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Abstract: Data fusion represents a powerful way of integrating individual sources of information to
produce a better output than could be achieved by any of the individual sources on their own. This
paper focuses on the data fusion of different land cover products derived from remote sensing. In
the past, many different methods have been applied, without regard to their relative merit. In this
study, we compared some of the most commonly-used methods to develop a hybrid forest cover
map by combining available land cover/forest products and crowdsourced data on forest cover
obtained through the Geo-Wiki project. The methods include: nearest neighbour, naive Bayes, logistic
regression and geographically-weighted logistic regression (GWR), as well as classification and
regression trees (CART). We ran the comparison experiments using two data types: presence/absence
of forest in a grid cell; percentage of forest cover in a grid cell. In general, there was little difference
between the methods. However, GWR was found to perform better than the other tested methods in
areas with high disagreement between the inputs.
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1. Introduction

Land cover maps provide useful information on the geographical distribution of different land
cover types, as well as on land cover change over time. Land cover products are widely used as
input data in various applications, such as climate change models, management of natural resources,
environmental monitoring and comprehensive spatial quantification of ecosystems and landscapes,
among many others [1]. Maps of forest cover, in particular, provide valuable inputs to a diverse range
of applications, including the modelling of forest growth and productivity, the assessment of bioenergy
potentials, carbon flux monitoring and REDD+.

The last few decades have seen an increase in the number of land cover and forest datasets
derived from remote sensing products. The overall trend has been towards higher spatial resolution,
such as the 30-m maps of the percentage of forest cover, forest cover gain and loss by Hansen [2]
and the 30-m Globeland product [3,4]. These maps were developed from Landsat high resolution
satellite imagery, which has only been made possible because this data stream has recently become
freely available [5]. However, higher resolution products are not always more accurate than maps
with a coarser resolution [6]. Hansen’s forest cover map could be considered an exception, as it is
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one of the most accurate global forest cover maps available for the year 2000 [7]. Among global land
cover products, the GLC2000 [8], MODIS [9] and GlobCover [10], with a resolution of 1 km–300 m
and an accuracy ranging from 68.5%–74.8%, have been widely used in different models to represent
the basic land cover as an input. However, Fritz et al. [11] have shown that these maps disagree
considerably over space when harmonised and compared, and they do not correspond to official land
cover statistics at the national or regional level. Although new high resolution satellite imagery from
Sentinel 2 [12] may provide the basis for better land cover maps in the future, the methodology for
developing land cover and forest products still requires further research in order to produce the most
accurate information about global land cover, particularly for historical baseline periods.

Data fusion represents a powerful way of integrating individual sources of information to produce
a better output than could be achieved by any of the individual sources on their own [13]. These
approaches have been used in many different domains, including remote sensing [6,14–16], e.g.,
to improve forest cover characterisation using a regression tree model [16] or a Bayesian spatial
statistical approach [17]; to estimate forest inventory attributes by applying the k-nearest neighbour
method [18,19], etc. De’ath et al. in their work [20] showed that, in comparison with linear models,
classification and regression trees are an easy-to-use and effective technique for different environmental
tasks. Spatial analytical and statistical methods are also becoming widely used for data fusion. For
example, See et al. [6] applied a geographically-weighted regression model (GWR) to develop a
global land cover map by integrating different global land cover maps and crowdsourced data.
Crowdsourcing and citizen science are increasingly being used to collect ground-based data across
many fields of study, from ecology [21] to astronomy [22], which have become a valuable input to
many applications [23]. The relevance and importance of this new data stream is therefore increasing.
Another example can be found in Schepaschenko et al. [7], where they combined diverse data sources
to produce a single forest cover product utilizing GWR.

To date, there exist several studies on the empirical comparison of different data fusion methods
of land cover products derived from remote sensing, e.g., [24]. However, they do not directly relate to
the problem of the integration of diverse sources of land cover information to increase the accuracy
of land cover/forest products. An exception is the work by Clinton et al. [25], who compared nine
methods to fuse three global land cover products produced in similar ways. The results show that the
method of classification trees (J48) performed the best.

Based on the above review, it is clear that many different methods have been applied in the
past with little intercomparison of methods. Moreover, the work of Clinton et al. [25] did not use
crowdsourced data as an input to the data fusion process. With new and increasing sources of
ground-based data becoming available through initiatives, such as Geo-Wiki [26], it is not clear which
data fusion method is relevant to apply in order to maximize the information content of this data source.

In this study, we extend the work of Schepaschenko et al. [7], who used only GWR to create
their hybrid forest maps, by considering other commonly-used methods of data fusion for creating
a global forest map. The input datasets used in the data fusion experiments are described in detail
in Section 2.1. For forest, we took the definition of The Food and Agriculture Organisation of the
United Nations (FAO): “Land spanning more than 0.5 hectares with trees higher than 5 m and a
canopy cover of more than 10 percent, or trees able to reach these thresholds in situ” [27] (p. 209). Due
to the fact that it is difficult to derive tree plantations from remote sensing, we include them in the
definition. The methods tested here include: nearest neighbour, the naive Bayes classifier, logistic and
geographically-weighted logistic regression (GWR) and regression trees, as outlined in Section 2.2.
These methods were chosen because they are often used as data fusion approaches, although GWR
has not been compared previously with other methods in terms of integrating land cover products.
We consider various criteria in the comparison of approaches, such as apparent error rate, sensitivity
and specificity.
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2. Data and Methods

2.1. Data Description

2.1.1. Input Layers

In this study, we use the same input datasets as Schepaschenko et al. [7] in the development of a
global hybrid forest cover map, namely:

‚ Global Land Cover Project 2000 (GLC2000) was generated by the Global Vegetation Monitoring
Unit of the Joint Research Centre (JRC) of the European Commission with a network of
international partners. It is a consistent global harmonized land cover database for the
environmental reference year 2000 at a spatial resolution of 1 km. GLC2000 was produced
using the VEGA 2000 dataset with 14 months of pre-processed daily global data acquired by the
VEGETATION instrument on board the SPOT 4 satellite.

‚ Global Land Cover by National Mapping Organisations 2003 was produced by the Global
Mapping Project and organized by the International Steering Committee for Global Mapping
(ISCGM). The product was generated in a raster format with a resolution of 1 km. It is organized
into twenty land cover classes that are standardized by the Land Cover Classification System. As
input data, 16-day composite Moderate Resolution Imaging Spectroradiometer (MODIS) data at a
1-km resolution for the year 2003 were used [28].

‚ Global Land Cover Product 2005–2006 was produced by the European Space Agency (ESA)
in collaboration with the JRC, EEA (European Environment Agency), FAO, UNEP (United
Nations Environment Program), the GOFC-GOLD (Global Forest Cover-Global Land Dynamics)
initiative and the International Geosphere-Biosphere Programme (IGBP). The product has a spatial
resolution of 300 m. A detailed description is provided in [29].

‚ Landsat-based continuous fields of tree cover 2000 (Vegetation Continuous Fields (VCF)) is a
global product of 30-m resolution [30] and is available from the Global Land Cover Facility (GLCF)
website (http://www.landcover.org).

‚ MODIS land cover product 2001 was obtained through the online Data Pool at the NASA Land
Processes Distributed Active Center (LP DAAC), United States Geological Survey (USGS)/Earth
Resources Observation and Science (EROS) Centre (https://lpdaac.usgs.gov/data_access). The
product was generated at a spatial resolution of 500 m at annual and biannual time steps.
A detailed description of the dataset is given in [9].

‚ The MODIS Vegetation Continuous Fields 2000 product is derived from the MODIS sensor,
on-board the Terra and Aqua satellites, at a spatial resolution of 250 m [31].

‚ Landsat-based tree cover 2000 is a global forest cover change product for the years 2000–2012
with a spatial resolution of 30 m and has been published by [2]. The product is based on Landsat
imagery and has three components: forest cover 2000, forest gain 2000–2012 and forest loss
per year.

‚ The FAO forest map represents the tree canopy in 2010, with a spatial resolution of 250 m. It is
freely available at http://www.fao.org/forestry/fra/80298/en/. Inputs to this product included
MODIS VCF, maps of climatic zones, topography and water maps.

‚ Regional maps that contain forest information. To account for regional and local
specifications in forest cover, a number of regional land cover and land use maps were
aggregated. These maps include: Congo Basin forest types map (Observatoire des forêts
d'Afrique centrale (OFAC); http://www.observatoire-comifac.net/) that covers eight countries
in Central Africa, i.e., Cameroon, Congo, Gabon, Burundi, Central African Republic,
Equatorial Guinea, Democratic Republic of Congo and Rwanda [32]; Brazil PRODES
(Programa Despoluição de Bacias Hidrográficas or Basin Restoration Program) forest mask
2000 [33]; Land Use of Australia 2005–2006 [34]; Pan-European Forest/Non-Forest Map 2000
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(http://glcf.umiacs.umd.edu/data/landsat/); the National Land Cover Database 2006 (NLCD
2006) for the United States (available at http://www.mrlc.gov/nlcd06_data.php); land cover of
Russia 2005 [14]; forest mask for European Russia 2000 [35].

These datasets originally have different resolutions from 30 m–1 km. These products with different
resolutions are usually used for different purposes. For example, in many cases, users who want to
use these data as inputs to their models do not require data at high resolution because the majority
of input model variables are available at a regional level (e.g., IMPACT (International Model for
Policy Analysis of Agricultural Commodities and Trade) provides results at the subnational level, the
GLOBIOM (Global Biosphere Management Model) model operates at a 0.5 degree level, etc. [36]). For
this reason, high or medium resolution data are first aggregated to a coarser grid. The products at
a higher resolution are used for more in-depth local analyses, e.g., forest management in a certain
forest enterprise. In this study, the datasets have been resampled to a 1-km grid, applying a set of
aggregation rules that have been outlined previously in [7]. The input datasets have been pre-processed
in two steps: (1) conversion of land cover classes to the probability of forest presence and forest cover
according to the FAO definition; (2) aggregation of high resolution products to a 1-km resolution. The
description of the aggregation process is provided in Appendix A.

All nine input layers are listed in Table 1.

Table 1. List of input layers.

Input Datasets Acronym Year of
Reference Resolution Link to the Web Site

Global Land Cover
Project 2000 GLC2000 2000 1 km http://bioval.jrc.ec.europa.eu/

products/glc2000/products.php

Global Land Cover by
National Mapping

Organisations
GLCNMO 2003 1 km http://www.iscgm.org/gm/

glcnmo.html

Global Land Cover
Product 2005–2006 GlobCover 2005 300 m http://due.esrin.esa.int/globcover/

Landsat-based
continuous fields of

tree cover 2000
Landsat VCF 2000 30 m www.landcover.org

MODIS land cover
product 2001 MCD12Q1 2001 500 m https://lpdaac.usgs.gov/data_access

Landsat-based tree
cover 2000 Hansen’s TC 2000 30 m http://earthenginepartners.appspot.com/

science-2013-global-forest

MODIS Vegetation
Continuous Fields VCF 2000 250 m http://modis-land.gsfc.nasa.gov/vcc.html

The FAO forest map FAO forest map 2010 250 m http://www.fao.org/forestry/fra/
80298/en/

Regional products Regional 2000–2006 1 km See description above

2.1.2. Crowdsourced Data from Geo-Wiki

Crowdsourced data on forest cover were collected through the Geo-Wiki project [26], which aims
at validating, correcting and enhancing land cover products [23,37,38]. Over numerous campaigns,
volunteers have been asked to visually estimate land cover visible in cells of a grid overlaid onto
very high resolution Google Earth imagery. The detailed description of the collection of data through
Geo-Wiki is provided in [7]. Other examples of Geo-Wiki campaigns are given in [39,40]. The 1-km grid
of the GLC2000 was used as the basis for the output map and, thus, a training dataset was compiled as
a sub-sample from the various crowdsourced data campaigns where 1-km data were collected. The
final training dataset contained 20,046 pixels of land cover information (presence/absence of forest)
from around the globe. Figure 1 demonstrates the distribution of the training data points.
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2.2. Methods 
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estimated using several methods detailed below. The overall idea is to benefit from the correlation 
between global forest cover datasets and the crowdsourced data. The crowdsourced data from  
Geo-Wiki are assumed to represent the ground-truth about forest absence/presence (dependent 
variable) while the input land/forest cover datasets are treated as independent variables. An 
overview of the methods compared is provided below. 
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Nearest neighbour (NN) is one of the simplest non-parametric methods used in a variety of 
applications. It uses the mean (for continuous) or mode (for categorical) of the variable of interest 
over the predefined neighbourhood as the estimator [41]. Despite its simplicity, when applied, it 
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2.2.2. Naive Bayes Classifier 
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each class and uses the inverse probability formula to produce the likeliest category estimate [42,43]. 
The predictors are assumed to be independent. It is commonly implemented for classification tasks, 
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Geo-wiki data have been collected for the year 2000. Google Earth images were not always
available for 2000, and therefore, we assume that: (1) for the pixels that are covered by forest, there is
no difference, because, e.g., forest in 2005 has been a forest in 2000; (2) there was no forest loss where
pixels are not covered by forest.

2.2. Methods

For building a hybrid forest map, the probability of forest presence in each grid cell was estimated
using several methods detailed below. The overall idea is to benefit from the correlation between
global forest cover datasets and the crowdsourced data. The crowdsourced data from Geo-Wiki are
assumed to represent the ground-truth about forest absence/presence (dependent variable) while the
input land/forest cover datasets are treated as independent variables. An overview of the methods
compared is provided below.

2.2.1. Nearest Neighbour

Nearest neighbour (NN) is one of the simplest non-parametric methods used in a variety of
applications. It uses the mean (for continuous) or mode (for categorical) of the variable of interest over
the predefined neighbourhood as the estimator [41]. Despite its simplicity, when applied, it usually
provides good final results. A general introduction to the method can be found in the book by Hastie,
Tibshirani and Friedman [42].

2.2.2. Naive Bayes Classifier

The naive Bayes classifier (NB) is based on the well-known Bayesian theorem and can often
outperform more sophisticated methods. It assumes that the inputs are conditionally independent in
each class and uses the inverse probability formula to produce the likeliest category estimate [42,43].
The predictors are assumed to be independent. It is commonly implemented for classification tasks,
including land cover classification [17]. Prior probabilities are very often chosen from proportions of
each class in the training dataset, as implemented here in this study.
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2.2.3. Logistic Regression Models

Logistic regression is another commonly-used classification method and is a generalised
linear model employed when the response variable is binary. We tested logistic regression and
geographically-weighted logistic regression (GWR): (1) ordinary logistic regression (LR) was used to
generate a global equation to predict the probability of the presence of forest cover in a grid at the global
level; (2) GWR estimates model parameters at each geographical location by using a distance weighted
kernel, so that the observations closer to the studied location have more influence on the parameter
estimates than the observations further away [44]. GWR was developed by Brunsdon et al. [45] as
a spatial statistical method that allows regression parameters to vary over space. GWR has since
been used in many different applications, e.g., in epidemiological studies [46], in the evaluation of
net primary productivity in forests [47], in map accuracy assessment [38], in developing hybrid land
cover maps [6,7], etc. The size of the bandwidth of GWR is usually optimized by cross-validation. We
included ordinary logistic regression in this study to see the effect of the spatial component on the
accuracy of the final result. The input data required for GWR are the coordinates of the centre of each
pixel where the resolution and geometry should be the same as the final grid, and information on
either the presence/absence of a particular land cover class or the percentage of a particular land cover
type in the pixel. For all other methods, spatial information is not necessary, i.e., the coordinates of the
pixel centre are not required.

2.2.4. Classification and Regression Trees

Tree-based methods are conceptually simple yet powerful techniques that partition the predictor
space into a set of rectangles and then fit a simple model to each one. Regression trees are used for
continuous responses, whereas classification trees are used for categorical ones. Classification and
regression trees are referred to by the acronym CART and have been used in a variety of applications
from ecological to medical tasks [20], e.g., for modelling tree species distribution [48], assessing risks
of mortality from heart failure [49], etc.

2.3. Criteria for Comparison

The methods have been applied with two different types of input data: (1) binary forest
presence/absence; (2) the percentage of forest cover within a grid cell. Both types of data have
been extracted from the input land cover datasets (already aggregated) according to the forest-related
class definitions; see [7]. We implemented the following statistical measures as criteria to compare the
performance of the methods:

1. Apparent error rate, which is the proportion of incorrect predictions [50]. It is calculated by
dividing the number of incorrectly classified data points by the overall number of data points.

2. Sensitivity, i.e., the proportion of true positives, and specificity, i.e., the proportion of true
negatives, which are often used in medical classification problems [42].

3. Computational time (in seconds), which is the CPU (central processing unit of the computer)
time required to run the methods.

The above criteria were applied to assess the candidate methods not only in terms of fit, but also
in terms of predictive performance. For the latter purpose, a 10-fold cross-validation was performed
(see [42] for more details).

All of the above methods were implemented using the R (Version 3.2.1) environment for statistical
computing (R Core Team 2014). Maps of forest probabilities were converted to forest presence/absence
maps by applying a threshold of 50%, following the example of the usage of logistic regression models
in [51]. The apparent error rates of the different methods were found to be the smallest for a threshold
of 50%.

We used the following R packages:
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‚ spgwr: geographically-weighted regression, https://cran.r-project.org/web/packages/spgwr/
index.html;

‚ rpart: recursive partitioning and regression trees, https://cran.r-project.org/web/packages/
rpart/index.html;

‚ kknn: weighted k-nearest neighbours, https://cran.r-project.org/web/packages/kknn/
index.html;

‚ geoR: analysis of geostatistical data, https://cran.r-project.org/web/packages/geoR/index.html;
‚ raster: geographic data analysis and modelling, https://cran.r-project.org/web/packages/

raster/index.html.

3. Results

3.1. Binary Presence/Absence of Forest Cover

The estimates of sensitivity, specificity and apparent error rate are summarized in Table 2.
Sensitivity and specificity analysis shows that the non-forested areas are identified with more precision
by GWR than by the other methods.

Table 2. Binary data: apparent error rate, sensitivity and specificity. GWR,
geographically-weighted regression.

Methods Apparent Error Rate Sensitivity Specificity

NN 0.126 0.821 0.919
CART 0.125 0.844 0.902

NB 0.128 0.815 0.921
LR 0.124 0.828 0.917

GWR 0.115 0.838 0.925

To test the statistical significance of the differences in apparent error rates, we applied the pairwise
McNemar’s test [52]. The results, shown in Tables 2 and 3 indicate that the lowest apparent error rate
was obtained by GWR, and it is statistically-significantly different than the apparent error rates for
the other four methods (p = 0.001). Furthermore, LR is statistically-significantly lower than NB, but
otherwise, the four methods (NN, CART, NB and LR) appear to perform fairly similarly.

Table 3. McNemar’s test: p-values for the pairwise comparison of method performance in terms of
apparent error rates.

Methods CART NB LR GWR

NN 0.268 0.239 0.130 <0.001
CART - 0.042 0.681 <0.001

NB - - <0.001 <0.001
LR - - - <0.001

The input datasets spatially differ from each other, and it is not known which map is correct in the
disagreement areas. For a more detailed analysis, we split the training datasets into subsets by “forest
score”, which we define here as the number of land cover products that recognize forest presence in a
pixel. Since there are nine forest cover products used in the analysis, the forest score will vary from 0–9.
Figure 2a illustrates the apparent error rate by forest score. When most of the products agree either
on forest presence (forest score close to one) or on forest absence (forest score close to zero), all of the
methods show approximately the same accuracy. Only in high disagreement areas does GWR perform
noticeably better than the other methods.
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Figure 2. Binary response: forest presence/absence: (a) apparent error rate by forest score;
(b) sensitivity and specificity estimated for the high disagreement area (“forest score” four).

Table 4 presents a list of “forest scores” where the differences between apparent error rates are
statistically significant at a 0.1% confidence level. At both ends of the forest score spectrum, the
estimates of different methods are almost the same, i.e., the apparent error rates are very small when
all of the products agree. GWR performs statistically-significantly better in high disagreement areas
(particularly, forest score four) while NN and BN do not perform very well in disagreement areas.

Table 4. McNemar’s test. Lists of “forest scores” for every pair of methods for which the difference in
the apparent error rate is statistically significant.

CART NB LR GWR

NN 7 3; 7 5; 7 2; 4; 5
CART 3 - 2; 4

NB 3 2; 3; 4
LR 2; 4

There is a difference between predicting forests where no forest is present versus not predicting
forest cover that is present in reality. To illustrate this, we selected points of high disagreement, i.e.,
“forest score” four, from the training datasets and plotted the corresponding estimates of sensitivity
and specificity for these combined forest scores in Figure 2b. We only selected points of “forest score
four” because in other areas, the methods perform almost the same. Figure 2b shows differentiation
between sensitivity (correctly identifying the presence of forest) and specificity (correctly identifying
the absence of forest). While the sensitivity is very high for all of the methods, the specificity is
generally low. GWR performs better in correctly identifying the absence of forest than the other four
methods. NB clearly overestimates the presence of forest because the sensitivity is close to one and
the specificity is very low. We cannot make such a clear conclusion for other methods, because high
sensitivity is followed by relatively low specificity.
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3.2. Percentage of Forest Cover in a Grid Cell as Input Data

We carried out the same analysis to compare the methods using data on the percentage of forest
cover in a grid cell. Table 5 summarizes the estimates of apparent error rate, sensitivity and specificity.
Again, GWR appears to perform better than the other methods, but only slightly better than CART.
The results of McNemar’s test on the statistical significance of differences are presented in Table 6. The
difference between the apparent error rates of NN and LR is the only one that is not significant.

Table 5. Continuous data: apparent error rate, sensitivity and sensitivity estimates.

Methods Apparent Error Rate Sensitivity Specificity

NN 0.115 0.876 0.893
CART 0.104 0.909 0.884

NB 0.126 0.841 0.903
LR 0.114 0.845 0.921

GWR 0.099 0.870 0.927

Table 6. McNemar’s test: p-values for each pair of methods.

CART NB LR GWR

NN <0.001 <0.001 0.830 <0.001
CART - <0.001 <0.001 0.004

NB - - <0.001 <0.001
LR - - - <0.001

Figure 3a illustrates the apparent error rate for different forest scores. In general, the patterns are
similar to those shown in Figure 2 (for the case of binary input data). Figure 3b shows the combined
sensitivity and specificity estimates for forest scores four and five. As with the binary data, the
sensitivity is observed to be high for all of the methods, while the specificity is very low, and GWR
once again performs better in correctly identifying the absence of forest compared to the other four
methods. NB overestimates the presence of forest once again. Table 7 shows “forest scores” for every
pair of methods for which the difference in apparent error rate is statistically significant at a 0.1%
confidence level.
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are similar to those shown in Figure 2 (for the case of binary input data). Figure 3b shows the 
combined sensitivity and specificity estimates for forest scores four and five. As with the binary data, 
the sensitivity is observed to be high for all of the methods, while the specificity is very low, and 
GWR once again performs better in correctly identifying the absence of forest compared to the other 
four methods. NB overestimates the presence of forest once again. Table 7 shows “forest scores” for 
every pair of methods for which the difference in apparent error rate is statistically significant at a 
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specificity estimated for the high disagreement areas (combined forest scores “four” and “five”).
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Table 7. McNemar’s test. Lists of “forest scores” for every pair of methods for which the difference in
the apparent error rate is statistically significant.

Methods CART NB LR GWR

NN 0; 6 0; 3; 4 0; 3; 6 0; 2; 4; 5
CART 3; 4; 5 3 5

NB 3; 4 2; 3; 4; 5
LR 2; 3; 4; 5

Through the application of the methods, we generated five forest maps for the percentage of
input data. These maps differ spatially from each other when compared. To illustrate these differences,
we used an approach similar to the forest score, but applied this to the five methods. Thus, when
all methods report the absence of forest, the method score is zero, while five represents the situation
where all methods report forest cover. Figure 4 shows a combination of all five maps by method score.
Although the analysis of the apparent error, sensitivity and specificity demonstrates that large forests,
as well as large unforested areas are well recognized by all of the methods, in the territories with high
land cover fragmentation, the results vary considerably, as shown in Figure 4.
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Figure 4. The agreement between the forest cover maps produced by the NN, NB, CART, LR and
GWR methods. The “forest score of the methods” indicates the number of methods that predict forest
presence, e.g., 0, no methods report forest; 5, all methods report forest. The coloured bubbles (the
training dataset) correspond to the forest score according to the input maps (0, if no product reports
forest; 9, if all of the products report forest).

4. Discussion

In this study, we have applied a variety of statistical methods to combine nine different forest
cover maps with crowdsourced data from Geo-Wiki to produce a single hybrid forest cover map of high
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accuracy. The results show that using the percentage of forest cover (Section 3.1, first experiment) rather
than simple dichotomous presence/absence of forest cover (Section 3.2, second experiment) as the input
results in a more accurate hybrid map. We also show that for areas with high disagreement among
input maps, all of the methods have high sensitivity and low specificity, but that NB considerably
overestimates forest.

4.1. Performance of the Methods

In this study, the NN and the NB methods have not performed well in comparison with other,
parametric methods. One of the possible reasons for this is the fact that the training dataset does
not adequately represent all possible combinations of the product inputs. The crowdsourced data
from Geo-Wiki campaigns were collected to capture a wide range of land cover information that
could be further used in different applications. This sample was not originally chosen based on the
combinations of input layers. In this study, we wanted to show which of the methods extracts the
maximum information available from the crowdsourced data and the input maps. Therefore, NN
and NB are not recommended here. However, when more crowdsourced information is acquired in
the future, they may prove to be more useful. Alternatively, if a sampling design was implemented
specifically for these approaches, they may also perform better.

In general, the CART methods and ordinary logistic regression provided good results for both
the binary input data, as well as for the continuous data. In the second experiment, where logistic
regression was used, the performance is slightly better. Both methods are easy to implement using
widely available statistical software (e.g., packages in R). A recent study that examined different types
of data fusion methods, referred to in the paper as geographical stacking [25], showed that classification
trees produced the best results when fusing different land cover datasets together, although the authors
did not compare the methods with GWR.

By implementing NB for binary data, the method performed poorly for percentage input data
in the areas of high disagreement, i.e., when half of the input products identified the presence of
forest while the other indicated absence. There have been many studies undertaken to examine the
performance of this method [53–55]; despite the assumption of the independence of the inputs, all of
the studies showed that it gave good results in practice. However, this method still requires a deeper
understanding of the data characteristics that affect its performance [53].

In general, GWR performed marginally better than the other methods, but it is in areas with
high disagreement between the input datasets that the results of the prediction by GWR were found
to be much more accurate. One of the advantages of this method is that the estimates of the model
coefficients vary in space. From this, we can conclude that GWR provides the best results for the
prediction of land cover classes through combining different data sources. This gain in accuracy has a
trade-off in that it is more computationally intensive than the other methods tested. Moreover, it is
important to mention that GWR is not statistically proven as a method for the analysis of nonstationary
data. Wheeler and Tiefelsdorf [56] state that multicollinearities and pairwise correlations between sets
of local coefficients do not provide appropriate model results. However, the method needs a more
detailed study of its implementation for solving particular tasks, e.g., in the development of hybrid
land cover maps.

We have also looked at the performance of the methods with different inputs to understand if the
maps from different time periods, in particular the FAO map, decrease the performance of the final
results. At the global level, there is no statistically-significant difference in the results when the FAO
map is excluded. One of the reasons for this is that the apparent error rate of the forest products is
higher than the relative change of forest area over time.

4.2. Accuracy Trade-Off

Table 8 presents the apparent error estimates of the input forest datasets. Some fusion methods
were not able to outperform the accuracy of the individual input datasets. For example, NN and
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NB did not produce a map that is more accurate than Hansen’s tree cover (TC). However, the GWR
resulted in improvements in forest map accuracy of around 2% compared to the most accurate input
dataset of Hansen’s TC.

Table 8. Apparent error rate estimates of the input forest datasets.

Input Forest Datasets Training Dataset

FAO forest map 0.14
GLC2000 0.23

GLCNMO 0.24
GlobCover 0.24

Landsat VCF 0.15
Modis land cover 0.20
Regional products 0.21

Modis VCF 0.26
Hansen’s TC 0.12

GWR (percentage data) 0.10

All of the differences in apparent error rates are statistically significant with high p-values equal
to 0.001. Although the gain in accuracy is small, 1% of a land cover map is approximately 150 million
hectares, which is a substantially-sized area, e.g., to place this in context, the area of Mongolia is around
155 million hectares In comparison with Hansen’s TC, a hybrid map better captures 2% of the land
cover or approximately 300 M ha. These are territories that are very often found in the borders of forest
land and where there are classification errors in the products (e.g., Hansen’s TC very often confuses
wetlands with forest areas).

The results of comparing the methods show that for countries or bioclimatic zones where
fragmentation of landscape structure is not high, in other words, the agreement areas of the input maps,
there is little difference regarding which method to apply, e.g., tropical countries with rainforest. For
regions with more complex landscape structures (e.g., Tanzania, Brazil), it is desirable to implement
spatially-explicit methods (e.g., GWR) to develop a hybrid land cover map. As input data for these
methods, it is crucial to collect as much training data of high quality as possible.

The geographically-weighted kernel used in GWR can also be implemented with other methods,
including NB, CART and NN. With an increase in the amount of crowdsourced data or ground truth
data and the development of new corresponding R packages, it will be interesting to compare the
performance of spatially-explicit methods for building a hybrid land cover map. These will be the
subject of further research.

In the paper on the development of a hybrid forest map for 2000 [7], the authors have applied
GWR for the integration of crowdsourced data and land cover products. However, the authors did
not undertake a comparative analysis of the performance of other methods for solving this task.
The results of our study are valuable because they show that the difference in implementing GWR
and other data fusion methods is small. However, the improvements from GWR were shown to be
statistically significant.

The results of the study have important practical implications for building land cover maps of
different land cover types. As new land cover products appear, it is always possible to build a hybrid
land cover map by applying one of the data fusion methods outlined in the paper.

5. Conclusions

This paper presents a comparison of selected data fusion methods in predicting forest cover
by integrating land cover datasets and crowdsourced data from Geo-Wiki. The results have shown
that continuous data (percentage of land cover classes in a pixel) are preferable to binary data as
the results are improved. Of the methods tested, GWR was shown to be the best fusion method
for predicting the presence/absence of forest in terms of accuracy. This was especially true in areas
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with high disagreement among the input data sources. The CART and ordinary logistic regression
were found to be the second best in terms of prediction accuracy. In practice, for the regions with
homogeneous landscapes, it matters very little which method is chosen. However, for territories with
highly fragmented landscapes, we recommend implementing a spatially-explicit method, e.g., GWR,
as a data fusion method for producing hybrid land cover maps. GWR, as any other spatially-explicit
method, is more demanding in terms of computing resources than the other methods, but we would
argue that the increase in accuracy, albeit small overall, is worth the effort.
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Appendix A. Supplementary Material on the Preparation of Input Datasets

The input land cover maps have been pre-processed via the following two steps: (1) conversion
of land cover classes to the probability of forest presence and forest cover according to the FAO
definition [27]; (2) aggregation of high resolution products to a 1-km resolution.

Step 1. Table A1 summarizes the set of rules applied to identify forest presence/absence and
forest percentage in correspondence with FAO’s forest definition. For the tree cover products (e.g.,
FAO’s forest map, Hansen’s TC), the threshold of 10% was applied.

Table A1. Conversion of land cover classes to forest presence probability and forest cover. Source: [7].

Land Cover Definition Correspondence
to FAO Forest

Definition

Average Forest
Cover, %Land Cover Class Tree Cover, % Forest Cover, %

GLC2000

Closed forest 40–100 80–100 1 90
Tree cover, closed or open 15–100 80–100 1 90

Open forest 15–40 80–100 1 90
Degraded forest 40–70 80–100 1 90

Forest plantations 40–100 80–100 1 90
Mosaic: Forest/savannah 40–70 80–100 1 90
Mosaic: Tree cover/other

natural vegetation 15–70 50–80 1 65

Mosaic: Tree cover/cropland 15–70 50–80 1 65
Mosaic: Cropland/tree

cover/other natural
vegetation

10–40 10–40 1 20

Deciduous woodland 15–70 80–100 1 90
Open woodland 15–40 80–100 1 90
Tree cover, burnt 0–80 50–100 1 75

GLCNMO

Forest 40–100 60–100 1 80
Tree open 15–40 60–100 1 80

MODIS land cover

Forest 60–100 60–100 1 80
Woody savannahs 30–60 60–100 1 80

Non-woody savannahs 10–30 60–100 1 80
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Table A1. Cont.

Land Cover Definition Correspondence
to FAO Forest

Definition

Average Forest
Cover, %Land Cover Class Tree Cover, % Forest Cover, %

GlobCover

Forest, closed to open 15–100 70–100 1 85
Forest, closed 40–100 70–100 1 85
Forest, open 15–40 70–100 1 85

Mosaic cropland
(50%–70%)/vegetation

(grassland/shrubland/forest)
(20%–50%)

0–40 0–40 0.25 20

Mosaic vegetation
(grassland/shrubland/forest)

(50%–70%)/cropland
(20%–50%)

0–60 0–70 0.35 35

Mosaic forest or shrubland
(50%–70%)/grassland

(20%–50%)
0–70 0–70 0.5 35

Step 2. The high resolution products were aggregated to a 1-km resolution. For example, if any
individual MODIS pixel had a correspondence of one, the probability of forest was one, since this
exceeded the minimum requirement of 0.5 ha (see Figure A1 for an example). Similarly, for Landsat
products, if at least six 30-m pixels had greater than 10% tree cover, which then exceeds 0.5 ha, the
forest presence of the 1-km aggregated pixel would be one. For tree cover products, such as VCF, a
threshold of 10% was applied, and the forest percentage of the aggregated 1-km pixel was calculated
in the same way as for the other land cover products.
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