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Have GRACE satellites 
overestimated groundwater 
depletion in the Northwest India 
Aquifer?
Di Long1, Xi Chen1, Bridget R. Scanlon2, Yoshihide Wada3,4,5,6, Yang Hong1,7, Vijay P. Singh8,9, 
Yaning Chen10, Cunguang Wang1, Zhongying Han1 & Wenting Yang1

The Northwest India Aquifer (NWIA) has been shown to have the highest groundwater depletion 
(GWD) rate globally, threatening crop production and sustainability of groundwater resources. Gravity 
Recovery and Climate Experiment (GRACE) satellites have been emerging as a powerful tool to evaluate 
GWD with ancillary data. Accurate GWD estimation is, however, challenging because of uncertainties 
in GRACE data processing. We evaluated GWD rates over the NWIA using a variety of approaches, 
including newly developed constrained forward modeling resulting in a GWD rate of 3.1 ± 0.1 cm/a 
(or 14 ± 0.4 km3/a) for Jan 2005–Dec 2010, consistent with the GWD rate (2.8 cm/a or 12.3 km3/a) 
from groundwater-level monitoring data. Published studies (e.g., 4 ± 1 cm/a or 18 ± 4.4 km3/a) may 
overestimate GWD over this region. This study highlights uncertainties in GWD estimates and the 
importance of incorporating a priori information to refine spatial patterns of GRACE signals that could 
be more useful in groundwater resource management and need to be paid more attention in future 
studies.

Groundwater is a valuable resource for sustaining agricultural, industrial, and domestic water use in many arid 
and semi-arid regions globally1. Irrigation consumed ~90% of global freshwater resources during the past century, 
with ~40% of irrigation derived from groundwater, and groundwater use in irrigation has markedly increased2. 
Aquifer overexploitation within the context of population growth and climate extremes (e.g., droughts) has 
resulted in significant groundwater depletion (GWD), e.g., ~330 km3 over the High Plains (HP) Aquifer in the 
US from predevelopment (1950s) through 2013 representing ~8% of groundwater storage available before irri-
gation, and ~140 km3 over the California Central Valley (CV) from models since the 1860s through 20033. GWD 
is threatening sustainable groundwater use and may compromise future agricultural production. Negative envi-
ronmental impacts of GWD include decreased baseflow that may lead to drying-up of wetlands and rivers, land 
subsidence, saltwater intrusion, increasing pumping costs, and declining water supplies for some of the world 
agricultural areas putting sustained crop production at risk4. Accurate monitoring of both the rate and spatial 
pattern of GWD is imperative to formulate reasonable policies to achieve the goals of maintaining agricultural 
production and sustainable groundwater resources management5,6.

Traditional approaches for assessing GWD rely on groundwater-level data from wells that are relatively sparse 
or not accessible in most aquifers globally, limiting holistic and consistent assessments of GWD over major 
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aquifers that are extremely important for agricultural production7. Global hydrological models (GHMs) are 
powerful tools for evaluating GWD over aquifers, e.g., the WaterGAP Global Hydrological Model (WGHM)8,9 
and PCR-GLOBWB10–12. Since its launch in 2002, Gravity Recovery and Climate Experiment (GRACE) satellites 
provide an unprecedented opportunity to capture the variability in the Earth’s gravity field that is induced pri-
marily by changes in total water storage (TWS) integrating changes in surface water storage (SWS) (e.g., canopy, 
reservoirs, wetlands and lakes, rivers, and snow water equivalent), soil moisture storage (SMS), and groundwater 
storage (GWS)13, making monitoring GWD in major aquifers globally possible. GHMs and GRACE satellites are 
complementary, joint use of which may improve estimates of TWS changes and GWD14.

GWS changes are often disaggregated from GRACE TWS changes by subtracting monitored SWS changes 
(e.g., changes in reservoir storage) and simulated SMS changes (e.g., land surface models, LSMs). In some cases, 
changes in SWS may be negligible accounting for a relatively small proportion of TWS changes15,16. The spa-
tial resolution of GRACE signals is relatively low (~200,000 km2), limited by its altitude of ~450 km ×  450 km17; 
however, large mass changes in aquifers smaller than the GRACE footprint (e.g., 52,000 km2 for the CV) due to 
irrigation pumpage allow storage changes to be detected by GRACE18. There have been great efforts made to esti-
mate GWD over aquifers globally using GRACE in combination with ancillary data, e.g., the HP Aquifer3,15 and 
California’s CV7,18 in the US, the Middle East19,20, the Northwest India Aquifer (NWIA)16,21, and the North China 
Plain22,23. Recent studies provide holistic assessments of groundwater stress and resilience over aquifers globally; 
however, uncertainties in groundwater storage should be evaluated in detail to assess the remaining lifespan of 
some critical depleting aquifers24,25.

The NWIA has been shown to experience among the highest GWD rates globally over the past decade based 
on GHM simulations or GRACE observations26. One of the most important studies on GWD over the NWIA 
was conducted by Rodell et al.16 that indicated a GWD rate of 4 ±  1 cm/a for the three-state region in Northwest 
India during Aug 2002–Oct 2008 from GRACE spherical harmonic (SH) solutions (Release No.4, RL04) in com-
bination with SMS changes from LSMs in Global Land Data Assimilation System-1 (GLDAS)27. Human-induced 
variability (28% of the area was irrigated and 95% of water consumption was attributed to irrigation) instead of 
natural variability dominated GWD in this region. However, as Rodell et al.16 indicated, the GRACE-derived 
GWD rate was higher than the difference between annual available recharge and annual withdrawals in the 
three-state region of 13.2 km3/a (equivalent to 3 cm/a) reported by the Indian Ministry of Water Resources. The 
lower GWD rate of 3 cm/a was presumably attributed to underestimation of withdrawals and/or overestimation 
of recharge from irrigated water by the Indian government16. Other GRACE-based studies provided GWD rates 
ranging from 2.0 ±  0.3 cm/a over an ~2,700,000 km2 region of North India, Afghanistan, Pakistan, Nepal and 
Bangladesh from Apr 2003 through Jun 200828, to 2.1 ±  0.7 cm/a from Jan 2003 through Dec 201221, 1.9 cm/a for 
the period Jan 2003–Dec 201029, and even only 1.5 cm/a for Jan 2003 to Dec 201230 over different sub-regions in 
North India. Disparities in these GWD estimates reflect differences in study boundary, time period, and more 
importantly GRACE data processing algorithms. This makes it imperative to compare GRACE-based GWD with 
ground-based data to assess their validity; however, published studies on GRACE-based GWD estimates in the 
NWIA have not been compared with detailed ground-based monitoring data.

GRACE satellites are relatively new and data processing is continually evolving. Processing GRACE data gen-
erally requires noise reduction at high frequencies using low-pass filtering (e.g., truncation of SH at the maximum 
degree and order of 60, destriping, and 300 km Gaussian filtering), which inevitably leads to signal loss31 that 
needs to be restored using either synthetic data commonly obtained from LSMs, or other techniques depend-
ing less on LSM output. However, the degree of signal restoration is extremely critical, varying with GRACE 
SH solutions, processing approaches and their assumptions, and the distribution of water storage changes for a 
specific region as well. The latest version of the SH solution of the Earth’s gravity field from GRACE (Center for 
Space Research, CSR RL05) further reduces uncertainties in TWS change by up to 40%32. Examining GWD rates 
using the latest SH solution and different approaches for the same region and period in the NWIA and evaluating 
GWD estimates with groundwater-based monitoring data are imperative to develop a thorough understanding 
of uncertainties in restored GWD rates from different approaches and how much groundwater has really been 
depleted in the NWIA.

Typical approaches for restoring GRACE signals can be categorized as: (1) approaches using water storage 
changes from LSMs, e.g., the scaling factor approach33 and additive approach17,34, and (2) approaches depend-
ing less on water storage changes from LSMs, e.g., the multiplicative approach35,36, and unconstrained or con-
strained forward modeling approaches21,37 (details about these approaches can be found in the Methods section 
and Supporting Information 1). Scaling factor, additive, and multiplicative approaches have been widely applied 
to restore GRACE signals for land hydrology. Unconstrained and constrained forward modeling has been shown 
to be effective in reducing the leakage effect over the cryosphere37. Unconstrained forward modeling, as used in 
Chen et al.21 to estimate GWD in the NWIA, includes iterative correction without using a priori knowledge about 
the spatial distribution of water storage variations. Therefore, it cannot recover the detailed spatial pattern of 
GWD and the leakage effect cannot be completely reduced. Constrained forward modeling uses a priori informa-
tion regarding the spatial distribution of water storage changes to constrain the recovered signals. However, the 
utility of constrained forward modeling to resolve GWD in aquifers has not been examined.

We hypothesize that (1) the spatial distribution of water storage changes for a study region may impact the 
utility of both unconstrained and constrained forward modeling; and (2) integration of the spatial pattern of water 
storage changes, instead of the absolute estimates of GWD from synthetic data (e.g., GHM output) for restoring 
GRACE signals, may significantly improve delineation of the exact spatial pattern of GWD from GRACE sat-
ellites. We will: (1) test the impact of the distribution of groundwater storage changes on unconstrained and 
constrained forward modeling to recover signal loss due to low-pass filtering using synthetic data; (2) integrate 
the spatial pattern of GWD from a GHM, PCR-GLOBWB, to estimate GWD from GRACE and ancillary data 
for the three-state region of the NWIA, and (3) compare GRACE-based approaches (i.e., scaling factor, additive, 
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multiplicative, and forward modeling approaches) for estimating GWD for the three-state region and compare 
GRACE-derived GWD with ground-based monitoring data.

Results
We use the three-state region (i.e., Punjab, Haryana & Delhi, and Rajasthan with a total area of 438,296 km2, the 
same as Rodell et al.16) in the NWIA as a test-bed, with ~30% of the study region equipped for irrigation (Fig. 1(a)) 
and 74% of the equipped area irrigated with groundwater (Fig. 1(b) and Supporting Information 2). Note that 
only 16% of Rajasthan state was irrigated. The GWD rate from groundwater-level data for the six-year period (Jan 
2005–Dec 2010, Fig. 1c) and specific yield (Fig. S1) for the three-state region was estimated to be 2.8 cm/a (Fig. 1d 
and Supporting Information 2, GWD shown in negative in all figure legends). Variations in groundwater levels for 
most of 20 selected sites across the three states show rapidly declining trends (Fig. S2), particularly in the east but 
much less in the west, with even some recovery of groundwater levels in the west (Fig. 1c,d). Specific yield values 
to convert groundwater level changes to storage for unconfined aquifers for Punjab and Haryana were estimated 
to be ~0.1538, which is dominated by sandy alluvium (a specific yield of 0.15) that accounts for ~98% over the two 
states39. The specific yield in Rajasthan was estimated to be ~0.1, which is dominated by sandy alluvium (60%) 
and sandstone (11%) with a lower specific yield of 0.045 (Supporting Information 2).

Evaluation of forward modeling using hypothetical data. A range of numerical simulations using 
hypothetical data was performed to evaluate the utility of unconstrained and constrained forward modeling to 
recover signal loss due to low-pass filtering. Constrained forward modeling can completely recover the signal loss 
during low-pass filtering, regardless of signal configuration, whereas unconstrained forward modeling cannot 
(Table S1). Expanding the study region to include the surrounding areas may allow one to obtain the total volume 
of GWD from the simulated GWD rates irrespective of signal configuration. In terms of spatial pattern, uncon-
strained forward modeling is unable to recover detailed spatial patterns of GWD, showing correlation coefficients 
between simulated and original GWD rates ranging from 0.04 for the completely random distribution to 0.22 for 
the uniform distribution (Table S1, Figs S3–S7). However, constrained forward modeling can recover the spatial 
pattern of GWD to varying degrees, showing correlation coefficients between the simulated and original GWD 
rates ranging from 0.36 for the completely random distribution to 0.99 for the uniform distribution. For the other 
three signal configurations, the correlation coefficients are slightly less than 0.5 (Table S1 and Figs S8–S12).

Figure 1. (a) Three-state region (Punjab, Haryana & Delhi, and Rajasthan) in India shown in blue polygon 
and areas equipped for irrigation (%) over North India, (b) areas equipped for irrigation with groundwater 
(%) from AQUASTAT data of the Food and Agricultural Organization (FAO) of the United Nations, (c) slopes 
of variations in groundwater level, and (d) GWD (cm/a) from groundwater-level monitoring data over the 
three-state region and its surroundings for the period 2005–2010. Open circles in Fig. 1(c) represent 20 selected 
groundwater monitoring sites in the three-state region, with groundwater-level time series for the 20 sites 
shown in Fig. S2. Map was created using ArcGIS (http://www.esri.com/software/arcgis/arcgis-for-desktop).

http://www.esri.com/software/arcgis/arcgis-for-desktop
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We conclude that the capability of constrained forward modeling to recover the detailed spatial distribution 
of signal depends highly on the spatial pattern of original data. The greater the heterogeneity in the signal, the 
lower the spatial correspondence between the simulated and original signals. The study by Chen et al.37 examined 
constrained forward modeling only with uniform distribution for mass change rates, i.e., a uniform mass change 
rate of − 33 cm/a and − 31 mm/a assigned to the Amundsen Sea Embayment and the Northern Peninsula, respec-
tively, over the Antarctic region. While this approach may be suitable for this case because of relatively uniform 
distribution of glacier and ice melting over the Antarctic in cryosphere studies37,40, constrained forward modeling 
could not completely recover the spatial pattern of signals in land hydrology due to marked spatial heterogeneity 
in water storage changes over land. Results here using hypothetical data demonstrate that it is challenging to 
completely recover the spatial pattern of GWD rates if GWD is spatially heterogeneous.

Evaluation of forward modeling using synthetic data from PCR-GLOBWB. Both unconstrained 
and constrained forward modeling can recover over 95% of signal variations in GWD from PCR-GLOBWB over 
the three-state region for the period 2003–2010 (Table S1). Use of constrained forward modeling to recover fil-
tered signals in GWD was confirmed again by using synthetic data from PCR-GLOBWB. Unlike the inability of 
unconstrained forward modeling to completely recover filtered signals using hypothetical data, it is interesting 
to see that unconstrained forward modeling can be effective (96%) in restoring the signal loss for the three-state 
region. For instance, GWD from PCR-GLOBWB for the period 2003 through 2010 was mainly distributed over 
the north and east of the three-state region, with an annual depletion rate of 6.7 cm/a (Fig. 2a). By performing 
low-pass filtering as applied to GRACE spherical harmonics, e.g., truncation at the maximum degree and order of 
60 and 300 km Gaussian filtering, we obtained filtered GWD rates (Fig. 2d), with a significantly dampened GWD 
magnitude of 4.8 cm/a. In practice, we normally only have filtered GWD rates, e.g., from GRACE satellites and 
ancillary data, with the aim of obtaining the recovered GWD rates using the scaling factor, additive, or multiplica-
tive approaches. Through unconstrained forward modeling, we can recover most of the dampened GWD rates, 
denoted as GWDs in Fig. 2b, with a spatial mean of 6.4 cm/a. Therefore, unconstrained forward modeling can 
recover over 96% of the original GWD rates. By performing low-pass filtering for GWDs (Fig. 2b), we can obtain 
filtered GWD rates that are the same as the filtered GWD rates obtained directly from PCR-GLOBWB (Fig. 2a).

The ability of unconstrained forward modeling to recover signal loss using PCR-GLOBWB can be attributed to 
signal amplification from the surrounding region that essentially reduces signal dampening within the three-state 
region. Though unconstrained forward modeling is unable to completely recover signal loss based on numerical 
simulations using hypothetical data where all signal variations are assumed to be completely restricted to the 
study region, there are some cases in practice that unconstrained forward modeling can generally recover signal 

Figure 2. (a) Synthetical distributed GWD rates from PCR-GLOBWB for the period 2003–2010, (b) forward 
modeled GWDs rate distribution after 500 iterations using unconstrained forward modeling, (c) forward 
modeled GWDs rate distribution after 500 iterations using constrained forward modeling, and (d) filtered GWD 
rates from (a–c) after low-pass filtering. Map was created using ArcGIS (http://www.esri.com/software/arcgis/
arcgis-for-desktop).

http://www.esri.com/software/arcgis/arcgis-for-desktop
http://www.esri.com/software/arcgis/arcgis-for-desktop


www.nature.com/scientificreports/

5Scientific RepoRts | 6:24398 | DOI: 10.1038/srep24398

loss when the study region is impacted by signal variations from its surroundings. Apparently, unconstrained 
forward modeling cannot recover the spatial pattern of GWD relative to the original pattern from synthetic data 
(Fig. 2b compared with Fig. 2a), showing a correlation coefficient between the simulated and PCR-GLOBWB 
GWD of 0.64 across the study region. Frequency distributions show that the simulated GWD rates with uncon-
strained forward modeling have a more even distribution (Fig. S13b) compared to the frequency distribution of 
GWD rates from PCR-GLOBWB that shows a sharp increase in the interval 0 to −10 mm/a dominated by areas 
without GWD (Fig. S13a). In particular, grid cells without GWD (e.g., surrounding those with GWD in Fig. 2a) 
do show GWD in Fig. 2b. This artifact resulted from signal leakage from the area with GWD to its surroundings 
due to low-pass filtering. Overall, without a priori information on the distribution of GWD, it is impossible to 
obtain a ‘realistic’ GWD distribution through unconstrained forward modeling.

The distribution of PCR-GLOBWB GWD is highly consistent with the GWD distribution from another GHM, 
WGHM (Fig. S14), the distribution of areas equipped for irrigation (Fig. 1a,b) and land cover (Fig. S15). It is 
apparent that the southwest of the three-state region is dominated by natural vegetation that is not equipped for 
irrigation, and therefore should not exhibit marked GWD. Globally constrained forward modeling (referring to 
the Methods section) can recover both the magnitude and spatial pattern of GWD relative to the original GWD 
from PCR-GLOBWB, showing a spatially averaged GWD rate of 6.8 cm/a and a correlation coefficient of 0.77 
(Table S1 and Fig. 2c). This means that given the filtered GWD (e.g., Fig. 2d) and its spatial pattern (e.g., GWD 
rate <  0 in Fig. 2a), it is possible to completely recover the magnitude and generally recover the spatial pattern of 
GWD from globally constrained forward modeling. However, if one does not have the critical information on the 
spatial pattern of GWD, use of constrained forward modeling to recover GWD in both magnitude and spatial pat-
tern may fail. This is demonstrated by the case of locally constrained forward modeling (referring to the Methods 
section) that assumes GWD to be restricted to the three-state region, showing a resulting magnitude of GWD of 
12.2 cm/a and a correlation coefficient of 0.28 (Table S1 and Fig. S16). The assumption of GWD restricted to the 
three-state region used in previous studies is unreasonable because of large GWD across the surrounding areas, 
i.e., Pakistan and west Uttar Pradesh (Figs 1d and 2a).

Groundwater storage depletion from GRACE using forward modeling. Filtered GWD rates 
(GWDa) were calculated using constrained forward modeling based on filtered GRACE TWS changes minus 
filtered SMS changes from GLDAS-1 Noah. GWDa rates with a mean of 1.9 cm/a represent what GRACE can 
see after low-pass filtering for removing high-frequency noise (Fig. 3c). Therefore, directly using GWDa rates 
from GRACE would result in significantly reduced GWD rates compared with the ‘realistic’ GWD rates (Fig. 3b). 
When the GWDa rates from GRACE and the filtered GWDs rates are the same (Fig. 3c), the forward modeling 
solution has converged and is terminated with the last updated GWDs rates taken as the resulting GWD rates 
using this approach.

Interannual variability in surface water is assumed to be negligible in the calculation of GWDa, which has also 
been assumed in previous studies for this region16,21 and demonstrated by WGHM in our study (see Supporting 
Information 3 and Fig. S17). In addition, both globally (Fig. 2c) and regionally (Fig. S18b) constrained forward 
modeling resulted in a reasonable distribution of GWD compared with the GWD pattern from PCR-GLOBWB. 
However, constrained forward modeling generated lower regionally averaged GWD rates (3.1 cm/a for glob-
ally constrained and 3.1 cm/a for regionally constrained) than the GWD rate of 6.7 cm/a from PCR-GLOBWB. 
Locally constrained forward modeling, again, resulted in an unrealistic spatial pattern and magnitude of spatially 
averaged GWD rates (not shown) due to the assumption of GWD restricted to the three-state region.

Interestingly, unconstrained forward modeling can also provide a similar magnitude of GWD of ~3.0 cm/a 
compared with the result of ~3.1 cm/a from globally and regionally constrained forward modeling. However, it 
is apparent that the GWD spatial distribution from unconstrained forward modeling does not seem reasonable 
relative to the GWD pattern from PCR-GLOBWB and groundwater-level data. This is determined by the intrinsic 
characteristic of unconstrained forward modeling that no a priori information is used to constrain the recovered 
signal distribution. However, it could recover the magnitude of filtered signals as long as the boundary covers all 
areas with signal leakage. This is also the reason in Chen et al.21 why a broader area than the three-state region 
was prescribed to account for all recovered GWD using unconstrained forward modeling. From the numerical 
simulations using hypothetical data and the simulations using synthetic data from PCR-GLOBWB, it has been 
shown that signal interference from the region surrounding the three-state region could result in a marked reduc-
tion in signal leakage from the three-state region. Therefore, the overall effectiveness of unconstrained forward 
modeling to recover signal loss for the three-state region is a particular case and may not be generalized to other 
regions. Recovering signal loss using unconstrained forward modeling depends on the relative difference in signal 
variation within and outside a study region of interest.

Comparison of GRACE-based estimates with groundwater-level data. Filtered and original (unfil-
tered) SMS anomalies from three LSMs (i.e., GLDAS-1 Noah, Mosaic, and VIC) are consistent (see shading areas 
representing one standard deviation of the three SMS anomaly time series) (Fig. 3d). The mean of the three time 
series shows a slightly decreasing trend from Jan 2003 to the summer in 2010 and an appreciable recovery from 
drought in Southeast and South Asia since then41. Furthermore, filtered SMS anomalies from these LSMs show 
slightly higher amplitudes than the original time series, indicating signal amplification from the area surrounding 
the three-state region during low-pass filtering.

It is apparent that the filtered TWS anomalies have larger seasonal amplitudes and long-term trends than 
SMS and GWS anomalies (Fig. 3e), which is reasonable given that TWS changes integrate surface and subsurface 
water storage changes. The filtered GWS anomalies show a steady decreasing trend from 2003 to the summer 
of 2010, but the seasonal amplitudes of filtered GWS anomalies are small, resulting from different phases and 
uncertainties from TWS and SMS anomalies (more noises). In addition, TWS and SMS anomalies have a similar 
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phase of variations, but the filtered GWS anomalies show 1–2 month time lag compared with the TWS and SMS 
anomalies. This is reasonable because GWS variations should lag climatic variations relative to TWS and SMS 
and should also include impacts (phase) from human activities (e.g., intensive irrigation with groundwater). 
Therefore, both the seasonal amplitude and long-term trend in GWS anomalies are quite different from TWS 
and SMS anomalies. Note that our purpose is to recover long-term trends in GWS time series using different 
approaches. The filtered GWS anomalies are just an intermediate variable that essentially reveals temporal var-
iability in GWS. For obtaining a precise magnitude of changes in GWS, signal losses in filtered GWS anomalies 
should be restored especially for long-term trends first before interpreting GWS changes over this region.

In general, GWS anomaly time series from four approaches show steady decreasing trends from Jan 2003 to 
Jun 2010. Since then, all GWS time series tend to recover by the end of 2011. GWS started to decline from 2012 
onwards by the end of the study period Jul 2013 (Fig. 3f). However, different approaches for generating GWS 
anomalies can differ in seasonal amplitude. The GWS anomalies from the multiplicative approach show relatively 
higher seasonal amplitudes than the other estimates, with a multiplicative factor of 2.1 derived from the ampli-
tude ratio of the basin function and filtered basin function (Fig. S3a,c), similar to ~1.95 derived by the previous 
study16. The multiplicative factor that assumes a uniform distribution within a study region but no variations 
outside the region resulted in both the highest seasonal variability and GWD rate. In contrast, the scaling factor 
of 0.67 derived from CLM4.0 provided by the JPL website resulted in the lowest seasonal amplitudes in GWS 
anomaly. The highest differences between the two time series occurred in wet and dry seasons during the study 
period, e.g., ~150 mm in Sep 2003 (the wet case) and ~130 mm in Jun 2010 (the dry case) at the end of the extreme 
drought in Southeast Asia in spring 2010.

GWS anomalies from the forward modeling approach show appreciably larger seasonal amplitudes than the 
additive correction approach. Scaling factors derived from three GLDAS-1 LSMs for the three-state region are all 
less than 1 (0.92, 0.79, and 0.75 for Noah, Mosaic, and VIC, respectively, Fig. 3d), indicating that signals for sea-
sonal variability in water storage from GRACE tend to be amplified due to stronger signals from the surrounding 
areas during low-pass filtering. Therefore, a scaling factor less than 1 needs to be applied to reduce the leakage 
error. CLM4.0 provided a markedly lower scaling factor (0.67) than other LSMs examined, thereby reducing 
seasonal signals in TWS change significantly.

Figure 3. (a) GWD rates from original GRACE TWS changes without filtering minus GLDAS SMS changes 
for the period 2003–2010; (b) GWDs rates from filtered GRACE GWD rates and globally constrained forward 
modeling after 500 iterations using the spatial pattern of GWD rates from PCR-GLOBWB for the same period, 
(c) filtered GRACE GWD rates, i.e., GWDa, (d) time series of filtered and original SMS changes from GLDAS-1 
Noah, Mosaic, and VIC models, (e) filtered TWS changes from GRACE, filtered SMS changes from the mean 
of filtered SMS changes, and filtered GWS changes from filtered TWS changes minus filtered SMS, and (f) 
time series of restored GWS anomaly time series from the additive, multiplicative, gridded, and (globally 
constrained) forward modeling approaches. Also shown are the filtered GWS changes and filtered GWS changes 
whose trends were removed. Map was created using ArcGIS (http://www.esri.com/software/arcgis/arcgis-for-
desktop) and SigmaPlot (http://www.sigmaplot.com/).

http://www.esri.com/software/arcgis/arcgis-for-desktop
http://www.esri.com/software/arcgis/arcgis-for-desktop
http://www.sigmaplot.com/
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Long-term trends in GWS further reflect appreciable differences in signal restoration from different 
approaches. Trends in GWS change for the periods 2003–2010, 2005–2010, and 2003–2012 using linear regres-
sion without/with GWS errors time series were calculated (Table 1 and Methods section). For the period Jan 2003 
through Dec 2010, the multiplicative and the scaling factor approaches generated the highest (3.8 ±  0.2 cm/a) 
and lowest (0.9 ±  0.2 cm/a) GWD rates among the four approaches. The multiplicative approach amplified both 
seasonal amplitudes (see Jun 2010) and long-term trends. The lower estimates of GWS changes from the scaling 
factor approach resulted mainly from the low scaling factor of 0.67 from CLM4.0, which dampened both seasonal 
amplitudes and secular changes (Fig. 3f). The forward modeling approach provided estimates of GWS change 
rates less (3.1 ±  0.1 cm/a) than the multiplicative approach but greater than both the scaling factor and additive 
(1.9 ±  0.3 cm/a) approaches. Similar results were also found for the period Jan 2005–Dec 2012 and Jan 2003–Dec 
2012 (Supporting Information 4). The forward modeled GWD (3.1 ±  0.1 cm/a) in this study agrees well with the 
GWD rate (2.8 cm/a) from the in situ groundwater-level measurements and specific yield. The multiplicative 
approach and PCR-GLOBWB appeared to overestimate GWD in this region. The scaling factor and additive 
approaches, however, appeared to underestimate GWD rates.

Discussion
Our estimate of GWD from constrained forward modeling for the three-state region during the five-year period 
Aug 2003 through Oct 2008 is 2.5 ±  0.1 cm/a, which is less than the estimate of 4 ±  1 cm/a for the period Aug 
2002 through Oct 2008 by Rodell et al.16. One of the possible reasons for a higher estimate for the GWD rate from 
Rodell et al.16 lies in the assumption inherent in the multiplicative approach that all GWD was restricted to the 
three-state region, i.e., a binary averaging kernel was assumed to be 1 in the three-state region but 0 outside the 
region. This assumption does not seem reasonable considering the spatial patterns of GWD from PCR-GLOBWB 
and groundwater-level measurements examined in this study. The surrounding areas of the three-state region, 
e.g., Pakistan and western Uttar Pradesh, exhibit significant GWD. Assuming no GWS amplitude outside the 
averaging kernel would result in an overestimate of the multiplicative factor and consequently overestimation of 
both the seasonal cycle and secular change in GWD. In addition, our estimate of the GWD rate (3.1 ±  0.1 cm/a) 
for the three-state region during the period Jan 2003–Dec 2010 is appreciably higher than the mass loss estimates 
of Jacob et al.29 of 1.9 cm/a (35 km3/a) over North India for the period Jan 2003–Dec 2010 using 350 km Gaussian 
filtering that was attributed primarily to GWD in the region. The reason could be the use of the mascon solution 
in Jacob et al.29 that covers a broader area than the three-state region, reducing the mass loss rate.

The constrained forward modeling-based GWD rate during the period Jan 2003–Dec 2012 in our study 
was 2.1 ±  0.1 cm/a for the three-state region, which is consistent with what Chen et al.21 obtained using uncon-
strained forward modeling. This has been demonstrated by numerical simulation using synthetic data from 
PCR-GLOBWB that constrained and unconstrained forward modeling can generate a similar magnitude of 
GWD due to the spatial distribution of GWD within and outside the three-state region. Furthermore, our GWD 
estimates using constrained forward modeling make GRACE estimates more meaningful by incorporating the a 
priori information on groundwater-based irrigation. The limitations of unconstrained forward modeling with-
out exact spatial pattern of GWD and requiring post-processing of manually defining the extent of GWD were 
greatly reduced. The footprint for GRACE data is large (e.g., 200,000 km2). Compared with traditional processing 
that can only provide basin-scale GWD, constrained forward modeling makes use of the GWD pattern from a 
priori knowledge, which is extremely important to assess the local vulnerability of water supply especially during 
drought5. As the quality of GRACE data and related processing techniques improve, GRACE satellites will be 
more valuable in assessing GWD over aquifers globally, which should be important for evaluating and improving 
the sustainability of agriculture and water resource management.

GRACE signal restoration for aquifers is challenging because GWS changes may have different phases of sea-
sonal and interannual variability resulting from climate variability and human activities. Scaling factors for cor-
recting for seasonal cycles and secular changes of GWS should be applied separately16,33. Note that SMS may not 
show marked interannual variability due to long-term intensive irrigation that results in moist soils most of time 
(referring to Fig. S17a). LSMs/GHMs are powerful tools for depicting seasonal cycles and therefore generating 
scaling factors for correcting for seasonal variability in SMS or GWS. Surface water storage over this region does 
not seem to have significant interannual variability, either. Therefore, the key issue to estimate GWS changes from 

Study period
Regression 
approach

Scaling factor 
(CLM4.5)

Additive 
correction

Multiplicative 
correction

Forward 
Modeling

Jan 2003–Dec 2010 w/o error 0.9 ±  0.2 1.9 ±  0.3 3.8 ±  0.2 3.1 ±  0.1

w/ error 0.9 ±  0.2 1.9 ±  0.2 3.5 ±  0.3 3.0 ±  0.1

Jan 2005–Dec 2010 w/o error 1.0 ±  0.3 1.8 ±  0.4 3.8 ±  0.4 3.1 ±  0.1

w/ error 0.9 ±  0.2 1.8 ±  0.3 3.4 ±  0.4 3.0 ±  0.1

Jan 2003–De 2012 w/o error 0.6 ±  0.1 1.1 ±  0.2 2.5 ±  0.2 2.1 ±  0.1

w/ error 0.7 ±  0.1 1.2 ±  0.2 2.4 ±  0.2 1.9 ±  0.1

Table 1. GWD rates (cm/a) derived from GRACE GWS changes from four approaches examined in the 
three-state region (Punjab, Haryana & Deli, and Rajasthan) of Northwest India for three periods. ‘w/o 
error’ means that GWS errors were not considered in the linear regression analysis. ‘w/ error’ means that errors 
in GWS estimation were considered using weighted linear least squares regression, expressed as the inverse of 
squared errors in the weighting process.
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GRACE satellites is to compute scaling factors for correcting for secular changes in TWS or directly compute 
secular changes in GWS as forward modeling does.

Use of a single scaling factor from LSMs to correct for both seasonal cycles and secular changes may be highly 
uncertain. Our study showed the lowest estimate of the GWD rate of ~1 cm/a for the period 2003–2010 due to a 
lower scaling factor of 0.67 from CLM4.0. This seems to be unreasonable and much lower than those estimated 
by previous studies and groundwater-level monitoring data. GWD rates from the additive approach were higher 
than those for the scaling factor approach, but lower than those from the forward modeling and multiplica-
tive approaches. This can be explained by the way in which bias and leakage effects were corrected depending 
on GLDAS-1 Noah output. Because Noah does not have a groundwater component, the bias computed using 
Noah-based SMS output may be less than what it should be, resulting in relatively lower estimates of seasonal 
amplitudes and secular changes in TWS. Therefore, one of the most important limitations in scaling factor and 
additive approaches rests with the dependence on LSMs that do not account for the impact of anthropogenic 
GWS changes, though some LSMs accommodate the effect of natural variability in GWS (e.g., CLM4.0). Both 
constrained and unconstrained forward modeling presented in this study can provide reasonable estimates of 
GWD rates relative to groundwater-level data. The limitation of constrained forward modeling is that it may 
not completely recover the spatial pattern of signals over regions with highly heterogeneous mass changes. We 
suggest that each approach has advantages and limitations. The range of GWD estimates is valuable in under-
standing uncertainties in GWD estimates for aquifers, especially when GRACE-based monitoring is taken as an 
independent approach to evaluate model output. This study highlights the importance of selecting appropriate 
processing strategies for restoring GRACE signals and uncertainties in GWD estimation for aquifers from differ-
ent approaches. Constrained forward modeling with a priori spatial distribution of GWD from PCR-GLOBWB 
or ground-based measurements is useful in recovering both the magnitude and distribution of GWD rates from 
GRACE satellites for the Northwest India Aquifer.

Methods
Constrained and unconstrained forward modeling. Constrained forward modeling makes use of a 
priori information regarding the spatial distribution of signals whereas unconstrained forward modeling does 
not. The basic idea of forward modeling is to iteratively adjust the filtered signal (and distribution for constrained 
forward modeling) to numerically (and spatially) approach a reference. The reference is often from filtered 
GRACE mass change rates (and synthetic data from GHMs or ground-based observations). An illustration of 
unconstrained and constrained forward modeling of GWD rates from GRACE is given below (also referring to 
Fig. S19a).

First, SH solutions of CSR RL05 and GLDAS Noah soil moisture were destriped17,31 (not for GLDAS data), 
truncated at the maximum degree and order of 60, and filtered using a 300 km Gaussian filter17. The first-order 
estimate of GWS change rates can be derived by the least square fit for the filtered GWS anomalies from filtered 
GRACE TWS minus filtered GLDAS SMS anomalies. The first-order estimate of GWS change rates is termed the 
apparent GWD rate (GWDa), which is the incomplete estimate of GWD rates whose signals have been dampened 
during the low-pass filtering process. Second, a dummy GWD distribution is created, with its initial values taken 
as GWDa or random for each grid cells, termed the simulated GWD rate (GWDs). Third, the difference between 
the filtered GWDs and GWDa is added back to GWDs until the filtered GWDs numerically converges to GWDa. 
Under the condition that the filtered GWDs and GWDa are equal or less than a threshold, the last update of GWDs 
is then taken as the final estimate of GWD through unconstrained forward modeling. For constrained forward 
modeling, only the differences between filtered GWDs and GWDa for constrained areas (often from synthetic 
data used as a priori knowledge) are added back to GWDs. Note that GWDs needs to be continually updated 
during the iterative process, but GWDa is determined by GRACE data that does not change.

We hypothesize that the spatial distribution of original signals may affect the use of constrained and uncon-
strained forward modeling. In this study, both constrained and unconstrained forward modeling were first evalu-
ated using: (1) hypothetical data with varying configurations of uniform and heterogeneous signal distributions, 
and (2) synthetic data of GWD from PCR-GLOBWB. A flowchart for the two tasks is shown in Fig. S19b. Based 
on this, GWD for the three-state region and surrounding areas from GRACE satellites was estimated using both 
unconstrained and constrained forward modeling.

Reconstruction of groundwater storage change time series. Reconstruction of GWS time series 
is performed in two steps. The first step is to derive long-term trends from forward modeling illustrated in the 
above section. The second step is to reduce the bias and leakage effects for seasonal variations using scaling factors 
derived from LSMs/GHMs16,33. The assumptions involved in this reconstruction approach are: (1) LSMs reliably 
depict seasonal variations in GWS changes; and (2) seasonal and long-term changes can be recovered separately:

= +t k t atGWS( ) GWS ( ) (1)detrend

where GWS(t) is the corrected GWS anomaly time series for aquifers as a function of time (t); GWSdetrend(t) is 
the seasonal cycle of the filtered GWS anomaly time series from GRACE data in which the incomplete long-term 
trends are removed; k is the scaling factor derived from filtered and unfiltered LSM/GHM output. In this study, 
we used PCR-GLOBWB output12,42,43 to create scaling factors for correcting for seasonal cycles of GWS changes; 
and a is the long-term change rate of GWS through forward modeling illustrated in the above section.

Use of LSMs to quantify long-term trends in water storage components may have large uncertainties because 
LSMs do not simulate all the components of the water budget (e.g., GWS)33. However, LSMs may still be useful 
in quantifying relative patterns of water storage changes within and outside an area (aquifer) at the seasonal 
scale. The forward modeled GWS rates will subsequently be added back to the seasonal cycle of GWS anomalies 
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(equation (1)) from filtered GRACE GWS anomalies with long-term trends removed first and bias and leakage 
effects corrected using scaling factors from LSMs. The reconstruction approach can also be applied in a piece-
wise manner. This means that forward modeling is performed for each sub-period with a statistically significant 
trend due to climate variability and/or anthropogenic activities. The resulting GWS rates will be added back to 
the seasonal cycle of GWS anomalies for each sub-period to reconstruct the monthly GWS anomaly time series 
that retains both the seasonal cycle with bias and leakage effects corrected by a scaling factor from LSMs and the 
secular change derived from forward modeling.

Study strategies. First, a range of numerical simulations using hypothetical data was performed to evaluate 
the utility of unconstrained and constrained forward modeling to recover signal loss due to low-pass filtering. 
Five configurations of signal patterns were tested, with the aim of obtaining a comprehensive understanding 
of how different patterns of original data impact the ability of these forward modeling techniques to recover 
signal loss, including: (1) assigning a uniform GWD rate of − 50 mm/a across the study region, (2) assigning 
random GWD rates ranging from 0 to − 100 mm/a across the study region, (3) assigning a uniform GWD rate of 
− 50 mm/a for the right half of the study region but random GWD rates ranging from 0 to − 100 mm/a for the left 
half; (4) assigning a uniform GWD rate of − 50 mm/a for the lower half but random GWD rates ranging from 0 
to − 100 mm/a for the upper half, and (5) assigning a uniform GWD rate of − 50 mm/a for a circular area in the 
central half of the study region but random GWD rates ranging from 0 to − 100 mm/a for its surroundings within 
the study region.

Second, synthetic data were used to demonstrate how signals vary during low-pass filtering and how the 
filtered signal is recovered using forward modeling in a more realistic environment. The modeled data are often 
obtained from GHMs/LSMs. Here, the utility of both unconstrained and constrained forward modeling for the 
three-state region was tested using GWD estimates from PCR-GLOBWB. We suggest that in practice there are 
three types of constrained forward modeling. The first type makes use of the global distribution of GWD sim-
ulations from PCR-GLOBWB, termed globally constrained forward modeling. Note that globally constrained 
forward modeling may suffer from uncertainties due to noise in GRACE signals. The second type only uses a 
broader area of the spatial pattern of synthetic data that includes the surroundings of a study region where signif-
icant signal variations outside the study region may occur, termed regionally constrained forward modeling. The 
third type makes use of spatial patterns of signal variations from models or observations completely restricted to 
a study region, termed locally constrained forward modeling.

Third, GWD rates for the three-state region during the periods 2003–2010, 2005–2010 and 2013–2012 were 
estimated using GRACE and GLDAS-1 LSM SMS changes within the framework of constrained and uncon-
strained forward modeling. The GWD distribution from PCR-GLOBWB was taken as a priori information for 
implementing constrained forward modeling. Following the three parts of work mentioned above, GWS anomaly 
time series from forward modeling were reconstructed and compared with those from traditional approaches, 
i.e., the single scaling factor approach, additive approach, and multiplicative approach. Our estimates of GWD for 
the three-state region were further compared with groundwater-level monitoring data and published studies, with 
advantages and limitations of different approaches for aquifers being systematically examined.

Error analysis. We derived error time series for GWS anomalies and subsequently performed weighted least 
square regression. Errors in GWS time series were computed by root mean square of errors of TWS changes and 
SMS changes17 at the monthly scale. Errors in TWS changes include GRACE L1 measurement errors and leakage 
errors. The measurement errors were quantified by looking at the standard deviation of TWS changes over ocean 
for the same latitude of a study basin44, and the leakage errors were quantified by different LSMs to approximate 
TWS changes for a study region. Errors of SMS changes were quantified by the standard deviation of SMS from 
four GLDAS-1 LSMs and two GHMs (see Table S2)17.
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