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Abstract  18 

 19 

The high spatial and temporal variations of airflow patterns in ventilation openings of naturally 20 

ventilated animal houses make it difficult to accurately measure the airflow rate. This paper focusses 21 

on the development of a fast assessment technique for the airflow rate of a naturally ventilated test 22 

facility through the combination of a linear algorithm and local air velocity measurements. This 23 

assessment technique was validated against detailed measurement results obtained by the measuring 24 

method of Van Overbeke et al. (2015) as a reference. 25 

The total air velocity |��|, the normal |��| and tangential velocity component |��| and the velocity 26 

vector �� measured at the meteomast were chosen as input variables for the linear algorithms. The 27 

airflow rates were split in a group where only uni-directional flows occurred at vent level (no opposite 28 

directions of |��| present in the airflow pattern of the opening), and a group where bi-directional flows 29 

occurred (the air goes simultaneously in and out of the opening). For airflow rates with uni-directional 30 

flows the input variables  ��  and  |��|  yielded the most accurate results. For this reason, it was 31 

suggested to use the |��| instead of  |��|		in ASHRAE’s formula of   � = 
 × � × |��|.	 32 

For bi-directional flows a multiple linear model was suggested where input variable �� gave the best 33 

results to assess the airflow rate.  34 

  35 
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 37 

Keywords: Natural ventilation, Ultrasonic anemometry, Animal houses, Airflow rates  38 

   39 

Nomenclature 
 
 
A Surface area (m²) 
Ap Partial Surface area (m²) 
ANN  Artificial neural networks 
β0 Regression coefficient Bland Altman plot 
β1 Intercept Bland Altman plot (m³/h) 
CD Still-air discharge component (dimensionless) 
E Opening effectiveness (dimensionless) 
MR Model results 
NE North East 
NW North West 
∆P Pressure difference across the opening (Pa) 
Qbi Airflow rate with bi-directional flow in the side vents (m³/h) 
Quni Airflow rate with uni-directional flow in the side vents (m³/h) 
RR Reference results 
SE South East 
SD Standard deviation 
SW South West 
�� Velocity vector (m/s) 
|��| Total air velocity (m/s) 
V  Reference velocity (m/s) 
|��| Tangiental air velocity component (m/s) 
|��| Perpendicular air velocity component (m/s) 
ρ Air density (kg/m³) 
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1 Introduction 40 

An accurate assessment of ventilation rates of animal houses is important with regard to, among 41 

others, the quantification of the related emissions. The importance of accurate measurements of 42 

ammonia emissions from naturally ventilated animal houses has risen since the increasing awareness 43 

of its major impact on the environment [2] and its consequences as e.g. eutrophication by deposition 44 

on the soil or in the water. 45 

However, measuring ventilation rates in commercial animal houses is difficult in practice, due to 46 

significant uncertainties in measurements [3]. 47 

Emissions from mechanically ventilated animal houses, as commonly used for pig and poultry 48 

production in Western Europe, can be measured and calculated by multiplying the differences in 49 

ammonia concentrations at the inlet and the outlet with the corresponding ventilation rates [4].  A 50 

similar straightforward emission measurement procedure is less evident in naturally ventilated stables 51 

and in particular for dairy stables with large openings, because of the strong dependency of the 52 

emissions on weather conditions and building geometry. Therefore, significant spatial and temporal 53 

variations of the air velocity and of NH3 concentrations occur in the ventilation openings of the 54 

stables. Errors in emissions measurements are often due to the complexity of the airflow rate 55 

measurements [5–8]. Currently there is no standardized reference method available for measuring the 56 

ventilation rate in naturally ventilated animal housing [7,9,10].  57 

Van Overbeke et al. (2015) developed and validated an accurate measuring method for the airflow rate 58 

of a naturally ventilated test facility with continuous direct velocity measurements using moving 59 

sensors (more details are given in §2.3.2). However, simplification is still necessary to achieve a more 60 

practical, time-reduced, low-cost and yet sufficiently accurate method. Combining modelling 61 

techniques with local air velocity measurements could be of interest to develop such a method 62 

[7,9,11]. This with the aim to simplify and speed up the assessment of the ventilation rate and to result 63 

in real time determination of the ventilation rate.  With this respect, the method of Van Overbeke et al. 64 

(2015) can serve as an excellent starting point since it provides detailed information on the velocity 65 

profiles in the vents. 66 

The conventional envelope model that describes how the air enters and leaves a building, is the 67 

Bernouilli equation as a simplification of the Navier-Stokes equations. This so-called  ‘orifice 68 

equation’ [1] is the most general relation describing the airflow rate through large intentional openings 69 

[12–15].  70 

� = �� 	× 	�	 ×	��	�	|∆�|
� 	 [1] 71 

Where 72 
Q = Airflow rate (m³/s) 73 
CD = Still-air discharge component (dimensionless) 74 
A = Surface area of the opening (m²) 75 
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∆P = Pressure difference across the opening (Pa) 76 
ρ = Air density (kg/m³) 77 
 78 
This equation applies a still-air discharge coefficient for a typical opening but it fails for large 79 

openings as the main assumptions are not fulfilled (e.g. pressure and velocity distributions are not 80 

constant in the opening [16]) and changes in weather conditions can cause unsteadiness for measuring 81 

or estimating the parameters in the formula [17,18]. On top of these difficulties, very large openings 82 

(as typically found in dairy cow houses) would make it even more challenging to sample air volumes 83 

using the orifice equation due to the increased possibility of bi-directional flows (Qbi) in the openings 84 

where opposite directions of air velocities normal to the opening are present. This possibility for bi-85 

directionality makes it also difficult to couple (ammonia) concentration measurements to velocity 86 

measurements to obtain emission values. Models for airflow rates with uni-directional flows (Quni) in 87 

vent openings give less accurate results when applied to bi-directional flows [9,13]. Also, 88 

measurement methods as e.g. tracer gas tests commonly used in mechanically [19] and naturally 89 

ventilated constructions [20–23], perform poorly in accuracy and precision under naturally ventilated 90 

circumstances [9,13] due to variations in air and concentration. 91 

Etheridge (2012) states the airflow rate (Quni) for very large openings in a formula [2] in non-92 

dimensional terms. 93 

 94 

�
� × � = f	(∅) [2] 

  

Where 95 
V =  reference velocity (m/s) 96 
f =  wind direction as a function of e.g. the surroundings, the shape of the envelope.  97 
 98 

ASHRAE (2009) suggests a similar practical formula [3] including the opening effectiveness. 99 

� = 
 × � × � [3] 

E  =  the opening effectiveness of the ventilation opening (dimensionless) 100 

V  =  reference velocity (m/s) 101 

 102 

Different values for E are given depending on the wind incidence angle to the opening. For 103 

perpendicular winds it varies between 0.5 to 0.6 and for winds diagonal to the ventilation opening 104 

between 0.25 and 0.35 [24]. 105 

Many references were found in field measurements presenting linear fits between the airflow rate and 106 

the total velocity for greenhouses [25], between the airflow rate and perpendicular velocity component 107 

for dairy stables [26] and multi-zone test building [27]. These references show a considerable amount 108 

of information has been found in the peer reviewed literature assessing natural ventilation with simple 109 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

6 

 

algorithms, but it is not always clear which input variables result in the most accurately modelled 110 

airflow rates, or which algorithm to use for airflow rates with bi-directional flows. Especially there is 111 

little information to be found in the literature body on the accuracy of the respective proposed models. 112 

Of course this is not unexpected since the lack of a reference method for airflow rate measurements. In 113 

order to estimate the accuracy of a model, some studies [28,29] base the reference airflow rate on 114 

pressure differences in the opening, but pressure is highly fluctuating at large openings while it cannot 115 

be applied to the formula of Quni. When direct measurements are done, single measurements are 116 

mostly assumed to represent the mean velocity for a large surface area in the opening, usually with no 117 

prior calibrating of the single velocity measurement to the mean velocity of the represented area. For 118 

these experiments without calibration, it is possible to calculate the precision of the method used but 119 

not the accuracy of the method. Because the method of Van Overbeke et al. (2015) scans the surface 120 

area with an ultrasonic anemometer moving step-by-step in the opening, it creates the opportunity to 121 

define a better estimation of the real airflow rates and as thus the accuracy and precision of a 122 

simplified method where limited velocity measurements are used. 123 

The objective of this paper was to develop a fast, accurate and simple to use airflow rate assessment 124 

technique for a naturally ventilated test facility combining a fast algorithm with a limited number of 125 

local air velocity measurements collected on a meteomast. The assessment technique is tested for 126 

airflow rates of both uni- or bi-directional flows occurring in the side opening evaluated to the 127 

commonly used formula of ASHRAE to calculate the airflow rate. Artificial neural networks (ANN) 128 

were applied to evaluate the input variables before applying linear algorithms in order to find existing 129 

correlations. The algorithms were validated by comparing to detailed airflow rates obtained by the 130 

measuring method of Van Overbeke et al. (2015, 2014a, 2014b) as a reference.  131 

 132 

133 
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2 Materials and Methods 134 

2.1 Test facility and instrumentation 135 

The test facility was situated on a site of the Institute for Agricultural and Fisheries Research in 136 

Merelbeke, Belgium (+50° 58' 38.56" N, +3° 46' 45.68" E; A on Fig. 1). The building was located in a 137 

rural area and was oriented such that the side openings faced NE and SW, the latter being the 138 

dominant wind direction in Flanders. 139 

 140 
Fig. 1:  Site and building of the experimental set-up. The surrounding buildings were located at a distance of 50m from 141 

the test facility. (A) test facility (B-C-D-E) neighbouring buildings (M) meteomast 142 

The test facility represented a section of a naturally ventilated pig house as commonly found in 143 

Flanders (Belgium). The internal dimensions of the test facility were 12.0 m length, 5.4 m width and  144 

4.9 m ridge height. Its internal volume was 251 m³ (Fig. 2). The two opposite concrete sidewalls had a 145 

ventilation opening of 4.5 m by 0.5 m and a depth of 0.2 m but were adjusted with metal plates to 3.0 146 

m. The ridge vent was 4.0m by 0.35m and could be closed and sealed when desired. A door and a gate 147 

were present in the test facility, though always kept closed during the experiments. 148 

A meteomast equipped with a 2D ultrasonic anemometer (Thies®, Göttingen, Germany) was installed 149 

to measure the wind velocity components (tangential component |��|- and normal component |��| to the 150 

ventilation opening), wind direction and temperature with a frequency of 1Hz , at a standard height of 151 

10m above field level (5 m above the top of the test facility). In the test facility, a total of eight 2D and 152 

two 3D ultrasonic sensors (Thies®, Göttingen, Germany) were installed. Each of the two side 153 

openings was equipped with a 3D ultrasonic sensor  installed on a 2D-linear guiding system (Fig. 2), 154 

that transported the sensor to pre-set places across the window openings where air velocities were 155 

automatically scanned following the sampling strategy developed by Van Overbeke et al. (2015). The 156 

ridge vent was equipped with eight 2D ultrasonic sensors equally distributed along the opening (one 157 
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sensor malfunctioned during the experiment).  Velocity and temperature were measured at a frequency 158 

of 50Hz and 33Hz for the 2DS and 3DS, respectively, and stored as 1s averages in a central logger 159 

(dataTaker® DT85M, Australia) via a serial interface (RS422)”.   160 

 161 

 162 

Fig. 2 : A 3D sketch of the test facility at the Institute for Agricultural and Fisheries Research in Merelbeke 163 

 164 
The measurement system described above was activated for continuous monitoring, day and night 165 

over several months (December 2014 through March 2015) in order to cover a wide range of outdoor 166 

wind conditions.  167 

The design of the test facility was almost completely symmetrical, except for the placement of the 168 

(closed) doors and the central electrical unit (with the wiring, datalogger, soft- and hardware).  169 

 170 

2.2 Data Collection and Model Development Methods 171 

2.2.1 General approach 172 

 173 
Detailed airflow rate calculations were executed using the method of Van Overbeke et al. (2014a, 174 

2014b, 2015). Data was collected for different experimental setups during periods of variable outside 175 

weather conditions. Different input variables were tested for their appropriateness using Artificial 176 

Neural Networks (ANN), selected for further processing and used within a linear algorithm to 177 

determine the airflow rates. Finally, methods for analysing the results, regression analysis and Bland 178 

Altman analysis were described. These methods will be described in more detail in the next 179 

paragraphs. All data processing, filtering, ANN and statistical analyses mentioned in this study were 180 

performed with the software Matlab ® R2013a. 181 

 182 
 183 

2.2.2 Reference airflow rate measurements 184 
 185 
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 186 
Detailed airflow rate measurements were conducted in the test facility, using the method proposed by 187 

Van Overbeke et al. (2015) with moving sensors for the side vents and a method with fixed sensors to 188 

sample the ridge vent.  189 

Air velocities were measured in the side vents by a moving sensor in each side opening. The spatial 190 

variation of the airflow pattern in the side openings was measured by sampling the full surface of the 191 

opening, divided in 48 measurement places. Every measuring place was sampled for 10 × 1s before 192 

moving to the next sampling place. When all 48 places were sampled, the sensor started a new 193 

measuring round. To measure the total airflow rate, ten measuring rounds were repeated. The air 194 

velocity per measuring place was calculated by taking the mean of the 10 rounds of 10 x 1 s. All these 195 

measured mean air velocities were used to calculated the airflow rate with formula [4]. The 196 

measurement of one unique airflow rate took approximately 1,5 h. The temporal variation of the 197 

airflow pattern was minimized because of this averaging over 1,5h. The temporal variation of velocity 198 

at the sampling locations was logged over a semi-continuously by  the moving sensors. Furthermore,  199 

the meteomast continuously logged the actual wind conditions in order to account for temporal 200 

variations over the full length of the measurements. For each repetition of scanning the opening (48 201 

measuring places, each 10 min approximately), a new sliding mean of the total airflow rates could be 202 

calculated. One of the major advantages of the method was that it was able to measure the full airflow 203 

rate pattern, so that when bi-directionality occurred, this could be registered in detail.  204 

The velocities in the ridge vent were measured with eight fixed sensors (equally spread over the 205 

length; one sensor failed during the measurements). The mean velocities were calculated over the 206 

same period, 1,5 h, as the velocities in the openings. For every time a new measuring round started for 207 

the sensor in the side opening, a new sliding mean was calculated in the ridge opening. 208 

The principle to calculate the airflow rate was the same for the side and the ridge openings. The partial 209 

airflow rates through equal areas (Ap) in the window opening are summed to form the total airflow 210 

rate (Q) [4]. The partial airflows were obtained by multiplying the locally measured perpendicular air 211 

velocity (|��|) by the partial opening area (Ap). The airflow rate results of this method were used as 212 

reference to compare the airflow rates resulting from the application of the simplified algorithms.  213 

� =�(|��| × 	��	 × 	 !"")
#

$
 [4] 

 214 
Where: 215 
Q = mean airflow rate over a period of approximately 1,5h (m³/h) 216 
|��| = mean perpendicular air velocity over a period of approximately 1,5h (m/s) 217 
Ap = partial opening surface area (m²) 218 
N = total number of surfaces in de side or ridge vents 219 
 220 
 221 
 222 
 223 
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2.2.3 Preliminary data analysis 224 
 225 

Different velocity components were tested to use as input variables to determine the airflow rate. 226 

These velocity components were the perpendicular |��| and parallel |��| component, the total velocity 227 

|��| and the velocity vector �� all measured at the meteomast. Because an ultrasonic 2D anemometer 228 

was used, the |��|-, |��|-component and �� were immediately available, the |��| was derived from the 229 

measurements. Previous research showed that models for airflow rates with uni-directional flows gave 230 

less accurate results when applied for bi-directional flows [9,13]. For this reason, the data was split in 231 

a group where bi-directional Qbi and a group where only uni-directional flows Quni occurred.  The flow 232 

pattern of the data set was categorized as bi-directional when at least one normal velocity component 233 

in the side opening had a different sign (opposite direction) compared to the other respective normal 234 

components. To rule out the effect of variations or short term fluctuations in the opening, only the 235 

mean velocity and not the separate measurements were taken into account to evaluate the bi-236 

directionality in the openings. 237 

Before applying a simple mathematical algorithm, Artificial Neural Networks (ANN) were used to 238 

extract or identify the most promising input variables. ANN are information processing systems that 239 

can ‘learn’ a relationship between input and output variables by studying given data [32]. Through a 240 

process of ‘learning’ ANN are able to perform useful computations. ANN already proved to be 241 

efficient for assessing natural ventilation [33]. The most common model used for function fitting 242 

problems is the feedforward model [32] which was used within this research. This model placed the 243 

neurons in several layers. The first and last layers represent input and output, respectively. The output 244 

layer gives the results that are evaluated by the network. For every input variable, 8 different networks 245 

were tested. These networks differed from each other by different properties of the learning rate, the 246 

amount of neurons or the momentum rate.  247 

The different input variables of the wind velocities |��|, |��|, |��|	and �� were used as inputs for the 248 

network. The reference airflow rates of the stable, obtained using the method of Van Overbeke et al. 249 

(2015) and calculated with formula 4, were introduced as targets for the model. The evaluation of the 250 

network results were based on R²-values.  ANN were only used to establish whether a strong 251 

correlation existed between the input variables and the airflow rates and to make a further selection of 252 

potential estimators of the airflow rates. 253 

2.2.4 Simple mathematical algorithms 254 

 255 

After testing the correlations with ANN, (multiple) linear regression modelling was applied to find fast 256 

and simple algorithms to assess the airflow rates for uni- and bi-directional flows. The airflow rate was 257 

used as dependent variable and the candidate input variables as independent variables. Simple linear 258 
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regression [5] was applied to assess the airflow rate with respective input variables |��|, |��|	and	|��|. 259 

Multiple linear regression [6] was used when �� was implemented. 260 

 261 

 �(�) = 	�$ 	× 	�$ +	*  [5] 

�(�) = 	�$ ×	�$ +	�� ×	�� 	+ 	*  [6] 

where: 262 

p1,2 = constants (m²) 263 
x1,2 = input variables (m/s)  264 
c = constant (m³/s) 265 
 266 

The agreement between the modelled and the reference data was assessed using regression parameters 267 

and Bland Altman analysis.  Because the experiments were performed under almost isothermal 268 

conditions (no extra heat was added), the assumption was made that no ventilation would occur with 269 

absence of wind (measured on the meteomast).  Therefore the intercept of the models was set to zero. 270 

The accuracy of the linear regression models was tested with two different methods: (1) the coefficient 271 

of determination and the regression coefficient; (2) the Bland Altman method [34], with which the 272 

respective absolute differences between the modelled  and experimental results are related to the 273 

average of the modelled and reference results. The agreement between model results and experimental 274 

results is analyzed with the slope β0 and the intercept β1 (see formula [7]). Ideal models will result in 275 

coefficients close to zero. 276 

 277 

(	+, − ,,) = ." 	× +,/,,
� +	.$      [7] 278 

 279 

Where:  280 

01 − 11 = difference between the modelled results (MR) and the reference results (RR) (m³/h) 281 
23/33

4   = average of the modelled results and the reference results 282 

β0   = coefficient of performance (dimensionless) 283 
β1   = intercept (m³/h) 284 
 285 

3 Results  286 

3.1 Experimental data 287 

 288 

The measured airflow rates were split into 2 groups based on the uni- or bi-directional character of the 289 

flows. In total, 5953 Quni and 1477 Qbi  mean sliding airflow rates were calculated. An example of a bi-290 

directional flow in a side vent A is presented in Fig. 3. In this case, Vent A served as the main inlet 291 
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opening, with part of the opening functioning as an outlet. The separation between the opposite wind 292 

direction zone appeared vertical in the cases of bi-directional flows formed due to the wind (not to be 293 

confused with bi-directional flows formed by the stack-effect). 294 

 295 

 296 

Fig. 3: Measured average velocities (m/s) for each sampling place of Vent A with wind direction 47°; wind velocity 3 297 
m/s measured at the meteomast; the scale intensity of colors (hot to cold) is related to the magnitude of the velocity. 298 

 299 

The Quni values ranged between  of 1 612 m³/h and  36 546 m³/h, as the Qbi values varied between 1 300 

455 m³/h and 26 792 m³/h. The magnitude of the airflow rates are influenced only by the outside 301 

weather conditions as temperature, wind direction and wind velocity. The wind roses and wind 302 

distribution profiles obtained from the data from the meteomast  during the measurements  are 303 

presented in Fig. 4 and Fig. 5 respectively. The mean and standard deviation of the incidence angles of 304 

the airflow rates Quni and Qbi were respectively (66 ± 15)° and (33 ± 18)°. As seen in Fig. 5, distinction 305 

between uni-directional and bi-directional flows was found to depend mainly on  the wind direction, 306 

but the results were not strictly linked to specific wind directions as both flow groups occurred at cross 307 

covering ranges of wind direction. Overall, the Quni occurred for wind directions between (272 and 308 

83)° and (93 and 264)°,  Qbi occurred for wind directions between (4 and 157)° and (201 and 355)°. It 309 

was seen that the airflow rates with uni-directional flows not only occurred as expected for winds 310 

normal or diagonal to the opening and the airflow rates with bi-directional flows occurred not only for 311 

side winds. The unexpected results, as normal wind that produced a bi-directional flow, were mainly 312 

caused in circumstances of low wind velocities and probably in non-perfect isothermal conditions. 313 

 314 

(a)  (b)  

Fig. 4: Wind profile distribution and cumulative relative frequency graph of the total velocity at the meteomast for the airflow 315 
rates with occurring (a) uni-directional and (b) bi-directional flows 316 
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(a) (b)  317 
 318 

Fig. 5: Wind rose with data of airflow rates with (a) uni-directional flows series and (b) bi-directional flows series in the side 319 
openings of the test facility 320 

 321 
 322 

3.2 Assessing the airflow rate for unidirectional flows in the side vents 323 

3.2.1 Preliminary data analysis with ANN 324 
 325 
The data of the airflow rates with uni-directional flows in the side vents were applied to ANN. The 326 

input variables |��|, |��|, |��|	and ��	measured on the meteomast were used as input, the airflow rates as 327 

output. Table 1 shows the mean R²-values and their standard deviations of the relation between the 328 

reference Q and the results of the ANN with different configurations. The R²-values for the total 329 

velocity |��|, perpendicular velocity |��|,	 and velocity vector ��	 gave very high results above 98%. The 330 

standard deviation between the 8 different ANN’s were very small so there was no need to look for the 331 

best configuration of ANN as these three input variables all resulted in good correlations. The parallel 332 

velocity component |��|	gave lower R²-values compared to the other input variables, therefore this 333 

component was left out for further processing. 334 

 335 

Table 1: Mean and SD of the R²-values for the measured and modelled data for different input variables (%) 336 

Input Mean SD 

|��| 98.12 0.15 
|��| 98.28 0.07 
|��| 55.49 4.63 

��	  99.40 0.08 
 337 

3.2.2 Modelling and analysis of simple airflow rate algorithms 338 

Table 2 presents model parameters and the analysis results from the linear curve fitting of the 339 

candidate input variables for the Quni. The parameters showed that the coefficient for input variable 340 
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|��|	 stayed approximately the same for models with inputs variables |��|	and ��	.	The results for the 341 

regression analysis showed that the |��|, |��|	and ��	input variables yielded good linear correlations with 342 

the airflow rate data for uni-directional flows. However, the Bland-Altman analysis showed that the 343 

|��|- and ��-models had slightly better results than the total velocity |��|. The |��| component appeared 344 

to be the most important contributor in the correlation because the results for the |��|-model, with only 345 

the perpendicular velocity component as input variable, were comparable to ��. The results with the 346 

|��| and ��-input variables lay in the same range, with the latter slightly higher for the regression 347 

correlation and lower for the Bland Altman correlation. The graphs (Fig. 6) confirm the good 348 

agreements for the reference and modelled airflow rates. Only small differences can be seen between 349 

the graphs, depending on the different input variables used. A possible explanation was that all graphs 350 

included modelled data with |��|-velocity component as input as |��|, |��|	and ��. Because this data 351 

concerned uni-directional flows, the |��|-velocity component (perpendicular) was mostly larger than 352 

the |��|-component (parallel) and on top of this, combined with a lower regression coefficient for |��|. 353 

The graphs show a deviation for the data to the regression line for low values. Even though no extra 354 

heat was added, it was possible the stack-effect occurred and gave some airflow rate for some 355 

situations with a high sun, a clear sky and above all, a low wind speed. 356 

All three proposed models could identify the true airflow values consistently and had good estimation 357 

performances, with |��| and �� as the best input variables for the models.  Input variable |��| had 358 

preference of choice over components �� because one component less was needed to obtain similar 359 

modelling performance.  360 

 361 

 362 

Table 2: Model parameters of the airflow rate related to an input variable: coefficient of variable (p1,2) and constant 363 
(c);  regression analysis results for the modelled and measured total Quni: slope (a), intercept (m³/h) (b) and coefficient 364 

of determination (R²)  365 

 Input p1 c p2 a b R² 

|��| 3267 0 - 0.92 1234 0.96 
|��| 3588 0 - 0.95 673 0.96 

�� 3346 (|��|) 0 653 (|��|) 0.94 866 0.97 
 366 

Table 3: Bland Altman results for the comparison of a modelled to measured Quni 367 

 Input β0 β1 

|��| 0.07 -1033 
|��| 0.03 -457 

�� 0.05 -722 
 368 
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 369 

 370 

Fig. 6: (Linear) correlation between the reference and the modelled Quni for input variables (a) total velocity |5�|; (b) perpendicular 371 
velocity |��|; (c) velocity vector 5�  372 

 373 

3.2.3 Ventilation opening effectiveness 374 
 375 

 376 

Fig. 7: boxplot E-factor for airflow rates with unidirectional flows 377 

 378 

Formula [3] which calculates the airflow rate with the opening effectiveness through the inlet opening, 379 

proposed by ASHRAE (2009) was applied to the data of the reference airflow rates to determine the 380 

E-values. Fig. 7 shows a boxplot of the E-values calculated for each reference airflow rate. The 381 

median E was 0.59 and the 25- and 75-percentile were 0.53 and 0.64 respectively. Outliers were found 382 

below 0.36 and above  0.78. Not all outliers were given on the boxplot as some even got up to 6. The 383 

E-values plotted against total wind velocity in Fig. 8 (b) showed that the these outliers were only 384 

appearing for low velocities smaller than 1 m/s, a mathematical artefact. This could be explained 385 

because the E’s result in very high values when divided by these low wind velocities. For finding any 386 

correlation between the E and the incidence angle and the wind velocity, these outliers where 387 

separated from the data. A R²-value of 0.23 and 0.13 was found for the incidence angle and the wind 388 

velocity respectively. The regression coefficients 0.003 and 0.12 showed an increase of E with 389 

increasing incidence angle and wind velocity respectively. Fig. 8 (a) showed overall lower E-values 390 

when the wind became more parallel with the opening, in other words, when the incidence angle 391 

decreased. 392 

 393 
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 394 

Fig. 8: E-values (opening effectiveness) for Quni plotted against the (a) incidence angle of the wind (°) and (b) the wind velocity 395 
(m/s) 396 

 397 

3.3 Assessing the airflow rate for bidirectional flows in the side vents 398 

3.3.1 Preliminary data analysis with ANN 399 

 400 
Table 4 presents mean R²-values and their standard deviations of between the reference Qbi and the 401 

results of the different ANN.  The input variables	|��| and  �� gave highest correlations and therefore 402 

showed best potential to find a good fit with Qbi. The perpendicular component |��| still showed to be a 403 

very important factor to assess the airflow rate, even for bi-directional flows occurring for mainly 404 

diagonal and parallel winds. The tangential component was still for this dataset the least good 405 

predictor for the airflow rate modelling, but it became a more important determination factor for the 406 

airflow rate correlation compared to the results voor Quni, probably due to the character of the wind 407 

(diagonal to parallel). Because of the lower results compared to the other input variables, |��| was left 408 

out for further processing. The total velocity |��| resulted in lower results than found for the uni-409 

directional flows. An explanation could be that the bi-directional flows have larger |��| components 410 

compared to |��|. This can result in a large total velocity, but as seen for the input variable |��|, it will 411 

not necessarily result in a good relation with the airflow rates. 412 

 413 

Table 4:  Mean, standard deviation (SD) of the R² correlation coefficients (%) between measured and ANN modelled 414 
Qbi for different input variables  415 

Input Mean SD 

|��| 88.21 1.82 
|��| 96.76 0.70 
|��| 64.87 4.92 

�� 98.74 0.88 
 416 
 417 
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3.3.2 Modelling and analysis of simple airflow rate algorithms 418 

 419 

Table 5 shows the model parameters and the results of the correlations of the models built for the bi-420 

directional flows. Table 6 gives the results of the Bland Altman analysis.  Both input variables |5�|  421 

and |��| applied to the Qbi gave lower results for the regression and Bland Altman correlations as 422 

applied to the Quni. These showed that applying input variable |��| alone gave insufficient information 423 

to assess the airflow rate with bi-directional flows. Input variable 5�  gave a very good correlation, 424 

ANN showed that |6�| alone was insufficient for assessing the Qbi, but gave satisfying results in 425 

combination with |��| (5�). The regression and Bland Altman results were high for input variable 5�  426 

compared to the other variables. The graphs on Fig. 9 show that the total velocity |5�| gave the least 427 

good correlation for the modelled and reference Qbi. The input variable |��|	 alone improved the results, 428 

which could indicate that |��| is more important than |6�| to assess the ventilation rate. Though the 429 

modelling weight of  |6�| is less heavy than the weight of |��|, |6�| is still of great importance for the 430 

accuracy of the model to find the best results for the Qbi. These findings can be seen in the model 431 

parameters for input variable 5�,	the coefficient of |��| was more than 3 times higher than the 432 

coefficient of  |6�|, but was found lower than the coefficient of  |��| when only this parameter was used. 433 

The models with the best fit, the models with input variable 5� , confirmed the importance in 434 

differentiation in models for Qbi and Quni by a significant lower value of coefficient of |��| for Qbi than 435 

for Quni. 436 

 437 

Table 5: Model parameters of the airflow rate related to an input variable: coefficient of variable (p1,2) and constant 438 
(c);  regression analysis results between the modelled and measured total Qbi: slope (a), intercept (m³/h) (b) and 439 

coefficient of determination (R²) 440 

 Input p1 c p2 a b R² 

|��| 2164 0 - 0.69 2410 0.76 
|��| 3597 0 - 1.10 -1354 0.92 

�� 2736 (|��|) 0 808(|��|) 0.97 174 0.96 
 441 

Table 6: Results of the Bland-Altman analysis for bi-directional airflow rates.  442 

  Input β0 β1 

|��| 0.25 -1988 
|��| -0.14 1595 

�� 0.01 -29 
 443 
 444 
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 445 
 446 

Fig. 9: (Linear) correlation between the reference and the modelled Qbi for input variables (a) total velocity |5�|; (b) perpendicular 447 
velocity |��|; (c) velocity vector 5� 448 

 449 
 450 

3.3.3 Ventilation opening effectiveness 451 
 452 

Similar to results of the Quni, the E-values for the Qbi were also calculated.  Fig. 10 shows a boxplot of 453 

the E-values for Qbi. The median value was 0.41, the 25- and 75-percentile were 0.31 and 0.47 454 

respectively. The outliers were found above 0.70. Similar to the E-values of the Quni, high E-values 455 

appeared with low wind velocities (Fig. 11). Similar to the data for the unidirectional flows, the 456 

outliers seen in Fig. 9 are appearing only for low wind velocities (<1 m/s). Correlations were calculated 457 

for the data without these outliers. The E-values increased with increasing incidence angle, a 458 

regression coefficient of 0.0051 and R²-value of 0.65 were found for the regression line. No clear 459 

relation was found with the total wind velocity measured on the meteomast, the R²-value was found to 460 

be small (5 × 10-4). The opening effectiveness showed the same behaviour versus the perpendicular 461 

and parallel velocity component as seen for the total velocity: small velocity components gave high 462 

values and velocity components above approximately 1 m/s gave, they did not give extra information 463 

to the opening effectiveness. 464 

 465 
 466 

 467 

Fig. 10: boxplot E-factor for airflow rates with bidirectional flows 468 

 469 
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 470 

Fig. 11 : E-values (opening effectiveness) for Qbi plotted against the (a) incidence angle of the wind (°) and (b) the wind velocity 471 
(m/s) 472 

 473 

4 Discussion 474 

 475 

Easy models to measure naturally ventilated airflow rates are widely available in literature. Chu et al. 476 

(2015), Choinière et al. (1992) already found linear correlations between the total velocity and the 477 

airflow rates in naturally ventilated greenhouses, Nääs (1988), Verlinde et al. (1998), Yu et al. (2002) 478 

in test rooms in wind tunnels, ASHRAE (1981) and Etheridge (2012)  for naturally ventilated 479 

buildings. Other researchers as Joo et al., (2014) and  Lo et al., (2012) suggested a linear fit between 480 

the perpendicular component |��| and velocities in the opening in a large dairy stable and a multi-zone 481 

test building respectively.  482 

In this article, the input variables |��|, |��|, |��| and ��	were tested to find the best input variable in a 483 

simple linear model for airflow rate assessment for both uni-directional (Quni ) and bi-directional (Qbi) 484 

airflows. For  Quni, ��	 and |��|  were found to be the most accurate input variables, where |��| was the 485 

most practical input variable because only one velocity component was needed. For 2D or 3D 486 

ultrasonic anemometers both the tangential and normal velocity component are available, which 487 

makes the input variable ��  most accurate and practical for all wind directions. 488 

In literature mostly it is not clearly specified whether the proposed models can be applied for Quni and 489 

Qbi. Though, if specified, it is mostly stated that these were proposed for Quni and when used for Qbi, 490 

the accuracy will be low [9,13]. No specific models were found in literature for assessing airflow rates 491 

based on direct measurements with occurring bi-directional flows caused by the wind effect (not to be 492 

confused with models for bi-directional flows due to temperature differences). Our study suggested to 493 

use a multiple linear model where the tangential and perpendicular velocity components (�� ) are both 494 

included.  495 

Though �� was found to be a good input variable for both Quni and Qbi, it was not suggested to use the 496 

same parameters for both models due to the differences in character of the flow pattern.  497 
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E is assumed to be a constant depending on the wind direction, [0.5-0.6] for perpendicular winds and 498 

[0.25-0.35] for diagonal winds [24]. The median opening effectiveness of 0.59 for the reference 499 

airflow rates was found to lay within these ranges. But values of percentile 75 and above (outliers), lay 500 

within the range between 0.64 and 0.78. One possible explanation for the higher values for E found in 501 

this study might be that no obstructions were present in the test facility during measurements. The 502 

suggested E value in literature of 0.5-0.6 are given for practical use in naturally ventilated stables 503 

where animals and the arrangement of pen equipment, short partition walls and obstacles inside the 504 

buildings can affect the efficiency of the ventilation [29]. 505 

In literature, the reference velocity to calculate the opening effectiveness E is the total velocity |��|. 506 

Nääs (1988) and Yu et al. (2002) confirmed the wind angle of incidence is the most important factor 507 

influencing opening effectiveness. Our study suggested to use |��| instead of  |��| within the formula, 508 

due to the results where |��| correlated better with Quni.  The suggested values of the opening 509 

effectiveness (E) should be checked in another study for it appropriateness with this new parameter.  510 

For Qbi, the situation was different. The results of these experiments showed that the perpendicular 511 

velocity component |��|	had a major influence on the resulting airflow rates, but the tangential 512 

component |��| had also an important contribution on the airflow rate. This means that applying |��| as 513 

suggested for Qbi would give less accurate results because no contrition of the tangential component 514 

was present. The use of |��|	could also lead to less accurate results, because this parameter does not 515 

allow for a differentiation in the magnitude of |��| or |��|. For Qbi it is suggested not to use the formula 516 

with the opening effectiveness as |��| or |��| are not giving accurate results to assess the airflow rate. In 517 

this situation the multiple linear regression with �� should be used for accurate results. 518 

Further research should focus on commercial animal houses with large openings (dairy stables) to 519 

validate the model findings of this study. 520 

5 Conclusions 521 

 522 
In order to find a fast and simple airflow rate assessment technique for a naturally ventilated test 523 

facility, a linear model was applied using velocity measurements on a meteomast of 10m height. 524 

Different combinations of velocity components were tested to find the most accurate input variable to 525 

assess the airflow rate. The total velocity (|��|), the perpendicular (|��|) and the tangential velocity 526 

component (|��|) and the velocity vector (��) of the air velocity were tested as input variables. The 527 

calculated airflow rates were compared to the reference airflow rates measured by the the detailed  528 

method developed by Van Overbeke et al., 2015. 529 

In addition, the data for modelling the airflow rates was split in uni- and bi-directional flows (opposite 530 

directions are present in the airflow pattern of an opening). 531 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

21 

 

For uni-directional flows, |��|	 and �� yielded the most accurate airflow rates, though |��|	 being the 532 

easiest input variable because only one velocity component was needed to model the airflow rates. For 533 

this reason, it was found to give the best correlation using |��|	 in ASHRAE’s formula of Q=E×A×|��|. 534 

A multiple linear model was suggested for airflow rates with bi-directional flows. The �� input variable 535 

was found to be the best input variable. Though |��| was found to have the most weight within the 536 

models. |��| was found to be an important contributor too for an accurate estimation of the airflow rate. 537 

 538 

 539 
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• Linear models were proposed for airflow rates with both uni- and bi-directional flows 
• Different input variables were compared: the total air velocity, the perpendicular (|��|)  and 

tangential velocity component |��|, and the velocity vector ��. 
• A modification to the opening effectiveness equation is proposed. 

 


