, r

11 8 9 10 6 7 4 5 2 3 1
Sy v1, r v2, l v1, r v1, r ∅, ∅ ∅, ∅ v2, l ∅, ∅ v1, lt v1, r v1, lt

Cx(v2) 5 6 7
Cy(v2) 6 7 5

Table 5.4: The lists Sx, Sy, Cx(v2) and Cy(v2) after the alternating Cx(v2) and Cy(v2) traversal.

Since the sub-box that corresponds to v3 contains more than 2 = l particles, parts 4
to 5 of the algorithm are performed on node v3. Hence, we obtain the Sx, Sy, Cx(v3), and
Cy(v3) lists that are shown in Table 5.5. In part 6 a new child v4 is added to the tree (see
Figure 5.11(c)) that corresponds to the shaded sub-box shown in Figure 5.11(d). Since
box (v4) contains only 2 = l particles the construction of the path stops and the remaining
particles in Cx(v4) (the particles 6 and 7) are assigned to v4. The constructed path is
P = (v1, v2, v3, v4).

5.3 The New Multipole Method 91

v1

v2

v3

(a)

1

2

3

4 5

6

7

8 9
10

11

(b)

{6, 7}

v1

v2

v3

v4

(c)

1

2

3

4 5

6

7

8 9
10

11

(d)

Figure 5.11: Constructing a path of the reduced bucket quadtree T . (a) A new node v3 is added
to the tree that corresponds to the grey box in (b). (c) A new node v4 is added to the tree
that corresponds to the grey box in (d). Since the box of v4 contains only l = 2 particles the
construction of the path stops, and the particles 6 and 7 are assigned to v4.

2 8 4 5 1 6 7 11 3 9 10
Sx v1, lt v2, l v2, l v3, l v1, lt ∅, ∅ ∅, ∅ v1, r v1, r v1, r v1, r

11 8 9 10 6 7 4 5 2 3 1
Sy v1, r v2, l v1, r v1, r ∅, ∅ ∅, ∅ v2, l v3, l v1, lt v1, r v1, lt

Cx(v2) 6 7
Cy(v2) 6 7

Table 5.5: The lists Sx, Sy, Cx(v2) and Cy(v2) after the alternating Cx(v2) and Cy(v2) traversal.

Part 9: Create All Children of the Nodes to Which Links in Sx Exist

Now for each node in the actual constructed tree T — to which links in Sx are stored —
children are created. (Note that the set of these nodes are exactly the nodes contained in
P here. In further recursive calls of part 9, the set of these nodes will be the node sets of
several paths in general (see description of part 10)). These children are created as follows:

First, the list Sx is traversed from left to right starting with the entry that con-
tains the particle with the smallest x-coordinate. If, during this process, one element
(cj, vi, region index) of Sx contains a link to a node vi — and it is the first time that an
element of Sx with a link to vi has been visited — a new list Cx(vi, region index) is created
that contains the particle cj. If, during this process, one element (cj, vi, region index) of Sx

contains a link to a node vi, and a corresponding list Cx(vi, region index) already exists,
cj is appended at the end of Cx(vi, region index). Afterwards, the list Sy is traversed from
left to right starting with the entry that contains the particle with the lowest y-coordinate
and lists Cy(vi, region index) are created in an analogue way.

Note that by construction each list Cx(vi, region index) and Cy(vi, region index) stores

92 5 The Force-Calculation Step

all particles that are contained in the sub-region of box (vi) that corresponds to the region
indicated by region index in increasing order according to the x- and y-coordinates of the
particles, respectively. Table 5.6 shows the Cx(vi, region index) and Cy(vi, region index)
lists that are obtained from the Sx and Sy lists of Table 5.5.

Cx(v1, lt) 2 1 Cx(v2, l) 8 4 Cx(v3, l) 5
Cy(v1, lt) 2 1 Cy(v2, l) 8 4 Cy(v3, l) 5

Cx(v1, r) 11 3 9 10
Cy(v1, r) 11 9 10 3

Table 5.6: The sorted lists of Cx(vi, region index) and Cy(vi, region index) that are obtained from
the Sx and Sy lists of Table 5.5.

In order to enable fast access to the elements of these lists, cross references between
the elements of Sx, Sy, and the Cx(vi, region index) and Cy(vi, region index) lists are built
up. In particular, each element of Sx that contains a particle cj is linked with the element
of the corresponding list Cx(vi, region index) that contains the particle cj and vice versa.
Analogue, a cross reference between each element of Sy that contains a particle cj and
the element of the corresponding list Cy(vi, region index) that contains the particle cj

is constructed. Finally, for each element of a list Cx(vi, region index) that contains a
particle cj, a link to the element of the list Cy(vi, region index) that contains particle cj is
constructed and vice versa. For later use, the elements of Sx and Sy are reinitialized by
replacing each element (cj, vi, region index) with the element (cj, ∅, ∅).

Suppose that we have given a node vi of the actual tree T for which the lists Cx(vi,
region index) and Cy(vi, region index) exist, and region index is either l or r. Then, we
know that the particles that are stored in these lists are covered by the left or right half
of box (vi), respectively. But in order to create children of vi, we have to know which
particles of these lists are stored in the top sub-box and which particles are stored in the
bottom sub-box of this half of box (vi). Hence, we split each list Cx(vi, region index) with
region index ∈ {l, r} into two sub-lists Cx(vi, lt) and Cx(vi, lb) (if region index = l) and
Cx(vi, rt) and Cx(vi, rb) (if region index = r), respectively. The Cx(vi, lt) and Cx(vi, lb)
lists contain the particles of Cx(vi, l) that are stored in the left top and left bottom sub-box
of box (vi), respectively. Analogue, the Cx(vi, rt) and Cx(vi, rb) list contain the particles of
Cx(vi, r) that are stored in the right top and right bottom sub-box of box (vi), respectively.
This splitting of a list Cx(vi, region index) with region index ∈ {l, r} into two sub-lists can
be done by traversing Cx(vi, region index) from left to right. Each list Cy(vi, region index)
with region index ∈ {l, r} is split into two sub-lists in an analogue way. Note that no cross
references between the elements of the Sx, Sy, Cx(vi, region index) and Cx(vi, region index)
lists are destroyed by these splitting operations. Table 5.7 shows the Cx(vi, region index)
and Cy(vi, region index) lists of Table 5.6 after the splitting operations.

Now we have everything on hand to create the children of the nodes in P . This is done
by creating for each list Cx(vi, region index) a child node wi of vi that corresponds to the

5.3 The New Multipole Method 93

Cx(v1, lt) 2 1 Cx(v2, lb) 8 Cx(v2, lt) 4 Cx(v3, lt) 5
Cy(v1, lt) 2 1 Cy(v2, lb) 8 Cx(v2, lt) 4 Cx(v3, lt) 5

Cx(v1, rb) 11 9 10 Cx(v1, rt) 3
Cy(v1, rb) 11 9 10 Cx(v1, rt) 3

Table 5.7: The splat sorted lists of Cx(vi, region index) and Cy(vi, region index) that are obtained
from the Cx(vi, region index) and Cy(vi, region index) lists of Table 5.6.

sub-box of box (vi) that is defined by index region index. Furthermore, we assign wi the
lists Cx(wi) := Cx(vi, region index) and Cy(wi) := Cy(vi, region index) for later use.

If the list Cx(wi) has length at most l, then less than l particles are contained in this
sub-box. Hence, wi is a leaf in the desired reduced bucket quadtree, and all particles that
are contained in Cx(wi) are assigned to wi. If the list Cx(wi) has length larger than l
(indicating that more than l particles are contained in this sub-box) the box-shrinking
technique of part 7 is used to obtain the smallest sub-box B of box (wi), which covers the
smallest rectangle R that contains the particles of Cx(wi). Then, we set box (wi) := B.

3

4

5

8

{1, 2}

{6, 7}

v1

v2

v3

v4v8

v5

v6v7 v9

v10

(a)

1

2

3

4 5

6

7

8 9
10

11

(b)

Figure 5.12: (a) The tree T after part 9 of the construction algorithm. (b) The corresponding
sub-boxes of the square D. The node v9 in (a) corresponds to the grey shaded region in (b).

Figure 5.12 demonstrates this process at an example: Suppose, the lists Cx(v1, lt),
Cx(v2, lb), Cx(v2, lt), Cx(v3, lt), Cx(v1, rb), and Cx(v1, rt) of Table 5.7 are visited in con-
secutive order. Then, a child v5 of v1, two children v6 and v7 of v2, a child v8 of v3, and
two additional children v9 and v10 of v1 are created. Since the lists Cx(v5) := Cx(v1, lt),
Cx(v6) := Cx(v2, lb), Cx(v7) := Cx(v2, lt), Cx(v8) := Cx(v3, lt), and Cx(v10) := Cx(v1, rt)
have length at most l = 2, the particles that are contained in these lists are assigned to
the corresponding new leaves of T . In contrast to this, the list Cx(v9) := Cx(v1, rb) in
Table 5.7 has length 3 > l. Hence, the smallest sub-box of box (v9), which covers the tight
rectangle R that contains the particles of Cx(wi) (namely {9, 10, 11}) is created using the
box-shrinking technique of part 7.

94 5 The Force-Calculation Step

Part 10: Recursion

If (as a result of part 9) all lists Cx(wi) have length at most l, the resulting tree is already
the desired reduced bucket quadtree with leaf capacity l. Otherwise, let {w1, . . . , wk} be
the set of nodes for which the corresponding lists Cx(wi) have length larger than l. Then,
parts 4 to 8 of the algorithm are applied on each node wi and its corresponding lists Cx(wi)
and Cy(wi). As a results of this process, paths {P1, . . . , Pk} that are rooted at {w1, . . . , wk}
are generated. In order to create all children of the nodes to which links in the Sx lists
are stored, part 9 is performed. Note that the set of these nodes are exactly the nodes
contained in {P1, . . . , Pk}. Let {u1, . . . , um} be the set of the newly created children for
which the length of Cx(ui) is larger than l. Then, parts 4 to 8 of the algorithm are applied
on each node ui, followed by one call of part 9 and so forth. The recursion ends if for all
newly created children the corresponding Cx and Cy lists have length at most l.

replacemen

1, 2 3

4

5 {6, 7}

8

9

v1

v2

v3

v4v8

v5

v6v7 v9

v10

v11

(a)

3

4 5

8 9
10

11

1

2

6

7

(b)

Figure 5.13: Recursion: (a) Creating a new child node v11 of v9. (b) The grey shaded region that
corresponds to v11.

For example, the list Cx(v9) = Cx(v1, rb) in Table 5.7 that corresponds to the particles
in the grey shaded region of Figure 5.12(b) and to node v9 of Figure 5.12(a) has length
3 > l. This is the only Cx list of Table 5.7 that has length larger than l. Hence, parts
4 to 8 of the algorithm are applied to v9 with lists Cx(v9) and Cy(v9). As a result of the
alternating Cx(v9) traversal and the alternating Cy(v9) traversal in parts 4 and 5, a new
child v11 is created in part 6 (see Figure 5.13(a)) that corresponds to the grey shaded box
in Figure 5.13(b). Since box (v11) contains only one particle, part 7 is skipped, and the
particle 9 is assigned to v11. Hence, the newly created path is P = (v9, v11). Since no
other lists of Table 5.7 have length larger than l, the algorithm proceeds with part 9 and
creates all other children of nodes to which links in Sx are stored. These children are v12

and v13. The corresponding lists Cx(v12) and Cx(v13) both have length 1 < l. Therefore,
the particles 10 and 11 that are stored in Cx(v12) and Cx(v13) are assigned to v12 and
v13, respectively. Since no new children vi with length Cx(vi) > l have been created,
the algorithm terminates, and the resulting tree is the reduced bucket quadtree with leaf
capacity l = 2 (see Figure 5.14).

5.3 The New Multipole Method 95

1, 2 3

4

5 {6, 7}

8

9 10 11

v1

v2

v3

v4v8

v5

v6v7 v9

v10

v11 v12 v13

(a)

3

4 5

8 9
10

11

1

2

6

7

(b)

Figure 5.14: Recursion: (a) Creating the other children v11 and v12 of v9. (b) The subdivision
of D that corresponds to the tree T in (a). T is the desired reduced bucket quadtree with leaf
capacity 2.

Formal Description of the Tree Construction Algorithm (Way A)

In Function TCawe present the pseudocode of the tree construction algorithm. Furthermore,
we will analyze its running time. An experimental study of this tree construction method,
including comparisons with other tree construction methods, will be given in Section 7.4.1.

Lemma 5.10 (Reduction of the Number of Particles in Leaves). Suppose, the pre-
viously described tree construction algorithm is used to construct a reduced bucket quadtree
with leaf capacity l. Let vact be a node that corresponds to a box box(vact), the lists Cx(vact)
and Cy(vact) are associated with vact, and box(vact) contains |Cx(vact)| particles. Further-
more, suppose, the parts 4 to 9 of the tree construction algorithm have to be performed on
vact and that the leaves of the newly created subtree that is rooted at vact are denoted by
{v1, . . . , vk}. Then, for each leaf vi ∈ {v1, . . . , vk} the corresponding box box(vi) contains
at most max {l, ⌊|Cx(vact)|/2⌋} particles.

Proof. It is clear that after performing parts 4 to 8 of the algorithm, a path P has been
created that contains one leaf vi, and the corresponding region box (vi) contains at most
l particles. In part 9 the other children of the nodes of P (that are leaves of the newly
created subtree that is rooted at vact) are created. It is clear that for vi ∈ {v1, . . . , vk} the
Cx(vi) and Cy(vi) lists have length at most max (l, ⌊|Cx(vact)|/2⌋) (we assign non-empty
links only to those elements of Sx and Sy, which contain particles that are covered by the
half of two alternative sub-regions that contains the fewest particles). The length of each
such list Cx(vi) corresponds to the number of particles that are covered by the sub-box of
the leaf vi, which completes the proof.

Theorem 5.11 (Tree Construction Way A). Suppose, C = {c1, . . . , cN} is a set of
particles that are placed at distinct positions p(C) = {p1, . . . , pN} and l ≥ 1 is an integer
constant. Then, Function TCa constructs a reduced bucked quadtree with leaf capacity l in
O(N log N) time using O(N) memory.

96 5 The Force-Calculation Step

Function TCa(C, l)

input : a set C = {c1, . . . , cN} of particles that are placed at distinct positions
p(C) = {p1, . . . , pN} and a constant integer leaf capacity l ≥ 1

output: a reduced bucket quadtree T with leaf capacity l

begin
i ← 1;
calculate a square region D that contains all particles of C;
create sorted coordinate lists Sx and Sy;
create a root node vact and the lists Cx(vact) and Cy(vact);
T ← vact ;
if N ≤ l then assign all particles in Cx(vact) to vact and EXIT;
while box (vact) contains more than l particles do

Alternating Cx(vact) Traversal;
Alternating Cy(vact) Traversal;
create a new child node vchild of vact ;
if more than l particles are contained in box (vchild) then

box (vchild) ← Shrink(box (vchild));

vact ← vchild ;

assign all particles in Cx(vact) to vact ;
Create new children {v1, . . . , vs} =: M i of all nodes to which links are stored in
Sx;
let Li ← {v1, . . . , vk} be the set of the nodes in M i so that for each i ∈ {1, . . . , k}
box (vi) contains more than l particles;
while Li 6= ∅ do

while Li 6= ∅ do
pick some vact ∈ Li, and set Li ← Li \ {vact};
while box (vact) contains more than l particles do

Alternating Cx(vact) Traversal;
Alternating Cy(vact) Traversal;
create a new child node vchild of vact ;
if more than l particles are contained in box (vchild) then

box (vchild) ← Shrink(box (vchild));

vact ← vchild ;

assign all particles in Cx(vact) to vact ;

Create new children {v1, . . . , vs} =: M i+1 of all nodes to which links are
stored in Sx;
let Li+1 ← {v1, . . . , vk} be the set of the nodes in M i+1 so that for each
i ∈ {1, . . . , k} box (vi) contains more than l particles;
i ← i + 1;

end

5.3 The New Multipole Method 97

Proof. The calculation of the square D (part 1) needs O(N) time. The construction of the
sorted lists Sx, Sy of length N with cross references (part 2) needs O(N log N) time and
O(N) additional memory is needed. The construction of the Cx and Cy lists with cross
references of the root node (part 3) needs O(N) time and O(N) additional memory. If
N < l we are already done, and the reduced bucket quadtree T is given by the root node.

We concentrate on the running time of the parts 4 to 8 (i.e., the top while-loop in
Function TCa) now: Let vact be the actual visited node. Then, the alternating Cx(vact)
traversal (part 4) needs time that is proportional to the number of particles in the half of
box (vact) that contains the fewest particles (due to the cross references). Since in Sx and
Sy all elements are marked that contain these particles, the running time is proportional to
the number of elements in Sx for which non-empty links to nodes of T have been created,
too. We denote the half of box (vact) that contains the most particles by large half (vact).
Analogue, the alternating Cy(vact) traversal (part 5) needs time that is proportional to the
number of particles in the half of large half (vact) that contains the fewest particles. Since
in Sx and Sy all elements are marked that contain these particles, the total running time
of parts 4 and 5 is proportional to the number of elements in Sx for which non-empty links
to nodes of T exist.

The creation of a child vchild of vact and the relabeling of Cx(vact) and Cy(vact) to
Cx(vchild) and Cy(vchild), respectively, in part 6 need O(1) time. If the length of Cx(vchild)
is at most l, the contained particles are assigned to vchild , which needs O(l) = O(1) time.
Otherwise, possibly the box box (vchild) has to be shrunk (part 7). Since the lists Cx(vchild)
and Cx(vchild) are ordered, the smallest rectangle R, which covers the particles that are
contained in box (vchild), can be found in O(1) time. Using the box-shrinking technique of
Aluru et al. [2], the shrinking of box (vchild) needs O(1) time in total. We can summarize
that the total running time of parts 4 to 7 is proportional to the number of elements in Sx

for which nonempty links to nodes of T have been created. Therefore, the running time of
the iterative path construction (part 8) is bounded above by the initial length of Cx(vact).
Since vact is the root of T , the initial length of Cx(vact) has been N .

In part 9 the remaining children of the nodes in T to which links in Sx exist are
created in O(N) time, since Sx and Sy have length N , since the sum of the length of all
Cx(vi, region index) and Cy(vi, region index) lists after the splitting process is O(N), and
due to the cross references.

Let L1{v1, . . . , vk} be the set of all leaves that have been created in part 9 and that
contain more than l particles. If L1 = ∅, the reduced bucked quadtree has been constructed
in O(N log N) time using O(N) memory. Otherwise, we analyze the running time of one
recursion of part 10 (i.e., one iteration of the outer while-loop in Function TCa): Let vi

be a node of L1 with associated lists Cx(vi) and Cy(vi). We have already discussed that
parts 4 to 8 need time that is proportional to the initial length of the list Cx(vi). Since
∑k

i=1 initial length(Cx(vi)) ≤ N , the execution of parts 4 to 8 for all nodes vi ∈ L1 needs
O(N) time in total. Afterwards, the children of all nodes to which links are stored in
Sx have to be created. This needs O(N) time by traversing Sx and Sy once and then,
performing the needed splitting operations. Hence, the running time of one recursion of
part 10 is O(N), too.

98 5 The Force-Calculation Step

We can summarize that the total running time of the algorithm is O(N log N + N ·
|recursion levels|), where recursion levels is the number of recursions (i.e., the number of
iterations of the outer while-loop in Function TCa). We estimate the number of recursion
levels next: It is known from Lemma 5.10 that after the first execution of parts 4 to 9 of
the algorithm on the root node vr, the number of particles that is covered by a box that
is associated with a leaf is at most max {l, ⌊N/2⌋}. Hence, It follows from Lemma 5.10
that after applying parts 4 to 9 on all nodes in L1, the number of particles covered by the
box of each leaf is at most max {l, ⌊N/4⌋}. After the next recursion level the number of
particles covered by the box of each leaf is at most max {l, ⌊N/8⌋} and so forth. Therefore,
the number of recursion levels is bounded above by O(log N), and the total running time
of Function TCa is O(N log N).

Since at each stage of the algorithm, the sum of the length of all lists is O(N) and since
the actual constructed tree contains O(N) nodes, the memory requirements are O(N),
too.

5.3.3 Construction of the Reduced Bucket Quadtree (Way B)

In the last section we have presented a method for constructing a reduced bucket quadtree
with fixed constant leaf capacity l ≥ 1 in O(N log N) time. However, like the tree construc-
tion method of Aluru et al. [2] it has some drawbacks: The method is quite complicated, the
best-case running time is not better than O(N log N), and the construction time still could
be improved in practice (see Section 7.4.1). Hence, we developed an alternative simpler
algorithm for constructing reduced bucket quadtrees that has a linear best-case running
time, and is faster than Function TCa in practice (see Section 7.4.1). It is described in the
following.

Like in the previous section, we suppose that the N particles C = {c1, . . . , cN} are
distributed at distinct positions p(C) = {p1, . . . , pN}. Furthermore, we suppose that a
fixed constant leaf capacity l ≥ 1 is given and that we want to construct a reduced bucket
quadtree with leaf capacity l. We will illustrate the algorithm at an example in which we
set the leaf capacity l to 2.

Part 1: Initialize the square D

First, we have to define a small square D that covers the particles in C. This can be done
exactly like in part 1 of the previously described tree construction Function TCa.

Part 2: Building up a Truncated Pseudo Quadtree T 1

Then, we build up a truncated pseudo quadtree T 1 of depth d = max{1, ⌊log4 N/l⌋} by
using the same technique as described in Section 5.2.1.

5.3 The New Multipole Method 99

Part 3: Transfer T 1 to a Reduced Truncated Bucket Quadtree

In the next part of the algorithm we thin out T 1 in order to transfer it into a reduced
truncated bucket quadtree with leaf capacity l and maximal depth d. This is done by
traversing the tree bottom up and thereby calculating for each tree node the number of
particles that are contained in the box that it represents. Figure 5.15(b) shows the tree
T 1 after the bottom-up traversal. It has been constructed for the distribution of N = 11
particles shown in Figures 5.15(a).

ts

1

2

3

4 5

68 9
10

11

7

(a)

1 5

11

0 1 1 0 0 1 0 0 1 3 1 0 0 0 30

2 3

1 2 3 4 5
6

8 9
10
117

v1

v2 v3 v4 v5

v6

(b)

1 3 1

1 5

3

2

01

11

3

4 5

6

8 9
10

117

{1, 2} v6v7

(c)

Figure 5.15: (a) A distribution of N = 11 particles. (b) A truncated pseudo quadtree T 1 of depth
2 that corresponds to this distribution. The labels of the nodes display the number of particles
that are contained in the corresponding sub-boxes. (c) The reduced truncated bucket quadtree
with leaf capacity 2 and maximal depth 2 that is obtained by thinning out T 1.

Then, T 1 is traversed top down starting at the root of T 1. Suppose, the actual visited
node is v, its parent is u and its children are w1, w2, w3, and w4. If v is a leaf of T 1, nothing
is done. Otherwise, each subtree that is rooted at a child wi of v and contains no particles
is deleted from T 1. If after this deletion process v has only one nonempty child wi (i.e.,
v is a degenerate node of T 1) and if additionally v is the root of a subtree that contains
more than l particles, v is deleted from T 1, and wi is made a child of u. If v is the root
of a subtree that contains at most l particles, all subtrees that are rooted at the children
of v are deleted, and all particles that were stored in the leaves of the deleted subtrees are
assigned to v.

In our example, after visiting node v1 of Figure 5.15(b), the algorithm proceeds to node
v2 and deletes the two subtrees that are rooted at the children of v2 and which contain no
particles. Since v2 is the root of a subtree that contains 2 = l particles, the two remaining
subtrees that are rooted at the children of v2 are deleted, and the particles 1 and 2 are
assigned to v2. Then, the algorithm proceeds to node v3 and deletes the three subtrees
that are rooted at the children of v3 and which contain no particles. Since the subtree
that is rooted at the remaining child of v3 contains only 1 < l particle, this subtree of v3

is deleted, and the particle 3 is assigned to v3. Then, the algorithm visits node v4 and
deletes the subtree that it rooted at the child of v4 which contains no particles. Since the

100 5 The Force-Calculation Step

remaining subtree that is rooted at v4 contains 5 > l particles, the three children of v4 are
visited next. Afterward, node v5 is visited, and the three subtrees that are rooted at the
children of v5 and which contain no particles are deleted. Since v5 is a degenerate node
with the unique nonempty child v6, and the remaining subtree that is rooted at v5 contains
3 > l particles, v5 is deleted, and v1 is made the new parent of v6. After visiting node v6,
the reduced truncated bucket quadtree with leaf capacity l = 2 and maximal depth 2 is
constructed (see Figure 5.15(c)).

Part 4: Recursions

If none of the leaves of T 1 contains more than l particles, the algorithm ends, and T 1 is
already a reduced bucket quadtree with leaf capacity l. Otherwise, the previous described
parts 2 and 3 are repeated recursively for each leaf of T 1 that contains more than l particles.

1 3 1

1

1 5

11

3

2

1

01

1 1 0101 01 21

3

4

5 6

8

9 10 11

7

{1, 2} v6v7

(a)

1 3 1

1

1 5

11

3

2

1

01

1 121

3

4

5

8

9 10 11

{1, 2}

{6, 7}

v6v7

(b)

Figure 5.16: (a) Recursive construction of truncated pseudo quadtrees of depth 1 rooted at nodes
v6 and v7. (b) The resulting reduced bucket quadtree with leaf capacity 2 that is obtained after
thinning out the subtrees which are rooted at v6 and v7.

For example, the leaves v6 and v7 in Figure 5.15(c) both contain 3 > l particles.
Therefore, truncated pseudo quadtrees T 2(v6) rooted at v6 and T 2(v7) rooted at v7 are
built up. Both subtrees have depth d := max{1, ⌊log4 3/l⌋} = 1. Then, in a bottom-up
traversal of T 2(v6) and T 2(v7) the number of contained particles in the corresponding sub-
boxes is calculated (see Figure 5.16(a)). After thinning out T 2(v6) and T 2(v7), all leaves
in the resulting tree contain at most l particles. Hence, the algorithm terminates, and the
resulting tree is a reduced bucket quadtree with leaf capacity l (see Figure 5.16(b)).

Formal Description of the Tree Construction Algorithm (Way B)

The tree construction algorithm is formalized in Function TCb. Besides an analysis of its
asymptotic running time that we will present here, an experimental study of this tree

5.3 The New Multipole Method 101

construction method, including comparisons with other tree construction methods, will be
given in Section 7.4.1.

Function TCb(C, l)

input : a set C = {c1, . . . , cN} of particles that are placed at distinct positions
p(C) = {p1, . . . , pN} and a constant integer leaf capacity l ≥ 1

output: a reduced bucket quadtree T with leaf capacity l

begin
i ← 1;
d ← max{1, ⌊log4 N/l⌋};
calculate a square region D that contains all particles of C;
T i ← Create Truncated Pseudo Quadtree(C, d);
T i ← Transfer To Reduced Truncated Bucket Quadtree(T i);
let Li ← {v1, . . . , vk} denote the set of the leaves of T i that contain more than
l particles;
while Li 6= ∅ do

if Li+1 has not been created then Li+1 ← ∅;
pick some v ∈ Li, and set Li ← Li \ {v};
let C(v) be the set of particles that are contained in v;
dv ← max{1, ⌊log4 |C(v)|/l⌋};
T i+1(v) ← Create Truncated Pseudo Quadtree(C(v), d);
T i+1(v) ← Transfer To Reduced Truncated Bucket Quadtree(T i+1(v));
let Li+1(v) ← {v1, . . . , vk} denote the set of the leaves of T i+1(v) that contain
more than l particles.;
Li+1 ← Li+1 ∪ Li+1(v);
if Li = ∅ then i ← i + 1;

T ← T 1;
end

Lemma 5.12 (Construction of a Truncated Reduced Bucket Quadtree). Sup-
pose, C = {c1, . . . , cN} is a set of particles that are placed at distinct positions p(C) =
{p1, . . . , pN} in a square region D, and l, d ≥ 1 are integers. Then, a truncated reduced
bucket quadtree with leaf capacity l and maximal depth d can be constructed in O(N + 4d)
time using O(N + 4d) memory.

Proof. We use parts 2 and 3 of the previously described tree construction algorithm: The
construction of a truncated pseudo quadtree T 1 of depth d needs O(N + 4d) time (see
Section 5.2.1). Since T 1 contains O(4d) nodes and N particles, the memory requirements
are O(N + 4d), too. T 1 can be thinned out in O(4d) time, since every node of T 1 is visited
only once in the bottom-up traversal and only once in the top-down traversal. Hence,
a truncated reduced bucket quadtree with leaf capacity l and maximal depth d can be
constructed in O(N + 4d) time using O(N + 4d) memory.

102 5 The Force-Calculation Step

Theorem 5.13 (Tree Construction Way B (General Case)). Suppose that C =
{c1, . . . , cN} is a set of particles that are placed at distinct positions p(C) = {p1, . . . , pN}
and that l ≥ 1 is an integer constant. Suppose that the maximum and minimum of the
Euclidean distances between any two particles in C are denoted by dmax and dmin, respec-
tively. Then, Function TCb constructs a reduced bucked quadtree with leaf capacity l in
O(N · log(dmax/dmin)) time in the worst case and uses O(N) memory. The best-case run-
ning time of Function TCb is O(N).

Proof. The calculation of D needs O(N) time. The construction of the truncated pseudo
quadtree T 1 with leaf capacity l and maximal depth d = max{1, ⌊log4 N/l⌋} needs O(N +
4d) = O(N) time and uses O(N +4d) = O(N) memory (see Lemma 5.12). If all leaves of T 1

contain at most l particles, T 1 is already the reduced bucket quadtree and the construction
time has been O(N).

Otherwise, the algorithm builds up truncated reduced bucket quadtrees T 1(v1), . . . ,
T 1(vk) of all leaves v1, . . . , vk of T 1 that contain more than l particles. For each j ∈
{1, . . . , k} let C(vj) denote the set of all particles that are contained in the subtree of
node vj. Then, by using Lemma 5.12, the total running time for constructing all T 1(vj)

is bounded above by
∑k

j=1 O(|C(vj)| + 4log(|C(vj)|)) = O(N). For each other recursion
levels i ≥ 2, the running time for building up all truncated reduced bucket quadtrees
T i(v1), . . . , T

i(vk) is bounded above by O(N), too. Hence, the running time of Func-
tion TCb is bounded above by O(N · |recursion levels|), where recursion levels corresponds
to the number of iterations of the while-loop in Function TCb.

Clearly, the number of recursion levels depends on the distribution p(C) of the par-
ticles in C. Now we will prove that the number of recursion levels is bounded above by
log(dmax/dmin): Since the width of the four sub-boxes of a box B is half the width of B,
it follows that after O(log2(dmax/dmin)) recursive subdivisions of the square D no sub-box
contains more than one particle.

Suppose, node v is a leaf of subtree T i(u) that contains more than l particles and
corresponds to a sub-square of D of width width(v). Then, by construction of our algorithm,
first a truncated pseudo quadtree T i+1(v) rooted at v is built up that has depth at least one.
Thus, all leaves of T i+1(v) correspond to sub-squares of D with width at most width(v)/2.
Possibly some of these leaves (denoted by {w1, . . . , wk}) contain more than l particles
and the corresponding boxes will be subdivided further at the next recursion level. At this
recursion level, the leaves of the constructed subtrees T i+2(w1), . . . , T

i+2(wk) have width at
most width(v)/4 and so forth. Hence, the maximum number of recursion levels is bounded
above by O(log2(dmax/dmin)).

Since at each stage of the algorithm, the number of nodes in the actual tree is O(N),
the total memory requirements are O(N).

Note that the simplicity and linear best-case running time of Function TCb has a price:
Its worst-case running time depends on the distribution of the particles, which is undesir-
able. However, we will see that this function in combination with the following corollary
will be very useful to describe an efficient force-calculation step in Section 5.4.

5.3 The New Multipole Method 103

Corollary 5.14 (Tree Construction Way B (Special Case)). Suppose that C =
{c1, . . . , cN} is a set of particles that are placed at distinct positions p(C) = {p1, . . . , pN}
on a regular square integer grid with a resolution which is polynomial in N , and l ≥ 1 is
an integer constant. Then, Function TCb constructs a reduced bucked quadtree with leaf
capacity l in O(N log N) worst-case running time using O(N) memory. The best-case
running time of Function TCb is O(N).

Proof. We can assume that the particles are placed on an integer grid with x- and y-
coordinates in the range [−P(N),P(N)], where P(N) is a whole-numbered polynomial in
N of constant maximum degree s with positive coefficients. Then, the maximum Euclidean
distance between any two particles in C is bounded above by 2

√
2 · P(N). The minimum

Euclidean distance between any two particles in C is bounded above by one. Hence, the
tree construction time is bounded above by O(N · log(2

√
2 · P(N)) = O(N · s · log N) =

O(N log N).

5.3.4 The Multipole Framework

In this section we will concentrate on the second phase of our force-approximation method
NM2. We will introduce the analytical tools from complex analysis and some terminology,
before we will give an informal and a formal description of the second phase of our force-
approximation method.

Like in the previous sections, we suppose that C = {c1, . . . , cN} is a set of N charged
particles with charges q(C) = {q1 = 1, . . . , qN = 1} that are located at distinct positions
p(C) = {p1, . . . , pN} ∈ R

2. Furthermore, we suppose that a reduced bucket quadtree
T = (V,E) with fixed constant leaf capacity l has been built up for the particles in C.

Tools From Complex Analysis

In the following, we will present some definitions and theorems that have been invented by
Greengard [58] and Greengard and Rokhlin [59] and that are of fundamental importance
for multipole methods.

Suppose, in a two-dimensional physical model a charged particle ci of charge qi is located
at point pi and (x, y) 6= pi is an arbitrary point in R

2. Then, the potential energy Eci(x, y)
at a point (x, y) due to ci and the repulsive force F ci

rep(x, y) that acts on a particle of unit
charge that is placed at point (x, y) due to ci are given by

Eci(x, y) = −qi · log(‖(x, y) − pi‖) and F ci
rep(x, y) =

qi · ((x, y) − pi)

‖(x, y) − pi‖2
,

respectively (see [58, 59]). In order to obtain useful tools for their Fast Multipole Method,
Greengard [58] and Greengard and Rokhlin [59] identify each point (x, y) ∈ R

2 with a
point z = x + iy ∈ C. Following standard practice, they refer the complex function
Eci(z) = qi log(z − pi) as the potential energy function due to a charged particle ci of
charge qi. Furthermore, the following lemma holds (see [58, 59]).

104 5 The Force-Calculation Step

Lemma 5.15 (Obtaining the Forces from a Complex Energy Function). If E(x, y)
= Re(E(z)) describes the potential energy field at a point (x, y) ∈ R

2 and z := x + iy ∈ C,
then the corresponding force field is given by Frep(x, y) = (Re(E ′(z)),−Im(E ′(z))).

Only special cases of the following Lemmas 5.16, 5.20, 5.21, 5.23, and Theorem 5.17
have been shown in [58, 59]. In particular, the corresponding lemmas in [58, 59] assume
that either z0 or z1 is the origin. Since we need the theorems in [58, 59] in the general
context and since not all proofs of the generalized versions are trivial, we reproved the
lemmas for the general case, in which z0 and z1 are arbitrary points in C. As a benefit
of this, we can apply these lemmas and theorems in our algorithm directly. Otherwise,
we would have to perform time-consuming translation operations on the set of particles in
order to apply the restricted lemmas and theorems given in [58, 59] in our algorithm.

Lemma 5.16 (Potential Field of a Charged Particle). Suppose, a particle ci of charge
qi is located at point pi ∈ C, and z0 is an arbitrary point in C. Then, for any z ∈ C so
that |z − z0| > |pi − z0| the potential energy at point z due to particle ci is given by

Eci(z) = qi log(z − pi) = qi

(

log(z − z0) −
∞

∑

k=1

(pi − z0)
k

k · (z − z0)k

)

.

Proof.

log(z − pi) − log(z − z0) = log

(

z − pi

z − z0

)

= log

(

1 − pi − z0

z − z0

)

= −
∞

∑

k=1

(

pi − z0

z − z0

)k

/k

The last equation is obtained by using the following expansion of the complex logarithm
log(1 − w) = −∑∞

k=1
wk

k
that holds for any w ∈ C with |w| < 1.

Theorem 5.17 (Multipole Expansion Theorem). Suppose that m charged particles
{c1, . . . , cm} with charges {q1, . . . , qm} are located at points {p1, . . . , pm} inside a circle of
radius r with center z0. Then, for any z ∈ C with |z − z0| > r the potential energy E(z) at
point z induced by the m charged particles is given by

E(z) = a0 log(z − z0) +
∞

∑

k=1

ak

(z − z0)k
, where (5.7)

a0 =
m

∑

i=1

qi and ak =
m

∑

i=1

−qi(pi − z0)
k

k
. (5.8)

Furthermore, for any p ≥ 1
∣

∣

∣

∣

∣

E(z) − a0 log(z − z0) −
p

∑

k=1

ak

(z − z0)k

∣

∣

∣

∣

∣

≤
(

A

c − 1

) (

1

c

)p

, where (5.9)

c =

∣

∣

∣

∣

z − z0

r

∣

∣

∣

∣

and A =
m

∑

i=1

|qi| .

5.3 The New Multipole Method 105

Proof.

E(z) =
m

∑

i=1

Eci(z) =
m

∑

i=1

qi log(z − pi) =
m

∑

i=1

qi

(

log(z − z0) −
∞

∑

k=1

(pi − z0)
k

k · (z − z0)k

)

=
m

∑

i=1

(qi log(z − z0)) −
m

∑

i=1

(

qi

∞
∑

k=1

(pi − z0)
k

k · (z − z0)k

)

=

(

m
∑

i=1

qi

)

log(z − z0) +
∞

∑

k=1

(

m
∑

i=1

−qi(pi − z0)
k

k · (z − z0)k

)

Estimation (5.9) is given by

∣

∣

∣

∣

∣

E(z) − a0 log(z − z0) −
p

∑

k=1

ak

(z − z0)k

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∞
∑

k=p+1

m
∑

i=1

−qi(pi − z0)
k

k · (z − z0)k

∣

∣

∣

∣

∣

≤
∞

∑

k=p+1

A · rk

k · |z − z0|k

≤ A

∞
∑

k=p+1

∣

∣

∣

∣

r

z − z0

∣

∣

∣

∣

k

=
A

1 −
∣

∣

∣

r
z−z0

∣

∣

∣

·
∣

∣

∣

∣

r

z − z0

∣

∣

∣

∣

p+1

=
A

1 − 1
c

·
(

1

c

)p+1

=

(

A

c − 1

)(

1

c

)p

.

Definition 5.18 (Multipole Expansion, p-term Multipole Expansion). The infi-
nite Laurent series in Formula (5.7) is called multipole expansion of the potential energy
field due to the charged particles in {c1, . . . , cm}. The variables ai in Formula (5.8) are
the coefficients of the multipole expansion. The finite series Mp(z) = a0 log(z − z0) +
∑p

k=1
ak

(z−z0)k that is obtained by calculating only the coefficients a0, . . . , ap in Formula (5.7)
is called p-term multipole expansion of the potential energy due to the charged particles
in {c1, . . . , cm}, and p is the precision parameter.

Remark 5.19 (Error Estimation and Relationship Between Multipole Expan-
sions and Center-of-Mass Approximations).

(a) The Estimation (5.9) implies that the accuracy of the approximation of the potential
energy E(z) due to a p-term multipole expansion Mp(z) increases with increasing
precision parameter p and increasing distance between the center z0 and the point z.

(b) If in Theorem 5.17 one chooses p = 1 and z0 as the center of mass c of the charged
particles {c1, . . . , cm}, Formula (5.7) simplifies to E(z) = a0 log(z − z0). Hence, the
corresponding force that acts on a particle of unit charge that is placed at a position
z = (x, y) ∈ R

2 with |z − c| > r is given by Frep(z) = (Re(E ′(z)),−Im(E ′(z))) =
a0(z−c)
‖z−c‖2 . This expression is exactly the center-of-mass approximation which is used in

the force-approximation method of Barnes and Hut [8]. The corresponding multipole
expansion with center c is called monopole expansion.

106 5 The Force-Calculation Step

The following Lemma 5.20 shows how the center of a multipole expansion can be shifted.
Lemma 5.21 describes how a multipole expansion can be converted into a power series (that
will be called local expansion) in a circular region of analyticity, and Lemma 5.23 shows
how the center of a finite local expansion can be shifted.

Lemma 5.20 (Translation of a Multipole Expansion). Suppose that E(z) = a0 log(z−
z0) +

∑∞
k=1

ak

(z−z0)k is a multipole expansion of the potential energy due to a set of charged
particles that are located inside a circle of radius r and center z0. Then, for any z outside
a circle of radius r + |z0 − z1| and center z1, the potential energy induced by these particles
is given by

E(z) = a0 log(z − z1) +
∞

∑

l=1

bl

(z − z1)l
, where

bl =
−a0(z0 − z1)

l

l
+

l
∑

k=1

ak(z0 − z1)
l−k

(

l − 1

k − 1

)

.

Proof. Since obviously |z0 − z1| < |z − z1|, we get

a0 log(z − z0) = a0 log

(

(z − z1)

(

1 − z0 − z1

z − z1

))

= a0 log(z − z1) + a0 log

(

1 − z0 − z1

z − z1

)

= a0 log(z − z1) − a0

∞
∑

l=1

(z0 − z1)
l

l · (z − z1)l
.

(5.10)

It can be shown by induction over k that for k ≥ 2

1

(z − z0)k
=

(−1)k−1

(z0 − z1)(k − 1)!
·
(

z − z1

z − z0

)(k−1)

and (5.11)

(

∞
∑

l=0

(

z0 − z1

z − z1

)l
)(k−1)

=
∞

∑

l=k

(−1)k−1(z0 − z1)
l−k+1 · (l − k + 1) · . . . · (l − 1)

(z − z1)l
. (5.12)

Since

z − z1

z − z0

=
1

1 − z0−z1

z−z1

=
∞

∑

l=0

(

z0 − z1

z − z1

)l

,

we obtain with Formulas (5.11) and (5.12)

5.3 The New Multipole Method 107

∞
∑

k=1

ak

(z − z0)k
=

∞
∑

k=1

ak ·
(−1)k−1

(z0 − z1)(k − 1)!
·
(

z − z1

z − z0

)(k−1)

=
∞

∑

k=1

ak ·
(

∞
∑

l=k

(z0 − z1)
l−k

(

l − 1

k − 1

)

(z − z1)
−l

)

=
∞

∑

l=1

l
∑

k=1

ak(z0 − z1)
l−k

(

l − 1

k − 1

)

(z − z1)
−l .

(5.13)

The proof is complete by combining Formulas 5.10 and 5.13.

Lemma 5.21 (Conversion of a Multipole Expansion into a Local Expansion).
Suppose that a set of charged particles is located inside a circle C0 of radius r and center
z0, the corresponding multipole expansion is given by E(z) = a0 log(z − z0) +

∑∞
k=1

ak

(z−z0)k ,

and that z1 is a point with |z1 − z0| > 2r. Then, inside a circle of radius r and center z1

the potential energy due to these particles is given by the power series

E(z) =
∞

∑

l=0

bl · (z − z1)
l , where (5.14)

b0 = a0 log(z1 − z0) +
∞

∑

k=1

ak

(z1 − z0)k
and (5.15)

bl =
(−1)l+1a0

(z1 − z0)l · l +

(

1

z0 − z1

)l ∞
∑

k=1

(

l + k − 1

k − 1

)

ak

(z1 − z0)k
, for l ≥ 1 . (5.16)

Proof. The power series is obtained by E(z) =
∑∞

i=0
E(i)(z1)

i!
(z − z1)

i using the definition of
the multipole expansion.

Definition 5.22 (Local Expansion, p-term Local Expansion). The infinite power
series in Formula (5.14) is called local expansion of the potential energy field due to the
set of charged particles contained in C0. The variables bi in Formulas (5.15) and (5.16) are
the coefficients of the local expansion. For i = {1, . . . , p} let bp

i denote an approximation
of the coefficient bi in Formulas (5.15) and (5.16), respectively so that only the first p
coefficients ak of the infinite series in Formulas (5.15) and (5.16) are calculated. Then,
the finite power series Lp(z) =

∑p
l=0 bp

l · (z − z1)
l that is obtained by calculating only the

coefficients bp
0, . . . , b

p
p in Formula (5.14) is called p-term local expansion of the potential

energy due to the set of charged particles contained in C0.

Lemma 5.23 (Translation of a Local Expansion). For any complex z0, z1, z and
{a0, . . . , ap}

p
∑

k=0

ak(z − z0)
k =

p
∑

l=0

(

p
∑

k=l

ak

(

k

l

)

(z1 − z0)
k−l

)

(z − z1)
l .

108 5 The Force-Calculation Step

Proof.

p
∑

k=0

ak(z − z0)
k =

p
∑

k=0

ak((z − z1) + (z1 − z0))
k =

p
∑

k=0

ak

k
∑

l=0

(

k

l

)

(z − z1)
l(z1 − z0)

k−l

=

p
∑

l=0

(

p
∑

k=l

ak

(

k

l

)

(z1 − z0)
k−l

)

(z − z1)
l

Since we are more interested in approximating the forces in the system rather than the
potential energy, the following corollary of Lemma 5.15 can be used to obtain the forces
that act in a potential energy field which is described by a multipole expansion or local
expansion.

Corollary 5.24 (Obtaining the Forces from a Multipole or Local Expansions).

(a) Suppose, E(z) = a0 log(z − z0) +
∑∞

k=1
ak

(z−z0)k describes the potential energy field in a
system of charged particles, and z is contained in a region of analyticity. Then, the
forces that act on a particle of unit charge at position z are given by (Re(E ′(z)),−Im
(E ′(z))) with E ′(z) = a0

z−z0
− ∑∞

k=1
k·ak

(z−z0)k+1 .

(b) Suppose, E(z) =
∑∞

l=0 bl · (z − z1)
l describes the potential energy field in a system of

charged particles, and z is contained in a region of analyticity. Then, the forces that
act on a particle of unit charge at position z are given by (Re(E ′(z)),−Im(E ′(z)))
with E ′(z) =

∑∞
l=1 l · bl(z − z1)

l−1.

Remark 5.25 (Working with p-Term Multipole and p-Term Local Expansions).
Theorem 5.17, Lemmas 5.20, 5.21, and 5.23, and Corollary 5.24 can also be used for
working with p-term multipole expansions and p-term local expansions, respectively, which
we will substantiate in the following.

(a) Using Theorem 5.17, the coefficients of a p-term multipole expansion due to m charged
particles can be obtained in O(pm) time.

(b) Using Lemma 5.20, the coefficients of a shifted p-term multipole expansion can be
obtained in O(p2) time.

(c) Using Lemma 5.21, the coefficients of a p-term local expansion can be obtained from
the coefficients of a p-term multipole expansion in O(p2) time.

(d) Using Lemma 5.23, the coefficients of a shifted p-term local expansion can be obtained
in O(p2) time.

(e) Using Corollary 5.24, the derivative of a p-term multipole expansion and the deriva-
tive of a p-term local expansion can be obtained in O(p) time.

5.3 The New Multipole Method 109

(f) Using Corollary 5.24, an approximation of the force that acts on a particle of unit
charge at a position z — which is induced by the potential energy field that is described
by a p-term multipole expansion or a p-term local expansion — can be obtained in
O(p) time assuming that z is contained in a region of analyticity.

We will demonstrate how p-term multipole expansions can be used to speed up force
calculations in systems of charged particles by giving an example: Suppose that m particles
of unit charge are located within a circle C0 of radius r with center z0 and that another
m particles of unit charge are located within a circle C1 of radius r with center z1, and let
|z0 − z1| > 2r (see Figure 5.17).

�� ��

��

��

��

��

��

��

��

��

����

�� ��

��
��

��

�� ��

��

��

��

��

��

��

��

����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

z0C0 z1
C1

rr

Figure 5.17: An example distribution showing the use of p-term multipole expansions.

Computing the repulsive forces acting on each particle in C0 due to all particles in
C1 naively would need Θ(m2) time. Now suppose that we first compute the coefficients
of a p-term multipole expansion of the potential energy due to the particles in C1. This
needs O(pm) time (see Remark 5.25(a)). Then, we calculate the derivative of the p-term
multipole expansion in O(p) time (see Remark 5.25(e)) before evaluating it for each particle
in C0. This needs m · O(p) time (see Remark 5.25(f)). Hence, the total running time for
approximating the forces is O(pm), which is significantly faster than the naive approach if
m >> p.

Some Terminology

We will introduce some definitions that will make the explanation of the multipole frame-
work easier and that will be used in the remainder of this section.

In the previous sections we have associated each node v with a box box (v). (Recall that
a cell or box is a quadratic sub-region of a square D that can be generated by a recursive
decomposition of D into four squares of equal size.) In the following, we will associate
two boxes with a node v that are defined next. Figures 5.18(a) and 5.18(b) explain this
terminology at an example.

Definition 5.26 (Small Cell, Large Cell of a Node). Suppose, we have given a reduced
bucket quadtree T with fixed constant leaf capacity l for a given set C = {c1, . . . , cN} of
distinct particles that are distributed in a square D. The small cell or small box of a node
v (shorter Sm(v)) is the smallest sub-box of D that covers all particles that are associated
with v. If v is a leaf that contains only one particle, then Sm(v) is a point. If v is the

110 5 The Force-Calculation Step

root of T , the large cell or large box of v (shorter Lg(v)) is equal to Sm(v). Otherwise,
let parent(v) be the parent of v in T . Then, Lg(v) is the largest sub-box of Sm(parent(v))
with size smaller than Sm(parent(v)) that covers Sm(v).

3

4

5

8

9 10 11

{1, 2}

{6, 7}

v1

v2

(a)

1

2

3

4 5

68 9
10

11

7
D

(b) (c)

Figure 5.18: (a) A reduced bucket quadtree that corresponds to the particle distribution in the
square D shown in (b). The small cell Sm(v2) corresponds to the small grey box. The small cell
of parent(v2) = v1 corresponds to the square D. Hence, the large cell Lg(v2) corresponds to the
big grey box that covers the small grey box in (b). (c) Unlike the white boxes, the grey boxes
are neighbors of the black box.

Remark 5.27 (Simple Properties of Small and Large Cells). It follows from the
definition of Sm(v), Lg(v), and the reduced bucket quadtree T that the small cell Sm(v)
of an interior node v is exactly box(v). For a leaf v of T , Sm(v) is covered by box(v).
Furthermore, Lg(v) \Sm(v) covers no particles in C, and the size of Lg(v) is 1

4
of the size

of Sm(parent(v)) if v is not the root of T .

We have seen that the Multipole Theorem 5.17 and the lemmas for shifting, converting,
and evaluating these expansions can only be applied in well-defined regions of analyticity.
In particular, the conversion of a multipole expansion to a local expansion (see Lemma 5.21)
can only be done if the corresponding two circles of equal size with centers z0 and z1 do not
overlap. Furthermore, we have seen in Remark 5.19(a) that the accuracy of a p-term mul-
tipole expansion becomes the better, the greater the distance between the circular region
that contains the particles and the data point. Since in all quadtree data structures the
regions are squares, the terminology of well-separateness is used to indicate that the oper-
ations of the Multipole Theorem 5.17 and the lemmas for working with these expansions
can be applied.

Definition 5.28 (Neighbor, Well-Separated, Ill-Separated). Two boxes B1 and B2

are called neighbors if the boundaries of B1 and B2 touch, but B1 and B2 do not overlap.
Two boxes B1 and B2 of same size are well-separated if they are no neighbors. Otherwise,
B1 and B2 are ill-separated. Suppose, nodes u and v are nodes of a reduced bucket quadtree

5.3 The New Multipole Method 111

T and Sm(u) ≥ Sm(v). Then, u and v are well-separated if and only if Sm(u) and the
cell that covers Sm(v) and that has the same size as Sm(u) are well-separated. Otherwise
u and v are ill-separated. Suppose that Sm(u) < Sm(v). Then, u and v are well-separated
if and only if Sm(v) and the cell that covers Sm(u) and that has the same size as Sm(v)
are well-separated. Otherwise u and v are ill-separated.

Figure 5.18(c) shows a box B and its neighbors, while Figure 5.19(a) and (b) show the
small cells of two nodes that are well-separated and ill-separated, respectively.

Sm(u)

Sm(v)

(a)

Sm(u)
Sm(v)

(b)

Figure 5.19: The black boxes Sm(u) and Sm(v) are small cells of two nodes u and v of a reduced
bucked quadtree. (a) Since the grey box is no neighbor of Sm(u), u and v are well-separated.
(b) Since the grey box is a neighbor of Sm(u), u and v are ill-separated.

Like in [58, 59, 2] the terminology of well-separateness is used to define an interaction set
that is used do generate p-term local expansions from suitable p-term multipole expansions.
The following definition of an interaction set of a node v of T has been invented in [2] and
is a generalization of the definition of the interaction set defined in [58, 59].

Definition 5.29 (Interaction Set, Minimal Ill-Separated Set). Suppose, nodes u and
v are nodes of a reduced (bucket) quadtree T . The interaction set I(v) of a node v is the set
of all nodes u that are ill-separated from the parent of v, well-separated from v, and the par-
ent of u is ill-separated from v. Thus, I(v) = {u | Well Separated(v, u), Ill Separated

(parent(v), u), Ill Separated(parent(u), v)}. The minimal ill-separated set R(v) of a node
v is the set of all nodes that are ill-separated from v and have the small cell smaller or
equal and the large cell larger or equal than the small cell of v. Hence, R(v) = {u |
Ill Separated(v, u), Sm(u) ≤ Sm(v)) ≤ Lg(u)}.

In the multipole framework of Aluru et al. [2] it is sufficient to associate the lists I(v) and
R(v) with each node v of the reduced quadtree in order to approximate the repulsive forces
in the system. Since we use the reduced bucket quadtree data structure, the leaves possibly
contain more than one particle (in contrast to the reduced quadtree data structure used
in [2]). We will see that this generalization can be modeled in our framework by defining

112 5 The Force-Calculation Step

some additional sets which are assigned to each node of the tree and that are introduced
next.

Definition 5.30 (The Sets D1(v), D2(v), D3(v) and K(v)). For each node v of the
reduced bucket quadtree T = (V,E), D1(v) is the set of all leaves w ∈ V so that Sm(v) <
Sm(w) and Sm(v) and Sm(w) are neighbors. D2(v) is the set of all leaves w of T so
that Sm(v) < Sm(w), Sm(v) and Sm(w) are no neighbors, v and w are ill-separated,
and w is not contained in the set D2(u) of an ancestor u of v. For each leaf v ∈ V we
additionally define the sets D3(v) and K(v), where D3(v) is the set of all leaves w ∈ V so
that Sm(v) ≥ Sm(w) and Sm(v) and Sm(w) are neighbors. For a leaf v ∈ V the set K(v)
contains all nodes w with parent parent(w) so that Sm(v) and Sm(w) are no neighbors.
Additionally, it is required that either w ∈ R(v) or an ancestor of w is contained in R(v)
and Sm(parent(w)) and Sm(v) are neighbors.

Formal Description of the Multipole Framework

We can assume that we have given a set C = {c1, . . . , cN} of charged particles of unit
charge that are placed at distinct positions p(C) = {p1, . . . , pN}, a reduced bucket quadtree
T = (V,E) with fixed constant leaf capacity l that is associated with C, and a fixed constant
precision parameter p.

In this context we have to mention that besides the space for storing the sets R(v),
I(v), D1(v), D2(v) (and possibly D3(v) and K(v)), additional space for storing the p + 1
coefficients {a0, . . . , ap} of p term multipole expansions Mp(v) and space for storing the
p + 1 coefficients {b0, . . . , bp} of p term local expansions Lp(v) is needed for each node v of
the reduced bucket quadtree T .

Like the force-approximation methods of Greengard [58], Greengard and Rokhlin [59],
and Aluru et al. [2] the multipole framework is based on a bottom-up traversal and a
top-down traversal of the given quadtree data structure with a fixed constant precision
parameter p and can be seen as a generalization of the multipole framework of Aluru et
al. [2]. The pseudocode of the multipole framework is shown in Function MF and Func-
tion Calculate Local Expansions and Node Sets, and its parts are explained in the fol-
lowing.

Part 1: Trivial Case and Initializations

If the reduced bucket quadtree T = (V,E) consists of only one node, the forces that act on
each particle pi due to all other particles in C are calculated directly, and the algorithm
terminates. Otherwise, for each node v of T the sets R(v), I(v), D1(v), D2(v) (and for the
leaves additionally D3(v), and K(v)) are initialized.

Part 2: Bottom-Up Traversal of the Tree

Now for each leaf v of T the coefficients {a0, . . . , ap} of the p-term multipole expansion
Mp(v) that reflects an approximation of the potential energy field due to the particles that

5.3 The New Multipole Method 113

Function MF(C, T, p)

input : a set C = {c1, . . . , cN} of charged particles of unit charge that are placed
at distinct positions p(C) = {p1, . . . , pN}, a reduced bucket quadtree T =
(V,E) with fixed constant leaf capacity l that is associated with C, and a
fixed constant precision parameter p

output: a function Frep : C −→ R
2 so that Frep(ci) is an approximation of the

repulsive forces that act on ci due to all other particles in C

begin
begin{Part 1: Trivial Case and Initializations}

if T contains only one node then
foreach ci ∈ C do

Frep(ci) ← Naive Direct Force Calculation;

Exit;

foreach v ∈ V do R(v) ← I(v) ← D1(v) ← D2(v) ← ∅;
foreach leaf v ∈ V do D3(v) ← K(v) ← ∅;

end
begin {Part 2: Bottom-Up Traversal}

foreach leaf v ∈ V do
calculate the coefficients of Mp(v) due to all particles contained in Sm(v);

foreach interior node v ∈ V for which coefficients of Mp(w) of all children
w of v have been calculate do

calculate the coefficients of Mp(v) due to all particles contained in Sm(v)
by adding coefficients of shifted Mp(w) of all children w of v;

end
begin {Part 3: Top-Down Traversal}

foreach child v of the root of T do
Calculate Local Expansions and Node Sets(T,C, p, v);

end
begin {Part 4: Obtain the Forces}

foreach leaf v ∈ V do
foreach particle ci ∈ Sm(v) do

let C(v) be the set of charged particles that are contained in Sm(v);
calculate Flocal(ci) using the coefficients of Lp(v);
calculate Fdirect(ci) using D1(v) ∪ D3(v) ∪ C(v);
calculate Fmultipole(ci) using K(v);
Frep(ci) ← Flocal(ci) + Fdirect(ci) + Fmultipole(ci);

end
end

114 5 The Force-Calculation Step

Function Calculate Local Expansions and Node Sets(T,C, p, v)

input : C, T, p are defined like in Function MF, a node v of T

output: the coefficients {b0, . . . , bp} of the p-term local expansions of v, the sets
R(v), I(v), D1(v), D2(v), and additionally D3(v) and K(v) if v is a leaf

begin
begin {Part 3.1: Find R(v), I(v), D1(v), and D2(v)}

if parent(v) is the root of T then E(v) ← parent(v);
else E(v) ← R(parent(v)) ∪ D1(parent(v));
while E 6= ∅ do

pick some u ∈ E(v), and set E(v) ← E(v) \ {u};
if Well Separated(u, v) then I(v) ← I(v) ∪ {u};
else if Sm(v) ≥ Sm(u) then R(v) ← R(v) ∪ {u};
else if v is no leaf of T then E(v) ← E(v) ∪ children(u);
else if Neighbors(Sm(u), Sm(v)) then D1(v) ← D1(v) ∪ {u};
else D2(v) ← D2(v) ∪ {u};

end
begin {Part 3.2: Calculate Coefficients of Lp(v)}

foreach u ∈ I(v) do
convert Mp(u) to Lp(u), and add coefficients of Lp(u) to coeff. of Lp(v);

foreach u ∈ D2(v) do
foreach ci ∈ Sm(u) do

calculate Mp(ci), convert Mp(ci) to Lp(ci), and add coefficients of
Lp(ci) to coefficients of Lp(v);

if coefficients of Lp(parent(v)) have been calculated then
add coefficients of shifted Lp(parent(v)) to Lp(v);

end
begin {Part 3.3: Find D3(v) and K(v) for Leaves}

if v is a leaf of T then
set E(v) ← R(v);
while E(v) 6= ∅ do

pick some u ∈ E(v), and set E(v) ← E(v) \ {u};
if not Neighbors(Sm(u), Sm(v)) then K(v) ← K(v) ∪ {u};
if Neighbors(Sm(u), Sm(v)) and u is leaf then D3(v) ← D3(v)∪{u};
else E(v) ← E(v) ∪ children(u);

end
begin {Part 3.4: Recursion}

if v is no leaf of T then foreach child w of v do
Calculate Local Expansions and Node Sets(T,C, p, w);

end
end

5.3 The New Multipole Method 115

are contained in Sm(v) are calculated. This is done by using Theorem 5.17 and choosing
the center of Sm(v) as the variable z0 in Theorem 5.17.

The p-term multipole expansions of the interior nodes are calculated by traversing the
tree bottom up: Suppose, v is an interior node of T with small cell Sm(v), the center of
Sm(v) is z1, and the p-term multipole expansions Mp(w) of each of v’s children w have been
calculated. Then, the coefficients of the p-term multipole expansion Mp(v) that reflects
an approximation of the potential energy field due to the particles that are contained in
Sm(v) are obtained by first shifting the center of each Mp(w) to z1 using Lemma 5.20 and
then adding the coefficients of this shifted p-term multipole expansion to the corresponding
coefficients of Mp(v).

As a result of part 2, for each node v ∈ V the coefficients of p-term multipole expansions
Mp(v) are obtained that reflect an approximation of the potential energy field induced by
all charged particles that are contained in Sm(v).

Part 3: Top-Down Traversal of the Tree

In the top-down traversal of the tree T , the root of T is skipped, and the recursive Func-
tion Calculate Local Expansions and Node Sets is called for each of its children.

Part 3.1: Find R(v), I(v), D1(v), and D2(v)

In this part of Function Calculate Local Expansions and Node Sets the sets R(v), I(v),
D1(v), and D2(v) are constructed starting with a set E(v) that is assigned R(parent(v))∪
D1(parent(v)). Note that if parent(v) is the root of T , it is clear that R(parent(v)) = v and
D1(parent(v)) = ∅. Then, iteratively a node u is taken from R(parent(v))∪D1(parent(v)),
and it is checked if u already belongs to one of the previous mentioned sets or if one has
to explore the subtrees that are rooted at u recursively in order to assign its children to
these sets.

In particular, if u and v are well-separated, then u belongs to I(v). (This can be
seen as follows: If u is a node of R(parent(v)) ∪ D1(parent(v)), then since u and v are
well-separated u ∈ R(parent(v)). Hence, parent(v) and u are ill-separated by definition of
R(parent(v)). Lg(u) ≥ Sm(parent(v)) by definition of R(parent(v)) and, hence, parent(u)
and v are ill-separated, too. If in the complementary case, u is a proper ancestor of a node
in R(parent(v)) ∪ D1(parent(v)), u is a proper ancestor of a node R(parent(v)) since the
nodes in D1(parent(v)) are leaves. Hence, parent(v) and u are ill-separated. Furthermore,
parent(u) and v are ill-separated, since otherwise parent(u) ∈ I(v).)

If u and v are ill-separated and additionally Sm(v) ≥ Sm(u) u, then u belongs to
R(v) (To see this, we have to prove that Lg(u) ≥ Sm(v): Suppose, u ∈ R(parent(v)) ∪
D1(parent(v)), then it follows from definition of D1(parent(v)) that u ∈ R(parent(v)).
Therefore, Lg(u) ≥ Sm(parent(v)) and hence Lg(u) ≥ Sm(v). In the complementary
case, u is a proper ancestor of a node in R(parent(v)) by definition of D1(parent(v)). In

116 5 The Force-Calculation Step

this case Lg(u) ≥ Sm(v) holds since Sm(parent(u)) > Sm(v) by the dynamic construction
of E(v).)

If u and v are ill-separated, Sm(v) < Sm(u), u is a leaf, and Sm(u) and Sm(v) are
neighbors, then u is contained in D1(v).

If u and v are ill-separated, Sm(v) < Sm(u), u is a leaf, and Sm(u) and Sm(v)
are no neighbors, then u is contained in D2(v), since R(parent(v)) ∪ D1(parent(v)) and
D2(parent(v)) are disjoint and u is an element of R(parent(v)) ∪ D1(parent(v)) or an
ancestor of an element in R(parent(v)) ∪ D1(parent(v)).

In the remaining case Sm(v) < Sm(u) and u is an interior node of T that is ill-separated
from v. Hence, one has to check whether its children belong to one of the sets R(v), I(v),
D1(v), or D2(v).

Note that by construction of part 3.1 the particles that are covered by the small cells
of all nodes in R(parent(v)) ∪ D1(parent(v)) are exactly the particles that are covered by
the small cells of all nodes in R(v)∪ I(v)∪D1(v)∪D2(v). Furthermore, each such particle
is covered by the small cell of exactly one node in R(v) ∪ I(v) ∪ D1(v) ∪ D2(v).

Part 3.2: Calculate Coefficients of Lp(v)

Like in other multipole methods, for each u in the interaction set I(v) the coefficients of
p-term multipole expansions Mp(u) are converted to coefficients of p-term local expansions
Lp(u) and added to the corresponding coefficients of Lp(v) using Lemma 5.21 and choosing
z0 := center(Sm(u)) and z1 := center(Sm(v)).

Some difficulties arise for the nodes in D2(v): Since each u ∈ D2(v) is a leaf that is ill-
separated from v with Sm(v) < Sm(u), one cannot apply Lemma 5.21 on u. However, we
found another way to calculate the local expansions due to the particles that are contained
in u: Let {c1, . . . , ck} be the set of charged particles that are contained in Sm(u) at positions
{p1, . . . , pk}. First, we calculate the coefficients of the p-term multipole expansion Mp(ci)
for each single particle ci using Theorem 5.17 and choosing z0 := pi. Since we can interpret
each point pi as a dimensionless box Bi, the largest cell that covers Bi and that has the same
size as Sm(v) is no neighbor of Sm(v) due to the definition of D2(v) (see Figure 5.20(a)).
Hence, Sm(v) and Bi are well-separated, and Lemma 5.21 can be used to convert Mp(ci)
to a p-term local expansion Lp(ci) choosing z0 := pi and z1 := center(Sm(v)). Finally, for
each ci ∈ {c1, . . . , ck} the coefficients of Lp(ci) are added to Lp(v).

Following standard practice, the coefficients of the shifted p-term local expansion Lp

(parent(v)) of the parent of v are added to the corresponding coefficients of Lp(v). Thus, an
approximation of the potential energy field of the region that is reflected by Lp(parent(v))
is inherited to v using Lemma 5.23 and choosing the center of Sm(v) as z1.

As a result of part 3.2, the coefficients of Lp(v) reflect an approximation of the potential
energy field due to all particles contained in the small cells of the nodes in I(v), D2(v),
and in the I(u) and D2(u) sets of all ancestors of v. Furthermore, the small cells of the
nodes in R(v) ∪ D1(v) are exactly the regions that have not been considered yet in the
calculation of the potential energy in Sm(v) due to all particles in the region D \ Sm(v).

5.3 The New Multipole Method 117

Sm(u)

Sm(v)

pi

(a)

Sm(u)

Sm(v)

pi

(b)

Figure 5.20: (a) The grey boxes Sm(v) and Sm(u) are ill-separated, no neighbors, and Sm(v) <
Sm(u). Sm(v) and the sub-box of Sm(u) that contains particle ci at position pi and has the same
size as Sm(v) (the dark-grey box) are well-separated. (b) The grey boxes Sm(v) and Sm(u) are
ill-separated, no neighbors, and Sm(v) > Sm(u). Sm(u) and the sub-box of Sm(v) that contains
particle ci at position pi and has the same size as Sm(u) (the dark-grey box) are well-separated.

Part 3.3: Find D3(v) and K(v) for Leaves

Suppose that v is a leaf of T and u is a node in R(v). By definition of R(v) we know that
u and v are ill-separated and that Sm(v) ≥ Sm(u). Three cases can arise: If u and v are
no neighbors, u is an element of K(v). If u and v are neighbors and u is a leaf, u is an
element of D3(v). Otherwise, u is a neighbor of v but an interior node of T . Thus, we
can recursively assign the children of u to either K(v) or D3(v), since all children of u are
ill-separated from v, their small cell is smaller than Sm(v), and Sm(u) is a neighbor of
Sm(v).

Note that the particles that are covered by the small cells of the nodes in R(v) are
exactly the particles that are covered by the small cells of the nodes in K(v) ∪ D3(v).
Furthermore, each such particle is covered by the small cell of exactly one node in K(v)∪
D3(v).

Part 3.4: Recursion

Suppose that v is an interior node of T . The small cells of the nodes in R(v) ∪ D1(v)
are exactly the regions that have not been considered yet in the calculation of the po-
tential energy in Sm(v) due to all particles that are contained in the region D \ Sm(v).
Hence, we can simply inherit the sets R(v) and D1(v) to each child w of v and call Func-
tion Calculate Local Expansions and Node Sets for w.

As a result of parts 1 to 3 we have given the coefficients of the p-term local expansions
Lp(v) for each leaf v of T , and Lp(v) reflects an approximation of the potential energy field
induced by the particles that are not covered by the small cells of all nodes contained in
D1(v) ∪ D3(v) ∪ K(v) ∪ Sm(v).

118 5 The Force-Calculation Step

Part 4: Obtain the Forces

Suppose that v is a leaf of T so that Sm(v) contains the particles {c1, . . . , ck}, which are
placed at positions {p1, . . . , pk}. We can obtain an approximation of the repulsive forces
that act on each ci ∈ {c1, . . . , ck} due to all particles in the system C = {c1, . . . , cN} as
follows:

Let L′ be the derivative of Lp(v). We can use Corollary 5.24(b) in order to obtain the
forces that are induced by L′ and act on ci by setting Flocal(ci) = (Re(L′(pi)),−Im(L′(pi))).

The forces that act on ci due to all particles that are contained in Sm(v) ∪ {Sm(u) |
u ∈ D1(v) ∪ D3(v)} are calculated directly by a naive exact force calculation, since v and
all nodes u ∈ D1(v) ∪ D3(v) are leaves. The resulting forces are denoted by Fdirect(ci).

We only have to concentrate on the particles that are covered by the small cells of the
nodes in K(v). Let u be a node in K(v). Since u is ill-separated from v and Sm(v) >
Sm(u), we cannot apply Lemma 5.21 in order to convert Mp(u) to Lp(u) and to add the
coefficients of Lp(u) to the corresponding coefficients of Lp(v). However, we can use a
similar trick as the trick that we have invented in part 3.2: Let ci be a particle that is
placed at position pi ∈ Sm(v). Since we can interpret pi as a dimensionless box Bi, the
largest cell that contains ci and that has the same size as Sm(u) are no neighbors due to
the definition of K(v) (see Figure 5.20(b)). Hence, Sm(u) and Bi are well-separated, and
Corollary 5.24(a) can be used in order to obtain the forces that act on ci due to all particles
contained in Sm(u). In particular, let M ′ be the derivative of Mp(u). Then, the force on
ci that is induced by Mp(u) is given by Fmultipole(ci) = (Re(M ′(pi)),−Im(M ′(pi))).

Therefore, the approximation of the repulsive force that acts on a particle ci due to all
particles in C = {c1, . . . , cN} is given by the sum of Fdirect(ci), Flocal(ci), and Fmultipole(ci).

The Running Time of the Multipole Framework

In order to prove that the running time of Function MF is linear in the number of particles,
we need the following lemma.

Lemma 5.31 (The Sizes of the Sets R(v), I(v), D1(v), D2(v), D3(v), and K(v)).
Let T = (V,E) be a reduced bucket quadtree with constant leaf capacity l that is associated
with a set C = {c1, . . . , cN} of N charged particles that are placed at distinct positions
{p1, . . . , pN}, and leaves(T) is the set of the leaves of T . Then,

∑

v∈V

|R(v)| = O(N), (5.17)

∑

v∈V

|I(v)| = O(N), (5.18)

∑

v∈V

|D1(v)| = O(N), (5.19)

∑

v∈V

|D2(v)| = O(N), (5.20)

5.3 The New Multipole Method 119

∑

v∈leaves(T)

|D3(v)| = O(N), and (5.21)

∑

v∈leaves(T)

|K(v)| = O(N). (5.22)

Proof. The proofs of Equations (5.17) and (5.18) are similar to the corresponding proofs
in [2]. We prove Equation (5.17) first. Let v be an arbitrary node of T . Each node
u ∈ R(v) is ill-separated from v and Sm(v) ≥ Sm(u). Hence, Sm(u) is either covered
by Sm(v) or covered by a neighbor box B of Sm(v) that has the same size as Sm(v). In
the first case, we know from the definition of R(v) that Sm(v) ≤ Lg(u). By definition
of Lg(u) it follows that u = v. In the second case, by using that Sm(v) ≤ Lg(u) and
Remark 5.27, we know that Lg(u) \ Sm(u) contains no particles. Hence, B \ Sm(u)
contains no particles, too. Since Sm(v) has exactly 8 neighbor boxes B of equal size, we
get that

∑

v∈V |R(v)| ≤ (1 + 8) · |V | = O(|V |) = O(N).
We now prove Equation (5.18). Suppose, w is a node in I(v), then either w is in

R(parent(v)) or an ancestor u of w is in R(parent(v)) or w is in D1(parent(v)) or an
ancestor u of w is in D1(parent(v)). The last two options can be excluded by the fact
that all elements of D1(parent(v)) are neighboring leaves of Sm(parent(v)) with a small
cell that is larger than Sm(parent(v)) and, hence, are ill-separated from v and have no
ancestors. Therefore,

∑

v∈V |{w | w ∈ I(v)}| =
∑

v∈V |{w | w ∈ I(v), w ∈ R(parent(v))}|+
∑

v∈V |{w | w ∈ I(v), w /∈ R(parent(v))}|.

By Equation (5.17) we know that
∑

v∈V |{w | w ∈ I(v), w ∈ R(parent(v)}| = O(N). We
can rewrite the second term of this equation as follows:

∑

v∈V

|{w | w ∈ I(v), w /∈ R(parent(v))}| =
∑

w∈V

|{v | w ∈ I(v), w /∈ R(parent(v))}|

Hence, in order to show that Equation (5.18) holds, it is sufficient to show that S(w) := |{v |
w ∈ I(v), w /∈ R(parent(v))}| = O(1). Let w be arbitrarily fixed. Since w /∈ R(parent(v))
there exists a node u ∈ R(parent(v)) that is an ancestor of w. Thus, parent(v) and
parent(w) are ill-separated, and Sm(parent(v)) ≥ Sm(parent(w)). It can be shown that
there exists a box B that is a neighbor of box Sm(parent(w)), B has the same size as
Sm(parent(w)), and B is a sub-box of Sm(parent(v)) that contains Sm(v). (To see this:
Sm(v) cannot be larger than Sm(parent(w)), since — by definition of I(v) — v and
parent(w) are ill-separated but v and w are well-separated. Suppose that Sm(v) is not
covered by a box B that is a neighbor of Sm(parent(w)) and that has the same size as
Sm(parent(w)), then v and parent(w) are well-separated, which contradicts the fact that
w ∈ I(v) by definition of I(v). Finally, Sm(parent(v)) covers B, since Sm(parent(v)) ≥
Sm(parent(w)).) For each such box B there exist at most 4 sub-boxes like Sm(v) since
Sm(parent(v)) covers B. Since for each w, the number of neighbor boxes of equal size is

120 5 The Force-Calculation Step

bounded above by 8, |S(w)| is bounded above by 4 · 8 = 32, which completes the proof of
Equation (5.18).

The proof of Equation (5.19) is easy. Let v be an arbitrary node of T . Since there
exist at most 8 boxes that are neighbors of Sm(v) and that have the same size as Sm(v),
there exist less than 8 leaves w that are neighbors of v with Sm(w) > Sm(v). Hence,
∑

v∈V |D1(v)| < 8|V | = O(N).

Next, we prove Equation (5.20). Let us suppose that the leaf capacity l is 1 and that
v is a node of T . Then, the small cells of all leaves have size zero. By definition of D1(v)
and D2(v) it follows that D1(v) = D2(v) = ∅. Thus, by Equations (5.17) and (5.18)
for l = 1 the equality

∑

v∈V |R(v)| + |I(v)| + |D1(v)| + |D2(v)| = O(N) holds. Further-
more, the elements of R(parent(v)) ∪ D1(parent(v)) or the descendants of the elements
of R(parent(v)) ∪ D1(parent(v)) are partitioned into the disjoint subsets R(v) and I(v)
(since D1(v) = D2(v) = ∅). Now let us suppose that l > 1. Then, the nodes contained
in D2(v) are either elements of the set R(parent(v))∪D1(parent(v)) or are descendants of
the elements of R(parent(v)) ∪D1(parent(v)). In the first case, the number of elements of
D2(v) that are contained in R(parent(v))∪D1(parent(v)) is bounded above by O(N) using
Equations (5.17) and (5.19). In the second case, we use that by Equations (5.17), (5.18),
and (5.19)

∑

v∈V |R(v)| + |I(v)| + |D1(v)| = O(N). Hence, it is sufficient to show that
∑

v∈V |R(v)| + |I(v)| + |D1(v)| + |D2(v)| = O(N). This can be shown as follows: Suppose
that leaf u is an ancestor of a node in R(parent(v)) ∪ D1(parent(v)), contains k particles
with 2 ≤ k ≤ l, and is neither assigned to I(v) nor to R(v). Then, u is assigned to either
D1(v) or D2(v) since it has no further descendants in T . Hence, the cardinality of the ac-
tual set R(v)∪I(v)∪D1(v)∪D2(v) is increased by one. In contrast to this, in the case that
l = 1 the subtree rooted at u would have been explored further. Since in this case T is a
reduced quadtree, this exploration would result in adding at least two nodes to R(v)∪I(v).
Therefore, in the case that l > 1 the expression

∑

v∈V |R(v)|+ |I(v)|+ |D1(v)|+ |D2(v)| is
bounded above by O(N), too.

In order to prove Equation (5.21), we can use that

∑

v∈leaves(T)

|{w | Sm(v) ≥ Sm(w), leaf (w)}| =
∑

w∈leaves(T)

|{v | Sm(v) ≥ Sm(w), leaf (w)}|.

It is sufficient to show that for each leaf w the set S ′(w) := |{v | Sm(v) ≥ Sm(w), leaf
(w)}| is bounded by a constant. Since for each such w at most 8 boxes exist that are
neighbors of Sm(w) and have the same size as Sm(w), we get that |S ′(w)| ≤ 8.

Finally, we prove Equation (5.22). By definition of K(v), we know that for each leaf v
of the tree K(v) = K1(v) ∪ K2(v) so that K1(v) is the set of all nodes w so that Sm(v)
and Sm(w) are no neighbors and w ∈ R(v). K2(v) is the set of all nodes w so that Sm(v)
and Sm(w) are no neighbors, Sm(parent(w)) and Sm(v) are neighbors, and an ancestor
of w is contained in R(v). Hence, we get that

∑

v∈leaves(T)

|{w | w ∈ K(v)}| =
∑

v∈leaves(T)

|{w | w ∈ K1(v)}| +
∑

v∈leaves(T)

|{w | w ∈ K2(v)}|.

5.3 The New Multipole Method 121

The first term is bounded by O(N) using Equation (5.17). To estimate the second
term, we use that

∑

v∈leaves(T)

|{w | w ∈ K2(v)}| =
∑

w∈leaves(T)

|{v | w ∈ K2(v)}|.

Let S ′′(w) := |{v | w ∈ K2(v)}|, then it is sufficient to show that |S ′′(w)| is bounded
by a constant for an arbitrary node w of T . Suppose, there exists a leaf v of T so that
w ∈ K2(v). Then, Sm(parent(w)) and Sm(v) are neighbors. Since parent(w) or an
ancestor of parent(w) is contained in R(v), it is clear that Sm(v) ≥ Sm(parent(w)).
Since at most 8 such leaves v of size larger or equal than Sm(parent(w)) are neighbors of
Sm(parent(w)), we get that |S ′′(w)| ≤ 8, which completes the proof.

Theorem 5.32 (Multipole Framework). Suppose, C = {c1, . . . , cN} is a set of charged
particles of unit charge that are placed at distinct positions p(C) = {p1, . . . , pN}, T = (V,E)
is a reduced bucket quadtree with fixed constant leaf capacity l that is associated with C, and
p is a fixed constant precision parameter. Then, Function MF approximates the repulsive
force that acts on each particle ci due to all other particles in C in O(N) time using O(N)
memory.

Proof. Using Lemma 5.31, we know that the sum of the length of all sets R(v), I(v), D1(v),
D2(v), D3(v), and K(v) is bounded above by O(N). Additionally O(p · |V |) memory
is needed to store the coefficients of the p-term multipole expansions and p-term local
expansions. Since p is a constant and |V | = O(N), the total memory requirements are
O(N).

Now we analyze the running time of Function MF. If T contains only one node, |C| =
N ≤ l. Since l is a constant, the exact naive force calculation in part 1 needs constant
time. Otherwise, the initialization of the sets in part 1 needs O(|V |) = O(N) time.

In part 2 of Function MF the coefficients of the p-term multipole expansions Mp(v) are
calculated for all leaves v, using Theorem 5.17. Let m(v) denote the number of particles
that are contained in Sm(v) for each leaf v of T . Then, using Remark 5.25(a), this needs
∑

v∈leaves(v) O(p · m(v)) = O(p · N) = O(N) time. The coefficients of the p-term multipole

expansions of the interior nodes are obtained using Lemma 5.20. Using Remark 5.25(b)
and the fact that |V | = O(N) the total running time of this step is O(p2 · |V |) = O(N).

In part 3.1 the sets R(v), I(v), D1(v), and D2(v) are found for a fixed node v. This is
done by exploring a collection of |R(parent(v))∪D1(parent(v))| rooted subtrees, where each
node in R(parent(v))∪D1(parent(v)) is a root. The nodes in R(parent(v))∪D1(parent(v))
are either assigned to one of the sets R(v), I(v), D1(v), and D2(v) directly, or their children
are examined later. Since T is a reduced bucket quadtree, each interior node has at least
two children. Hence, the total number of nodes that are visited in the exploration of all
subtrees of the nodes in R(parent(v)) ∪ D1(parent(v)) is proportional to |R(v)| + |I(v)| +
|D1(v)| + |D2(v)|. It follows from Lemma 5.31 that applying parts 3.1 to all nodes v of T
needs O(N) time.

122 5 The Force-Calculation Step

In part 3.2 for each node u ∈ I(v) converting the coefficients of the p-term multipole
expansion Mp(u) to the p-term local expansion Lp(u) and adding these coefficients to the
corresponding coefficients of p-term local expansion Lp(v) of v can be done in O(p2) time
using Lemma 5.21 (see Remark 5.25(c)). For each u ∈ D2(v) there exists at most l particles
ci that are contained in Sm(u). For each such particle the work needed to calculate Mp(ci),
to convert it to Lp(ci), and to add its coefficients to the corresponding coefficients of Lp(v)
is O(p2) using Theorem 5.17 and Lemma 5.21 (see Remarks 5.25(a) and (c)). Adding the
coefficients of the shifted p-term local expansions Lp(parent(v)) of the parent of a fixed
node v to Lp(v) can be done in O(p2) time using Lemma 5.23 (see Remark 5.25(d)). Since
we know from Lemma 5.31 that

∑

v∈V I(v) ∪ D2(v) = O(N), O(l · p2 · N) = O(N) time is
needed to apply part 3.2 on all nodes v ∈ V .

In part 3.3 the sets D3(v) and K(v) are constructed by exploring a set of |R(v)| rooted
subtrees with roots in R(v). Like in part 3.1 the total number of nodes that are visited
in the exploration of all subtrees that are rooted at the nodes in R(v) is proportional to
|D3(v)| + |K(v)|. Using Lemma 5.31, applying part 3.3 on all leaves v of T needs O(N)
time in total.

In part 4 the forces Fdirect(ci), Flocal(ci), and Fmultipole(ci) are calculated for each particle
ci that is contained in a leaf v of T . The calculation of Flocal(ci) needs O(p) time using
Corollary 5.24(b) (see Remark 5.25(e) and (f)). Calculating Fdirect(ci) can be done in
O(l · (|D1(v)| + |D3(v)| + 1)) time. Calculating Fmultipole(ci) can be done in O(p · |K(v)|)
time using Corollary 5.24(a) (see Remark 5.25(e) and (f)). Adding Fdirect(ci), Flocal(ci),
and Fmultipole(ci) to obtain Frep(ci) needs O(1) time. Hence, it follows from Lemma 5.31
that the running time of part 4 is bounded by

∑

v∈leaves(T)

∑

ci∈Sm(v) O(p + l · (|D1(v)| +

|D3(v)| + 1) + p · |K(v)| + 1) = O(N).

5.3.5 Formal Description of The New Multipole Method

We now give a formal description of the new multipole method NM2. Since we have de-
veloped two ways for building up the reduced bucket quadtree, two variants of NM2 can
be defined that are denoted by NM2a and NM2b. An experimental study of NM2a and NM2b and
an experimental comparison with other force-approximation methods will be given in Sec-
tion 7.4.2. Note that the variable crossover point in NM2a and NM2b, respectively, is a constant.
It should be chosen so that for almost all N ≤ crossover point the naive direct force calcu-
lation is faster than our hierarchical multipole method in practice. In the complementary
case, for almost all N > crossover point the hierarchical multipole method should be faster
in practice. Our exact choice of this value will be given in Section 7.1.

Corollary 5.33 (The New Multipole Method (Version A)). Suppose, C = {c1, . . . ,
cN} is a set of charged particles of unit charge that are placed at distinct positions p(C) =
{p1, . . . , pN}, and suppose that l, p are positive integer constants. Then, Function NM2a
approximates the repulsive force that acts on each particle ci due to all other particles in
C in O(N log N) time using O(N) memory.

5.3 The New Multipole Method 123

Proof. The corollary follows directly from Theorem 5.11, Theorem 5.32, and the fact that
crossover point is a constant.

Corollary 5.34 (The New Multipole Method (Version B)). Suppose that C =
{c1, . . . , cN} is a set of particles that are placed at distinct positions p(C) = {p1, . . . , pN},
and suppose that l, p are positive integer constants. Suppose that the maximum and min-
imum of the Euclidean distances between any two particles in C are denoted by dmax and
dmin.

(a) Then, Function NM2b approximates the repulsive force that acts on each particle ci due
to all other particles in C in O(N · log(dmax/dmin)) time using O(N) memory.

(b) If it is additionally assumed that the particles in C are placed at distinct positions
p(C) = {p1, . . . , pN} on a regular square integer grid with a resolution which is poly-
nomial in N , then Function NM2b approximates the repulsive force that acts on each
particle ci due to all other particles in C in O(N log N) time using O(N) memory.

In both cases the best-case running time of Function NM2b is O(N).

Proof. The corollary follows directly from Theorem 5.13, Corollary 5.14, Theorem 5.32,
and the fact that crossover point is a constant.

Function NM2
a(C, l, p)

input : a set C = {c1, . . . , cN} of charged particles of unit charge that are placed
at distinct positions p(C) = {p1, . . . , pN} and positive integer constants l
and p

output: a function Frep : C −→ R
2 so that Frep(ci) is an approximation of the

repulsive force that acts on ci due to all other particles in C

begin
if N ≤ crossover point then

foreach ci ∈ C do
Frep(ci) ← Naive Direct Force Calculation;

else
T ← TCa(C, l) ;
Frep ← MF(C, T, p);

end

5.3.6 Exception Handling

In the previous discussion of the force-approximation methods in Sections 5.2 and 5.3 we
have for simplicity assumed that the positions pi and pj of any two charged particles pi

and pj in C = {c1, . . . , cN} are distinct. Although extremely seldom in practice, it might

124 5 The Force-Calculation Step

Function NM2
b(C, l, p)

input : a set C = {c1, . . . , cN} of charged particles of unit charge that are placed
at distinct positions p(C) = {p1, . . . , pN} and positive integer constants l
and p

output: a function Frep : C −→ R
2 so that Frep(ci) is an approximation of the

repulsive force that acts on ci due to all other particles in C

begin
if N ≤ crossover point then

foreach ci ∈ C do
Frep(ci) ← Naive Direct Force Calculation;

else
T ← TCb(C, l) ;
Frep ← MF(C, T, p);

end

theoretically happen that several particles are placed at the same position. Thus, our new
multipole method should also work in this case. We shortly comment which extensions
have been made to handle the relaxed case.

We concentrate on NM2a first: In the case that N ≤ crossover point the force F
cj
rep(ci)

that acts on particle ci at position pi due to a particle cj at position pj = pi is zero
(see Formula 5.1 in Section 5.1.2). However, in order to separate ci and cj, we set
F

cj
rep(ci) := Frandom(ci), where Frandom(ci) is a random force vector. If N > crossover point ,

the reduced bucket quadtree T = (V,E) with leaf capacity l has to be built up. If in the tree
construction function TCa a node v is visited, we first calculate the smallest rectangle that
contains all particles that are associated with v. This can be done in O(1) time using the
sorted Cx(v) and Cy(v) lists. If this rectangle is a point P , but the length of Cx(v) is larger
than one, it follows that all particles in box (v) are placed at the same position. Hence, we
replace this set of particles (that have unit charge) by one group particle of charge |Cx(v)|
that is placed at position P and proceed with the tree construction like in the usual case.
Finally, we obtain a new set Cgroup ⊂ C of charged particles and a reduced bucket quadtree
Tgroup with leaf capacity l for the particles in Cgroup . Hence, the multilevel framework can
be applied on Tgroup . In order to obtain Frep(ci) for all particles ci ∈ C \ Cgroup , we do
the following: First Frep(ci) is assigned the repulsive force Frep(cgroup) that acts on its as-
sociated group particle cgroup due to the particles in Cgroup. Then, in order to separate
the particles with same coordinates, we add a random force vector Frandom(ci) to Frep(ci).
Since — in total — all these extra operations take at most O(N) time, and the additional
memory for storing the group particles is bounded above by O(N), Corollary 5.33 holds
also in the relaxed case in which same particle positions are allowed.

We now concentrate on NM2b. The method NM2b differs from method NM2a only in the
tree-construction method. Hence, the same techniques as in the relaxed version of NM2a can
be used. It remains to be described how the reduced bucket quadtree Tgroup for Cgroup is

5.4 Running Time of the Force-Calculation Step 125

constructed. This is done as follows: Suppose, in Function TCb the list Li (containing all
leaves of the actual tree that contain more than l particles) has been constructed at the
last recursion level i. All other newly created leaves contain at most l particles. Let Si

be the set of these newly created leaves. We first test for each v ∈ Li ∪ Si if the smallest
rectangle that covers the particles which are associated with v is a point P . If this is the
case, v is made a leaf of Tgroup containing one group particle cgroup that is associated with
the particles that are placed at point P . Furthermore — in contrast to the original tree
construction method — no subtree T i+1(v) rooted at v is constructed. At each recursion
level i the total running time for creating the smallest rectangles that cover the particles
associated with each leaf v ∈ Li ∪ Si is bounded by O(N). Since the running time of
TCb is proportional to N · |recursion levels|) (see proof of Theorem 5.13), Theorem 5.13
and Corollary 5.14 hold even in the relaxed case in which identical particle positions are
allowed. Hence, Corollary 5.34 holds in the relaxed case, too.

5.4 Running Time of the Force-Calculation Step

Theorem 5.35 (Force-Calculation Step). Suppose that G = (V,E, lzero) is a positive-
weighted undirected simple graph, p(V) := (pv)v∈V is an initial placement of the nodes of
G, G is the multilevel graph at level l ∈ {0, . . . , k} in a series of k + 1 multilevel graphs,
and d1 and d2 are integer constants.

(a) If in the framework of Algorithm Embedder the force-approximation method NM2a is
used, Algorithm Embedder generates a straight-line drawing Γ(G) of G in O(|V |
log |V | + |E|) time using O(|V |) memory.

(b) If in the framework of Algorithm Grid Embedder the force-approximation method
NM2b is used, Algorithm Grid Embedder generates a straight-line drawing Γ(G) of
G with integer node positions in the range [−d1N

d2 , d1N
d2] × [−d1N

d2 , d1N
d2] in

O(|V | log |V | + |E|) time using O(|V |) memory. The best-case running time of this
method is O(|V | + |E|).

Proof. This claim follows directly from Lemma 5.2 and Corollaries 5.3, 5.33, and 5.34(b).

126 5 The Force-Calculation Step

Chapter 6

The Postprocessing Step and Formal
Description of FM3

Willst du, dass wir mit hinein
in das Haus dich bauen,
lass es dir gefallen, Stein,
dass wir dich behauen! 1

In Section 6.1 we will describe a simple postprocessing step that is used to improve the
quality of the drawings, before we will summarize our main theoretical results concerning
FM3 in Section 6.2.

6.1 The Postprocessing Step

6.1.1 Motivation and Goals

The previously introduced steps of Algorithm FM3 would be sufficient to build an algo-
rithm that efficiently generates a drawing of any given graph G = (V,E). However, in
practice, the drawing quality of the generated drawings can be improved by introducing a
postprocessing step.

In particular, suppose that C is the set of components of G, and G′ is the positive-
weighted undirected simple graph that is obtained from G in the preprocessing step.
Furthermore, let G′

1, . . . , G
′
|C| be the maximal connected subgraphs of G′ and Γ(G′

1), . . . ,

Γ(G′
|C|) be the drawings of G′

1, . . . , G
′
|C| that are generated in the multilevel step.

In the postprocessing step the drawings Γ(G′
1), . . . , Γ(G′

|C|) are modified in order to
obtain more pleasing drawings concerning the desired edge length. Remember that it is
one of the most important goals of all force-directed algorithms that the desired edge length
should be preserved as well as possible in the drawing.

1Friedrich Rückert

128 6 The Postprocessing Step and Formal Description of FM3

Although preserving the desired edge length of each edge exactly is impossible in general
(see Section 1.2.1), it is easy to generate a drawing in which the average of the desired
edge length is equal to the average of the edge length in the generated drawing (→ goal
1). Furthermore, one could try to keep the edge length of an edge e of Γ(G′

i) close to the
desired edge length of e (→ goal 2). These are exactly the two goals of the postprocessing
step.

6.1.2 The Algorithm

Suppose, we have given a connected positive-weighted undirected simple graph G =
(V,E, lzero) (in which the weight lzero of an edge e ∈ E is the zero-energy lengths of
the corresponding spring in our force model and lzero reflects the desired edge lengths of e)
and a drawing Γ(G). If |E| = 0 nothing is done, otherwise the postprocessing step works
in three phases:

First, the drawing Γ(G) is scaled so that goal 1 is reached. This is done as follows:
If av des is the average of the desired edge length and av real is the average of the edge
length in Γ(G), then a drawing Γ′(G) in which goal 1 holds can be generated by setting
p′(v) := (av des/av real) · p(v). Here p(v) and p′(v) denote the position of a node v ∈ V
in Γ(G) and Γ′(G), respectively.

Second, in order to reach goal 2, the force-directed single-level algorithm that was used
in the force-calculation step (i.e., Algorithm Embedder or Algorithm Grid Embedder) is
used to generate a drawing of G starting with the initial placement p′(V) that corresponds
to Γ′(G). In contrast to the original version of Embedder and Grid Embedder, we reduce
the repulsion factor λrep extremely, while the spring stiffness factor λspring is increased. The
maximum number of iterations Max Iter in the repeat-loop of the force-directed single-
level algorithms is a small constant. For later use, the modified algorithm is denoted by
Apost, and the exact values of these parameters will be defined in Section 7.1.

The reason for the change of λspring and λrep is as follows: On the one hand (like
demonstrated in Section 2.2.2), the combination of the spring forces and the repulsive
forces is important to minimize the probability that nodes are placed at exactly the same
position. Furthermore, in practice, a high value of λrep turned out to be indispensable
to obtain a fast convergence behavior in the force-calculation step. On the other hand,
however, the repulsive forces lengthen the springs. But — since the drawings that are
generated in the multilevel step have to be improved regarding the edge length here —
giving the spring forces significantly more importance than the repulsive forces has turned
out to be a reasonable and simple way to optimize the drawing according to goal 2.

Third, in order to guarantee that goal 1 is reached even after the computations in the
second step, the drawing is scaled again.

Figure 6.1 shows example drawings that demonstrates the effect of the postprocess-
ing step. Function Postprocessing Step shows the pseudocode of the postprocessing
step, and quantitative experimental results to the postprocessing step can be found in
Section 7.5.

6.1 The Postprocessing Step 129

(a)

0

1
2

3 4
5

6

7

8

9

10
11

12
13 14

15
16

17

18

19

20
21 22 23 24

25
26

27

28

29

30 31 32 33 34
35

36
37

38

39

40 41 42 43 44 45
46

47
48

49

50
51

52
53

54 55 56 57 58 59

60
61

62
63

64 65 66 67 68 69

70

71

72

73
74 75 76 77

78
79

80

81

82

83
84

85 86
87

88
89

90

91

92

93
94

95 96
97

98

99

(b) (c) (d)

Figure 6.1: (a) A tree and (b) a grid graph that are drawn by FM3 without using the postprocessing
step. The same graphs that are drawn by FM3 under the usage of the postprocessing step are
shown in (c) and (d).

6.1.3 Formal Description of the Postprocessing Step

Function Postprocessing Step(G, Γ(G),Apost)

input : a connected positive-weighted undirected simple graph G = (V,E, lzero), a
drawing Γ(G), and a variation of the force-directed single-level algorithm
that has been used in the force-calculation step denoted by Apost

output: a straight-line drawing Γ′(G) of G in which the average edge length equals

to
∑|E|

i=1 lzero(e)

begin
if |E| = 0 then Γ′(G) ← Γ(G);
else

let p(V) denote the placement of the nodes in Γ(G);
p(V) ← Scale(p(V));
Γ′(G) ← Apost(G, p(V));
let p′(V) denote the placement of the nodes in Γ′(G);
Γ′(G) ← p′(V) ← Scale(p′(V));

end

Theorem 6.1 (Postprocessing Step). Suppose that G = (V,E, lzero) is a connected
positive-weighted undirected simple graph, Γ(G) is a drawing of G, and Apost is a variation
of the force-directed single-level algorithm that has been used in the force-calculation step
(either Algorithm Embedder with NM2a or Algorithm Grid Embedder with NM2b), but uses
the set of parameters that are defined in Section 6.1.2. Then, the postprocessing step
generates a straight-line drawing Γ′(G) so that in Γ′(G) the average edge length equals to
∑|E|

i=1 lzero(e) in O(|V | log |V |+ |E|) time using O(|V |+ |E|) memory. If Apost is a variation
of Algorithm Grid Embedder with force-approximation method NM2b, the best-case running
time is O(|V | + |E|).

130 6 The Postprocessing Step and Formal Description of FM3

Proof. The two scaling phases need linear time. The remainder of the proof follows from
Theorem 5.35.

6.2 Formal Description of FM3

As a result of the previous chapters we can now formulate the pseudocode of FM3 and
analyze its asymptotic running time. Experimental studies of FM3 and a practical compar-
ison of FM3 with other state-of-the-art methods for drawing large graphs can be found in
Sections 7.6 and 7.7, respectively.

Algorithm 14: The Fast Multipole Multilevel Method (FM3)

input : an (un)weighted (un)directed graph G = (V,E) that may contain nodes of
different fixed sizes and shapes and a desired aspect ratio r of the drawing
area

output: a drawing Γ(G) of G with non-overlapping components; except self-loops
(that are drawn as loops) all edges are drawn as straight lines; multiple
edges are drawn parallel; directed edges are drawn as arcs

begin
G′ ← Preprocessing Step(G);
let C denote the set of components of G′;
begin{Divide Step}

Find the maximal connected subgraphs G′
1, . . . , G

′
|C| of G′;

end
foreach G′

i ∈ {G′
1, . . . , G

′
|C|} do

Γ(G′
i) ← Multilevel Step(G′

i,Asingle);

foreach G′
i ∈ {G′

1, . . . , G
′
|C|} do

Γ′(G′
i) ← Postprocessing Step(G′

i, Γ(G′
i),Apost);

begin{Impera Step}
Use the drawings Γ(G′

i), . . . , Γ(G′
|C|) of G′

1, . . . , G
′
|C| to obtain a drawing Γ(G)

of G that fits into a (small) rectangle of aspect ratio r;

end
end

Theorem 6.2 (Fast Multipole Multilevel Method). Suppose, G = (V,E) is an
(un)weighted (un)directed graph that may contain nodes of different fixed sizes and shapes.
Then, the Fast Multipole Multilevel Method (FM3) generates a drawing Γ(G) of G with
non-overlapping components, in which except self-loops (that are drawn as loops), all edges
are drawn as straight lines. The worst-case running time of FM3 is O(|V | log |V | + |E|),
and the memory requirements are O(|V | + |E|).

6.2 Formal Description of FM3 131

Proof. Using Theorems 3.1 and 3.4 The total running time of FM3 is given by

tFM3 = O



|V | + |E| + |C| log |C| +
|C|
∑

i=1

tmult(|V ′
i |, |E ′

i|) + tpost(|V ′
i |, |E ′

i|)



 , (6.1)

where tmult(|V ′
i |, |E ′

i|) and tpost(|V ′
i |, |E ′

i|) denote the time that is needed to generate draw-
ings Γ(G′

i) and Γ′(G′
i) of G′

i = (V ′
i , E

′
i) in the multilevel step and postprocessing step,

respectively. Using Theorem 4.8 Equation (6.1) simplifies to

tFM3 = O



|V | + |E| + |C| log |C| +
|C|
∑

i=1

tsingle(|V ′
i |, |E ′

i|) + tpost(|V ′
i |, |E ′

i|)



 , (6.2)

where tsingle(|V ′
i |, |E ′

i|) is the time that is needed by the force-directed single-level algorithm
Asingle to draw G′

i = (V ′
i , E

′
i). Two alternatives can arise. Per default, Asingle is Algorithm

Grid Embedder with the force-approximation method NM2b. In the second case, Asingle can be
chosen as the Algorithm Embedder with the force-approximation method NM2b. In both cases

(using Theorem 5.35, Theorem 6.1 and the fact that
∑|C|

i=1 |V ′
i | = |V | and

∑|C|
i=1 |E ′

i| ≤ |E|)
Equations (6.2) simplifies to

tFM3 = O



|V | + |E| + |C| log |C| +
|C|
∑

i=1

|V ′
i | log |V ′

i | + |E ′
i|)





= O(|V | log |V | + |E|).
Using Theorems 3.1 and 3.4 the memory requirements of FM3 are given by

mFM3 = O



|V | + |E| + |C| +
|C|
∑

i=1

mmult(|V ′
i |, |E ′

i|) + mpost(|V ′
i |, |E ′

i|)



 , (6.3)

where mmult(|V ′
i |, |E ′

i|) and mpost(|V ′
i |, |E ′

i|) denote the memory requirements for generating
drawings Γ(G′

i) and Γ′(G′
i) of G′

i = (V ′
i , E

′
i) in the multilevel step and postprocessing step,

respectively. Using Theorem 4.8, Theorem 5.35, and the fact that
∑|C|

i=1 |V ′
i | = |V | and

∑|C|
i=1 |E ′

i| ≤ |E|, Equations (6.3) simplifies to

mFM3 = O



|V | + |E| + |C| +
|C|
∑

i=1

|V ′
i | + |E ′

i| + msingle(|V ′
i |, |E ′

i|) + mpost(|V ′
i |, |E ′

i|)





= O



|V | + |E| + |C| +
|C|
∑

i=1

|V ′
i | + |E ′

i|)





= O(|V | + |E|),
where msingle(|V ′

i |, |E ′
i|) is the memory that is needed by the force-directed single-level

algorithm Asingle.

132 6 The Postprocessing Step and Formal Description of FM3

Chapter 7

Experimental Results

Es ist nicht genug zu wissen,
man muss es auch anwenden.
Es ist nicht genug zu wollen,
man muss es auch tun. 1

In this chapter we will examine the new graph-drawing method FM3 in practice. After
giving some general remarks on the test-environment, implementation, and parameter
settings in Section 7.1, we will present experimental results concerning the most important
parts of the new graph-drawing algorithm in Sections 7.2 to 7.5. In Section 7.6 we will
study the running times of FM3 and the drawings that are generated by FM3 on a wide range
of graphs. An experimental comparison of FM3 with some of the fastest algorithms for
drawing general graphs will be given in Section 7.7. Further experiments will be presented
in Section 7.8.

7.1 General Remarks

The method FM3 was implemented in C++ within the framework of AGD [75] that itself
is based on the libraries LEDA [95] and ABACUS [78]. The functionalities of ABACUS
were not used in the context of this dissertation.

Unless otherwise noted, all programs in this chapter were implemented by us in C++
using LEDA [95]. All random numbers were generated with the random number generator
that is provided in The Stanford GraphBase [84], while all random graphs were generated
with the random graph generator that is provided by LEDA [95].

Besides several other classes of artificially generated graphs we tested some graphs
from real-world applications. In particular, we selected all graphs from the AT&T graph
library [6] and from C. Walshaw’s graph collection [131] that contain between 500 and

1Johann Wolfgang von Goethe

134 7 Experimental Results

200000 nodes. We added a disconnected graph that describes a protein structure with
797 nodes that we obtained from Carsten Gutwenger of the graph drawing group of the
foundation caesar [57], and a graph that describes a social network of 2113 people that
we obtained from Carola Lipp of the Universität Göttingen [90]. This class of real-world
instances is referred here as real-world graph collection. Details concerning the structure
of the contained graphs will be introduced later.

All experiments were performed on a 2.8 GHz Intel Pentium 4 PC with one gigabyte of
memory running Linux. Some implementations of other graph-drawing methods that are
used in Section 7.7 are executable on Microsoft Windows platforms only. These algorithms
were tested on the same machine, but using Windows instead of Linux.

Unless otherwise stated, all tests of FM3 (and all tests of modules of FM3) were performed
with the same type of standard parameters. In particular, the desired edge length of each
edge of unweighted graphs was set to 100, the desired aspect ratio of the drawing area was
set to 1, and each component was allowed to be rotated with 10 specified angles in the
rotation phase of the impera step. In the multilevel step, the size of the random sample
for selecting the sun nodes with the Select By Star Mass strategy was set to 20, and the
constants c, d, and s of the Stopping Criterion (see Section 4.2.2) were set to 50, 5, and
1.25, respectively. In the force-calculation step, we chose Algorithm Grid Embedder with
the force-approximation method NM2b. The parameters Max Iter(0, k), Max Iter(k, k), and
the threshold t in Algorithm Grid Embedder were set to 300, 30, and 0.01, respectively.
The spring stiffness factor λspring , the repulsion factor λrep, and the constant δ were set to
1, 1, and 0.05, respectively (see Section 5.1). The leaf capacity of a leaf in the quadtree
and the precision parameter p for calculating the p-term multipole expansions were fixed
to 25 and 4, respectively. The constant crossover point in Functions NM2a and NM2b was set
to 175. In the postprocessing step, the repulsion factor λrep was set to 0.01, the spring
stiffness factor λspring was set to 2, and the maximum number of iterations Max Iter in
the repeat-loop of the force-directed single-level algorithms was set to 20.

7.2 Experiments with the Divide-Et-Impera Strategy

We want to compare the divide-et-impera strategy of FM3 (used for creating layouts of
disconnected graphs) with other methods. Since in the divide step the components can be
easily found in linear time by depth-first search, we can concentrate on the impera step.
We will compare our impera step with the O(|C| log |C|) tiling methods of U. Dogrusoz [32]
that we have already introduced in Section 3.2.2. Here C denotes the set of components
of the graph. We implemented U. Dogrusoz’s tiling method (denoted by Tile1 here), the
variant of Tile1 that sorts each component by non-increasing height in a preprocessing step
(Tile2), and our impera step that is an extension of Dogrusoz’s tiling method (denoted
by Tile3 here). It is important to note that the experimental results in [44] demonstrate
that Tile2 generates more compact drawings than computationally more time-consuming
algorithms. Therefore, the tiling method Tile2 can serve as a good benchmark.

We tested these three methods on three classes of graphs. The first class of graphs

7.2 Experiments with the Divide-Et-Impera Strategy 135

(denoted by rand1 graphs) are 11 graphs with an increasing number of components. The
smallest rand1 graph consists of one component, while the largest rand1 graph consists of
210 components. Each component is a connected graph containing a random number of
nodes in the range 1 to 200.

The second class of graphs are 11 random graphs with a fixed number of 100 com-
ponents, but with an increasing number of nodes that are contained in each component.
They are called rand2 graphs. Each component of the smallest rand2 graph contains either
1 or 2 nodes, while each component of the largest rand2 graph contains a random number
of nodes in the range 1 to 211.

The third class of graphs are all graphs out of our real-world graph collection that
contain more than 500 nodes and at least 10 components. These 12 graphs contain between
797 and 44775 nodes and 10 to 829 components. They are referred here as disconnected
real-world graphs.

We determined two desired aspect ratios (1 and 2) and tested the three tiling methods
on all classes of graphs and both desired aspect ratios. In all cases we used our multilevel
step and postprocessing step for generating a layout of each component. We measured the
running times of the divide steps, the running times of the tiling methods in the impera
step, and the used aspect-ratio areas.

 0

 20

 40

 60

 80

 100

 120

 1 10 100 1000A
.-

R
. A

re
a

re
la

tiv
e

to
 th

at
 o

f
T

ile
1

in
 %

Number of Components of the rand1 Graphs

Desired Aspect Ratio: 1

Tile1
Tile2
Tile3

 0

 20

 40

 60

 80

 100

 120

 1 10 100 1000A
.-

R
. A

re
a

re
la

tiv
e

to
 th

at
 o

f
T

ile
1

in
 %

Number of Components of the rand1 Graphs

Desired Aspect Ratio: 2

Tile1
Tile2
Tile3

Figure 7.1: Used aspect-ratio area of Tile1, Tile2, and Tile3 relative to the used aspect-ratio
area of Tile1 for the drawings of the rand1 graphs. The desired aspect ratios are 1 (left) and 2
(right).

Figure 7.1 demonstrates that for all rand1 graphs and both desired aspect ratios the
drawings of Tile2 are at least as compact as those of Tile1. This is in agreement with the
experimental results presented in [32]. The drawings produced by Tile3 are more compact
than the previous ones and need only 50 to 77% of the aspect-ratio area of Tile1, when
setting the desired aspect ratio to 1. If the desired aspect ratio is 2, only 41% to 64% of
the aspect-ratio area of Tile1 are needed.

Figure 7.2 presents the results of the rand2 graphs. The drawings of those graphs that

136 7 Experimental Results

are generated with Tile3 use less aspect-ratio area than those that are generated using
Tile2 and Tile1 for both desired aspect ratios. For the desired aspect ratios 1 and 2
Tile3 uses 51 to 79% and 50 to 72% of the aspect-ratio area of Tile1, respectively.

 0

 20

 40

 60

 80

 100

 120

 100 1000 10000 100000A
.-

R
. A

re
a

re
la

tiv
e

to
 th

at
 o

f
T

ile
1

in
 %

Number of Nodes of the rand2 Graphs

Desired Aspect Ratio: 1

Tile1
Tile2
Tile3

 0

 20

 40

 60

 80

 100

 120

 100 1000 10000 100000A
.-

R
. A

re
a

re
la

tiv
e

to
 th

at
 o

f
T

ile
1

in
 %

Number of Nodes of the rand2 Graphs

Desired Aspect Ratio: 2

Tile1
Tile2
Tile3

Figure 7.2: Used aspect-ratio area of Tile1, Tile2, and Tile3 relative to the used aspect-ratio
area of Tile1 for the drawings of the rand2 graphs. The desired aspect ratios are 1 (left) and 2
(right).

The drawings of the disconnected real-world graphs (see Figure 7.3) that are generated
by Tile2 are at least as compact as those of Tile1 for both desired aspect ratios. Like
before, the drawings that are positioned by Tile3 are at least as compact as the other
ones, with only one exception.

 0

 20

 40

 60

 80

 100

 120

 10 100 1000A
.-

R
. A

re
a

re
la

tiv
e

to
 th

at
 o

f
T

ile
1

in
 %

Number of Comp. of the disc. real world Graphs

Desired Aspect Ratio: 1

Tile1
Tile2
Tile3

 0

 20

 40

 60

 80

 100

 120

 10 100 1000A
.-

R
. A

re
a

re
la

tiv
e

to
 th

at
 o

f
T

ile
1

in
 %

Number of Comp. of the disc. real world Graphs

Desired Aspect Ratio: 2

Tile1
Tile2
Tile3

Figure 7.3: Used aspect-ratio area of Tile1, Tile2, and Tile3 relative to the used aspect- ratio
area of Tile1 for the drawings of the disconnected real-world graphs. The desired aspect ratios
are 1 (left) and 2 (right).

7.3 Experiments with the Multilevel Step 137

The experiments show that Tile3 reduces the used aspect-ratio area significantly in
comparison with Tile1 and Tile2 for nearly all tested graphs. The largest running times
of Tile1, Tile2, and Tile3 are 0.11 seconds, 0.11 seconds, and 0.23 seconds, respectively.
The total running times of the divide step and impera step are bounded above by 0.41
seconds for all tested methods and graphs.

7.3 Experiments with the Multilevel Step

In this section we will examine if the multilevel step of FM3 is suitable for finding an
energy-minimal configuration of the nodes of a given graph in our force model fast. This
is done by comparing FM3 with a single-level algorithm (SINGLE) that is given by replacing
the multilevel step in the framework of FM3 with the single-level algorithm that is used in
FM3 (namely Grid Embedder with force-approximation method NM2a).

We modified the stopping criterion of the force-calculation step for both methods. In
particular, we stopped SINGLE if and only if in the actual iteration the average strength
of the forces that acted on each node was smaller than a threshold t. For each graph G,
we set t to 10−4 times the length of the smallest square box that covers the drawing of
G in the actual iteration. Similarly, we modified FM3 by changing the stop criterion of
the force-calculation step on the lowest multilevel. This variation of FM3 is denoted by
MULT. In particular, MULT terminated if and only if the average strength of the forces in the
actual iteration of the force-calculation step of the lowest multilevel was smaller than the
threshold t. The stopping criterion in the force-calculation step in the other multilevels
kept unchanged and, hence, was bounded above by a constant.

We selected two kinds of test graphs: Random connected graphs and graphs that
describe regular two-dimensional square grids that we call grid graphs. The sizes of the
test graphs range between 100 to 100000 nodes.

Both algorithms SINGLE and MULT were started using a random initial placement. We
measured the number of iteration of SINGLE, the number of iterations of MULT on the lowest
multilevel, and the total running times of SINGLE and MULT for all tested graphs.

The left graphic of Figure 7.4 demonstrates that MULT needs significantly fewer iterations
in the lowest multilevel than SINGLE for both kinds of graphs. Furthermore, the number
of iterations of SINGLE grows (although not monotonously) with the sizes of the graphs.
For the grid graphs and random graphs SINGLE needs up to 2612 and 1303 iterations,
respectively, until it terminates. MULT needs at most 170 and 143 iterations in the last
multilevel for the grid graphs and random graphs, respectively. Therefore (see right graphic
of Figure 7.4), for both kinds of tested graphs the number of iterations of MULT in the lowest
multilevel is less than 18.3% of the iterations of SINGLE. For the graphs that contain more
than 10000 nodes less than 7.7% of the iterations of SINGLE are needed by MULT in the
lowest multilevel.

As a consequence of this, the total running times of MULT are faster than those of
SINGLE for all tested graphs. The running time of MULT relative to the running time of
SINGLE is ranging between 47.7% for the smallest grid graph and 2.5% for the largest grid

138 7 Experimental Results

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 100 1000 10000 100000

It
er

at
io

ns

Number of Nodes

grid graphs (MULT)
random graphs (MULT)

grid graphs (SINGLE)
random graphs (SINGLE)

 0

 20

 40

 60

 80

 100

 100 1000 10000 100000It
er

. o
f

M
U

L
T

 r
el

at
iv

e
to

 S
IN

G
L

E
 in

 %

Number of Nodes

grid graphs
random graphs

Figure 7.4: (left) The number of iterations of SINGLE and the number of iterations of MULT in
the lowest multilevel for grid and random graphs. (right) The number of iterations at the lowest
multilevel of MULT relative to the iterations needed by SINGLE in percent for grid and random
graphs.

graph. The range for the random graphs is 76.4% to 17.7%.
In summary, these experiments demonstrate that the multilevel step accelerates the

convergence behavior for both regular structured and random graphs.

7.4 Experiments with the Force-Calculation Step

In this section we will compare the running time and accuracy of several force-approxima-
tion methods that we have introduced in Sections 5.2 and 5.3. In particular, we imple-
mented the PIC-code used in the Grid-Variant Algorithm of Fruchterman and Rein-
gold [47] (FrRe), the method of Barnes and Hut [8] (BaHu), the Fast Multipole Method of
Greengard and Rokhlin [59] (GrRo), the method of Aluru et al. [2] (Al), and the two vari-
ants of the new multipole method (NM2a and NM2b). Finally, we implemented the naive exact
force-calculation algorithm (Ex) that is used as a benchmark.

Since one essential part of all hierarchical force-approximation methods is the con-
struction of the used tree data structure, we will focus on the running times of the tree
construction phases of these methods for different distributions of N particles first.

7.4.1 Experiments with the Tree Construction Methods

We compared the quadtree construction method used in BaHu, the method used in GrRo for
constructing a truncated pseudo quadtree of depth max{⌊log4 N⌋, 1}, the method used in
Al for constructing a reduced quadtree, and the two different methods TCa and TCb for
constructing a reduced bucket quadtree with leaf capacity l = 25.

We tested the tree construction phases of these methods on three different classes of
distributions of N particles. For each distribution we let N range from 8000 up to 128000.

7.4 Experiments with the Force-Calculation Step 139

We first distributed the N particles randomly with uniform probability within the
square [0, 1] × [0, 1] and — following standard practice — call these distributions uniform
distributions.

The second class of distributions are non-uniform distributions. They were created
by distributing 20% of the particles randomly with uniform probability within the box
[0, 1] × [0, 1]. Another 20% of the particles were randomly distributed within a disc of
radius 1

4
with center (1

2
, 1

2
). Another 20% of the particles were distributed within a disc

of radius 1
16

with center (1
2
, 1

2
). The rest of the particles was distributed analogue within

discs of radii 1
64

and 1
256

with center (1
2
, 1

2
).

Finally, we wanted to construct a class of distributions that is similar to the converg-
ing distribution described in Section 1.3. Unfortunately converging distributions cannot
be generated for arbitrary large N in reality, since the machine accuracy is bounded.
Therefore, we constructed quasi-converging distributions by distributing the N particles
non-uniform on the line connecting (0, 0) and P := (1025, 1025). In particular, the first
node was placed at position 3

4
P . The i-th node was placed at position pi := 3

4
P

2i−1 , for each
i with x-coordinate of pi ≥ Q := 10−25. The other nodes were placed uniformly on the line
connecting (0, 0) and Q. Figure 7.5 illustrates the three classes of distributions.

(a) (b) (c)

Figure 7.5: (a) A uniform and (b) a non-uniform distribution of 4000 particles. (c) A quasi-
converging distribution of 125 particles.

The experimental results are displayed in Table 7.1. For each size of N , each class of
distributions, and each algorithm, the reported running times are the average times of 100
tests.

The construction of the truncated pseudo quadtree in the method GrRo is trivial and
needs only negligible time for each size of N . Among the other methods, TCb is the
fastest method for uniform and non-uniform distributions and all sizes of N . For these
distributions, the tree construction phase of BaHu is roughly a factor 3 slower than TCb.
For uniform and non-uniform distributions, TCa and the tree construction phase of Al are
more than a factor 7 slower than TCb. As expected, for quasi-converging distributions, the
tree construction times of TCb and BaHu reach or exceed those of Al and TCa, since the

140 7 Experimental Results

latter are O(N log N) methods. TCa is faster for quasi-converging distributions than for
uniform and non-uniform distributions and same sizes of N . This is not surprising, since
it can be shown that for converging distributions TCa needs O(N log N) time for sorting
the particle lists Sx and Sy but only O(N) time for the other parts of the tree construction
phase described in Section 5.3.2. In contrast to uniform and non-uniform distributions,
TCb is faster than Al for quasi-converging distributions and all sizes of N .

Class of Number of CPU Time in Seconds for the Tree Construction by:
Distributions Particles BaHu GrRo Al TCa TCb

8000 0.04 < 0.01 0.18 0.18 0.01

16000 0.08 0.01 0.38 0.45 0.03

uniform 32000 0.18 0.02 0.81 1.11 0.06

64000 0.40 0.03 1.73 2.42 0.12

128000 0.88 0.06 3.67 5.75 0.30

8000 0.05 < 0.01 0.16 0.15 0.02

16000 0.11 0.01 0.33 0.37 0.03

non-uniform 32000 0.22 0.01 0.71 0.92 0.08

64000 0.48 0.02 1.53 2.02 0.15

128000 1.02 0.05 3.25 4.87 0.34

8000 0.53 < 0.01 0.30 0.14 0.22

16000 1.03 < 0.01 0.55 0.35 0.44

quasi-converging 32000 1.96 0.01 1.13 0.66 0.71

64000 3.96 0.02 2.19 1.54 1.49

128000 7.97 0.03 4.57 3.45 2.75

Table 7.1: Comparison of the running times for building up the tree data structures for three
different classes of distributions.

It can be summarized that since the hidden constants of the O(N log N) tree construc-
tion phases of Al and TCa are comparatively high, TCb is competitive with these methods
for quasi-converging distributions, while it is much faster than these methods for the other
tested distributions.

7.4.2 Experiments with Force-Approximation Methods

In the following, we will study the force-approximation methods FrRe, BaHu, GrRo, Al, NM2a,
NM2b, and the naive exact force-calculation algorithm Ex. Therefore, we created uniform,
non-uniform, and quasi-converging distributions of N particles, with N ranging from 1000
to 128000, like in Section 7.4.1. Then, we applied each force-approximation method on each
class of distribution and each size of N and compared the running times and calculated
forces with the running times and calculated forces of the naive exact algorithm Ex. Since
it is reasonable to compare approximative algorithms at the same level of accuracy, we
need the following definitions:

7.4 Experiments with the Force-Calculation Step 141

Definition 7.1 (Error and Accuracy of an Approximation). Suppose, N charged
particles are distributed in the plane, A is a force-approximation method, FA(i) denotes the
approximation of the force that acts on particle i due to all other particles, and FEx(i)
denotes the exact force that acts on particle i due to all other particles. The error of the
approximation of the forces acting in the system of the N particles that is generated by A

is defined as:

Error(A) =

√

∑N
i=1 ‖FEx(i) − FA(i)‖2

∑N
i=1 ‖FEx(i)‖2

The approximation that is generated by A is of low, medium, and high accuracy if
Error(A) < 10−2, Error(A) < 10−3, and Error(A) < 10−4), respectively.

For each force-approximation method and class of distributions, we determined the
parameters that guarantee low, medium, and high accuracy for all sizes of N . Note that the
meaning of these parameters has been explained in Sections 1.2.2, 5.2, and 5.3. For FrRe we
let the grid-coarsening parameter g take the values 2, 3, . . . , 10, 12, . . . , 20, 30, . . . , 100, 120.
For BaHu we variated the tolerance parameter α in the range 0.01, 0.02, 0.03, 0.05, 0.07, 0.1,
0.15, 0.2, 0.3, . . . , 1.0. The precision parameter p of the multipole methods GrRo, Al, NM2a,
and NM2b was variated in the range 1, 2, . . . , 8. Then, we selected the set of parameters that
resulted in the fastest running times for the fixed accuracies. These parameters are listed
in Table 7.2.

Class of Parameters of Algorithm:
Distributions

Accuracy
FrRe BaHu GrRo Al NM2a NM2b

low g = 120 α = 0.7 p = 3 p = 3 p = 3 p = 3
uniform medium g = 120 α = 0.2 p = 4 p = 4 p = 4 p = 4

high g = 120 α = 0.1 p = 6 p = 6 p = 6 p = 6
low g = 90 α = 0.7 p = 3 p = 3 p = 3 p = 3

non-uniform medium g = 120 α = 0.2 p = 4 p = 5 p = 5 p = 5
high g = 120 α = 0.1 p = 6 p = 7 p = 7 p = 7
low g = 2 α = 0.3 p = 1 p = 4 p = 4 p = 4

quasi-converging medium g = 2 α = 0.1 p = 1 p = 6 p = 6 p = 6
high g = 2 α = 0.03 p = 1 p = 8 p = 8 p = 8

Table 7.2: Parameters of force-approximation methods that guarantee a desired accuracy for
three classes of distributions.

We shortly comment on the values of these parameters. It is clear that for an increase
of the desired accuracy g and p have to be increased, while α has to be reduced. The
grid-coarsening parameter g that guarantees medium and high accuracy for all but the
quasi-converging distribution is 120. This implies that the underlying grids are 1 × 1
or 2 × 2 grids. Therefore, the force calculation of FrRe is exact in these cases. For
the quasi-converging distributions g = 2 is sufficient, which is not surprising, since these

142 7 Experimental Results

distributions imply that nearly all particles are placed on the line connecting [0, 0] and
[10−25, 10−25]. Hence, nearly all particles are contained in the lowest leftmost grid box
even for the smallest value of g, and the interactions between the nodes in this grid box are
calculated exactly. Choosing p = 1 in the method GrRo for quasi-converging distributions
is sufficient to guarantee all desired accuracies, since there exists a leaf in each complete
truncated quadtree that contains nearly all particles. Since the interactions between these
nodes are calculated exactly, the choice of p is marginal. The parameters of NM2a and NM2b are
identical, since both methods differ only in the tree construction procedure.

Now we will concentrate on the running times of the force-approximation algorithms.
For brevity, we only present the results for low and high desired accuracies. The CPU
times for medium accuracies are in between. For each size of N , each class of distribution,
and each algorithm, the reported running times are the average times of 100 tests.

For uniform distributions (see Table 7.3) and low and high accuracy all approximative
algorithms except FrRe are much faster than the exact method. The slow running times of
FrRe are caused by the fact that the calculation is exact by the choice of g. In comparison
with BaHu the multipole methods scale much better if high accuracy is desired. The
expected running time of GrRo and NM2b is linear for these distributions. Therefore, it is
not surprising that they are very fast. NM2b is the fastest method for both accuracies. Al is
roughly a factor 3 to 5 slower than NM2b. NM

2
a is roughly a factor 2 slower than NM2b.

CPU Time in Seconds for Uniform Distributions

Particles Accuracy Approximative Methods Exact

FrRe BaHu GrRo Al NM2a NM2b Method

1000 0.13 0.03 0.02 0.07 0.02 0.02 0.09

2000 0.57 0.08 0.08 0.16 0.06 0.05 0.36

4000 2.49 0.18 0.09 0.34 0.15 0.08 2.03

8000 10.70 0.42 0.34 0.70 0.39 0.21 8.59

16000
Low

46.58 0.95 0.40 1.46 0.83 0.40 35.52

32000 190.44 2.07 1.42 2.93 1.90 0.93 142.58

64000 1023.44 4.57 1.73 6.01 3.96 1.79 572.90

128000 4128.44 10.16 5.86 12.28 9.00 4.07 2288.73

1000 0.13 0.35 0.04 0.13 0.03 0.02 0.09

2000 0.57 1.12 0.18 0.29 0.09 0.06 0.36

4000 2.49 3.23 0.20 0.60 0.18 0.11 2.03

8000 10.70 8.49 0.78 1.24 0.49 0.29 8.59

16000
High

46.58 21.30 0.85 2.57 0.96 0.50 35.52

32000 190.44 51.22 3.25 5.22 2.36 1.29 142.58

64000 1023.44 120.42 3.59 10.60 4.64 2.26 572.90

128000 4128.44 282.20 13.33 21.50 10.91 5.54 2288.73

Table 7.3: Comparison of the running times for the calculation of the repulsive forces and uniform
distributions.

7.4 Experiments with the Force-Calculation Step 143

Now we concentrate on the non-uniform distributions (see Table 7.4). For FrRe and
low desired accuracy the choice of g = 90 implies an underlying grid that does not result
in an exact force calculation (a 3× 3 grid) only for N = 128000. As expected, the running
times of GrRo grow significantly for these distributions in comparison with the running
times of GrRo for uniform distributions. The method BaHu is up to a factor 2 slower in
comparison with the CPU times that are needed by BaHu for uniform distributions. Only
the running times of Al, NM2a, and NM2b keep nearly unchanged. Again, for both desired
accuracies NM2b is the fastest method.

CPU Time in Seconds for Non-Uniform Distributions

Particles Accuracy Approximative Methods Exact

FrRe BaHu GrRo Al NM2a NM2b Method

1000 0.09 0.05 0.05 0.07 0.03 0.02 0.09

2000 0.45 0.12 0.18 0.16 0.07 0.05 0.39

4000 2.76 0.26 0.53 0.33 0.17 0.12 2.06

8000 11.06 0.58 1.95 0.68 0.36 0.22 8.57

16000
Low

47.13 1.29 10.33 1.41 0.81 0.46 35.54

32000 164.81 2.72 25.07 2.81 1.65 0.91 142.37

64000 1005.44 5.97 109.34 5.78 3.67 1.92 572.12

128000 3300.34 12.71 230.60 11.87 7.92 3.80 2283.39

1000 0.09 0.44 0.08 0.15 0.04 0.03 0.09

2000 0.45 1.60 0.28 0.33 0.09 0.07 0.39

4000 2.76 5.31 0.64 0.70 0.20 0.14 2.06

8000 11.19 15.34 2.46 1.44 0.48 0.32 8.57

16000
High

47.24 38.97 11.01 2.98 0.97 0.61 35.54

32000 177.53 91.76 28.44 6.07 2.26 1.40 142.37

64000 1014.77 212.94 120.67 12.30 4.53 2.58 572.12

128000 4054.58 468.64 250.17 25.04 10.45 5.88 2283.39

Table 7.4: Comparison of the running times for the calculation of the repulsive forces and non-
uniform distributions.

For quasi-converging distributions (see Table 7.5) the running times of FrRe and GrRo

are nearly identical with that of Ex, since nearly all particles are contained in the lowest
leftmost grid boxes and in only one leaf of the complete pseudo quadtrees, respectively
(Recall that the forces that act between all particles that are contained in one grid box and
one leaf of the truncated pseudo quadtree, respectively, are calculated exactly). NM2a and
NM2b are the fastest methods for both accuracies and need nearly the same amounts of
running time. The method Al is a factor 2 to 3 slower than NM2a and NM2b. For BaHu and
low accuracy, the running times in comparison with uniform and non-uniform distributions
increase significantly, too. On the other hand, the running times of BaHu for high desired
accuracies are faster than that of BaHu for uniform and non-uniform distributions and
high desired accuracy. This indicates that the force approximation phase of FrRe that

144 7 Experimental Results

succeeds the quadtree construction phase is faster for quasi-converging distributions and
high desired accuracy than for the other tested distributions and high desired accuracy.

CPU Time in Seconds for Quasi-Converging Distributions

Particles Accuracy Approximative Methods Exact

FrRe BaHu GrRo Al NM2a NM2b Method

1000 0.09 0.18 0.10 0.06 0.02 0.03 0.09

2000 0.41 0.40 0.43 0.13 0.04 0.07 0.39

4000 1.98 0.87 2.06 0.26 0.08 0.15 2.03

8000 8.72 1.79 8.83 0.53 0.18 0.27 8.53

16000
Low

36.03 3.67 35.92 1.04 0.39 0.55 35.83

32000 143.70 7.34 144.59 2.10 0.77 0.97 142.14

64000 574.08 14.99 577.18 4.11 1.67 1.95 573.30

128000 2303.50 30.92 2315.93 8.44 3.61 3.67 2280.16

1000 0.09 0.30 0.10 0.09 0.02 0.04 0.09

2000 0.41 0.74 0.43 0.19 0.04 0.08 0.39

4000 1.98 1.67 2.06 0.39 0.10 0.16 2.03

8000 8.72 3.65 8.83 0.80 0.21 0.29 8.53

16000
High

36.03 7.89 35.92 1.60 0.45 0.60 35.83

32000 143.70 16.11 144.59 3.18 0.94 1.06 142.14

64000 574.08 35.62 577.18 6.32 2.03 2.13 573.30

128000 2303.50 79.57 2315.93 12.83 4.34 4.00 2280.16

Table 7.5: Comparison of the running times for the calculation of the repulsive forces and quasi-
converging distributions.

We can summarize that the multipole methods Al, NM2a, and NM2b are best suited for
approximating repulsive forces in the plane if high accuracy is desired. For low desired
accuracy one might also use BaHu, although it is up to a factor 9 slower than NM2b. Since the
constant factor of the O(N log N) methods Al and NM2a is quite large, NM2b outperforms the
other approximative algorithms for all desired accuracies and uniform and non-uniform
distributions, while it is comparable with NM2a for quasi-converging distributions. Both
methods NM2a and NM2b are faster than Al for all kinds of tested distributions, all desired
accuracies, and all tested sizes of N .

7.5 Experiments with the Postprocessing Step

In this section we want to examine if the postprocessing step can improve the quality
of drawings regarding the criterion that the desired edge lengths of the user should be
preserved.

The set of test graphs that we selected were the random graphs and grid graphs that
we already used in the tests of the multilevel step. The choice of these test graphs was
motivated by the observation that for the grid graphs (with uniform desired edge lengths)

7.6 Experiments with FM3 145

straight-line drawings that preserve the desired edge lengths exist, while the existence of
such drawings for the random graphs is not guaranteed. The desired edge length of each
edge was set to the fixed value 100.

We created an algorithm A by deleting the postprocessing step from FM3. Then, we let
FM3 and A draw the test graphs. Since a good drawing of a graph with uniform desired
edge length should have a small edge-length ratio (see Section 1.1.4 for a definition of
the edge-length ratio), and the average edge length in the drawing should be equal to the
average of the desired edge lengths, we measured for each drawing the average edge length
and the edge-length ratio.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 100 1000 10000 100000

A
ve

ra
ge

 E
dg

e
L

en
gt

h

Number of Nodes

grid/rand. graphs (by FM3)
grid graphs (by A)

rand. graphs (by A)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 100 1000 10000 100000E
dg

el
.-

R
at

io
 o

f
FM

3 r
el

at
iv

e
to

 th
at

 o
f

A
 in

 %

Number of Nodes

grid graphs
random graphs

Figure 7.6: (left) Average edge length of the drawings of grid and random graphs generated by
FM3 and A. The desired edge length of each edge is 100. (right) Percentage of the edge-length
ratio of FM3 relative to the edge-length ratio of A for grid and random graphs.

The results are displayed in Figure 7.6. It can be seen in the left graphic of Figure 7.6
that the average edge length of the drawings generated with A grows monotonously with
the size of the graphs and is up to 8 and 17.3 times larger than the average of the desired
edge lengths for the grid graphs and random graphs, respectively. The average edge length
of all drawings that are generated with FM3 is equal to the average of the desired edge
lengths. The right graphic of Figure 7.6 demonstrates that the edge-length ratio can be
significantly reduced by FM3 in comparison with A for both kinds of graphs. For the grid
graphs it monotonously decreases from 92.2% for the smallest graph to 8.6% for the largest
grid graph. Due to the structure of the random graphs, the reduction of the edge-length
ratio is not as deterministic as for the grid graphs. But the edge-length ratio of FM3 relative
to that of A still ranges between 92.0% and 16.1%.

7.6 Experiments with FM3

In this section we will examine the ability of FM3 for drawing graphs. The natural criteria
to evaluate a graph-drawing algorithm in practice are the needed running times and the

146 7 Experimental Results

quality of the drawings. Unlike evaluating the first criterion, evaluating the quality of a
drawing that is generated by a force-directed algorithm is a difficult task.

One could evaluate the quality of such a drawing by measuring the total energy in the
underlying force-model and by comparing this value with the energy that is induced by
the energy-minimum configuration of the nodes. However, this viewpoint has few practical
use, since the energy-minimum configuration is unknown for many of the tested graphs.

One could also quantify the quality of the drawing, by measuring important aesthetic
criteria (see Section 1.1.4) like the number of edge crossings, the sum of the edge lengths,
the edge-length ratio, the used aspect-ratio area or how well the drawing displays the
symmetries of the graphs (if such symmetries exist). Again, the optimal values of these
measures are not known for every graph and the computation of the optimal values might
be impossible for large graphs, since many of the corresponding optimization problems are
NP-hard (see Section 1.2.1). But even if we would know the optimal values of all these
measures for each graph, the crucial requirement of a graph drawing is that an individual
user is satisfied with the drawing of the graph. Therefore, it is a common and reasonable
way to print the drawings and to comment how well they display the structure of each
graph by keeping the previous mentioned aesthetic criteria in mind. The final evaluation
of the quality of each drawing is left to the reader.

7.6.1 The Test Graphs and General Results

We have to determine the set of test graphs first. These are the real-world graphs that
already were mentioned in the beginning of this chapter and several classes of artificial
graphs. The artificial graphs were created to examine the scaling of FM3 on graphs with
predefined structures but different sizes. In particular, we generated for each class of
artificial graphs between 7 and 11 instances that range from approximate 100 nodes to
approximate 100000 nodes. We generated the following classes of artificial graphs:

The random grid graphs were obtained by first creating regular square grid graphs and
then randomly deleting 3% of the nodes. The sierpinski graphs were created by associating
the Sierpinski Triangles 2 with graphs.

Furthermore, we tested the graph classes rand1 and rand2 that already were introduced
in Section 7.2. They contain disconnected graphs, each consisting of many biconnected
components.

The next two classes of artificial graphs were designed to test how well FM3 (and other
force-directed algorithms) can handle highly non-uniform distributions of the nodes. There-
fore we created these graphs in a way so that one can expect that an energy-minimal con-
figuration of the nodes in a Spring Embedder-like force-model induces a tiny subregion of
the drawing area which contains Θ(|V |) nodes. In particular, we constructed trees that
contain a root node r with |V |/4 neighbors. The other nodes were subdivided into six

2A Sierpinski Triangle is a fractal that is generated by subdividing an equilateral triangle into four
congruent smaller triangles. This subdivision process is recursively applied on the three outer triangles
until a specified recursive depth is reached.

7.6 Experiments with FM3 147

subtrees of equal size rooted at r. We call these graphs snowflake graphs. Additionally we
created spider graphs by constructing a circle C containing 25% of the nodes. Each node
of C is also adjacent to 12 other nodes of the circle. The other nodes were distributed on
8 paths of equal length that were rooted at one node of C. One important difference to
the snowflake graphs is that the spider graphs have bounded maximum degree.

The last kind of artificial graphs are graphs with a relatively high edge density (in
particular |E|/|V | ≥ 14). We call them flower graphs. They were constructed by joining
6 circles of equal length at a single node before replacing each of the nodes by a complete
Kuratowski subgraph with 30 nodes (K30).

We partitioned the artificial and real-world graphs into two sets. The first set consists
of graphs that are connected, consist of few biconnected components, have a constant
maximum node degree, a low edge density, and one can expect that an energy-minimal
configuration of the nodes in an associated Spring Embedder-like force-model of such a
graph does not contain Θ(|V |) nodes in an extremely tiny subregion of the drawing area.
Since the graphs contained in this set do not cause problems for many force-directed graph-
drawing algorithms, we call the set of these graphs kind. The second set is exactly the
complement of the first one, and we call the set of these graphs challenging. For example,
the random grid graphs and sierpinski graphs are kind artificial graphs, while all other
artificial graphs are challenging artificial graphs. The real-world graphs were partitioned
into these two sets as well.

0.01

0.1

1

10

100

1000

100 1000 10000 100000

R
un

ni
ng

 T
im

e
of

 F
M

3 i
n

Se
co

nd
s

Number of Nodes

artificial graphs
real world graphs

Figure 7.7: The running times of FM3 for drawing all artificial graphs and all real-world graphs.

Before going into details, we want to give an overview about the total running times
of FM3 for all artificial graphs and all real-world graphs independent of their structure.
The results are shown in Figure 7.7. Except for some graphs that contain less than 1000
nodes, the running times of FM3 for drawing graphs containing a similar number of nodes

148 7 Experimental Results

are similar. The only graphs that induce a significantly faster running time of FM3 are
the smaller rnd2 graphs that contain a fixed number of 100 components. Since for these
graphs the number of nodes of each component is very small (much smaller than the variable
crossover point = 175 defined in Section 5.3.5) the force calculation in Grid Embedder is
done by a direct calculation instead of a multipole approximation (see Section 5.3.5).
Therefore much CPU time is saved as long as each component contains significantly less
than crossover point nodes. For the larger rnd2 graphs the approximative calculation of
the repulsive forces is used in NM2. Therefore, the running times are similar to those of the
other tested graphs.

Furthermore, it can be observed that all tested graphs containing less than 1000 nodes
can be drawn in less than 1.9 seconds. The graphs containing less than 10000 and 100000
nodes can be drawn in less than 23.8 and 262.3 seconds, respectively. The largest graph
containing 156317 nodes and 1059331 edges can be drawn in 381.4 seconds.

7.6.2 Drawing the Kind Graphs

Table 7.6 displays details of the structure of selected kind artificial and kind real-world
graphs and the running times that are needed by FM3 to display these graphs. All graphs
are connected, have a low edge density, a bounded maximum degree, and the number of
biconnected components (in comparison with the number of nodes) is small.

Graph Information CPU Times
max. of FM3

Type Name |V | |E| |C| |B| |E|
|V | degree in Seconds

rnd grid 032 985 1834 1 2 1.86 4 1.9

rnd grid 100 9497 17849 1 6 1.88 4 19.1

Kind rnd grid 320 97359 184532 1 2 1.90 4 215.4

Artificial sierpinski 06 1095 2187 1 1 2.00 4 1.8

sierpinski 08 9843 19683 1 1 2.00 4 16.8

sierpinski 10 88575 177147 1 1 2.00 4 162.0

crack 10240 30380 1 1 2.97 9 23.0
Kind

fe pwt 36463 144794 1 55 3.97 15 69.0
Real

finan 512 74752 261120 1 1 3.49 54 158.2
World

fe ocean 143437 409593 1 39 2.86 6 355.9

Table 7.6: Selected kind artificial and kind real-world graphs and the running times that are
needed by FM3 to draw them. C denotes the set of components, while B denotes the set of
biconnected components of the graphs.

The drawings of the random grid graphs and sierpinski graphs are displayed in Fig-
ure 7.8. The drawings of selected kind real-world graphs are shown in Figure 7.9. All
drawings clearly visualize the regular (respectively symmetric) structures of the graphs.

7.6 Experiments with FM3 149

(a) rnd grid 032 (b) rnd grid 100

(c) rnd grid 320 (d) sierpinski 06

(e) sierpinski 08 (f) sierpinski 10

Figure 7.8: Drawings of random grid graphs and sierpinski graphs that are generated by FM3.

150 7 Experimental Results

(a) crack (b) fe pwt

(c) finan 512 (d) fe ocean

Figure 7.9: Drawings of crack, fe pwt, finan 512, and fe ocean that are generated by FM3.

7.6 Experiments with FM3 151

7.6.3 Drawing the Challenging Graphs

Detailed information about selected challenging graphs and the running times of FM3 are
given in Table 7.7. The selected challenging disconnected real-world graphs are fe body and
dg 3691. The graphs ug 380 and dg 1087 each contain a node with a very high degree. Like
dg 3691 and add 32 (that describes a 32 bit adder), dg 1087 consists of many biconnected
components. The graphs bcsstk 31 con, bcsstk 32, and bcsstk 33 have a high edge density.
Like for the kind graphs, for several challenging graph classes (e.g, the snowflake graphs
and the flower graphs) a linear scaling of FM3 can be observed.

Graph Information CPU Times
max. of FM3

Type Name |V | |E| |C| |B| |E|
|V | degree in Seconds

rnd1 A 1324 1527 10 692 1.15 31 2.9

rnd1 B 8897 10269 100 4766 1.15 34 17.8

rnd1 C 101492 117312 1000 54366 1.16 41 213.4

rnd2 A 953 1039 100 563 1.09 6 0.7

rnd2 B 9843 11337 100 5362 1.15 38 19.7

rnd2 C 98173 113990 100 51881 1.16 327 262.3

Chal- snowflake A 971 970 1 970 1.00 256 1.6

lenging snowflake B 9701 9700 1 9700 1.00 2506 17.4

Artificial snowflake C 97001 97000 1 97000 1.00 25006 166.5

spider A 1000 2200 1 801 2.20 18 1.9

spider B 10000 22000 1 8001 2.20 18 17.7

spider C 100000 220000 1 80001 2.20 18 177.2

flower A 930 13521 1 1 14.54 30 1.2

flower B 9030 131241 1 1 14.53 30 11.9

flower C 90030 1308441 1 1 14.53 30 121.4

ug 380 1104 3231 1 27 2.93 856 2.1

dg 3691 2266 3277 829 1221 1.45 119 2.4

Chal- add 32 4960 9462 1 951 1.91 31 12.1

lenging dg 1087 7602 7601 1 7601 1.00 6566 18.1

Real bcsstk 33 8738 291583 1 1 33.37 140 23.8

World bcsstk 31 con 35586 572913 1 48 16.10 188 83.6

bcsstk 32 44609 985046 1 3 22.08 215 110.9

fe body 44775 163734 39 90 3.66 28 96.5

Table 7.7: Selected challenging artificial and challenging real-world graphs and the running times
that are needed by FM3 to draw them. C denotes the set of components, while B denotes the set
of biconnected components of the graphs.

The drawings of the random disconnected graphs (see Figure 7.11) are quite compact,
but the drawing of the smallest rand1 graph (see Figure 7.11(a)) could be improved re-

152 7 Experimental Results

garding the used drawing area. Although the components are random graphs, some nice
sub-structures of these graphs are visualized by FM3.

The drawings of the snowflake graphs, spider graphs, and flower graphs (see Figures 7.12
and 7.13) illustrate the symmetric (sub)-structures of these graphs. Furthermore, local de-
tails of these graphs are drawn nicely. As expected, the center sub-regions of the snowflake
graphs and spider graphs that contain Θ(|V |) nodes are very small by construction of the
graphs. For the larger snowflake graphs and spider graphs, these regions can be visualized
only by zooming into the center of the drawings. In combination with the running times
shown in Table 7.7 the drawings of the snowflake and spider graphs confirm the theoretical
result that the asymptotic running time of FM3 is not influenced by the distribution of the
nodes during the computation.

We concentrate on the selected challenging real-world graphs next. Like the drawings
of the random disconnected graphs, the drawings of dg 3691 and fe body (displayed in
Figure 7.10) are very compact, and one can recognize that fe body is a representation of
parts of a car (with the car body turned upside down). Figures 7.14(a) and 7.14(b) show
the nodes with high degree of ug 380 and dg 1087, respectively. Figure 7.14(b) illustrates
that dg 1087 is a tree with small diameter. Due to its many biconnected components the
drawing of add 32 in Figure 7.14(c) has a tree-like structure. The drawings of the dense
graphs bcsstk 31 con, bcsstk 32, and bcsstk 33 in Figure 7.14(d-f) display the regular
(sub)-structures of the graphs. One can imagine that bcsstk 31 con is a car body in a top
view.

(a) dg 3691 (b) fe body

Figure 7.10: Drawings of dg 3691 and fe body that are generated by FM3.

7.6 Experiments with FM3 153

(a) rnd1 A (b) rnd1 B

(c) rnd1 C (d) rnd2 A

(e) rnd2 B (f) rnd2 C

Figure 7.11: Drawings of the rand1 graphs and rand2 graphs that are generated by FM3.

154 7 Experimental Results

(a) snowflake A (b) snowflake B

(c) snowflake C (d) Detail of snowflake A

(e) spider A (f) spider B

Figure 7.12: Drawings of the snowflake graphs, a detail of snowflake A, the spider A graph, and
the spider B graph generated by FM3.

7.6 Experiments with FM3 155

(a) spider C (b) Detail of spider B

(c) flower A (d) flower B

(e) flower C (f) Detail of flower A

Figure 7.13: Drawings of the spider C graph, a detail of spider B, the flower graphs, and a detail
of flower A generated by FM3.

156 7 Experimental Results

(a) ug 380 (b) dg 1087

(c) add 32 (d) bcsstk 33

(e) bcsstk 31 con (f) bcsstk 32

Figure 7.14: Drawings of ug 380, dg 1087, add 32, bcsstk 33, bcsstk 31 con, and bcsstk 32 that
are generated by FM3.

7.7 Experimental Comparison of FM3 with Other Algorithms 157

7.7 Experimental Comparison of FM3 with Other Al-

gorithms

In this section we will test some of the fastest force-directed and algebraic graph-drawing
methods on the selected kind and challenging graphs listed in Table 7.6 and Table 7.7 and
compare the results with those of FM3.

The first tested algorithm is an implementation of the Grid-Variant Algorithm of
Fruchterman and Reingold [47] (see Section 1.2.2) that was implemented in the framework
of AGD [75] by Stefan Näher and David Alberts. We chose this method, since it is one of
the faster classical force-directed methods and denote it by GVA for brevity.

Furthermore, we tested two force-directed multilevel methods that were introduced in
Section 1.3.2: An implementation of GRIP [50, 49] by Roman Yusufov that is available
from [140] and the Fast Multi-scale Method (FMS) [64] that was implemented by Yehuda
Koren and is available from [88].

Finally, we compared the force-directed methods with two fast algebraic graph-drawing
methods that have been sketched in Section 1.3.3: The method ACE [86, 87] and the high-
dimensional embedding method [66] that we denote by HDE here. Like FMS, both methods
were implemented by Yehuda Koren and can be obtained from [88].

We ran all algorithms with the given sets of standard settings, measured the running
times, and printed the generated drawings. Unfortunately, it was not possible to draw
each graph with each algorithm: The implementations of FMS, ACE, and HDE are designed
for connected graphs, only. The memory requirements of FMS are quadratic in the size of
the graphs. Therefore, the implementation of FMS restricts to graphs that contain at most
10000 nodes. It was not possible to draw any graph containing more than 30000 nodes
and some of the disconnected graphs with GRIP because of an error in the implementation.
Furthermore, since in some cases the running times were extremely high, we decided to
stop each computation if the CPU time exceeded 10 hours.

7.7.1 Drawing the Kind Graphs

Table 7.8 compares the running times of the methods GVA, GRIP, FMS, ACE, HDE, and FM3 for
the selected kind graphs that have been described in Table 7.6.

GVA is 6 to 8 times slower than FM3 for the smaller graphs containing less than 1000
nodes. This factor grows with the sizes of the graphs. The largest graph fe ocean is drawn
by GVA in 5 hours and 20 minutes. This is a factor 54 slower than FM3. GRIP is a factor 3
to 6 faster than FM3 on the smaller and medium graphs (containing roughly 10000 nodes),
but the implementation does not work on the really large instances. FMS is a factor 2
faster than FM3 on the smallest random grid and sierpinski graphs but a factor 2 slower
than FM3 on the medium sized graphs. The real-world graphs cannot be drawn by FMS,
since they contain more than 10000 nodes. The algorithm ACE is much faster than the
force-directed algorithms on nearly all graphs. Only fe pwt cannot be drawn in the time
limit of 10 hours but we are not aware of a theoretical reason for this long running time.

158 7 Experimental Results

Graph Information CPU Times in Seconds
Algebraic

Type Name
Force-Directed Methods

Methods
FM3 GVA GRIP FMS ACE HDE

rnd grid 032 1.9 12.5 0.3 1.0 < 0.1 < 0.1

rnd grid 100 19.1 203.4 4.4 32.0 0.5 0.1

Kind rnd grid 320 215.4 6316.1 (E) (M) 4.1 1.3

Artificial sierpinski 06 1.8 13.1 0.3 1.0 < 0.1 < 0.1

sierpinski 08 16.8 171.7 4.8 33.0 1.0 0.1

sierpinski 10 162.0 3606.4 (E) (M) 23.4 1.0

crack 23.0 317.5 6.8 (M) 0.4 0.2
Kind

fe pwt 69.0 1869.1 (E) (M) (T) 0.5
Real

finan 512 158.2 6319.8 (E) (M) 7.5 1.0
World

fe ocean 355.9 19247.0 (E) (M) 4.0 3.4

Table 7.8: Comparison of the CPU times of some of the fastest force-directed and algebraic graph-
drawing algorithms on kind graphs. Explanations: (C) No drawing was generated, because the
algorithm is designed for connected graphs. (E) No drawing was generated because of an error
in the executable. (M) No drawing was generated because the memory is restricted to graphs
with ≤ 10.000 nodes. (T) No drawing was generated within 10 hours of CPU time.

We suppose this might be caused by an error in the implementation. HDE is by far the
fastest algorithm on the kind graphs. It needs less than 3.4 seconds for drawing even the
largest tested graph. This is significantly faster than any tested force-directed algorithm.

However, at least as important as the running times is the quality of the created draw-
ings. Consequently, we will present the drawings generated by the methods GVA, GRIP,
FMS, ACE, HDE, and FM3 for some of the tested graphs next.

Nearly all drawings of the grid rnd 100 graph (see Figure 7.15(a)-(f)) and the sierpin-
ski 08 graph (see Figure 7.15(g)-(l)) clearly display the regular (respectively symmetric)
structures of the graphs: The drawing of the sierpinski 08 graph generated by GRIP (see
Figure 7.15(i)) could be improved since many edge crossing appear. GVA does not untangle
the drawings that were induced by the random initial placement for both graphs.

The drawings of the other tested random grid and sierpinski graphs listed in Table 7.8
that are generated by GRIP, FMS, ACE, HDE, and FM3 also display the structures of the graphs
nicely, while the drawings of GVA are comparable with the ones presented in Figure 7.15(b)
and (h). In the following, we only comment on those drawings of a graph which visualize
parts of its structure in an acceptable way for brevity.

The drawings of the crack graph that are generated by ACE and HDE (see Figure 7.16(d)-
(e)) are comparable with that of FM3 (see Figure 7.16(a)). Again the drawing of GRIP (see
Figure 7.16(c)) could be improved since many edge crossings appear.

The structure of the other kind real-world graphs are clearly visualized by the algo-
rithms ACE, HDE, and FM3 (see Figures 7.16(f)-(l) and Figure 7.17) as well.

7.7 Experimental Comparison of FM3 with Other Algorithms 159

(a) FM3 (b) GVA (c) GRIP

(d) FMS (e) ACE (f) HDE

(g) FM3 (h) GVA (i) GRIP

(j) FMS (k) ACE (l) HDE

Figure 7.15: (a)-(f) Drawings of the rnd grid 100 graph and (g)-(l) the sierpinski 08 graph gen-
erated by different algorithms.

160 7 Experimental Results

(a) FM3 (b) GVA (c) GRIP

(d) ACE (e) HDE (f) FM3

(g) GVA (h) HDE (i) FM3

(j) GVA (k) ACE (l) HDE

Figure 7.16: (a)-(e) Drawings of the crack graph, (f)-(h) fe pwt, and (i)-(l) finan 512 generated
by different algorithms.

7.7 Experimental Comparison of FM3 with Other Algorithms 161

(a) FM3 (b) GVA

(c) ACE (d) HDE

Figure 7.17: Drawings of fe ocean generated by different algorithms.

7.7.2 Drawing the Challenging Graphs

The running times that are needed for drawing the selected challenging graphs are displayed
in Table 7.9, and details about the structures of the graphs can be found in Table 7.7.

For nearly all graphs GVA is the slowest method and up to a factor 98 slower than
FM3. GVA needs more than 4 hours and 5 minutes for drawing the snowflake C graph.
Except for the graphs bcsstk 33 and flower B, GRIP is faster (a factor 2 to 7) than FM3.
But GRIP cannot draw the largest graphs and many disconnected graphs. In comparison
with the running times that are needed for drawing the kind graphs, the CPU time of
FMS increases drastically for the flower graphs, dg 1087, and bcsstk 33. These graphs
either contain nodes with a very high degree or have a high edge density. For many
challenging graphs ACE is faster than the force-directed methods and needs less than 4
seconds to draw them. These running times grow extremely, when ACE is used to draw the
snowflake graphs, the spider graphs, or dg 1087, which all contain a node with a very high
degree. The running times of the algebraic method HDE are outstanding. Every tested
connected challenging graph can be drawn in less than 2 seconds.

162 7 Experimental Results

Graph Information CPU Times in Seconds
Algebraic

Type Name
Force-Directed Methods

Methods
FM3 GVA GRIP FMS ACE HDE

rnd1 A 2.9 12.4 0.7 (C) (C) (C)

rnd1 B 17.8 119.3 (E) (C) (C) (C)

rnd1 C 213.4 3255.9 (E) (C) (C) (C)

rnd2 A 0.7 7.3 0.2 (C) (C) (C)

rnd2 B 19.7 138.5 6.9 (C) (C) (C)

rnd2 C 262.3 5930.1 (E) (C) (C) (C)

Chal- snowflake A 1.6 8.0 0.4 73.0 0.4 < 0.1

lenging snowflake B 17.4 143.2 6.1 3320.0 (T) < 0.1

Artificial snowflake C 166.5 14685.7 (E) (M) (T) 0.8

spider A 1.9 17.6 0.4 1.0 1.1 < 0.1

spider B 17.7 189.0 7.2 47.0 8.9 0.1

spider C 177.2 4568.3 (E) (M) 280.7 1.3

flower A 1.2 61.7 0.7 1.0 < 0.1 < 0.1

flower B 11.9 595.1 19.3 46.0 1.4 0.2

flower C 121.4 11841.5 (E) (M) (T) 1.4

ug 380 2.1 23.1 0.4 1.0 < 0.1 < 0.1

dg 3691 2.4 21.5 (E) (C) (C) (C)

Chal- add 32 12.1 80.6 1.6 17.0 0.5 < 0.1

lenging dg 1087 18.1 624.8 3.6 5402.0 108.4 < 0.1

Real bcsstk 33 23.8 1494.6 29.1 6636.0 0.4 0.3

World bcsstk 31 con 83.6 4338.4 (E) (M) 1.9 0.7

bcsstk 32 110.9 6387.1 (E) (M) 3.6 0.9

fe body 96.5 2095.6 (E) (C) (C) (C)

Table 7.9: Comparison of the CPU times of some of the fastest force-directed and algebraic
graph-drawing algorithms on challenging graphs. Explanations: (C) No drawing was generated
because the algorithm is designed for connected graphs. (E) No drawing was generated because
of an error in the executable. (M) No drawing was generated because the memory is restricted
to graphs with ≤ 10.000 nodes. (T) No drawing was generated within 10 hours of CPU time.

We first concentrate on the drawings of the random disconnected graphs (see Fig-
ure 7.18). The drawings that are generated by GRIP separate the components, but contain
large empty regions that increase the used aspect-ratio area. The drawings of the discon-
nected graphs that are generated by GVA (see Figure 7.18(b), (e), and (h)) contain many
overlapping components.

Except FM3 none of the tested algorithms displays the global structure of the snowflake
graphs. Even the drawings of the smallest snowflake graph (see Figure 7.19(b)-(f)) leave
room for improvements. However, GVA and GRIP visualize parts of its structure in an
appropriate way.

7.7 Experimental Comparison of FM3 with Other Algorithms 163

(a) FM3

0

1

2

3

4

5

6
7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

6566

67

68

69

70

71

72

73

74 75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120
121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234 235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278
279

280

281

282

283

284

285

286

287

288

289

290
291

292

293

294

295

296

297

298

299

300301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318
319

320

321
322

323

324

325

326

327328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485 486

487

488

489

490

491

492

493

494

495

496

497

498

499

500501

502

503

504

505

506

507

508

509

510

511

512

513
514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626
627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645
646

647 648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668
669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712
713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795
796

797

798

799

800

801802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848
849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959
960

961

962

963

964

965

966

967

968
969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

10361037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092
1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

11231124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165
1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182
1183

1184

1185

1186

1187
1188

1189

1190
1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214
1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245
1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305
1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320
1321

1322

1323

(b) GVA (c) GRIP

(d) FM3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1516

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55 56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81
82

83

84

85

86

87 88

89

90

91

92

93

94

95

96

97

98

99

100

101

102
103

104105

106

107108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126 127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150
151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184
185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208209

210

211

212

213

214

215

216
217

218

219

220

221

222

223

224
225

226

227

228

229
230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316317

318

319
320

321

322 323

324

325

326

327

328

329

330

331

332

333

334335

336

337

338339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388
389 390

391

392

393

394

395
396

397

398

399

400401

402

403

404

405

406
407408

409

410

411

412

413

414

415

416

417

418

419

420

421

422423

424

425

426

427

428

429

430

431

432

433

434

435
436

437

438

439

440

441
442

443

444

445

446

447

448

449

450

451

452

453

454

455

456
457

458

459

460

461

462

463

464

465

466

467

468

469

470
471

472

473

474

475

476

477
478 479

480

481

482

483
484

485

486

487

488
489

490

491

492

493

494

495

496

497

498

499 500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531 532

533

534 535 536

537

538

539
540

541

542

543

544

545

546

547

548
549

550

551

552

553

554

555

556

557

558

559

560

561

562

563 564

565

566

567 568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588 589

590
591 592

593
594 595

596

597

598

599

600
601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654
655

656

657
658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679680
681

682683

684

685

686

687

688
689

690

691

692

693

694

695

696

697

698

699

700

701

702
703

704

705

706

707

708
709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724
725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756757

758

759

760

761

762

763
764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853
854

855

856

857 858859
860

861

862

863

864

865

866

867

868

869

870

871

872

873

874 875

876

877

878

879

880

881

882

883

884

885

886
887

888

889890 891

892

893

894

895

896

897

898

899

900

901

902
903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918919

920

921

922

923
924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940
941

942

943

944

945

946

947

948

949

950

951

952

(e) GVA (f) GRIP

(g) FM3 (h) GVA (i) GRIP

Figure 7.18: (a)-(c) Drawings of rnd1 A, (d)-(f) rnd2 A, and (g)-(i) rnd2 B generated by different
algorithms.

The drawings of the spider A graph that are generated by GRIP, FMS, and HDE (see Fig-
ure 7.19(i), (j), and (l)) are not as symmetric as that generated by FM3 (see Figure 7.19(g)).
But they still display the global structure of the graph. The drawing generated by GVA (Fig-
ure 7.19(h)) shows the dense subregion, but GVA does not untangle the 8 paths. The paths
in the drawing of ACE (Figure 7.19(k)) are not displayed in the same length although each
of the paths contains the same number of nodes. We do not present the drawings of the
larger spider graphs, since they are comparable with those of the spider A graph.

164 7 Experimental Results

(a) FM3

0

1

2
3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277278

279

280

281

282

283

284

285

286

287

288

289

290

291

292
293

294

295296

297

298

299

300
301 302

303

304

305 306
307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336
337

338
339

340

341

342

343 344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369
370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423424

425

426
427

428

429

430

431

432

433

434

435

436
437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455 456

457

458
459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495 496
497

498
499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526
527

528

529

530

531

532

533

534

535

536

537

538

539
540

541

542

543

544

545

546

547

548

549

550

551

552

553 554

555

556

557

558559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586 587

588

589

590

591

592

593

594
595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622623

624

625

626
627

628

629

630
631

632

633

634

635 636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689690691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736 737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763764

765

766

767

768

769

770

771

772

773774

775

776
777

778

779

780

781
782

783

784

785

786

787

788
789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818819820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850
851

852

853

854

855

856

857

858

859

860

861862

863

864

865
866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890
891

892
893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908909910

911

912

913

914

915

916

917

918
919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936
937

938

939
940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

(b) GVA (c) GRIP

(d) FMS (e) ACE (f) HDE

(g) FM3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

16

17

18

19

20

21

22
23

24

25

26

27

28

29

30

31

32
33

34 35
36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73
74

75

76

77

78

79

80

81

82

83

84

85

86

87
88 89

90

91

92

93

94

95

96
97

98
99

100

101

102

103

104

105

106

107

108 109
110

111

112

113

114

115

116

117

118

119

120

121

122
123

124

125
126

127

128
129

130

131

132

133

134

135
136

137
138

139

140

141

142

143

144

145
146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172
173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195196

197

198

199

200
201

202
203 204

205
206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227 228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264
265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296
297

298
299

300 301

302

303
304

305
306 307

308

309

310

311

312

313
314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335 336

337

338

339340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356
357

358
359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387 388

389

390

391

392

393

394

395

396

397

398
399

400
401402

403
404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426427

428

429

430

431

432

433

434

435

436
437438

439

440

441

442

443

444

445

446 447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527
528

529

530

531

532

533

534

535

536

537

538

539

540

541
542 543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568
569

570

571

572

573

574

575

576

577

578
579

580

581

582583

584

585

586

587

588

589

590

591

592

593

594

595

596
597

598

599

600

601
602 603

604 605

606

607

608

609

610 611

612

613
614

615

616

617

618

619

620

621

622623

624

625

626

627

628

629

630

631

632

633
634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649
650

651

652

653

654

655

656

657

658

659

660
661

662

663
664 665

666
667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696
697 698

699

700
701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760 761 762

763

764

765

766

767

768

769

770

771

772

773

774

775
776

777778779

780 781
782

783

784

785

786

787

788

789

790

791

792
793

794

795

796

797

798

799

800

801

802
803 804

805

806

807

808

809

810

811

812

813814

815

816

817

818

819

820
821

822

823

824

825
826

827

828

829

830

831

832

833

834
835

836

837
838 839 840

841

842

843

844

845
846

847

848

849

850

851 852

853
854

855

856

857

858

859

860 861

862

863
864

865

866

867
868

869870
871

872

873

874

875

876

877878879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896 897

898

899

900

901

902 903

904

905

906

907

908

909

910

911

912913

914915

916

917

918

919

920
921

922

923

924

925

926927928

929

930

931
932

933

934

935936

937
938

939

940

941

942

943

944 945

946

947

948

949

950

951
952

953 954

955

956

957

958

959

960

961

962

963

964965

966

967

968

969

970

971

972

973

974

975
976

977

978

979

980

981

982

983

984
985

986

987

988
989

990

991

992

993

994

995

996

997

998

999

(h) GVA (i) GRIP

(j) FMS (k) ACE (l) HDE

Figure 7.19: (a)-(f) Drawings of snowflake A and (g)-(l) spider A generated by different algo-
rithms.

7.7 Experimental Comparison of FM3 with Other Algorithms 165

The drawings of the flower B graph (see Figure 7.20) that are generated by FMS and
HDE display the global structure of the graph. But none of the other methods displays the
symmetric structure of the flower graphs as clear as FM3. The drawing that is generated
by ACE is similar to the drawings that ACE generated for the spider and snowflake graphs.
The drawings of the other flower graphs are of comparable quality as the corresponding
drawings of the flower B graph.

(a) FM3 (b) GVA (c) GRIP

(d) FMS (e) ACE (f) HDE

Figure 7.20: Drawings of flower B generated by different algorithms.

We concentrate on the challenging real-world graphs now. Since add 32 contains many
biconnected components, we expect that the drawings have a tree-like shape. This structure
is visualized by GVA, GRIP, ACE, and FM3 (see Figure 7.21(a-c) and (e)). The drawings of
GVA and GRIP contain many edge crossings, while the drawing of ACE displays the global
structure, but hides local details.

The graphs ug 380 and dg 1087 both contain one node with a very high degree and
dg 1087 additionally many biconnected components, since it is a tree. Only the drawings
that are generated by GVA, GRIP, and FM3 (see Figure 7.21(g)-(l) and Figure 7.22(a)-(f))
clearly display the central regions of these graphs. However, it can be observed that the edge
lengths of the drawing of dg 1087 that is generated by FM3 (Figure 7.22(a)) are more uniform
than in the drawings of dg 1087 that are generated by GVA and GRIP (Figure 7.22(b) and
(c)).

166 7 Experimental Results

(a) FM3 (b) GVA (c) GRIP

(d) FMS (e) ACE (f) HDE

(g) FM3

0

1

2

3

4

5

6

7

8

9

10 11

12
13

14

15

16

17

18

19

20
21

22

23

24

25

26

27

28

29

30

31

32

33
34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50
51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72
73

74

75
76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91
92

93

94 95

96

97

98

99
100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118 119

120

121

122

123

124

125
126127

128

129

130

131 132 133

134

135
136

137

138
139

140

141

142

143

144 145

146

147

148

149

150

151152

153

154

155

156

157
158

159
160

161

162

163

164

165

166

167

168
169

170

171

172

173

174

175

176

177

178

179

180
181

182

183184

185

186
187

188

189

190

191

192

193

194

195

196

197

198

199200

201

202

203

204

205206

207

208

209

210

211

212

213

214
215

216

217

218

219 220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238239

240

241

242

243

244

245

246
247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296
297

298

299
300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340
341

342

343

344

345

346

347

348

349

350

351352

353

354

355

356

357

358

359
360

361

362

363

364

365
366

367

368

369

370371

372
373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389 390
391

392

393
394

395

396

397

398

399

400

401

402

403404

405

406

407

408

409

410

411

412

413

414

415
416

417

418

419420
421

422

423

424

425
426

427

428

429

430

431

432

433

434

435

436

437

438439

440

441

442443

444

445

446

447

448

449

450

451 452
453

454

455

456

457

458

459

460

461462

463

464

465

466467

468
469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500
501

502

503

504

505

506

507

508

509 510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527 528

529

530

531

532

533 534

535

536

537

538

539

540

541

542

543

544

545

546

547

548
549

550

551
552

553

554

555

556

557
558

559

560

561

562

563

564

565
566

567

568

569

570

571

572

573

574

575

576

577

578
579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613
614

615

616

617

618

619

620

621

622

623

624

625 626

627

628

629

630

631

632633

634 635

636 637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659
660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684
685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748
749

750

751

752

753

754

755

756

757

758

759

760

761

762

763 764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812
813

814

815

816

817
818

819
820

821

822

823
824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848
849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926
927

928929

930

931

932

933

934

935

936

937

938

939
940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978 979

980

981

982

983

984

985

986

987

988

989

990

991

992

993994

995

996

997998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036
1037

1038

1039
1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053
1054

1055
1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073
1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100
1101

1102

1103

(h) GVA (i) GRIP

(j) FMS (k) ACE (l) HDE

Figure 7.21: (a)-(f) Drawings of add 32 and (g)-(l) ug 380 generated by different algorithms.

7.7 Experimental Comparison of FM3 with Other Algorithms 167

(a) FM3 (b) GVA (c) GRIP

(d) FMS (e) ACE (f) HDE

(g) FM3 (h) GVA (i) GRIP

(j) FMS (k) ACE (l) HDE

Figure 7.22: (a)-(f) Drawings of dg 1087 and (g)-(l) bcsstk 33 generated by different algorithms.

168 7 Experimental Results

Finally, we discuss the drawings of the graphs bcsstk 31 con, bcsstk 32, and bcsstk 33
that have a very high edge density.

The drawings of bcsstk 33 (see Figure 7.22(g)-(l)) that are generated by GRIP, ACE, and
FM3 are comparable and visualize the regular structure of the graph. The car body that
is modeled by the graph bcsstk 31 con (see Figure 7.23(a)-(d)) is visualized by ACE and
FM3 only. All drawings of bcsstk 32 are completely different (see Figure 7.23(e)-(h)) and
an evaluation of the drawings is left to the reader.

(a) FM3 (b) GVA (c) ACE

(d) HDE (e) FM3 (f) GVA

(g) ACE (h) HDE

Figure 7.23: (a)-(d) Drawings of bcsstk 31 con and (e)-(h)bcsstk 32 generated by different algo-
rithms.

7.8 Further Experiments 169

We can summarize that only GVA and FM3 are able to generate drawings of all tested
graphs. HDE generates drawings of all connected graphs. HDE is by far the fastest method.
The running time of FM3 is comparable with that of the fastest force-directed methods for
kind graphs and often faster for the challenging graphs. The running time of GRIP does
not increase significantly for these graphs, but it is not possible to examine its scaling
on really large graphs because of an error in the implementation. The running times of
FMS and ACE grow drastically for some challenging graph, while the scaling of FM3 is good
for all tested graphs. All tested algorithms, except GVA, generate pleasing drawings for the
kind graphs. But unlike FM3 all other tested methods cannot clearly visualize the structure
of many challenging graphs.

7.7.3 Further Important Algorithms

We compared FM3 with some of the fastest force-directed and algebraic graph-drawing meth-
ods, but some important algorithms that have been sketched in Chapter 1.3 are missing. In
particular, we did not test the single-level algorithms FADE [110] and JIGGLE [127, 128]
that are based on the force-approximation method of Barnes and Hut [8]. We also did not
test the matching-based multilevel method of Walshaw [132, 133].

Tunkelang’s implementation of JIGGLE (available from [129]) does not allow the user to
import graphs. Furthermore, the actual drawings are updated on the screen every couple
of iterations. This makes the implementation quite slow. For example, the algorithm does
not generate a crossing-free drawing of a 30 × 30 square grid within 10 minutes on our
machine. Since the basic principles of JIGGLE and FADE are similar, we do not expect a
significant better performance of FADE.

Unfortunately, an implementation of the method of Walshaw [132, 133] has not been
made available to us. The reported running time [133] for drawing a square mesh that
contains 103081 nodes is 431 seconds on a machine that is comparable with ours. However,
challenging graphs containing nodes with a very high degree (like the snowflake graphs
or dg 1087) or graphs that induce a distribution of the nodes so that Θ(|V |) nodes are
contained in a tiny subregion (like the spider graphs and snowflake graphs) have not been
tested [132, 133]. Since these graphs are pathological for this algorithm, anything else than
a drastic increase of the running times would be surprising.

7.8 Further Experiments

7.8.1 But There Is a But!

In the previous experiments the measured CPU times exclude the time that is needed for
the input and output of the data. Unfortunately, for many tested graphs the time that
is needed for the input and output of the data dominates the running time of FM3. For
example, Table 7.10 displays the time that is needed for importing random grid graphs
that are stored in GML format [70] (with and without graphical information) into the
LEDA/graph format with the standard functionalities provided by LEDA [95].

170 7 Experimental Results

Graph Information CPU Times in Seconds
Only Structural Structural and

Name |V | |E|
Information Graphical Information

grid rnd 030 865 1606 0.01 0.30
grid rnd 040 1521 2821 0.06 0.96
grid rnd 060 3420 6387 0.25 4.72
grid rnd 080 6087 11441 0.75 14.33
grid rnd 120 13698 25840 3.69 72.85
grid rnd 160 24343 45985 11.88 233.44
grid rnd 240 54766 103693 60.07 1194.55
grid rnd 320 97359 184532 192.45 3833.04

Table 7.10: CPU times for importing graphs in GML formal into the LEDA/graph format

Hence, in order to make FM3 interactive, the next step should be an improvement of the
used input and output functionalities.

7.8.2 Are Energy-Minimum Drawings of Planar Graphs Crossing
Free?

In the last section we will examine experimentally whether drawings of planar graphs that
induce an energy-minimum configuration of the nodes in an underlying physical force model
are necessarily edge-crossing free. Therefore, we investigated the force model of Fruchter-
man and Reingold [47] and the force model of Davidson and Harel [27] (see Section 1.2.2).
We restricted on the repulsive forces induced by the nodes/particles and the attractive
forces defined by the edges/springs. The desired edge length l of each edge was set to 100.
The forces and the energies are defined as in the literature. In particular, suppose that
nodes vi and vj are placed at positions pi and pj and that vi and vj are connected by an
edge e = (vi, vj). Then, the repulsive force acting on vi due to vj and the attractive force
acting on vi due to the spring e in the model of Fruchterman and Reingold [47] are defined
as

F vj
rep(vi) = − l2

‖pj − pi‖
pj − pi

‖pj − pi‖
and F e

spring(vi) =
‖pj − pi‖2

l

pj − pi

‖pj − pi‖
.

Therefore, the total energy of the system of Fruchterman and Reingold [47] is

EFR =
∑

vi∈V

∑

vj∈V,vj 6=vi

−l2 log ‖pj − pi‖ +
∑

e=(vi,vj)∈E

1

3l
‖pj − pi‖3.

Davidson and Harel [27] define the energy of the system of repelling particles and
attracting springs as

7.8 Further Experiments 171

EDH =
∑

vi∈V

∑

vj∈V,vj 6=vi

λ1

‖pj − pi‖2 +
∑

e=(vi,vj)∈E

λ2‖pj − pi‖2.

Choosing λ1 = l4 and λ2 = 1, the forces on vi induced by vj and e in this system are

F vj
rep(vi) = − 2l4

‖pj − pi‖3

pj − pi

‖pj − pi‖
and F e

spring(vi) = 2‖pj − pi‖
pj − pi

‖pj − pi‖
.

Given these forces and energies we chose a complete graph with four nodes (K4) as test
instance. Then, we implemented for each force model an iterative graph-drawing algorithm
that terminates if all nodes are in an equilibrium configuration of the induced forces. By
choosing suitable initial placements, we forced the algorithms to generate both kinds of
possible energy-minimal drawings: Symmetric planar drawings of the K4 and symmetric
drawings of the K4 that each contain one edge crossing (see Figure 7.24).

(a) (b) (c) (d)

Figure 7.24: Planar and non-planar energy-minimal drawings of K4 according to the force model
of Fruchterman and Reingold ((a) and (b)) and to the force model of Davidson and Harel ((c)
and (d)).

Then, we calculated the induced energies of these drawings. The results are shown in
Table 7.11 and demonstrate that for both force models the energy induced by the non-
planar drawing of the K4 was lower than the energy induced by the planar drawing.

Energy Induced by the
Force Model Planar Drawing Non-Planar Drawing

of the K4 of the K4

Fruchterman & Reingold -520347.5 -527447.0
Davidson & Harel 207846.1 189736.7

Table 7.11: Energies induced by the drawings of K4 that are shown in Figure 7.24

We can conclude that — in general — simple physical models that rely only on identi-
fying nodes with charged particles and edges with springs cannot guarantee that energy-
minimum configurations of the nodes imply crossing-free drawings.

172 7 Experimental Results

Conclusion

Der gerade Weg ist der kürzeste,
aber es dauert meist am längsten,
bis man auf ihm zum Ziele gelangt. 1

We have developed a new force-directed graph-drawing algorithm, called FM3 that is
based on a simple model which identifies nodes with charged particles and edges with
springs. In order to find an energy-minimal configuration of the nodes in this physically
motivated force model, tools from complex analysis have been combined with useful data
structures and combinatorial optimization techniques. In this sense, this work joins ideas
of distinct research fields.

The method FM3 is suitable for drawing weighted and unweighted, connected and dis-
connected graphs with and without node attributes and allows the user to specify an aspect
ratio of the desired drawing area.

The most important parts of the algorithm are the efficient multilevel step and the
multipole methods NM2a and NM2b that are used to obtain accurate approximations of the
repulsive forces acting in the system of charged particles fast. These methods are based on
new strategies for building up a reduced bucked quadtree data structure and on a linear
time method for approximating the potential energy in the system using this data structure
and analytical tools taken from complex analysis.

For a given graph G = (V,E) the worst-case running time of FM3 is O(|V | log |V |+ |E|)
and only a linear amount of memory is required during the computation. This is an
improvement in comparison with current force-directed methods that either do not scale
sub-quadratic at all or guarantee a sub-quadratic running time only in special cases or
under certain assumptions.

The algorithm creates nice drawings of a wide range of graphs, and is also very fast
in practice. In particular, it draws graphs containing up to 100000 nodes in less than 5
minutes.

The experimental comparisons with other state-of-the-art graph-drawing algorithms for
visualizing large graphs show that FM3 belongs to the fastest force-directed algorithms. Fur-
thermore, the running times of the other force-directed methods either grow drastically for

1Georg Christoph Lichtenberg

174 Conclusion

some tested instances or the methods can not draw these graphs. The algebraic methods
ACE of Koren et al. [86, 87] and the high-dimensional-embedding approach of Harel and
Koren [66] are significantly faster than all tested force-directed methods for several (re-
spectively all) tested instances. But the quality of the generated drawings of the examined
existing state-of-the-art graph-drawing methods is not convincing for all graphs. Since the
practical experiments demonstrate that FM3 even visualizes the structures of those graphs
clearly that cause problems for the other tested methods, the development of FM3 extends
the class of graphs whose structures can be visualized well by force-directed or algebraic
methods.

These results encourage the development of an extended version of FM3 in order to
handle constraints like fixed nodes, fixed subgraphs, or to adapt it on the requirements of
special graphs like hierarchical graphs or clustered graphs.

Some parts of FM3 might be interesting outside graph drawing, too. For example, the
force-approximation methods NM2a and NM2b could be used in N -body simulations in natural
science. One also could examine whether it is possible to use a modification of FM3 for
solving placement problems in VLSI-design. For example, one question that arises in this
field is as follows: Given a large number of cells and nets. Place the cells in the plane
or into a bounded square region so that no two cells overlap and the estimated total wire
length is minimized.

We are aware that the new graph drawing method FM3 does not belong to the simplest
force-directed algorithms. But we have also tried to explain that it is not always the best
alternative to choose the easiest way.

Bibliography

[1] S. J. Aarseth. Gravitational N-body Simulations: Tools and Algorithms. Cambridge
monographs on mathematical physics. Cambridge University Press, 2003.

[2] S. Aluru, J. Gustafson, G. M. Prabhu, and F. E. Sevilgen. Distribution-Independent
Hierarchical Algorithms for the N-body Problem. Journal of Supercomputing, 12:303–
323, 1998.

[3] S. Aluru, G. M. Prabhu, and J. Gustafson. Truly Distribution-Independent Algo-
rithms for the N-body Problem. In Proceedings of the 1994 ACM/IEEE Conference
on Supercomputing, pages 420—428, 1994.

[4] D. P. Anderson. Techniques for reducing pen plotting time. ACM Transactions on
Graphics, 2(3):197–212, 1983.

[5] A. W. Appel. An efficient program for many-body simulations. SIAM Journal on
Scientific and Statistical Computing, 6:85–103, 1985.

[6] The AT&T graph collection: www.graphdrawing.org.

[7] B. S. Baker, E. G. Coffman, and R. L. Rivest. Orthogonal packings in two dimensions.
SIAM Journal on Computing, 9(4):846–855, 1980.

[8] J. Barnes and P. Hut. A hierarchical O(N log N) force-calculation algorithm. Nature,
324(4):446–449, December 1986.

[9] V. Batagelj and A. Mrvar. Graph Drawing Software, volume XII of Mathematics and
Visualization, chapter Pajek - Analysis and Visualization of Large Networks, pages
77–103. Springer-Verlag, 2004.

[10] J. L. Bentley. Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9):509–517, 1975.

[11] F. Bertault. A Force-Directed Algorithm that Preserves Edge Crossing Properties.
In J. Kratochv́ıl, editor, Graph Drawing 1999, volume 1731 of Lecture Notes in Com-
puter Science, pages 351–358. Springer-Verlag, 1999.

175

176 BIBLIOGRAPHY

[12] J. A. Board, Z. S. Hakura, W. S. Elliot, D. C. Gray, W. J. Blanke, and J. F. Leathrum.
Scalable implementations of multipole-accelerated algorithms for molecular dynam-
ics. Technical Report 94-002, Duke University, 1994.

[13] F. J. Brandenburg, M. Himsolt, and C. Rohrer. An Experimental Comparison of
Force-Directed and Randomized Graph Drawing Methods. In F. J. Brandenburg,
editor, Graph Drawing 1995, volume 1027 of Lecture Notes in Computer Science,
pages 76–87. Springer-Verlag, 1996.

[14] U. Brandes. Drawing Graphs, volume 2025 of Lecture Notes in Computer Science,
chapter Drawing on Physical Analogies, pages 71–86. Springer-Verlag, 2001.

[15] U. Brandes and D. Wagner. Graph Drawing Software, volume XII of Mathematics
and Visualization, chapter visone - Analysis and Visualization of Social Networks,
pages 321–340. Springer-Verlag, 2004.

[16] A. Brandt. Multilevel computations of integral transforms and particle interactions
with oscillatory kernels. Comput. Phys. Comm., 65:24–38, 1991.

[17] A. Brandt. Multigrid methods in latice field computations. Nuclear Physics B (Pro-
ceedings Supplements), 26:137–180, 1992.

[18] I. Bruß and A. Frick. Fast Interactive 3-D Visualization. In F. J. Brandenburg,
editor, Graph Drawing 1995, volume 1027 of Lecture Notes in Computer Science,
pages 99–110. Springer-Verlag, 1996.

[19] C. Buchheim and M. Jünger. Detecting Symmetries by Branch & Cut. In P. Mutzel,
M. Jünger, and S. Leipert, editors, Graph Drawing 2001, volume 2265 of Lecture
Notes in Computer Science, pages 178–188. Springer-Verlag, 2001.

[20] P. B. Callahan and S. R. Kosaraju. A Decomposition of Multidimensional Point Sets
with Applications to k-Nearest-Neighbors and n-Body Potential Fields. Journal of
the Association for Computing Machinery, 42(1):67–90, 1995.

[21] L. Carmel and D. Harel. Combining Hierarchy and Energy for Drawing Directed
Graphs. IEEE Transactions on Visualization and Computer Graphics, 10(1):46–57,
2004.

[22] L. Carmel, D. Harel, and Y. Koren. Drawing Directed Graphs Using One-
Dimensional Optimization. In M. T. Goodrich and S. G. Kobourov, editors, Graph
Drawing 2002, volume 2528 of Lecture Notes in Computer Science, pages 193–206.
Springer-Verlag, 2002.

[23] J.-H. Chuang, C.-C. Lin, and H.-C. Yen. Drawing Graphs with Nonuniform Nodes
Using Potential Fields. In G. Liotta, editor, Graph Drawing 2003, volume 2912 of
Lecture Notes in Computer Science, pages 460–465. Springer-Verlag, 2004.

BIBLIOGRAPHY 177

[24] E. G. Coffman, M. R. Garey, D. S. Johnson, and R. E. Tarjan. Performance bounds
for level-oriented two-dimensional packing algorithms . SIAM Journal on Computing,
9(4):808–826, 1980.

[25] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT-
Press, 1990.

[26] I. F. Cruz and J. P. Twarog. 3D Graph Drawing with Simulated Annealing. In
F. J. Brandenburg, editor, Graph Drawing 1995, volume 1027 of Lecture Notes in
Computer Science, pages 162–165. Springer-Verlag, 1996.

[27] R. Davidson and D. Harel. Drawing Graphs Nicely Using Simulated Annealing. ACM
Transactions on Graphics, 15(4):301–331, 1996.

[28] H. De Fraysseix, J. Pach, and R. Pollak. How to draw a planar graph on a grid.
Combinatorica, 10(1):41–51, 1990.

[29] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for Drawing
Graphs: an Annotated Bibliography. Computational Geometry Theory & Applica-
tions, 4(5):235–282, 1994.

[30] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing - Algorithms
for the Visualization of Graphs. Prentice Hall, 1999.

[31] R. Diestel. Graphentheorie. Springer-Verlag, 1996.

[32] Ugur Dogrusoz. Two-dimensional packing algorithms for layout of disconnected
graphs. Information Sciences Informatics and Computer Science, 143(1-4):147–158,
2002.

[33] C. A. Duncan, M. T. Goodrich, and S. G. Kobourov. Balanced Aspect Ratio Trees
and Their Use for Drawing Very Large Graphs. In S. H. Whitesides, editor, Graph
Drawing 1998, volume 1547 of Lecture Notes in Computer Science, pages 111–124.
Springer-Verlag, 1998.

[34] C. A. Duncan, M. T. Goodrich, and S. G. Kobourov. Planarity-Preserving Clustering
and Embedding for Large Planar Graphs. In J. Kratochv́ıl, editor, Graph Drawing
1999, volume 1731 of Lecture Notes in Computer Science, pages 186–196. Springer-
Verlag, 1999.

[35] P. Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149–160,
1984.

[36] P. Eades. Symmetry finding algorithms. Computational Morphology, pages 41–51,
1988.

178 BIBLIOGRAPHY

[37] P. Eades, R. F. Cohen, and M. L. Huang. Online Animated Graph Drawing for Web
Navigation. In G. Di Battista, editor, Graph Drawing 1997, volume 1353 of Lecture
Notes in Computer Science, pages 330–335. Springer-Verlag, 1997.

[38] P. Eades and Q.-W. Feng. Multilevel Visualization of Clustered Graphs. In S. North,
editor, Graph Drawing 1996, volume 1190 of Lecture Notes in Computer Science,
pages 101–112. Springer-Verlag, 1997.

[39] P. Eades and P. Garvan. Drawing Stressed Planar Graphs in Three Dimensions. In
F. J. Brandenburg, editor, Graph Drawing 1995, volume 1027 of Lecture Notes in
Computer Science, pages 212–223. Springer-Verlag, 1996.

[40] P. Eades and X. Lin. Spring algorithms and symmetry. Theoretical Computer Sci-
ence, 240:379 – 405, 2000.

[41] P. Eades and N. C. Wormald. Fixed edge-length graph drawing is NP-hard. Discrete
Applied Mathematics, 28:111–134, 1990.

[42] R. A. Finkel and J. L. Bentley. Quad trees: a data structure for retrieval on composite
keys. Acta Informatica, 4(1):1–9, 1974.

[43] C. J. Fisk, D. L. Caskey, and L. E. West. ACCEL: Automated circuit card etching
layout. Proceedings of the IEEE, 55(11):1971–1982, 1967.

[44] K. Freivalds, U. Dogrusoz, and P. Kikusts. Disconnected Graph Layout and the
Polyomino Packing Approach. In P. Mutzel, M. Jünger, and S. Leipert, editors,
Graph Drawing 2001, volume 2265 of Lecture Notes in Computer Science, pages
378–391. Springer-Verlag, 2001.

[45] A. Frick, A. Ludwig, and H. Mehldau. A Fast Adaptive Layout Algorithm for Undi-
rected Graphs. In R. Tamassia and I. G. Tollis, editors, Graph Drawing 1994, volume
894 of Lecture Notes in Computer Science, pages 388–403. Springer-Verlag, 1995.

[46] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best
matches in logarithmic expected time. ACM Transactions on Mathematical Software,
3(3):209–226, 1977.

[47] T. M. J. Fruchterman and E. M. Reingold. Graph Drawing by Force-directed Place-
ment. Software–Practice and Experience, 21(11):1129–1164, 1991.

[48] G. W. Furnas. Generalized fisheye views. In Proceedings of ACM Conference on
Human Factors in Computing Systems (CHI ’86), pages 16–23, 1986.

[49] P. Gajer, M. T. Goodrich, and S. G. Kobourov. A Multi-dimensional Approach to
Force-Directed Layouts of Large Graphs. In J. Marks, editor, Graph Drawing 2000,
volume 1984 of Lecture Notes in Computer Science, pages 211–221. Springer-Verlag,
2001.

BIBLIOGRAPHY 179

[50] P. Gajer and S. G. Kobourov. GRIP: Graph Drawing with Intelligent Placement. In
J. Marks, editor, Graph Drawing 2000, volume 1984 of Lecture Notes in Computer
Science, pages 222–228. Springer-Verlag, 2001.

[51] E. Ganser, Y. Koren, and S. North. Topological Fisheye Views for Visualizing Large
Graphs. In Proceedings of IEEE Information Visualization 2004 (InfoVis ’04), pages
175–182, 2004.

[52] M. R. Garey and D. S. Johnson. Computers and Intractability – A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[53] M. R. Garey and D. S. Johnson. Crossing number is NP-complete. SIAM Journal
on Algebraic and Discrete Methods, 4(3):312–316, 1983.

[54] T. Gonzalez. Clustering to Minimize the Maximum Inter-Cluster Distance. Theoret-
ical Computer Science, 38:293–306, 1985.

[55] A. Y. Grama, V. Kumar, and A. Sameh. N-body simulations using message passing
parallel computers. In Proceedings of the Seventh SIAM Conference on Parallel
Processing for Scientific Computing, pages 355–360, 1995.

[56] A. Y. Grama, V. Sarin, and A. Sameh. Improving Error Bounds For Multipole-Based
Treecodes. SIAM Journal on Scientific Computing, 21(5):1790–1803, 1998.

[57] Graph drawing group of foundation caesar: www.caesar.de/graphdrawing.0.html.

[58] L. F. Greengard. The Rapid Evaluation of Potential Fields in Particle Systems. ACM
distinguished dissertations. The MIT Press, Cambridge, Massachusetts, 1988.

[59] L. F. Greengard and V. Rokhlin. A Fast Algorithm for Particle Simulations. Journal
of Computational Physics, 73:325–348, 1987.

[60] C. Gutwenger and P. Mutzel. Grid embedding of biconnected planar graphs, Ex-
tended Abstract. Technical report, Max-Planck-Institut für Informatik, Saarbrücken,
Germany, 1997.

[61] S. Hachul and M. Jünger. Drawing Large Graphs with a Potential-Field-Based Mul-
tilevel Algorithm (Extended Abstract). In J. Pach, editor, Graph Drawing 2004,
volume 3383 of Lecture Notes in Computer Science, pages 285–295. Springer-Verlag,
2005.

[62] R. Hadany and D. Harel. A multi-scale algorithm for drawing graphs nicely. In Pro-
ceedings of the 25th International Workshop on Graph-Theoretic Concepts in Com-
puter Science (WG ’99), volume 1665 of Lecture Notes in Computer Science, pages
262–277. Springer-Verlag, 1999.

180 BIBLIOGRAPHY

[63] K. M. Hall. An r-dimensional quadratic placement algorithm. Management Science,
17(3):219–229, 1970.

[64] D. Harel and Y. Koren. A Fast Multi-scale Method for Drawing Large Graphs. In
J. Marks, editor, Graph Drawing 2000, volume 1984 of Lecture Notes in Computer
Science, pages 183–196. Springer-Verlag, 2001.

[65] D. Harel and Y. Koren. Drawing Graphs with Non-Uniform Vertices. In Proceedings
of the Working Conference on Advanced Visual Interfaces (AVI’ 02), pages 157–166.
ACM Press, 2002.

[66] D. Harel and Y. Koren. Graph Drawing by High-Dimensional Embedding. In M. T.
Goodrich and S. G. Kobourov, editors, Graph Drawing 2002, volume 2528 of Lecture
Notes in Computer Science, pages 207–219. Springer-Verlag, 2002.

[67] D. Harel and M. Sardas. Randomized Graph Drawing with Heavy-Duty Preprocess-
ing. Journal of Visual Languages and Computing, 6(3):233–253, 1995.

[68] B. Hendrickson and R. Leland. A Multilevel Algorithm for Partitioning Graphs. In
S. Karin, editor, Proceedings 9th ACM International Conference on Supercomputing
’95. ACM Press, 1995. (Formerly, Technical Report SAND93-1301, 1993).

[69] I. Herman, G. Melancon, and M. S. Marshall. Graph Visualization and Navigation
in Information Visualization: a Survey. IEEE Transactions on Visualization and
Computer Graphics, 6:24–43, 2000.

[70] M. Himsolt. GML: A portable Graph File Format. Technical report, Universität
Passau, 1996. infosun.fmi.uni-passau.de/Graphlet/GML/gml-tr.html.

[71] T. Hrycak and V. Rokhlin. An improved fast multipole algorithm for potential fields.
SIAM Journal on Scientific Computing, 19(6):1804–1826, 1998.

[72] M. L. Huang and P. Eades. A Fully Animated Interactive System for Clustering
and Navigation of Huge Graphs. In S. H. Whitesides, editor, Graph Drawing 1998,
volume 1547 of Lecture Notes in Computer Science, pages 374–383. Springer-Verlag,
1998.

[73] M. L. Huang, P. Eades, and J. Wang. Online Animated Graph Drawing using a
Modified Spring Algorithm. Journal of Visual Languages and Computing, 9(6), 1998.

[74] D. S. Johnson. The NP-completeness column: an ongoing guide. Journal of Algo-
rithms, 3:89–99, 1982.

[75] M. Jünger, G. W. Klau, P. Mutzel, and R. Weiskircher. Graph Drawing Software, vol-
ume XII of Mathematics and Visualization, chapter AGD - A Library of Algorithms
for Graph Drawing, pages 149–172. Springer-Verlag, 2004.

BIBLIOGRAPHY 181

[76] M. Jünger and P. Mutzel, editors. Graph Drawing Software, volume XII of Mathe-
matics and Visualization. Springer-Verlag, 2004.

[77] M. Jünger and P. Mutzel. Graph Drawing Software, volume XII of Mathematics and
Visualization, chapter Technical Foundations, pages 9–53. Springer-Verlag, 2004.

[78] M. Jünger and S. Thienel. The ABACUS system for branch-and-cut and price al-
gorithms in integer programming and combinatorial optimization. Software Practice
and Experience, 30:1325–1352, 2000.

[79] T. Kamada. Visualizing Abstract Objects and Relations, volume 5 of Series in Com-
puter Science. World Scientific, 1989.

[80] T. Kamada and S. Kawai. An Algorithm for Drawing General Undirected Graphs.
Information Processing Letters, 31:7–15, 1989.

[81] T. Kamps and J. Kleinz. Constraint-Based Spring-Model Algorithm for Graph Lay-
out. In F. J. Brandenburg, editor, Graph Drawing 1995, volume 1027 of Lecture
Notes in Computer Science, pages 349–360. Springer-Verlag, 1996.

[82] M. Kaufmann and D. Wagner. Drawing Graphs: Methods and Models. Number 2025
in Lecture Notes in Computer Science. Springer-Verlag, 2001.

[83] K. Kaugars, J. Reinfelds, and A. Brazma. A Simple Algorithm for Drawing Large
Graphs on Small Screens. In R. Tamassia and I. G. Tollis, editors, Graph Drawing
1994, volume 894 of Lecture Notes in Computer Science, pages 278–281. Springer-
Verlag, 1995.

[84] D. E. Knuth. The Stanford GraphBase: A Platform for Combinatorial Computing.
Addison–Wesley, 1993.

[85] Y. Koren. Graph Drawing by Subspace Optimization. In O. Deussen, C. Hansen,
D. A. Keim, and D. Saupe, editors, Proceedings of 6th Joint Eurographics (VisSym
’04), IEEE TCVG Symposium on Visualization, pages 65–74, 2004.

[86] Y. Koren, L. Carmel, and D. Harel. ACE: A Fast Multiscale Eigenvector Computa-
tion for Drawing Huge Graphs. In Proceedings of the IEEE Symposium on Informa-
tion Visualization (InfoVis’ 02), pages 137–144. IEEE Computer Society, 2002.

[87] Y. Koren, L. Carmel, and D. Harel. Drawing Huge Graphs by Algebraic Multigrid
Optimization. Multiscale Modeling and Simulation, 1(4):645–673, 2003.

[88] Y. Koren’s algorithms: research.att.com/~yehuda/index_programs.html.

[89] T. Lengauer. Combinatorial algorithms for integrated circuit layout. John Wiley &
Sons, 1990.

182 BIBLIOGRAPHY

[90] Prof. Dr. Carola Lipp: www.kaee.uni-goettingen.de/personal/lipp/lipp.htm.

[91] R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection. SIAM
Journal on Numerical Analysis, 16(2):346–358, 1979.

[92] P. Liu and S. N. Bhatt. Experiences with Parallel N-body Simulations. IEEE Trans-
actions on Parallel Distributed Systems, 11(12):1306–1323, 2000.

[93] J. Manning. Computational complexity of geometric symmetry detection in graphs.
In Great Lakes Computer Science Conference, volume 507 of Lecture Nodes in Com-
puter Science, pages 1–7. Springer-Verlag, 1990.

[94] T. Matsuyama, L. V. Hao, and N. Nagao. A file organization for geographic infor-
mation systems based on spatial complexity. Computer Vision, Graphics, and Image
Processing, 26(3):303–318, 1984.

[95] K. Mehlhorn and S. Näher. LEDA: A Platform for Combinatorial and Geometric
Computing. Cambridge University Press, 1999.

[96] B. Monien, F. Ramme, and H. Salmen. A parallel Simulated Annealing Algorithm for
Generating 3D Layouts of Undirected Graphs. In F. J. Brandenburg, editor, Graph
Drawing 1995, volume 1027 of Lecture Notes in Computer Science, pages 396–408.
Springer-Verlag, 1996.

[97] Y. Ohsawa and M. Sakauchi. Multidimensional Data Management Structure with
Efficient Dynamic Characteristics. Systems, Computers, Controls, 14(5):1193–1200,
1983.

[98] Y. Ohsawa and M. Sakauchi. The BD-tree - A new n-dimensional data structure
with highly efficient dynamic characteristics. Information Proceedings, 83:539–544,
1983.

[99] T. Ohya, M. Iri, and K. Murota. Improvements of the incremental method for the
voronoi diagram with computational comparison of various algorithms. Journal of
Operations Research, 27(4):306–336, 1984.

[100] T. Ottmann and P. Widmayer. Algorithmen und Datenstrukturen, volume 70 of Reihe
Informatik. BI-Wissenschaftsverlag, 1993.

[101] M. H. Overmars and J. van Leeuwen. Dynamic multi-dimensional data structures
based on quad- and k-d trees. Acta Informatica, 17(3):267–285, 1982.

[102] H. G. Petersen, E. R. Smith, and D. Soelvason. Error estimates for the fast multipole
method. II. The three-dimensional case. In Proc. R. Soc. Lond A, volume 448, pages
401–418, 1995.

BIBLIOGRAPHY 183

[103] H. G. Petersen, D. Soelvason, and J. W. Perram. The very fast multipole method.
The Journal of Chemical Physics, 101(10):8870–8876, 1994.

[104] H. G. Petersen, D. Soelvason, J. W. Perram, and E. R. Smith. Error estimates for
the fast multipole method. I. The two-dimensional case. In Proc. R. Soc. Lond A,
volume 448, pages 389–400, 1995.

[105] S. Pfalzer and P. Gibbon. Many-body tree methods in physics. Cambridge University
Press, 1996.

[106] K. J. Pulo. Recursive Space Decomposition in Force-Directed Graph Drawing Al-
gorithms. In Australian Symposium on Information Visualization, volume 9, pages
95–102, 2001.

[107] H. C. Purchase. Which Aesthetic Has the Greatest Effect on Human Understanding?
In G. Di Battista, editor, Graph Drawing 1997, volume 1353 of Lecture Notes in
Computer Science, pages 248–261. Springer-Verlag, 1997.

[108] H. C. Purchase, J.-A. Allder, and D. Carrington. User Preference of Graph Layout
Aesthetics: A UML Study. In J. Marks, editor, Graph Drawing 2000, volume 1984
of Lecture Notes in Computer Science, pages 5–18. Springer-Verlag, 2001.

[109] H. C. Purchase, R. F. Cohen, and M. James. Validating Graph Drawing Aesthetics.
In F. J. Brandenburg, editor, Graph Drawing 1995, volume 1027 of Lecture Notes in
Computer Science, pages 435–446. Springer-Verlag, 1996.

[110] A. Quigley and P. Eades. FADE: Graph Drawing, Clustering, and Visual Abstraction.
In J. Marks, editor, Graph Drawing 2000, volume 1984 of Lecture Notes in Computer
Science, pages 197–210. Springer-Verlag, 2001.

[111] N. R. Quinn and M. A. Breuer. A Forced Directed Component Placement Pro-
cedure for Printed Circuit Boards. IEEE Transactions on Circuits and Systems,
CAS-26(6):377–388, 1979.

[112] Max Rauner. Ziemlich verknotet. DIE ZEIT, 10:33–34, 2004.

[113] A. Rosenfeld, H. Samet, C. Shaffer, and R. E. Webber. Applications of hierarchical
data structures to geographical information systems. Technical Report Computer
Science TR-1327, University of Maryland, College Park, MD, 1983.

[114] J. K. Salmon. Parallel hierarchical N-body methods. PhD thesis, California Institute
of Technology, 1991. UMI Order No. GAX91-37285.

[115] H. Samet. Applications of Spatial Data Structures: Computer Graphics, Image Pro-
cessing, and GIS. Addison-Wesley, 1990.

184 BIBLIOGRAPHY

[116] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley,
1990.

[117] M. Sarkar and M. H. Brown. Graphical fisheye views. Communications of the ACM,
37(12):73–84, 1994.

[118] F. T. Scanlon. Automated placement of multi-terminal components. In Proceedings
of the 8th workshop on Design automation, pages 143–154. ACM Press, 1971.

[119] I. Schiermeyer. Reverse-Fit: A 2-Optimal Algorithm for Packing Rectangles. In
Proceedings of the Second Annual European Symposium on Algorithms, pages 290–
299. Springer-Verlag, 1994.

[120] K. E. Schmidt and M. A. Lee. Implementing the fast multipole method in three
dimensions. Journal of Computational Physics, 63(5):1223–1235, 1991.

[121] W. Schnyder. Embedding planar graphs on the grid. In Proceedings of the 1st ACM-
SIAM Symposium on Discrete Algorithms, pages 138–148, 1990.

[122] J. P. Singh, J. L. Hennessy, and A. Gupta. Implications of hierarchical n-body
methods for multiprocessor architecture. ACM Transactions on Computer Systems,
13(2):141–202, 1995.

[123] K. Sugiyama. Graph Drawing and Applications for Software and Knowledge En-
gineers, volume 11 of Series on Software Engineering and Knowledge Engineering.
World Scientific, 2002.

[124] K. Sugiyama and K. Misue. A Simple and Unified Method for Drawing Graphs:
Magnetic-Spring Algorithm. In R. Tamassia and I. G. Tollis, editors, Graph Drawing
1994, volume 894 of Lecture Notes in Computer Science, pages 364–375. Springer-
Verlag, 1995.

[125] R. Tamassia. Constraints in Graph Drawing Algorithms. Constraints, 3(1):89–122,
1998.

[126] D. Tunkelang. A practical approach to drawing undirected graphs. Technical Report
CMU-CS-94-161, School of Computer Science, Carnegie Mellon University, 1994.

[127] D. Tunkelang. JIGGLE: Java Interactive Graph Layout Environment. In S. H.
Whitesides, editor, Graph Drawing 1998, volume 1547 of Lecture Notes in Computer
Science, pages 413–422. Springer-Verlag, 1998.

[128] D. Tunkelang. A Numerical Optimization Approach to General Graph Drawing. PhD
thesis, School of Computer Science, Carnegie Mellon University, 1999. CMU-CS-98-
189.

[129] D. Tunkelangs’s implementation of JIGGLE: www-2.cs.cmu.edu/~quixote.

BIBLIOGRAPHY 185

[130] W. T. Tutte. How to draw a graph. Proceedings of the London Mathematical Society,
3(13):743–768, 1963.

[131] C. Walshaw’s graph collection: staffweb.cms.gre.ac.uk/~c.walshaw/
partition.

[132] C. Walshaw. A Multilevel Algorithm for Force-Directed Graph Drawing. In J. Marks,
editor, Graph Drawing 2000, volume 1984 of Lecture Notes in Computer Science,
pages 171–182. Springer-Verlag, 2001.

[133] C. Walshaw. A Multilevel Algorithm for Force-Directed Graph Drawing. Journal of
Graph Algorithms and Applications, 7(3):253–285, 2003.

[134] C. Walshaw and M. Cross. Mesh Partitioning: a Multilevel Balancing and Refinement
Algorithm. SIAM Journal on Scientific Computing, 22(1):63–80, 2000.

[135] X. Wang and I. Miyamoto. Generating Customized Layouts. In F. J. Brandenburg,
editor, Graph Drawing 1995, volume 1027 of Lecture Notes in Computer Science,
pages 504–515. Springer-Verlag, 1996.

[136] M. S. Warren and J. K. Salmon. Astrophysical N-body Simulations Using Hierar-
chical Tree Data Structures. In Proceedings of the 1992 ACM/IEEE Conference on
Supercomputing, pages 570–576, 1992.

[137] M. S. Warren and J. K. Salmon. A Parallel Hashed Oct-Tree N-Body Algorithm.
In Proceedings of the 1993 ACM/IEEE Conference on Supercomputing, pages 12–21,
1993.

[138] D. S. Watkins. Fundamentals of Matrix Computations. John Wiley, 1991.

[139] G. Xue. An O(n) time hierarchical tree algorithm for computing force fields in n-body
simulations. Theoretical Computer Science, 197:157–169, 1998.

[140] R. Yusufov’s implementation of GRIP: www.cs.arizona.edu/~kobourov/GRIP.

[141] F. Zhao and S. L. Johnsson. The parallel multipole method on the connection ma-
chine. SIAM Journal on Scientific and Statistical Computing, 12(6):1420–1437, 1991.

Erklärung

Ich versichere, dass ich die von mir vorgelegte Dissertation selbstständig angefertigt, die
benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit –
einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken im Wortlaut oder
dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht
habe; dass diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung
vorgelegen hat; dass sie – abgesehen von unten angegebenen Teilpublikationen – noch
nicht veröffentlicht worden ist sowie, dass ich eine solche Veröffentlichung vor Abschluss des
Promotionsverfahrens nicht vornehmen werde. Die Bestimmungen der Promotionsordnung
sind mir bekannt. Die von mir vorgelegte Dissertation ist von Prof. Dr. Michael Jünger
betreut worden.

Köln, 7.3.2005

Teilpublikationen

S. Hachul and M. Jünger. Drawing Large Graphs with a Potential-Field-Based Multilevel
Algorithm (Extended Abstract). In J. Pach, editor, Graph Drawing 2004, volume 3383 of
Lecture Notes in Computer Science, pages 285–295, Springer-Verlag, 2005

