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We propose a novel method to find Nash equilibria in games
with binary decision variables by including compensation payments
and incentive-compatibility constraints from non-cooperative game
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ditions. The reformulation offers a new approach to obtain and
interpret dual variables to binary constraints using the benefit or
loss from deviation rather than marginal relaxations. The method
endogenizes the trade-off between overall (societal) efficiency and
compensation payments necessary to align incentives of individual
players. We provide existence results and conditions under which
this problem can be solved as a mixed-binary linear program.

We apply the solution approach to a stylized nodal power-market
equilibrium problem with binary on-off decisions. This illustrative
example shows that our approach yields an exact solution to the
binary Nash game with compensation. We compare different imple-
mentations of actual market rules within our model, in particular
constraints ensuring non-negative profits (no-loss rule) and restric-
tions on the compensation payments to non-dispatched generators.
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1 Introduction

There are many environments and real-world situations where several players interact
in a non-cooperative game with binary decisions, such as electricity markets (on-
off decision for a power plant), transportation and facility location models (Caunhye
et al., 2012), engineering (Rao, 1996), as well as agriculture and land-use planning
(Tóth et al., 2011). Modeling Nash equilibria between players which face both binary
and continuous decisions is a challenging problem (Scarf, 1990). Economists and game
theorists usually apply brute-force methods by exploring all possible combinations and
check every solution for deviation incentives of each player. When market-clearing
prices to support a pure-strategy Nash equilibrium in the Walrasian sense do not
exist, economists suggest to use multi-part pricing (Hotelling, 1938) or deviate from
marginal-cost pricing to a “second-best” market outcome, such that no player should
lose money from participating (Baumol and Bradford, 1970). However, a canonical
approach to find pure-strategy Nash equilibria in binary games does not exist.

In many large-scale practical applications, exploring the entire solution space is
not realistically possible. A common approach in such cases is to linearize the binary
decisions; the Nash equilibrium can then be computed by solving the system of first
order optimality conditions, a.k.a. equilibrium modeling using mixed complementar-
ity problems or variational inequalities, if certain assumptions on convexity of the
linearized problem hold. Recent work seeks a trade-off between relaxation of the com-
plementarity (slackness) conditions or the integrality of discrete constraints to obtain
stationary points that are presumed to be equilibria of the original problem (Gabriel
et al., 2012, 2013; Fuller and Celebi, 2016).

In this work, we focus on applications where a relaxation or linearization of the
binary decision variable is either not practical or yields incorrect results. Instead,
we derive first order optimality conditions of the continuous variables for both states
of each binary variable and include those in an overall equilibrium problem simulta-
neously. Our method then selects the state of the binary variable and corresponding
continuous variable which provides the best response for each individual player. Hence,
this set of best responses is an equilibrium.

However, due to the nature of a binary game, there are many instances where no
set of strategies and no price vector exists that supports a Nash equilibrium in pure
strategies; i.e., there is no outcome where the pay-offs to each stakeholder are such
that no player has a profitable deviation. This is due to the non-convexity introduced
by the binary decision variables and indivisibilities (O’Neill et al., 2005). For the
remainder of this work, we abstract from players choosing mixed strategies and only
consider Nash equilibria in pure strategies.

We introduce the notion of a “quasi-equilibrium” to describe situations where no
equilibrium exists, but where a market operator or regulator can assign compensa-
tion payments in order to obtain an incentive-compatible outcome. These payments
align the incentives of individual players with the objectives of the overall system,
such as cost minimization or welfare maximization. A regulator may also choose to
intervene when an equilibrium exists but its outcome is inferior to the solution that a
benevolent planner might achieve. That is, the market operator may seek to minimize
the deviation from the system optimum (i.e., all decisions by one planner) caused by
the non-cooperative game among a number of decision makers, each seeking to op-
timize competing objectives. Our solution approach allows to endogenously consider
the trade-off between regulatory intervention to improve market efficiency, and the
distortions caused by these interventions.

Electricity markets are the real-world application of binary games which have
received the most attention in the mathematical optimization literature (O’Neill et al.,
2013; Liu and Hobbs, 2013; Wogrin et al., 2013; Liu and Ferris, 2013; Philpott et al.,
2013; Bjørndal and Jörnsten, 2008; Hu and Ralph, 2007; Philpott and Schultz, 2006;
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O’Neill et al., 2005). A challenging problem arises from the on-off decision of power
plants, which usually incur substantial start-up or shut-down costs and, if operational,
face minimum-generation constraints. Because power markets are usually based on
marginal-cost, short-term pricing, the ramping or commitment costs (i.e., start-up
costs) are not necessarily covered by resulting market prices.

As a consequence, many electricity systems have rules that generators must be
“made whole” or have to be “in the money”; i.e., they receive compensation (also
called “uplift payment”) to make sure that they do not lose money from participating
in the market. This is commonly referred to as a “no-loss rule”. However, this may
not be required from a game-theoretic point of view, and thereby lead to higher-than-
necessary compensation payments. At the same time, there might exist regulations
that only power plants that are actually generating electricity can receive compensation
– the rationale being that it may create perverse incentives for market participants to
be paid to not do something. We will discuss and illustrate in a numerical example
how such market rules can actually overly restrict operational efficiency and thereby
reduce welfare.

The rules governing market operations obviously differ across various fields. A
topic that has received far less attention from the applied Operations Research com-
munity is agriculture. Yet it is also a form of binary game between independent
farmers (or agro-commercial enterprises), which decide whether to plant a field or not.
Interestingly, and in contrast to power markets, there are subsidies being paid in many
countries to farmers that let some of their land lay idle. Hence, there is a payment for
doing nothing! The key difference may be that farming is seen as a market less prone
to exertion of market power and strategic behavior, and that letting a field lay idle is
still seen to provide a benefit beyond mere price support, for instance by maintaining
the landscape or providing breeding grounds for wildlife – public acceptance of support
schemes may be higher in these cases.

The outline of this paper is as follows: in the next section, we summarize current
approaches to solve binary Nash games and place our contribution in the context of
methods applied to solve such problems in the power sector. In Section 3, we pro-
pose an exact solution method to solve binary equilibrium problems, which explicitly
incorporates the trade-off between overall efficiency and compensation payments in
cases where no equilibrium exists. Section 4 applies our method to a power market
example from the literature to illustrate its advantages and flexibility to incorporate
distinct market rules regarding uplift payments. Section 5 concludes with a discussion
on methods, other possible applications, and future work.1

2 Current approaches to solve binary games

In this section, we motivate our method by describing how current solution methods
for binary games obtain equilibria, and we identify where our formulation can improve
this process. While there exist brute-force methods that solve for an equilibrium
considering all possible combinations of the binary variables and check ex-post for de-
viation incentives, we want to concentrate on mathematical programming techniques
for obtaining equilibria. For large-scale applications such as those considered in this
work, computational efficiency proves a hurdle in these brute-force methods. Solving a
large number of equilibrium problems is not very elegant and suffers from a curse of di-
mensionality, because the number of equilibrium problems to be solved is 2k, where k

1The Appendix provides computational results for a numerical test case using a larger data
set than the stylized example in Section 4. The GAMS codes for the stylized example, the
numerical test case, as well as an additional example for a resource market application with
multiple binary investment decisions in production and pipeline capacity for several player are
available for download at https://github.com/danielhuppmann/binary_equilibrium under a
Creative Commons Attribution 4.0 International License.

3

https://github.com/danielhuppmann/binary_equilibrium


is the number of binary variables. Therefore, mathematicians and Operations Re-
searchers are constantly looking for ways to apply advances in Variational Inequalities
and Integer Programming to develop faster methods to solve such problems.

2.1 Optimization-based approaches to obtain equilibria

Game theory and equilibrium problems have been an integral part of the history of
mathematical programming. Their formulations fit neatly in the application areas and
computational techniques of optimization. Moreover, ideas and algorithms from equi-
librium problems have benefited solution techniques for optimization as well. First
order optimality (Karush-Kuhn-Tucker, KKT) conditions, derived from each individ-
ual player’s optimization problem, can be solved simultaneously by stacking them to
form an equilibrium problem. Interpretations from dual variables to constraints in
a game theory analysis can prove very insightful; they provide essential information
in equilibrium problems and are often interpreted as prices or marginal benefits for
individual players (Facchinei and Pang, 2003; Ferris and Pang, 1997; Murphy et al.,
1982).

However, this relationship between optimality conditions and equilibrium problems
fails once a game includes binary decision variables. The reason is that optimality
conditions cannot be directly derived for binary optimization problems. Thus, applied
optimization researchers aim to relax these binary problems to derive optimality con-
ditions, or obtain duals to constraints of individual players’ optimization problems in
other ways. Our main contribution is that we overcome both these hurdles to obtain
exact equilibria of the binary games and dual variables to constraints that can be
interpreted as prices or marginal benefits.

For games where the individual players’ optimization problems are non-convex
with continuous variables, Pang and Scutari (2013) introduce the notion of a “quasi-
Nash equilibrium” to describe solutions that are stationary points derived from relaxed
constraint qualifications. Their paper provides analysis into these equilibria and their
interpretation. In our paper, we are looking at a similar but distinct concept of an
equilibrium. While Pang and Scutari obtain “quasi-Nash equilibria” where standard
Nash equilibria exist but are computationally unattainable, we focus on cases where
standard Nash equilibria do not exist, and obtain reasonable solution points instead.
Moreover, the analysis by Pang and Scutari is focused on continuous games while we
focus exclusively on binary games.

A method based on a trade-off between relaxing the integrality and the comple-
mentarity constraints is developed by Gabriel et al. (2013). While relaxing integrality
has been employed as a way to solve integer programs, relaxing complementarity –
essentially the optimality conditions – was the novel idea of their contribution. By
relaxing optimality conditions, the authors were able to obtain solutions that were
close to being stationary points and presumed to be equilibria. By relaxing both inte-
grality and complementarity, the authors were also able to obtain duals to constraints,
though interpreting them was not straightforward. The drawback to this approach is
that there was no clear evidence that the solutions obtained were guaranteed to be
equilibria or the duals of the constraints were guaranteed to be the marginal benefit
of relaxing those constraints. In our work, we prove that the solutions from our for-
mulation are in fact binary equilibria and provide duals which can be interpreted as
marginal benefits when relaxing the players’ constraints.

The problem is tackled from a related angle by Fuller and Celebi (2016); they
propose a minimum disequilibrium model. They define disequilibrium as the difference
between the pay-off in the socially optimal outcome and the individually optimal
decision, summed over all players. That is, they seek to minimize the aggregated
opportunity costs for all market participants from following the instructions of a social
planner. The authors relate the MD model both to the results obtained by a social
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planner and to the model proposed by Gabriel et al. (2013).
One recent article focuses on solving integral Nash-Cournot games (Todd, 2014)

and provides an efficient algorithm to obtain equilibria. The method does not employ a
relaxation but still converges to integer equilibria under plausible conditions. However,
this method works very well for a specific integer game with no constraints, and the
algorithm is not applicable to the broad class of binary constrained games considered
in this paper.

2.2 Dual variables in binary programs

As mentioned above, dual variables in constrained convex optimization contain useful
information both for computational purposes and interpretation of the problem un-
der consideration. In principle, dual variables can be interpreted as multipliers and
provide the marginal improvement of the objective function given a relaxation of the
associated primal constraint. In particular, dual variables can be interpreted as prices
supporting a Walrasian equilibrium in market models derived from convex optimiza-
tion problems. However, in mathematical programs with binary or discrete constraints,
the interpretation as marginal relaxation is not valid any more because of the non-
convex and disjoint feasible region. This is related to the difficulty of determining the
value function of the original problem (Guzelsoy and Ralphs, 2007).

To overcome this caveat and obtain dual variables from binary programs, the
following approach is often used (cf. O’Neill et al., 2005). Consider the general con-
strained problem:

min
x,y

f
(
x, y
)

s.t. g
(
x, y
)
≤ 0 , where x ∈

{
0, 1
}n
, y ∈ Rm

(1)

To obtain dual variables to the constraints g(x, y), such problems are commonly
solved in a two-step procedure: first, the original problem (1) is solved using integer
programming techniques; then, the binary variables x are linearized, and constraints
are added to fix these variables at the level determined to be optimal, x∗, in the first
step:

min
x,y

f
(
x, y
)

s.t. g
(
x, y
)
≤ 0 (λ) (2)

x = x∗ (µ) , where
(
x, y
)
∈ Rn+m

Solving the reformulated problem (2) allows to interpret the dual variables (λ, µ)
in the sense of multipliers or shadow values; offering these prices as contracts to market
participants yields a Nash equilibrium. Note that while the dual variables µ are not
part of the original problem, they are obtained from the linearized problem and can
be thought of as the “price [. . . ] representing the integral activity for (each) agent”
(O’Neill et al., 2005, p. 279).

These duals are also important for integer programs, so that most numerical solvers
automatically report these values when solving mixed-integer programs. However,
one must be careful when using this approach in practical applications, as the duals
from the linearized model cannot be readily interpreted as marginal relaxations of the
original binary model – that is, the marginal value λ of the linearized fixed program
cannot be interpreted as dual to the constraint of the original, mixed-integer program
(problem 1). This is, however, what many power markets are currently doing in
practice: they use the dual variable to the energy balance constraint as locational
marginal price and clear the market based on these pay-offs. The dual prices of
the binary activities µ are neglected. Instead, market operators assign compensation
payments to make whole individual generators after the fact.
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2.3 Uplifts, compensation, and equilibria in power markets

There already exists a substantial breadth of Operations Research literature with re-
gard to electricity markets and pricing in non-convex problems, and binary games are
a prevalent concern in this area. The current practice in many centrally dispatched
power markets is that, first, the welfare-optimal dispatch is computed by the Inde-
pendent System Operator (ISO) and locational marginal prices (LMP) in the network
are determined using the two-step approach outlined above (i.e., from the linearized
model). Uplift payments (i.e., compensation to individual players) are then calculated
after market-clearance, ex-post, to ensure that each market player is made whole based
on these prices. This is usually called bid cost recovery, although actual implementa-
tions and rules differ across markets.

As discussed by Sioshansi (2014), system operators usually have non-confiscatory
compensation rules. This means that they do not assign penalties for deviation, but
only disburse positive compensation payments. In that respect, current market oper-
ation deviates from contracts T proposed by O’Neill et al. (2005), which are derived
from all duals (λ, µ). Instead, standard compensation payments are based on the
pay-offs from “LMPs” (the dual variable or vector λ only, in particular the duals to
the nodal energy balance constraint). It is important to note that these two are not
equivalent.

This approach does not actually guarantee that the incentives of all players are
aligned in the resulting market outcome, because the nature of the non-cooperative
binary game between market participants is side-stepped (cf. Sioshansi, 2014). Gener-
ators that are not dispatched by the ISO may have an incentive to enter the market,
if they would earn positive profits given resulting market prices, or to deviate from
the announced schedule. Some markets allow self-scheduling, which gives generators
the option to determine their dispatch individually rather than surrendering their
generation decision to the ISO (cf. Sioshansi et al., 2010).

An alternative to the current approach is the minimum uplift or convex hull pricing
method, which relies on a convex approximation of the lower bound of the aggregate
cost function to derive prices and the minimal uplifts to support the market out-
come (Schiro et al., 2015; Gribik et al., 2007; Hogan and Ring, 2003). This method
acknowledges that compensation is required to deter generators from following prof-
itable deviations from the dispatch chosen by the ISO. Alas, using the convex hull
relaxes the integrality of the underlying problem, and therefore also does not solve for
the exact binary equilibrium.

Another important problem of the two-step approach arises from the fact that the
budget for necessary compensation payments is not considered when determining the
dispatch, but only computed ex-post. This neglects the potential trade-off between
efficient market operation and minimizing the budget required for compensation pay-
ments, which is usually funded from fees or levies on market participants. These fees
may in turn cause distortions in the market. It is easy to conceive of situations where
accepting a slight reduction in market efficiency (i.e., reduction in welfare, higher
costs for dispatch) allows to significantly reduce the compensation payments required.
Hence, there may exist opportunities for improvements, which the current two-step
market operation fails to identify. The illustrative example in Section 4 shows just
such a situation.

The method developed in this work tackles these caveats of current approaches and
proposes an exact solution method for games in binary variables. Our method offers an
important practical advantage: it allows to directly balance efficient market operation
based on an exact method for finding solutions to binary equilibrium problems, on the
one hand, with the amount of compensation payments to ensure that these outcomes
stable against deviation by individual players, on the other.
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2.4 Marginal relaxation vs. the loss from a binary deviation

There is a further caveat of using the duals of problem (2) for algorithms and (eco-
nomic) interpretation of results: this approach introduces the dual µ as the marginal
relaxation of the constraint that fixes x at its optimal value. However, it is more
appropriate to ask not about a marginal relaxation, but a switch from one possible
value of the binary variable to the other. We introduce the “switch value” κ as the
loss incurred by switching from the optimal value of the binary problem f(x∗, y∗)
to the optimal value of the objective function given that the binary variable takes
the other value, x× = 1 − x∗, where y× is chosen so as to minimize f(x×, y), i.e.,
y× = arg miny f(x×, y). Then, κ can be determined by computing:

κ = −f
(
x∗, y∗

)
+ f

(
x×, y×

)
.

When x ∈ {0, 1}n is a binary vector rather than a one-dimensional variable, the switch
value can be computed component-wise, i.e., for element j ∈ [1, . . . , n] of the switch
vector κ ∈ Rn+:

κj = −f
(
x∗, y∗

)
+ f

(
(x∗1, . . . , x

∗
j−1, x

×
j , x

∗
j+1, . . . , x

∗
n), y×

)
∀ j ∈ [1, . . . , n],

where y× is computed accordingly for each element of κ.
In the method proposed below, we use this notion of a switch value κ to choose

between equilibria in binary games. This variable also serves as a selection mechanism
in such cases where no binary equilibrium exists; it can be used as a solution strategy
to find an appropriate quasi-equilibrium.

We believe that this approach holds substantial promise with regard to algorithmic
advances of binary and integer programming, as well as allow a better representation
of real-world problems in economics, engineering, and beyond. Given that most large-
scale applied integer programs are not solved to optimality, a branch-and-bound algo-
rithm or stopping criterion based on the switch value κ may yield better results than
current methods; these are usually based on satisfying a tolerance criterion between
the best integer solution found so far and the optimal objective value of the linearized
problem.

3 An exact solution for binary equilibrium problems

We now turn to our exact solution method to solve an equilibrium problem with binary
variables. In the following section, we assume that each player has exactly one binary
decision variable; this simplification is made only in the interest of a concise and
simple exposition of our approach. The number of continuous decision variables and
constraints is arbitrary. In the electricity market example presented in the following
section, we show that our methodology can easily be extended to larger problems with
multiple binary decision variables for each player.

The core idea for our approach is intuitive: for each player, we derive the first order
optimality conditions with respect to the continuous decision variables for both values
that the binary variable can take. In addition, we formulate an explicit incentive-
compatibility constraint to ensure that each player chooses the state of the binary
variable that is most beneficial to her.

The game is defined by a set of players i ∈ I = [1, . . . , n], where each player seeks
to minimize an objective function fi(·). In the following formulation, each player
only has one binary decision variable xi ∈ {0, 1}, a (vector of) continuous decision
variable(s) yi ∈ Rm, and a set of k constraints gi : Rm × {0, 1} → Rk with a vector of
length k of associated dual variables λi. As elaborated in the previous section, these
dual variables are only meaningful for a fixed xi. The feasible region of each player is
denoted by Ki =

{
(xi, yi) | gi(xi, yi) ≤ 0

}
.
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Each player’s optimization problem reads as follows:

min
xi∈{0,1},yi∈Rm

fi
(
xi, yi, y−i(x−i)

)
(3a)

s.t. gi
(
xi, yi

)
≤ 0 (λi) (3b)

The vector y−i = (yj)j∈I\{i} is the collection of all rivals’ decisions in continuous vari-
ables, and thus is of dimension m× (n− 1). The set of feasible strategies by the rivals
is denoted by K−i =

∏
j∈I\{i}

(
yj(xj)

)
. Because the continuous variables of the rivals’

depend on their binary decisions, K−i is usually disjoint and not convex.
The formulation of problem (3) implicitly assumes that each player’s payoff is only

affected by the continuous decision variables of her rivals, but not directly affected by
their binary variables. This is a simplification only for notational convenience and can
easily be relaxed.

A Nash equilibrium to this game is a set of strategies such that each player chooses
her optimal strategy given the action by the rivals. This is equivalent to the notion
that no player has an incentive to unilaterally change her decision; there exists no
profitable deviation. This is formally defined below; we distinguish between deviation
incentives in the binary and the continuous variables to facilitate the exposition of the
methodology.

Definition 1 (Nash equilibrium in a binary game). We define the binary game as

a set of players i ∈ I, each seeking to solve an optimization problem as given by

problem (3). A Nash equilibrium to this game is a vector
(
(x∗i , y

∗
i ) ∈ Ki

)
i∈I such

that y∗i is the optimal decision (i.e., best response) by player i given x∗i and y∗−i(x
∗
−i),

fi
(
x∗i , y

∗
i , y
∗
−i(x

∗
−i)
)
≤ fi

(
(x∗i , yi, y

∗
−i(x

∗
−i)
)
∀ yi ∈

{
yi | gi

(
x∗i , yi

)
≤ 0
}
∀ i ∈ I,

(4)

and such that there is no profitable deviation with regard to the binary variable,

fi
(
x∗i , y

∗
i , y
∗
−i(x

∗
−i)
)
≤ fi

(
x×i , y

×
i , y

∗
−i(x

∗
−i)
)
∀ i ∈ I, (5)

where x×i is the alternative value of xi, i.e., x×i = 1− x∗i , and y×i is a best response of

player i under the assumption that xi = x×i , i.e.,

fi
(
(x×i , y

×
i , y

∗
−i(x

∗
−i)
)
≤ fi

(
(x×i , yi, y

∗
−i(x

∗
−i)
)

∀ yi ∈
{
yi | gi

(
x×i , yi

)
≤ 0
}
∀ i ∈ I. (6)

Because existence or uniqueness of equilibria cannot be guaranteed in binary
games, we need to devise a method to select among several possible outcomes, or
to arrive at a desired point which is “almost” an equilibrium (or a quasi-equilibrium).
For this purpose, we introduce another player, which we call market operator, as a
coordination agent and equilibrium selection mechanism. This entity is modeled as
the upper-level player within a hierarchical, two-stage setup, where the lower-level
constraints represent the binary equilibrium problem. The market operator guides the
players towards a binary (quasi-) equilibrium and assigns compensation payments if
necessary.

This upper-level player ensures that the optimality conditions and incentive com-
patibility (i.e., no profitable unilateral deviation from the market outcome) for each
player are satisfied. If there exists more than one equilibrium, the market operator
can choose which solution will materialize according to an adequate objective function.
The market operator can also assign compensation payments to individual players if no
equilibrium is feasible without it, and her objective function can include the trade-off
between efficient operation and the required level of compensation disbursements.
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We now formally introduce the term quasi-equilibrium for solutions to the binary
game that are not Nash equilibria according to Definition 1, but which can be made
incentive-compatible with appropriate compensation payments by the market opera-
tor.

Definition 2 (Quasi-equilibrium in a binary game with compensation).

We define the binary game with compensation as a set of players i ∈ I, each seeking

to solve an optimization problem as given by problem (3). A binary quasi-equilibrium

to this game is a vector
(
(x∗i , y

∗
i ) ∈ Ki

)
i∈I and a compensation vector

(
ζi ∈ R+

)
i∈I

such that for each player:

1. y∗i is the optimal feasible decision (i.e., best response) by player i given x∗i
and y∗−i(x

∗
−i),

fi
(
x∗i , y

∗
i , y
∗
−i(x

∗
−i)
)
≤ fi

(
x∗i , yi, y

∗
−i(x

∗
−i)
)

∀ yi ∈
{
yi | gi

(
x∗i , yi

)
≤ 0
}
∀ i ∈ I, (7)

2. no player can improve her own payoff by deviating from x∗i by more than the

compensation payment ζi; i.e., the compensation is at least as great as the benefit

from deviation with regard to the binary variable. Hence, there is no profitable

deviation with regard to the binary variable given the compensation payment,

fi
(
x∗i , y

∗
i , y
∗
−i(x

∗
−i)
)
− ζi ≤ fi

(
x×i , y

×
i , y

∗
−i(x

∗
−i)
)
∀ i ∈ I (8)

where x×i and y×i are defined as in Definition 1,

3. and the compensation payments are minimal, i.e., if a compensation payment is

required for a player, then the incentive-compatibility condition (8) holds with

equality. That is,

ζi = min
ζi∈R+

ζi

s.t. fi
(
x∗i , y

∗
i , y
∗
−i(x

∗
−i)
)
− ζi ≤ fi

(
x×i , y

×
i , y

∗
−i(x

∗
−i)
)
∀ i ∈ I. (9)

Note that when
∑
i∈I ζi = 0, the binary quasi-equilibrium is also a Nash equilib-

rium. In the definition of the quasi-equilibrium, we directly incorporate the notion that
the compensation payments should be minimal. This is helpful because it eliminates
those incentive-compatible solutions where the market operator “over-compensates”
some players, and it allows to focus on a smaller set of candidate solutions to the
binary game.

3.1 Determining each player’s best response

In the definitions above, we have simply stated that the continuous decision vari-
ables y∗i are the optimal decision of player i given the binary variable and the rivals’
decisions. In order to efficiently compute the best response of each player given the
decisions of her rivals, we use first order optimality conditions with regard to the con-
tinuous decision variables. Hence, we need to make sure these conditions are necessary
and sufficient so that we can capture the entire equilibrium set. An assumption on
compactness is also needed for the selection of certain parameters of our method.

A1 We assume that for each player i ∈ I, problem (3) is such that the first or-
der optimality (KKT) conditions are necessary and sufficient with respect to
the variables yi, and the feasible region defined by the constraints gi

(
xi, yi

)
is

compact and non-empty, for a fixed realization of xi.

9



As an example, the KKT conditions are necessary and sufficient for problem (3)
if fi(xi, ·, y−i) are convex and gi(xi, ·) affine for any fixed value xi ∈ {0, 1} and any
fixed vector y−i ∈ K−i.

Let the vector (x∗i , y
∗
i ) denote the best response for each player within the over-

all problem, given the decision vector
(
y−i(x−i)

)
i∈I by all rivals, and let ỹ

(xi)
i de-

note the best response of player i for a fixed xi = xi ∈ {0, 1}. Then, the objective
value fi

(
xi, ỹ

(xi)
i , y−i(x−i)

)
is the best pay-off that a player can do given xi and the

rivals’ strategies.
Under Assumption A1, if the value of xi is fixed at xi, the best response ỹ

(xi)
i can

be found by solving the respective first order optimality conditions:

0 = ∇yi fi
(
xi, ỹ

(xi)
i , y−i(x−i)

)
+ λ̃

(xi)
i ∇yi gi

(
xi, ỹ

(xi)
i

)
, ỹ

(xi)
i (free) (10a)

0 ≥ gi
(
xi, ỹ

(xi)
i

)
⊥ λ̃

(xi)
i ≥ 0 (10b)

Player i will choose the binary variable xi such that its objective value is minimal
given the decisions of the rivals y−i(x−i). Mathematically, the best response of player i
regarding her binary variable xi can be written as follows:

fi
(
1, ỹ

(1)
i , y−i(x−i)

)
< fi

(
0, ỹ

(0)
i , y−i(x−i)

)
⇒ x∗i = 1 (11a)

fi
(
1, ỹ

(1)
i , y−i(x−i)

)
> fi

(
0, ỹ

(0)
i , y−i(x−i)

)
⇒ x∗i = 0 (11b)

fi
(
1, ỹ

(1)
i , y−i(x−i)

)
= fi

(
0, ỹ

(0)
i , y−i(x−i)

)
⇒ x∗i = {0, 1} (11c)

The logic of conditions (11) is similar to the notion of incentive compatibility in game
theory, i.e., there exists no profitable deviation given the decisions of all rivals. Hence,
a vector

(
x∗i , y

∗
i (x∗i )

)
i∈I that satisfies the incentive-compatibility constraints in Defi-

nition 1 for each player constitutes a Nash equilibrium. If the incentive-compatibility
condition is not satisfied for any feasible strategy, it may be necessary to financially
compensate a player to ensure that she doesn’t deviate, as stated in Definition 2.

A direct implementation of the implicit “if-then”-logic requires additional binary
variables and thereby considerably increases numerical complexity. We overcome
this drawback by proposing a mathematically equivalent formulation to represent the
incentive-compatibility logic using the original binary variable of each player (or vec-
tor of binary variables in larger applications). The resulting overall program will be
shown in problem (14); but first, we will discuss the reformulation and introduce the
equilibrium selection mechanism in more detail.

3.2 An efficient formulation of incentive compatibility

We introduce four non-negative variables
(
κ

(1)
i , κ

(0)
i , ζ

(1)
i , ζ

(0)
i

)
for each player, and a

sufficiently large scalar (or vector of scalars) K̃. In applied work, one can of course
make the parameter K̃ specific to each player and constraint to improve computational
efficiency. We omit this specification for notational convenience. The vector κ

(xi)
i is the

switch value introduced in Section 2.4; it can be interpreted as the loss the player would
incur by switching from her optimal value of the binary variable to the alternative.

The vector ζ
(xi)
i denotes compensation payments to guarantee incentive compati-

bility; that is, in cases where the market operator requires a player to act against her
own objective with regard to the binary variable so that a binary quasi-equilibrium
can be obtained, a remuneration must be paid as compensation and to ensure that the
player does not have a profitable deviation.

The vectors κ
(xi)
i and ζ

(xi)
i are not dual variables in the original sense, but they

do contain similar information regarding the solution. Hence, they are analogous in
interpretation to a dual – but in terms of a binary deviation, not in the sense of
a marginal relaxation. Alas, the term “shadow price” often used in economics as
synonymous for dual variables could also be applied here.

10



We can now replace the incentive compatibility conditions (equations 11) by a
more efficient formulation:

fi
(
1, ỹ

(1)
i , y−i

)
+ κ

(1)
i − ζ

(1)
i − κ(0)

i + ζ
(0)
i = fi

(
0, ỹ

(0)
i , y−i

)
(12a)

κ
(1)
i + ζ

(1)
i ≤ xi K̃ (12b)

κ
(0)
i + ζ

(0)
i ≤

(
1− xi

)
K̃ (12c)

κ
(1)
i , κ

(0)
i , ζ

(1)
i , ζ

(0)
i ∈ R+

The market operator selects a solution such that the first order conditions and
the incentive-compatibility constraints are satisfied for all players. In line with the
definition of the quasi-equilibrium as the minimal compensation payment for each
player i, the variables κ

(xi)
i and ζ

(xi)
i cannot both be strictly greater than zero at a

solution; this will be formally discussed when we introduce the problem of the market
operator.

First, let us illustrate and discuss the interpretation of the variables κ
(xi)
i and ζ

(xi)
i

in more detail. The question is whether the solution for the overall equilibrium problem
chosen by the market operator is aligned with the best response of each player. By this,
we mean whether a player’s individually optimal decision coincides with the (quasi-)
equilibrium chosen by the market operator.

There are five possible outcomes regarding the incentive alignment of an individual
player and the market operator; the cases are illustrated in Table 1. In cases I and II,
the incentives are aligned, as the player would incur losses (a strictly worse pay-
off) by deviating from the outcome decided by the market operator. The respective

switch value κ
(xi)
i is strictly positive. There may be situations where the player has

a strict preference regarding her binary decision, but the market operator is actually
indifferent. In this case, we assume that the market operator will choose the solution
so that it coincides with the player’s preference; otherwise, the market operator would
have to disburse compensation payments.

In cases III and IV, the solution chosen by the market operator is not in line with
the player’s individual best response; only by disbursing compensation payments can
the market operator convince the player not to deviate to the individually optimal
decision. As a consequence, the respective compensation payment ζ

(xi)
i is strictly

positive, and a quasi-equilibrium is realized.
In the last case (no. V), the player is indifferent between her options, so the market

operator is not restricted in selecting either outcome. The player does not have a
positive switch value in either direction, and no compensation is required.

individually equilibrium xi chosen incentives

case optimal xi by market operator κ
(1)
i κ

(0)
i ζ

(1)
i ζ

(0)
i aligned

I 1 1 > 0 0 0 0 yes
II 0 0 0 > 0 0 0 yes
III 0 1 0 0 > 0 0 no
IV 1 0 0 0 0 > 0 no
V indifferent 1 / 0 0 0 0 0 yes

Table 1: Incentive alignment between a player’s individually optimal decision
(her best response) and the (quasi-) equilibrium chosen by the market operator
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3.3 Translating each player’s best response into the overall game

From equations (10), we have obtained two optimal decision vectors, ỹ
(xi)
i , for each

player for both values that the variable xi can take. We now need to translate which
of these two decision variables is realized in the (quasi-) equilibrium and “seen” by the
rivals in their own optimization problem, contingent on the equilibrium decision xi.
We do this by adding the following constraints:

ỹ
(0)
i − xi K̃ ≤ yi ≤ ỹ(0)

i + xi K̃ (13a)

ỹ
(1)
i −

(
1− xi

)
K̃ ≤ yi ≤ ỹ(1)

i +
(
1− xi

)
K̃ (13b)

The logic of constraints (13) is straightforward: the decision vector yi, as it is con-
sidered by the rivals and the market operator in their optimization problems, must
be equal to the optimal decision ỹ

(xi)
i for whichever value of xi is the solution in the

(quasi-) equilibrium, as stated by equations (11) and reformulated using equations

(12), i.e., xi = 0 ⇒ yi = ỹ
(0)
i and xi = 1 ⇒ yi = ỹ

(1)
i . The parameter K̃ must be

chosen suitably large so as not to constrain the continuous decision variable(s). Since
this is a primal variable, it should be straightforward to find a suitable bound in any
practical application.

We can now combine the incentive-compatibility constraints (12) with the equilib-
rium conditions (10) for the continuous decision variables into one set of constraints
with binary variables. The non-linearity of the complementarity conditions (10) can
be readily reformulated applying disjunctive constraints (Fortuny-Amat and McCarl,
1981) or using SOS type 1 variables (Siddiqui and Gabriel, 2013).

3.4 A multi-objective program subject to binary (quasi-) equilibria

So far, we have only replaced a number of equilibrium problems (for each possible
combination of binary variables) by a set of integer constraints that exactly represent
all binary (quasi-) equilibria. Next, we can apply multi-objective programming to
direct the game towards desired solutions. To this end, we introduce the market oper-
ator, and we assume that she seeks to minimize an objective function consisting of two
terms: a function F (·), which only depends on the actual market outcome (efficiency
of the solution; cost-minimization or welfare-maximization may be a natural choice
for this term) and a function G(·), which serves as a regularizer; in economic applica-
tions, it can be interpreted as a penalty term that seeks to minimize the compensation
payments required to ensure incentive compatibility of the market solution.

As is common in multi-objective programming, one can easily explore the range of
equilibria by solving the reformulated problem using different functional forms. Fur-
thermore, one can sort binary (quasi-) equilibria from a “best” to a “worst” outcome
by solving the model consecutively and in each step excluding the previous solutions;
here, “best” is to be understood as given by the objective function F (·) +G(·).

12



The overall problem is a mathematical program subject to a binary equilibrium
problem, where xi = {0, 1} are the binary variables in the lower-level problem.

min
xi,yi,ỹ

(xi)
i ,λ̃

(xi)
i

κ
(xi)
i ,ζ

(xi)
i

F
((
xi, yi

)
i∈I

)
+G

((
ζ

(xi)
i

)
i∈I

)
(14a)

s.t. ∇yi fi
(
1, ỹ

(1)
i , y−i

)
+
(
λ̃

(1)
i

)T∇yi gi(1, ỹ(1)
i

)
= 0 (14b)

0 ≤ −gi
(
1, ỹ

(1)
i

)
⊥ λ̃

(1)
i ≥ 0 (14c)

∇yi fi
(
0, ỹ

(0)
i , y−i

)
+
(
λ̃

(0)
i

)T∇yi gi(0, ỹ(0)
i

)
= 0 (14d)

0 ≤ −gi
(
0, ỹ

(0)
i

)
⊥ λ̃

(0)
i ≥ 0 (14e)

fi
(
1, y

(1)
i , y−i

)
+ κ

(1)
i − ζ

(1)
i − κ(0)

i + ζ
(0)
i = fi

(
0, y

(0)
i , y−i

)
(14f)

κ
(1)
i + ζ

(1)
i ≤ xi K̃ (14g)

κ
(0)
i + ζ

(0)
i ≤

(
1− xi

)
K̃ (14h)

ỹ
(0)
i − xi K̃ ≤ yi ≤ ỹ(0)

i + xi K̃ (14i)

ỹ
(1)
i −

(
1− xi

)
K̃ ≤ yi ≤ ỹ(1)

i +
(
1− xi

)
K̃ (14j)

xi ∈ {0, 1},
(
yi, ỹ

(xi)
i

)
∈ R3m,

(
λ

(xi)
i ,κ

(xi)
i , ζ

(xi)
i

)
∈ R2k+4

+

It is important to note that the binary variable of each player has an additional role in
this formulation: it also controls which of the two potential states with regard to the
continuous variables are active and “visible” to the rivals (constraints 14i and 14j).
Furthermore, it ensures that the correct switch values and compensation payments are
active (constraints 14g and 14h), in line with Table 1.

Theorem 1 (Exact solutions of the binary Nash game). Under Assumption A1, any

vector
(
xi, yi

)
i∈I is a solution to the binary game as stated in Definition 1 if and

only if there exists a vector
(
ỹ

(xi)
i , λ̃

(xi)
i , κ

(xi)
i

)
i∈I , with ζ

(xi)
i = 0 ∀ i ∈ I, such that(

xi, yi, ỹ
(xi)
i , λ̃

(xi)
i , κ

(xi)
i

)
i∈I is a feasible point to problem (14).

Proof. First, assume
(
xi, yi, ỹ

(xi)
i , λ̃

(xi)
i , κ

(xi)
i

)
i∈I with ζ

(xi)
i = 0 ∀ i ∈ I is a feasible point

to problem (14). Then, by Assumption A1, we know that the point
(
xi, yi

)
i∈I is an optimal

solution for each player given fixed values of xi and y−i ∀ i ∈ I. This satisfies the first

part of Definition 1. Furthermore, we know that ζ
(xi)
i = 0 ∀ i ∈ I, and

(
κ

(xi)
i

)
i∈I will

be selected according to the constraints of problem (14). By these constraints, we know

that fi
(
xi, yi, y−i(x−i)

)
≤ fi

(
x×i , y

×
i , y−i(x−i)

)
∀ i ∈ I, where x×i is the alternative value

of xi (i.e., x×i = 1− xi) and y×i is a best response of player i, i.e.,

fi
(
x×i , y

×
i , y−i(x−i)

)
≤ fi

(
x×i , yi, y−i(x−i)

)
∀ yi ∈

{
yi | gi

(
x×i , yi

)
≤ 0
}
∀ i ∈ I.

This satisfies the second part of Definition 1 and thus we have shown that
(
xi, yi

)
i∈I is a

solution to the binary game defined by Definition 1.

Now, we assume that
(
xi, yi

)
i∈I is a solution to the binary game defined by Definition 1.

Choose K̃ large enough so that it is greater than the difference between any upper and lower

bounds on yi ∀ i ∈ I and greater than the difference between the minimum and maximum

value of fi(·) ∀ i ∈ I. Such a value exists since by Assumption A1; the feasible set is compact

and fi(·) is continuous, so the maximum and minimum must exist. Then, by Definition 1, for

any fixed value of xi and y−i, yi is an optimal solution to the individual player’s optimiza-

tion problem. Thus, you can find (ỹ
(xi)
i , λ̃

(xi)
i ) such that

(
xi, yi, ỹ

(xi)
i , λ̃

(xi)
i

)
i∈I satisfies the

constraints (14b–14e). Take ζ
(xi)
i = 0 ∀ i ∈ I, and choose κ

(xi)
i according to constraint (14f).
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Thus, for any solution to the binary game in Definition 1 given by
(
xi, yi

)
i∈I , we have shown

that there there exists a vector
(
ỹ

(xi)
i , λ̃

(xi)
i , κ

(xi)
i

)
i∈I , with ζ

(xi)
i = 0 ∀ i ∈ I, such that(

xi, yi, ỹ
(xi)
i , λ̃

(xi)
i , κ

(xi)
i

)
i∈I is a feasible point to problem (14).

An efficient technique to choose K̃ is to linearize the binary variables in the indi-
vidual optimization problems and minimize and maximize over fi(·) to find the largest
difference possible. The next theorem shows that the method can also be applied to
obtain a quasi-equilibrium. Note that we need an assumption on the objective function
before we can prove that our method can obtain a quasi-equilibrium.

A2 Assume that F
(
·
)

and G
(
·
)

are convex quadratic or linear functions for every
fixed binary variable xi and that ∂ G

(
·
)
/∂ ζi > 0 ∀ i ∈ N .

Theorem 2 (Exact solutions of the binary Nash game with compensation). Under

Assumptions A1 and A2, if there exists a vector
(
xi, yi, ỹ

(xi)
i , λ̃

(xi)
i , κ

(xi)
i , ζ

(xi)
i

)
i∈I that

is an optimal solution to problem (14), then the vector
(
xi, yi

)
i∈I with compensation(

ζi
)
i∈I is a solution to the binary game as stated in Definition 2. Following the term

introduced in Definition 2, we refer to this as a binary quasi-equilibrium.

Furthermore, under Assumptions A1 and A2, if (xi, yi)i∈I is a solution to the

binary game with compensation
(
ζi
)
i∈I as stated in Definition 2, then there exists

a vector
(
ỹ

(xi)
i , λ̃

(xi)
i , κ

(xi)
i , ζ

(xi)
i

)
i∈I , such that

(
xi, yi, ỹ

(xi)
i , λ̃

(xi)
i , κ

(xi)
i , ζ

(xi)
i

)
i∈I is a

feasible point to problem (14).

Proof. First, assume
(
xi, yi, ỹ

(xi)
i , λ̃

(xi)
i , κ

(xi)
i , ζ

(xi)
i

)
i∈I is an optimal solution to problem (14).

Then, by A1, we know that the point
(
xi, yi

)
i∈I is an optimal solution for each player given

fixed values of xi and y−i. This satisfies the first part of Definition 2. Furthermore, we know

that κ
(xi)
i , ζ

(xi)
i ∀ i ∈ I will be selected according to the constraints of problem (14). By these

constraints, we know that fi
(
xi, yi, y−i(x−i)

)
− ζi ≤ fi

(
x×i , y

×
i , y−i(x−i)

)
∀ i ∈ I, where x×i

is the alternative value of xi (i.e., x×i = 1 − xi) and yi is a best response of player i with

fixed x×i , i.e.,

fi
(
x×i , y

×
i , y−i(x−i)

)
≤ fi

(
x×i , yi, y−i(x−i)

)
∀ yi ∈

{
yi | gi

(
x×i , yi

)
≤ 0
}
∀ i ∈ I.

This satisfies the second part of Definition 2.

By Assumption A2, we know that ∂ G
(
·
)
/∂ ζi > 0 ∀ i ∈ I and, hence, for any optimal

solution, for each player,
(
ζi
)
i∈I is minimal. This satisfies the third part of Definition 2

and hence we have shown that if
(
xi, yi, ỹ

(xi)
i , λ̃

(xi)
i , κ

(xi)
i , ζ

(xi)
i

)
i∈I is an optimal solution to

problem (14), then
(
xi, yi

)
i∈I with compensation payments

(
ζi
)
i∈I is a solution to the binary

game defined by Definition 2.

Now, we assume that
(
xi, yi

)
i∈I with compensation payments

(
ζi
)
i∈I is a quasi-equilibrium

to the binary game with compensation defined by Definition 2. Choose K̃ large enough so

that it is greater than the difference between any upper and lower bounds on yi ∀ i ∈ I and

greater than the difference between the minimum and maximum value of fi ∀ i ∈ I. Such

a value exists since by Assumption A1, the feasible set is compact and fi is continuous, so

the maximum and minimum must exist. Then, by Definition 2, for any fixed value of xi

and y−i, yi is an optimal solution to the individual player’s optimization problem. Thus,

you can find (ỹ
(xi)
i , λ̃

(xi)
i ) such that

(
xi, yi, ỹ

(xi)
i , λ̃

(xi)
i

)
i∈I satisfies the first two constraints

in problem (14). Calculate ζ
(xi)
i from ζi ∀ i ∈ I and choose κ

(xi)
i according to the third

constraint in problem (14). Thus, for any solution to the binary game in Definition 2 given

by
(
xi, yi

)
i∈I and compensation payment

(
ζi
)
i∈I , we have shown that there there exists a

vector
(
ỹ

(xi)
i , λ̃

(xi)
i , κ

(xi)
i , ζ

(xi)
i

)
i∈I , such that

(
xi, yi, ỹ

(xi)
i , λ̃

(xi)
i , κ

(xi)
i , ζ

(xi)
i

)
i∈I is a feasible

point to problem (14).
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Corollary 1. Under Assumptions A1 and A2, any vector (xi, yi)i∈I is a binary

quasi-equilibrium for the Nash game in binary variables with compensation
(
ζi
)
i∈I as

defined in Definition 2 if there exists a vector
(
ỹ

(xi)
i , λ̃

(xi)
i , κ

(xi)
i , ζ

(xi)
i

)
i∈I , such that(

xi, yi, ỹ
(xi)
i , λ̃

(xi)
i , κ

(xi)
i , ζ

(xi)
i

)
i∈I is a feasible solution to problem (14) and ζ

(xi)
i is

minimal as defined in Definition 2.

Proof. By the arguments in Theorem 2, for any point
(
xi, yi, ỹ

(xi)
i , λ̃

(xi)
i , κ

(xi)
i , ζ

(xi)
i

)
i∈I that

is feasible to problem (14), the vectors
(
xi, yi)i∈I and

(
ζi)i∈I satisfy the first two conditions

of Definition 2. If, in addition, Condition 3 of Definition 2 is satisfied, i.e., ζi is minimal for

each player i ∈ I, then
(
xi, yi

)
i∈I is a binary quasi-equilibrium with compensation

(
ζi
)
i∈I .

If a vector is a global minimum to the objective function (14a), this is the binary
quasi-equilibrium with the lowest objective function value F (·) +G(·). The following
lemma and theorem provide conditions for the existence of a binary quasi-equilibrium
that can be supported by appropriate compensation payments.

Lemma 1 (Existence of a Nash equilibrium in a game with fixed binary variables). If

for a fixed vector
(
xi
)
i∈I , the objective function fi

(
xi, yi, y−i(x−i)

)
of every player i ∈ I

is continuous with regard to yi and y−i(x−i), and quasi-convex in yi, and the feasible

region defined by the constraints gi
(
xi, yi

)
is compact, convex and non-empty, then the

resulting continuous game has a solution.

Proof. The existence follows readily from Kakutani’s fixed-point theorem (Glicksberg, 1952).

Relaxations of these conditions for the existence of a Nash equilibrium in contin-
uous decision variables are also discussed in the literature (Facchinei and Pang, 2003;
Nishimura and Friedman, 1981). The existence result for Nash equilibria in continuous
games given fixed binary variables in Lemma 1 can be combined with Theorem 3 to
provide reasonable conditions for the existence of binary quasi-equilibria.

Theorem 3 (Existence of a binary quasi-equilibrium). Under Assumption A1 and A2,

if for any fixed vector (xi)i∈I , the resulting continuous game has a solution, then a cor-

responding binary quasi-equilibrium exists for the Nash game in binary variables.

Proof. For any
(
yi
)
i∈I that is a Nash equilibrium given the fixed vector

(
xi
)
i∈I , we can find

vectors
(
ỹ

(xi)
i , λ̃

(xi)
i

)
i∈I such that

(
xi, yi, ỹ

(xi)
i , λ̃

(xi)
i

)
i∈I is a feasible point to constraints (14b–

14e). Recall that our notation implies xi =
(
{xi, 1 − xi}

)
i∈I . Choose K̃ as in the proof for

Theorem 2.

We can then find values for
(
κ

(xi)
i , ζ

(xi)
i

)
i∈I such that

(
xi, ỹ

(xi)
i , λ̃

(xi)
i , κ

(xi)
i , ζ

(xi)
i

)
i∈I sat-

isfy constraints (14f–14j), and where either κ
(xi)
i = 0 or ζ

(xi)
i = 0 for every player i ∈ I. By

equation (14f), this implies that ζ
(xi)
i is minimal. By Corollary 1,

(
xi, yi

)
i∈I with compensa-

tion payments
(
ζi
)
i∈I is a binary quasi-equilibrium.

Theorem 3 implies that, if a Nash equilibrium solution to the continuous game ex-
ists for any fixed realization of the binary variables, then this solution can be supported
as a quasi-equilibrium with appropriate compensation payments.

The reformulated multi-objective problem subject to a binary quasi-equilibrium
(14) is a mixed-integer program. However, the incentive-compatibility constraint (con-
dition 14f) can still cause numerical difficulties, because the players’ objective function
are often not linear and not even convex in terms of all variables, even when they are
linear from the point of view of the player itself.
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We will now introduce a special case, which allows to reduce problem (14) to a
linear or quadratic convex mixed-integer program with linear constraints.

A3 Assume that the each lower-level player’s objective function fi
(
xi, yi, y−i(x−i)

)
can be separated into two functions, where the first part is linear with respect
to xi and y−i, and the second part is linear only with respect to yi,

fi
(
xi, yi, y−i(x−i)

)
= f

(x)
i

(
xi, y−i(x−i)

)
+ f

(y)
i

(
yi | y−i(x−i)

)
,

and the partial derivative of the objective function with regard to the continuous
variable yi, ∇yif

(y)
i

(
y

(xi)
i | y−i(x−i)

)
, is linear in all variables.

Furthermore, assume that all constraints gi
(
xi, yi

)
are affine and can therefore

be written as:

gi
(
xi, yi

)
≤ 0⇒ aixi +Aiyi ≤ bi

where ai, bi are vectors and Ai a matrix of suitable dimensions.

Note that the function f
(y)
i

(
yi | y−i(x−i)

)
need not be linear with respect to all

variables, only with regard to the player’s own continuous decision variable yi given a
fixed value of y−i.

Theorem 4 (Exact reformulation as a mixed-integer linear/quadratic program with

linear constraints). Under Assumptions A1, A2 and A3, the multi-objective program

subject to a binary quasi-equilibrium (problem 14) can be reformulated as a quadratic

integer program with linear constraints. Theorems (1) and (2) remain valid.

Proof. By Assumptions A1, A2 and A3, the objective function is linear or convex quadratic,

and the first order conditions and the players’ constraints are linear. The complementarity

conditions (14c) and (14e) can be reformulated using disjunctive constraints (Fortuny-Amat

and McCarl, 1981).

The incentive-compatibility constraint (14f) can be reformulated as follows: since the

function f
(y)
i

(
y

(xi)
i | y−i(x−i)

)
is linear with respect to y

(xi)
i , we know that

f
(y)
i

(
y

(xi)
i | y−i(x−i)

)
=
(
∇yif

(y)
i

(
y

(xi)
i | y−i(x−i)

))T
y

(xi)
i .

By first order optimality,
(
∇yif

(y)
i

(
y

(xi)
i | y−i(x−i)

))
= −

((
λ

(xi)
i

)T∇yi gi(xi, y
(xi)
i

))
.

Then, applying the definition of gi(·) in Assumption A3, ∇yi gi
(
xi, y

(xi)
i

)
= Ai, and using

the complementarity condition of constraints (14c) and (14e), (aixi +Aiyi − bi)Tλi = 0, the

reformulation proceeds as follows:

fi
(
xi, yi, y−i(x−i)

)
= f

(x)
i

(
xi, y−i(x−i)

)
+ f

(y)
i

(
y

(xi)
i | y−i(x−i)

)
= f

(x)
i

(
xi, y−i(x−i)

)
+
(
∇yif

(y)
i

(
y

(xi)
i | y−i(x−i)

))T
y

(xi)
i

= f
(x)
i

(
xi, y−i(x−i)

)
−
((
λ

(xi)
i

)T∇yi gi(xi, y
(xi)
i

))T
y

(xi)
i

= f
(x)
i

(
xi, y−i(x−i)

)
−
((
λ

(xi)
i

)T
Ai

)T
y

(xi)
i

= f
(x)
i

(
xi, y−i(x−i)

)
−
(
λ

(xi)
i

)T (
bi − aixi

)
Therefore, problem (14) can be reformulated as a linear/quadratic convex integer program

with linear constraints.

With this theorem, we show that our approach can be applied to a large num-
ber of problem classes and still be solved as a mixed-integer linear program. These
include operational constraints such as capacity constraints or minimum generation
constraints, and market forms including linear inverse demand functions.
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3.5 Comparing the binary equilibrium to a social-planner model

Before illustrating the proposed method for identifying binary equilibria in non-cooperative
games using a power market example, we discuss how the proposed method compares
to a commonly used alternative approach for solving such problems. As a benchmark
for this comparison, we use the following method: first, solve the welfare-maximizing
problem assuming a central planner, then derive prices from the linearized model using
the O’Neill et al. (2005) method, and finally compute compensation payments for each
player that has a profitable deviation, to ensure that every market participant is at
last indifferent and the outcome is stable in the Nash sense. This method is, in a way,
a lexicographic solution approach to the over-all problem; mathematically, it can be
seen as a hierarchical min-min problem. For illustration, we formulate this problem
along the notation used in the derivation of the binary equilibrium method:

min
ζi

G
((
ζi
)
i∈I

)
+

 min
xi,yi

F
((
xi, yi

)
i∈I

)
s.t. gi

(
xi, yi

)
≤ 0 ∀ i ∈ I

 (15)

s.t.


fi
(
xi, yi, y−i(x−i)

)
− ζi ≤ fi

(
x×i , y

×
i , y−i(x−i)

)
∀ (x×i , y

×
i ) ∈ arg min

(x�i ,y
�
i )

{
fi
(
x�i , y

�
i , y−i(x−i)

) ∣∣ gi(x�i , y�i ) ≤ 0
} 
∀ i ∈ I

Throughout the following discussion, we will denote the optimal solution of the in-
ner welfare optimization of problem 15 as

(
x◦i , y

◦
i

)
i∈I , while

(
ζ◦i
)
i∈I is the minimal

compensation payment to guarantee incentive compatibility for all players. Similar
as in the definition of the binary game introduced earlier, the objective function of
player i evaluated at

(
x×i , y

×
i

)
is the best a player can do by deviating (cf. Definitions 1

and 2). In the context of this example, deviation is to be understood as not following
the decision of the benevolent social planner.

For comparison, we restate the multi-objective program subject to a binary (quasi-)
equilibrium (problem 14) in simplified form:

min
ζi

G
((
ζi
)
i∈I

)
+ F

((
xi, yi

)
i∈I

)
(14’)

s.t.


∇yi fi

(
xi, ỹ

(xi)
i , y−i

)
+
(
λ̃

(xi)
i

)T∇yi gi(xi, ỹ
(xi)
i

)
= 0

0 ≤ −gi
(
xi, ỹ

(xi)
i

)
⊥ λ̃

(xi)
i ≥ 0

fi
(
1, y

(1)
i , y−i

)
+ κ

(1)
i − ζ

(1)
i − κ(0)

i + ζ
(0)
i = fi

(
0, y

(0)
i , y−i

)
“translation” constraints 14g–14j


∀ i ∈ I

In the following discussion, the optimal values of each player’s binary and contin-
uous decision variables in equilibrium and the compensation payments are denoted
by
(
x∗i , y

∗
i , ζ
∗
i

)
i∈I .

The key difference between the above problems is that problem 15 solves an opti-
mization problem while problem 14 solves for a non-cooperative equilibrium among all
players. Thus, problem 15 is constrained by general power market constraints while
problem 14 has additional equilibrium constraints. Clearly, problem 14 is a restricted
version of problem 15 whenever there are no compensation payments or when the
objective function does not include a penalty term (or regularizer) G

(
(ζi)i∈I

)
.

The following two theorems formalize the idea that the social planner problem is
a less constrained version of the binary equilibrium problem. First, we show that if
the socially optimal outcome

(
x◦i , y

◦
i

)
i∈I does not require any compensation payments,

this solution (weakly) dominates the binary equilibrium outcome. Second, a similar
argument can be made if profitable deviations exist in the socially optimal outcome,
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but the social planner does not penalize those (i.e, compensation payments are assumed
to incur no loss to overall welfare).

Theorem 5. If any optimal solution obtained by the social planner (problem 15)

does not require compensation payments to any player i ∈ I, then the objective value

achieved by the social planner is at least as small as solution of the binary (quasi-)

equilibrium model, i.e.,∑
i

ζ◦i = 0 ⇒ fi
(
x◦i , y

◦
i , y
◦
−i(x

◦
−i)
)
≤ fi

(
x×i , y

×
i , y

◦
−i(x

◦
−i)
)
∀ i ∈ I

⇒ F
((
x◦i , y

◦
i

)
i∈I

)
≤ F

((
x∗i , y

∗
i

)
i∈I

)
.

Proof. Assume
∑
i ζ
◦
i = 0 at any optimal point for problem (15). Whenever

∑
i ζ
◦
i = 0 in

problem (15), the feasible region of problem (14) is a subset of the feasible region for prob-

lem (15). Moreover, since G
(
(ζi)i∈I

)
is an increasing function of (ζi)i∈I , whenever

∑
i ζ
◦
i = 0,

G
(
(ζi)i∈I

)
is at its minimum. Thus, the optimal objective function value of problem (15)

forms a lower-bound to any optimal objective function value of problem (14). These two

facts combine to show that whenever
∑
i ζ
◦
i = 0 at any optimal point for problem (15),

F
(
(x◦i , y

◦
i )i∈I

)
≤ F

(
(x∗i , y

∗
i )i∈I

)
.

The reasoning for Theorem 5 is quite straightforward: if compensation payments
are not required, the regularizer G

(
(ζi)i∈I

)
(or penalty term for compensation pay-

ments) does not add anything to the objective value of problem (15) and the incentive-
compatibility constraints are not relevant. Then, the binary-equilibrium model (prob-
lem 14) is a more constrained version of the inner problem of the social-welfare max-
imizing planner: the objective function F

(
(xi, yi)i∈I

)
and the constraints gi

(
xi, yi

)
are present in both programs, but the binary-equilibrium reformulation adds further
constraints.

Theorem 6. If compensation payments do not incur any cost to overall societal wel-

fare in both problems (15) and (14), then the optimal objective value achieved by the

social planner is at least as small as the solution of the binary (quasi-) equilibrium

model, i.e.,

G
((
ζi
)
i∈I

)
= 0 ⇒ F

((
x◦i , y

◦
i

)
i∈I

)
≤ F

((
x∗i , y

∗
i

)
i∈I

)
.

Proof. Assume that G
(
(ζi)i∈I

)
= 0 in both problems (15) and (14). Then, for any

(
ζi
)
i∈I ,

the feasible region of problem (14) is a subset of the feasible region of problem (15). Thus,

for any optimal solution to problem (15), F
(
(x◦i , y

◦
i )i∈I

)
≤ F

(
(x∗i , y

∗
i )i∈I

)
.

The reasoning is similar to Theorem 5: if compensation does not incur any penalty
or negative effects, then redistribution of the biggest possible surplus (or least possi-
ble cost) is indeed the preferred strategy. The additional constraints of the binary-
equilibrium method may restrict the solution space and could make the socially optimal
outcome infeasible in problem (14).

So far, we have shown cases where the social planner is superior to the binary-
equilibrium model. We now show that if compensation payments are to be used, there
is a case where the opposite is true.

A4 Assume that the objective function of the overall problem is the aggregate of
the pay-offs of each player, i.e.,

F
(
xi, yi

)
=
∑
i

fi
(
xi, yi, y−i(x−i)

)
.
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This assumption means that the upper-level player acts as a social planner in the sense
that it optimizes the joint pay-off of all market participants. It also implies that no
player exerts market power (i.e., each firm is a price-taker). The other implication is
that consumer welfare can be included in the objective function, if demand is modeled
as an active player. Thus, this assumption does not restrict the inclusion of consumer
welfare in more general settings.

Theorem 7. Under Assumptions A1, A2, A3 and A4, the optimal solution of the

multi-objective problem subject to a binary quasi-equilibrium (problem 14) is at least as

good as the solution to the social-welfare problem (15) subject to ex-post compensation

to guarantee incentive compatibility, i.e.,

F
((
x∗i , y

∗
i

)
i∈I

)
+G

((
ζ∗i
)
i∈I

)
≤ F

((
x◦i , y

◦
i

)
i∈I

)
+G

((
ζ◦i
)
i∈I

)
.

Proof. Let (x◦i , y
◦
i )i∈I denote the optimal solution to the social-welfare problem, and (ζ◦i )i∈I

is the vector of compensation payments necessary to align the incentives of all players. Follow-

ing Assumption A4, we know that the first order optimality conditions of the social planner

in problem (15) are identical to the stacked first order optimality conditions of each player,

whenever the binary variables are fixed at x◦i , i.e.,

∇yi Fi
(
x◦i , yi

)
+
(
λi
)T∇yi gi(x◦i , yi) =

{
∇yi fi

(
x◦i , yi

)
+
(
λi
)T∇yi gi(x◦i , yi)}

i∈I

Therefore, the vector (y◦i )i∈I is an equilibrium to the continuous game with binary variables

fixed at (x◦i )i∈I , and following Theorem 3, the vector (x◦i , y
◦
i )i∈I can be implemented as a

binary quasi-equilibrium. The outcome (x◦i , y
◦
i )i∈I with compensation vector (ζ◦i )i∈I and

corresponding dual variables thus feasible to problem (14).

The above theorem has an important implication for the numerical implementation
of the binary-equilibrium method: if Assumption A4 is satisfied, the solution to the
social-welfare optimization program (problem 15) can be used as a starting point for
solving the multi-objective binary-equilibrium problem. As the social-welfare prob-
lem is less computationally challenging, this should help in developing more efficient
solution methods for the binary equilibrium method.

Last, we formally state the conditions when the solutions of these two approaches
coincide.

Corollary 2. Under Assumptions A1, A2, A3 and A4, whenever either
∑
i ζ
◦
i = 0

at optimality for problem (15) or G
(
(ζi)i∈I

)
= 0 for both problems (15) and (14)

the optimal objective function value of the multi-objective problem subject to a binary

quasi-equilibrium (problem 14) is equal to the optimal objective function value of the

social-welfare problem (15) subject to ex-post compensation to guarantee incentive com-

patibility, i.e.,

F
((
x∗i , y

∗
i

)
i∈I

)
+G

((
ζ∗i
)
i∈I

)
= F

((
x◦i , y

◦
i

)
i∈I

)
+G

((
ζ◦i
)
i∈I

)
.

Proof. The proof follows from combining the results of Theorems 5 and 6 with the results

from Theorem 7.

In conjunction with Theorems 5 and 6, Theorem 7 has an important implications:
if no compensation is necessary at the welfare-optimal solution and the assumptions
for the theorem are satisfied, the two solutions coincide. However, if compensation is
necessary to mitigate deviation incentives, then the multi-objective program subject
to a binary equilibrium can yield a better over-all result. This is because the multi-
objective program can incorporate the trade-off between welfare, on the one hand, and
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the compensation payments necessary to guarantee a stable Nash equilibrium, on the
other hand.

The standard approach in power market operation, as discussed above, neglects the
nature of the binary, non-cooperative game between generators; because generators are
usually only compensated for actual costs, they may have profitable deviations with
regard to the binary decisions. We illustrate such a case in the application in Section 4.
Convex-hull pricing, as introduced by Gribik et al. (2007), considers the deviation
incentives of individual players, but this comes at the cost of relaxing integrality of
the underlying problem. Neither approach directly considers the trade-off between
market efficiency and compensation payments.

3.6 Computational complexity of the binary quasi-equilibrium

Last, let us compare the mathematical complexity of the social-welfare approach (prob-
lem 15) to our method in a linear problem setting, i.e., Assumption A3 holds and the
upper-level objective function is linear. Here, we focus on comparing the number of
binary variables in each approach. The number of constraints and continuous variables
also influence the computational complexity, and the number of incentive-compatibility
constraints required for the reformulation increases in the number of alternative bi-
nary strategies (see constraint (14f) in the general formulation and constraint (21e)
in the illustrative example in the next section). In our formulation of the binary
equilibrium problem, the exponential increase of complexity in the number of binary
variables is a more serious concern than additional constraints or continuous variables
in a mixed-integer program, hence our focus on this aspect in the following discussion.

The two-stage approach following O’Neill et al. (2005) requires first solving a linear
mixed-binary optimization problem with mn binary variables, where n is the number
of players and m is the number of binary decision variables of each player, and then
n optimization problems with m binary variables to determine the optimal alterna-
tive for each player. Because there is only one decision-maker in the first problem,
it does not matter whether – in the interpretation of the model – there are many
players with few variables, or a small number of players with numerous binary vari-
ables. In contrast, this distinction does make a difference in the binary-equilibrium
formulation. As a consequence, the multi-objective program subject to a binary quasi-
equilibrium (problem 14) requires to solve a mixed-binary optimization problem with
(1 + k) 2m n binary variables, where k is the number of inequality constraints per
player.

The approach requires 2m binary variables to represent each permutation of bi-
nary decisions per player.2 The term k 2m in the number of binary variables is due to
the disjunctive constraints reformulation to replace the complementarity conditions,
which every player has to consider for all permutations of her options in binary vari-
ables. This is necessary to compute the optimal value of the continuous variables for
each permutation. This curse of dimensionality is similar to the numerical caveats of
applying brute-force enumeration strategies to solve binary games, which requires to
solve 2mn continuous problems. However, we illustrate in the numerical application
presented in the following section that the number of binary variables in our method
can be significantly reduced below this bound depending on the actual underlying
problem.

In the power market uplift problem, the number of binary variables to obtain an
exact solution is only (m+ k)n+ l, where l is the number of binary variables required
for the ISO; this is, in principle, not a substantial increase in computational complexity
compared to the mn binary variables in the social-planner problem plus an additional

2For an illustration of a more general application of the binary equilibrium method, we
refer to the natural gas market investment and production game available for download at
https://github.com/danielhuppmann/binary_equilibrium.
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n optimization problems with m binary variables each to determine the compensation
payments required for incentive-compatibility to be satisfied for each generator. In
short, our approach scales well in the number of players, but not necessarily in the
number of binary variables of each player. However, future research entails mitigating
the effect of increase in the number of players. We discuss further practical aspects on
the computational aspects of the problem in Section 4.5.

4 A binary game: The power market uplift problem

In order to illustrate that our approach is advantageous relative to other methods
proposed in the literature for finding equilibria in binary games, we adapt the power
market example from Gabriel et al. (2013). We model a nodal-pricing electricity mar-
ket, in which a market operator collects bids and offers from all players and seeks
to clear the market in a welfare-optimal manner. In contrast to the standard im-
plementation of an Independent System Operator (ISO), the market operator in our
setting explicitly takes into account the incentives of generators to deviate from the
welfare-optimal dispatch schedule.

After formulating the model, we will compare numerical results under different sets
of market rules regarding whether players are allowed to deviate from the schedule
announced by the market operator, which players may receive compensation, and
whether stakeholders may incur losses.

4.1 The power market model

In contrast to the notation introduced earlier, the market operator takes two roles
in this example: first, taking the dispatch decision by the generators as given, she
seeks to maximize short-run market efficiency. She assigns locational prices, which
the generators consider in their individual optimization problems (cf. Hobbs, 2001).
Second, she disburses compensation payments to align the incentives of generators with
the overall (societally most beneficial) outcome. In the parlance of sequential games,
the first function takes place at the same hierarchical level as the generators’ decisions;
the second function is equivalent to the market operator introduced in Section 3.4.
To relate the illustrative model to the general formulation proposed in the previous
section, the decisions of the demand-side-and-network player can be interpreted as
additional constraints of the upper-level player; it serves to translate each generators’
decision into the overall, market-clearing nodal prices and ensures that power flows
are feasible.

The formulation of the power market model is related – but not quite identical – to
the standard implementation of an ISO. Table 2 provides a summary of the notation
used in the example.

The generators

Each generator i ∈ I seeks to maximize her profits from generating and selling elec-
tricity over the time horizon t ∈ T . For consistency with the previous chapter, the
generator’s optimization problem is written in minimization form:

min
xti,yti,z

on
ti ,z

off
ti

− ptn(i)yti + cGi yti + c on
i z on

ti + c off
i z off

ti (16a)

s.t. xtig
min
i ≤ yti ≤ xtigmaxi

(
α on
ti , β

on
ti

)
(16b)

xti − x(t−1)i + z on
ti − z off

ti = 0 (16c)

xti ∈ {0, 1}, yti, z
on
ti , z

off
ti ∈ R+
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Sets & Mappings
n,m ∈ N ... nodes
t ∈ T ... time step, hours
i ∈ I ... generators, power plant units
j ∈ J ... load, demand units
l ∈ L ... power lines
i ∈ In, j ∈ Jn ... generator/load unit mapping to node n
n(i), n(j) ... node mapping to generator i/load unit j
φ ∈ Φ ... set of dispatch options (schedules) for each generator
t ∈ Tφ ... hours in which a generator is active in dispatch option φ

Primal variables
xti ... on/off decision for generator i in hour t

z on
ti , z

off
ti ... inter-temporal start-up/shut-down decision

yti ... actual generation by generator i in hour t
y on
ti ... generation if binary variable is fixed at xi

dtj ... demand by unit j in hour t
δtn ... voltage angle

Dual variables
α on
ti , β

on
ti ... dual to minimum activity/maximum generation capacity

ptn ... locational marginal price
νtj ... dual to maximum load constraint
µ+
tl , µ

−
tl ... dual to voltage angle band constraints

ξ+
tn, ξ

−
tn ... dual to thermal line capacity constraints

γt ... dual to slack bus constraints

Switch and compensation variables

κ on
ti , κ

off
ti ... switch value (defined per time step)

ζi ... compensation payment (defined over entire time horizon)

Parameters
cGi ... linear generation costs

c on
i , c off

i ... start-up/shut-down costs
cDφ ... total commitment costs in dispatch option φ (start-up, shut-

down)
gmini ... minimum activity level if power plant is online
gmaxi ... maximum generation capacity
xiniti ... power plant status at start of model horizon (t = 0)
uDtj ... utility of demand unit j for using electricity
dmaxtj ... maximum load of unit j
fmaxl ... thermal capacity of power line l
Bnk, Hlk ... line/node susceptance/network transfer matrices

Table 2: Notation for the nodal power market problem
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where the linear generation costs are given by cGi , the (binary) start-up costs are given
by c on

i , and the (binary) shut-down costs are given by c off
i . The operation schedule is

denoted by xti, the decision how much electricity to generate and sell to the grid is yti.
The ramping decisions in a particular period are denoted by z on

ti (start-up) and z off
ti

(shut-down), respectively. The status of a power plant at the beginning of the model
horizon (i.e., x0i) is given by the parameter xiniti .

The first set of constraints (16b) concerns the maximum generation capacity and
the minimum activity level (gmini , gmaxi ), if the power plant is operating (xti = 1). The
shadow variables (α on

ti , β
on
ti ) are only meaningful given a fixed operation schedule xti,

and we only compute them if the power plant is operational. If the power plant
is not switched on, generation is equal to zero; however, due to costs incurred by
shutting down the plant (assuming it was operational in the previous period or at the
beginning of the model horizon), total profits may be negative even when the plant is
not generating electricity.

The second constraint (16c) concerns the inter-temporal consideration, i.e., the
decision in which time periods the power plant is operational: while the start-up and
shut-down variables z on

ti and z off
ti are binary in nature, they can be relaxed to positive

real numbers without loss of information. Integrality of these variables is automati-
cally enforced by the on/off variables xti. Because these variables are determined by
constraint (16c) for any given commitment schedule, we do not explicitly include the
first order conditions for these variables.

The market clearing price ptn is the vector of the locational marginal prices over
time, where n(i) denotes the node at which generator i is located; the set n,m ∈ N
denotes the nodes in the network. The price arises as the dual of the market clearing
condition introduced below, and each generator takes the price at her node as given.

Assuming that the power plant i is operating in period t, the optimal amount of
power generated y on

ti and the dual variables associated with the constraints can be
determined by solving the generator’s first order optimality (KKT) conditions:

0 = cGi − ptn(i) + β on
ti − α on

ti , y on
ti (free) (17a)

0 ≤ −gminti + y on
ti ⊥ α on

ti ≥ 0 (17b)

0 ≤ gmaxti − y on
ti ⊥ β on

ti ≥ 0 (17c)

Otherwise, the amount generated is zero, and we do not require the dual variables
in that case. Hence, in contrast to the general formulation in Section 3, we can omit
the KKT conditions in this example for the case that the power plant is not operating
in period t.

Demand for electricity and network feasibility (market clearing)

The spot market is cleared by a player seeking to maximize the welfare (utility) of
consumers while guaranteeing feasibility of the transmission system. She takes the
unit commitment at time t and the dispatch of each power plant as given, written here
as yti, and she assigns locational prices ptn, which the generators consider in their
optimization problems.

There are a set of units that consume electricity j ∈ J (load dtj), each located at
a specific node n(j). The sets In and Jn are the generators and load units located at
node n, respectively. There are a set of power lines l ∈ L connecting the nodes; the
direct-current load flow (DCLF) characteristics are captured using the susceptance
matrix Bnm (node-to-node) and network transfer matrix Hnl (node-to-line mapping,
cf. Leuthold et al., 2012). This formulation is equivalent to using a power transfer
distribution factor (PTDF) matrix.

This player maximizes the utility of demand from using electricity dtj , where
the per-unit utility is given by uDtj . The first constraint is the energy balance con-
straint (18b), balancing load, generation and net injections into the network at each
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node n. The second constraint is the maximum demand, as a load unit cannot use
more than dmaxtj units of electricity.

The next constraints (18d,18e) ensure that network flows are feasible and the
thermal capacity fmaxl of each power line is observed. Constraints (18f,18g) guarantee
that the voltage angle δtn is within the range [−π, π]. The B-H-formulation requires
to define one arbitrary node as slack bus n̂, at which the voltage angle δtn̂ is zero by
assumption (constraint 18h). In line with the previous notation, we write the objective
function as a minimization problem:

min
dtj ,δtn

∑
j∈J

−uDtjdtj (18a)

s.t.
∑
j∈Jn

dtj −
∑
i∈In

yti +
∑
m∈N

Bnmδtm = 0 (ptn) (18b)

dmaxtj − dtj ≥ 0 (νtj) (18c)

fmaxl −
∑
n∈N

Hlnδtn ≥ 0 (µ+
tl) (18d)

fmaxl +
∑
n∈N

Hlnδtn ≥ 0 (µ−tl) (18e)

π − δtn ≥ 0 (ξ+
tn) (18f)

π + δtn ≥ 0 (ξ−tn) (18g)

δtn̂ = 0 (γt) (18h)

Because the decision variables of demand and voltage angle are continuous, this
problem can be solved simultaneously with the generators’ problems using first order
optimality conditions:

0 ≤ −uDtj + ptn(i) + νtj ⊥ dtj ≥ 0 (19a)

0 =
∑
m∈N

Bmnptn +
∑
l∈L

Hln
(
µ+
tl + µ−tl

)
+ξ+

tn − ξ−tn −

{
γt if n = n̂

0 else

}
, δtn (free) (19b)

0 =
∑
j∈Jn

dtj −
∑
i∈In

yti +
∑
m∈N

Bnmδtm , ptn (free) (19c)

0 ≤ dmaxtj − dtj ⊥ νtj ≥ 0 (19d)

0 ≤ fmaxl −
∑
n∈N

Hlnδtn ⊥ µ+
tl ≥ 0 (19e)

0 ≤ fmaxl +
∑
n∈N

Hlnδtn ⊥ µ−tl ≥ 0 (19f)

0 ≤ π − δtn ⊥ ξ+
tn ≥ 0 (19g)

0 ≤ π + δtn ⊥ ξ−tn ≥ 0 (19h)

0 = δtn̂ , γt (free) (19i)

The upper-level market operator

As stated above, we distinguish between the short-term role of the market operator,
which clears the market taking the dispatch of the generators as given, and the upper-
level player as introduced in Section 3, which takes the role of an equilibrium selection
mechanism. She assigns compensation payments to align the incentives of market
participants and ensure that no player has a profitable deviation. Mathematically,
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this player forms the upper level of a two-stage, hierarchical game; the lower level is
the binary quasi-equilibrium between the generators and demand, with compensation
payments if necessary.

It is obvious from the upper-level player’s objective function that this is closely
related to the generators and the market-clearing player, but not identical – the mar-
ket operator does not only consider short-term market efficiency, but includes the
welfare loss from the disbursement of compensation payments ζi. The objective func-
tion satisfies Assumptions A2 and A4, and the individual player’s problems satisfy
Assumptions A1 and A3.

min
∑
t∈T

[∑
i∈I

cGi yti + c on
i z on

ti + c off
i z off

ti −
∑
j∈J

uDtjdtj

]
+
∑
i∈I

ζi (20)

s.t. KKT conditions of demand and network feasibility (equations 19)

KKT conditions of the generators (equations 17)

binary equilibrium between generators (equations 21) specified below

The first part of the objective function is the sum of the generators’ incurred
costs and the utility of load units from using electricity; this is equivalent to F (·)
in the theoretical formulation (problem 14). The second part is the regularizer G(·),
although it has a distinct interpretation in this example: because the compensation
payments to generators have to be funded through fees on market participants or from
general taxation, they usually involve some efficiency loss from market distortions.
Here, we assume that every dollar paid in compensation is a 100 % loss to overall
welfare. One could assume that the loss is even greater because of the aforementioned
distortions; alternatively, one could argue that compensation does not incur a loss at
all, as it is just a redistribution of rents between stakeholders. We leave it to future,
more policy-applied work to tackle this question.

Let us now turn to the equations necessary to guarantee the binary equilibrium
between the generators. If xti = 0 (i.e., the power plant of generator i is switched off
in period t), the first order conditions can be omitted altogether; both the generation
level and the short-term profits in this case are zero, and the fixed costs from starting
up or shutting down will be included in the incentive-compatibility constraint. This
leaves the KKT conditions of the generators (equations 17) to determine the optimal,
short-term dispatch in the case that the generator is operating in this period (xti = 1).

Next, the inter-temporal constraint of the power plant operation status has to
be considered (constraint 21a); as discussed above, the start-up and shut-down vari-
ables

(
z on
ti , z

off
ti

)
are determined by the unit commitment variables xi and we therefore

do not need to include KKT conditions for them. They only serve to translate the
change in the unit commitment level into realized dispatch costs.

Next, let us turn to the incentive-compatibility constraint: we now have multiple
time periods and we formulate the incentive-compatibility constraint in a different way
than in the general formulation in Section 3 (equation 14f). This is due to the problem
that it is not obvious how to allocate start-up costs over multiple time periods. It is
therefore preferable to define the compensation payments ζi ∈ R+ over the entire model
horizon and also write the incentive-compatibility constraint in this way, rather than
as a period-by-period constraint. As a consequence, we also change the interpretation
of
(
κ on
ti , κ

off
ti

)
∈ R: it now represents the short-term profits or losses (revenue less

generation costs), and it is not any more restricted to positive values, in contrast to
the switch value in the previous section and the overview in Table 1.

We directly use the linearization proposed in Theorem 4 to write the value of
the bilinear objective function (ptn(i)yti − cGi yti) as a linear function (β on

ti g
max
ti −

α on
ti g

min
ti ). Constraints (21b–21d) succinctly describe the short-term profits or losses

to the vector
(
κ on
ti , κ

off
ti

)
– where κ on

ti can only be different from zero if the power plant
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is operating in time period t in equilibrium (xti = 1), and κ off
ti is free iff it is shut down

(xti = 0).

xti − x(t−1)i + z on
ti − z off

ti = 0 (21a)

β on
ti g

max
ti − α on

ti g
min
ti − κ on

ti + κ off
ti = 0 (21b)

|κ on
ti | ≤ xti K̃ (21c)

|κ off
ti | ≤ (1− xti) K̃ (21d)∑

t∈T

[
κ on
ti − c on

i z on
ti − c off

i z off
ti

]
+ ζi ≥

∑
t∈Tφ

[
β on
ti g

max
ti − α on

ti g
min
ti

]
− cDφi

∀ φ ∈ Φ (21e)

The last constraint (equation 21e) is the incentive-compatibility condition: it ensures
that the profits for each generator (per period, short-term profits or losses from gener-
ating less the commitment costs) in the actual market outcome plus the compensation
(left-hand side) are greater than the profits which that player could earn in any other
dispatch schedule φ (right-hand side). The revenues for each dispatch schedule can
be computed from the duals to the maximum generation and minimum activity con-
straints, summing over the periods in which the generator is operational according to
schedule φ; these periods are collected in the set Tφ ⊆ T . The total commitment costs
for each dispatch schedule are denoted by cDφi.

The final set of constraints of the binary quasi-equilibrium “translates” the optimal
generation decision for both states of the binary variable (y on

ti , 0) into the generation
level which is actually realized in equilibrium, yti.

0 ≤ yti ≤ xtigmaxti (21f)

y on
ti − (1− xti) gmaxti ≤ yti ≤ y on

ti + (1− xti) gmaxti (21g)

As stated in the previous section, the binary variables have an additional role in this
formulation relative to a standard unit-commitment model: rather than simply stating
whether a plant is operating or not, they control which of the two potential states with
regard to the continuous variables are active and realized in equilibrium (yti = y on

ti

if xti = 1, yti = 0 otherwise). Furthermore, it ensures that the variables capturing the
short-term profit

(
κ on
ti , κ

off
ti

)
are correctly assigned.

4.2 Myopic behavior vs. consistent deviation incentives

There is one subtle difference between the general binary Nash game formulation in
Section 3 and the present market power example: in the general formulation of the
incentive-compatibility constraint, each player considers the impact of its own binary
decision on the market outcome, comparing the respective pay-offs fi

(
1, ỹ

(1)
i , y−i(x−i)

)
and fi

(
0, ỹ

(0)
i , y−i(x−i)

)
, as specified in equations (11). In the example formulated

here, each generator is assumed to act in a perfectly competitive manner in the sense
of revealing her true cost structure to the market operator and taking the price as
given, irrespective of her own decision. One could say that the generators are assumed
to be myopic; i.e., they do not consider that their decision to deviate will impact the
resulting market price. That is in line with Scarf’s definition that introducing a new
activity must be profitable at the “old” prices (Scarf, 1990).

From a game-theoretic point of view, this is inconsistent; however, from the point of
view of market operation in the electricity context, our formulation is valid. Of course,
this argument does not hold in general, because a market operator (or coordination
agent) in our sense usually does not exist for commodities markets or other real-world
applications of binary games. To model such situations, each player’s own impact
on prices contingent on its entry or exit should be captured. The method proposed

26



here allows to do this, although the power market model would have to be formulated
differently.

Even in the electricity context, it may be appropriate to compute compensation
payments based on the alternative prices (i.e., prices resulting after a deviation), rather
than those in the actual market outcome. It is not a priori obvious whether compen-
sation payments to guarantee a binary quasi-equilibrium would be larger or smaller in
either formulation. We leave this analysis for future research.

4.3 Alternative rules for compensation payments

The incentive-compatibility constraint as stated above (equation 21e) is the direct
extension of constraint (12) in a multi-period setting. The short-term profits or losses
are succinctly captured by the vector

(
κ on
ti , κ

off
ti

)
∈ R, and the start-up and shut-

down costs are linear terms. As a consequence, this method is flexible and allows to
easily implement a wide range of market rules regarding compensation disbursements.
To illustrate the versatility of the approach and its applicability to different market
designs, we formulate two alternative versions of the model.

First, we implement a no-loss rule to replace the incentive-compatibility con-
straints: no generator may earn negative profits (i.e., lose money out of pocket):∑

t∈T

[
κ on
ti − c on

i z on
ti − c off

i z off
ti

]
+ ζi ≥ 0 (21e’)

In this setting, there is no constraint stating that the dispatch selected by the ISO
has to be incentive-compatible for each generator. Instead, every market participant is
forced to follow the schedule selected by the market operator. Hence, this setting omits
the game-theoretic considerations. Furthermore, the power plant is compensated even
if it would incur losses irrespective of the selected dispatch, so there may be over-
compensation. This can happen in our setting because there are shut-down costs and
some generators are operational at the beginning of the model horizon.

The second rule stipulates that only power plants can receive compensation pay-
ments if they were active at least once over the model horizon; this is to reflect the
potential concern that no generator should receive compensation for doing nothing.

ζi ≤
∑
t∈T

xti K̃ (21e”)

4.4 Illustrative results

The power system adapted from Gabriel et al. (2013) consists of 6 nodes, with 9 gen-
erators and 4 load units (see Figure 1). Each generator has a maximum generation
capacity of 100 MW and a minimum generation level, if operating, of 50 MW. Because
we assume that one time period t lasts for one hour, capacity (MW) and energy (MWh)
are equivalent.

Generators g3 to g6 are operational at the beginning of the model horizon and
the power plants differ with regard to start-up, shut-down, and marginal generation
costs. Demand for electricity varies over time, with a high utility for energy (or large
willingness-to-pay, WTP) in the first hour and lower WTP in the second hour. All data
for generators and load units are provided in Table 3. Regarding the multi-objective
function representing the market operator, we assume that each monetary unit paid
in compensation is a one-for-one loss of welfare (sum of consumer utility, generator
profits, and congestion rents).

All lines have a thermal capacity of 300 MW, except for the two inter-connector
lines n2− n4 and n3− n6, which have a reduced thermal capacity of 20 MW. Due to
these bottlenecks, the standard, welfare-optimal unit commitment model yields losses
for some generators.
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We compare three different market rule cases; the game-theoretic considerations
and regulations (constraints) concerning losses and compensations are repeated here
for clarity:

Game-theoretic: This is the binary quasi-equilibrium solution, as selected by the
market operator; every generator receives compensation such that she has no
profitable deviation. The constraint is repeated here for easier comparison with
the other market designs.∑
t∈T

[
κ on
ti − c on

i z on
ti − c off

i z off
ti

]
+ ζi ≥

∑
t∈Tφ

[
β on
ti g

max
ti −α on

ti g
min
ti

]
− cDφi

∀ i ∈ I, φ ∈ Φ (cf. 21e)

No-loss rule: We solve the multi-objective program (problem 20) subject to the con-
straint that no player earns negative profits (instead of constraint 21e). Players
may have profitable deviations, for which they are not compensated.∑

t∈T

[
κ on
ti − c on

i z on
ti − c off

i z off
ti

]
+ ζi ≥ 0 ∀ i ∈ I (cf. 21e’)

Incidentally, this case yields identical results as the standard approach, in which
the power market model is solved according to the two-stage procedure following
O’Neill et al. (2005), i.e., pay-offs are calculated based on prices from the dual to
the energy-balance constraint from the linearized problem, and non-confiscatory
make-whole payments are computed ex-post (cf. Sioshansi, 2014). However, the
observation that the two-stage procedure and the integrated multi-objective
yield an identical result is specific to this stylized example, and not a general
property of the multi-objective program under a no-loss rule.

No-loss & active: We add a constraint to the previous case No-loss rule stating that
only active generators can receive compensation.

ζi ≤
∑
t∈T

xti K̃ ∀ i ∈ I (cf. 21e”)

The rationale for this rule may be to prevent gaming, or in response to the public
perception that there should not be payments for not providing a service.

Table 4 summarizes the rents earned by the generators in the three market rule
cases, as well as the required compensation. Table 5 shows the resulting nodal prices
as well as the amount generated and consumed by each unit. Generators g1 and g2
are not operational at the beginning of the time horizon and are not switched on in

n1 n2

n3

n4 n5

n6

g1 g2 g3 g4

g5 g6

g7

g8g9d1

d2 d3

d4

Figure 1: 6-node network, adapted from Gabriel et al. (2013), p. 18
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any of these cases; therefore, they are omitted from the tables wherever all entries are
zero.

For reasons of illustration, we first discuss the results for the No-loss case; as stated
before, this yields the same outcome as the method proposed by O’Neill et al. (2005)
with ex-post compensation in this example. Generator g3 is switched off immediately
and therefore incurs shut-down costs of $ 300, while generator g4 is operating, but the
nodal price at node n2 is below her marginal costs. Both of these generators are made
whole such that they do not incur losses. The deviation incentives of each player are
shown in Table 6; here, one can see that generator g9 has a profitable deviation given
market prices in the no-loss case. As a consequence, this generator has an incentive
to switch on the power plant in spite of the schedule announced by the ISO, as she
would earn positive profits given the prevailing market prices. Hence, if self-scheduling
is an option for the generator, this outcome would not be a Nash equilibrium and the
solution would not be stable against deviations.

In the game-theoretic case, the market operator could choose to compensate gener-
ator g9 to counteract self-scheduling by that player, and then obtain the same dispatch
and nodal prices as in the no-loss case. This would require to compensate generator g9
to the tune of $ 95 and generator g3 with $ 40. Generator g4 does not have a prof-
itable deviation, because her losses are at least as great under all alternative dispatch
schedules; hence, she does not receive compensation. The objective value of the market
operator would be $ 2965 (total welfare of $ 3100 less $ 135 disbursed as compensation).

However, because of the integrated consideration of market efficiency and compen-
sation payments, the market operator realizes that it is preferable to dispatch gen-
erator g9 and instead shut down generator g4, realizing an objective value of $ 2975.
Generator g9 now incurs losses, because the resulting locational marginal prices given
the new dispatch are lower than her marginal costs; for these losses, she is compen-
sated by the market operator to prevent her from leaving the market. Overall, market
efficiency is slightly reduced, but the compensation required to maintain incentive
compatibility in this binary quasi-equilibrium is significantly lower than the payments
necessary to guarantee incentive compatibility of the welfare-optimal solution.

The last case, No-loss & active, illustrates how strict market rules can hamper
efficient market operation, even when they are intended to mitigate strategic behavior
or increase public acceptance of compensation payments. Generator g3 would incur
losses from shutting down at the beginning of the period, but cannot receive compen-
sation if she doesn’t generate at least in one period; therefore, the market operator
dispatches this plant throughout the model horizon. Because this would result in in-

cGi c on
i c off

i xinit

g1 24 100 500 0
g2 22 140 350 0
g3 20 180 300 1
g4 18 220 250 1
g5 16 250 220 1
g6 14 300 180 1
g7 12 350 140 0
g8 10 500 100 0
g9 14 105 100 0

(a) Cost structure (in $/MWh and $,
respectively) and initial operational
status by generator

uD1j uD2j dmax1j dmax2j

d1 25 20 100 50
d2 26 20 100 50
d3 26 21 100 50
d4 17 21 100 50

(b) Utility and maximum demand by
load unit and time period (in $/MWh
and MW, respectively)

Table 3: Data for generators and load
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No-loss rule Game-theoretic No-loss & active
xiniti (xti) πi ζi (xti) πi ζi (xti) πi ζi

g3 1 (0, 0) −300 300 (0, 0) −300 15 (1, 1) −525 525
g4 1 (1, 1) −160 160 (0, 0) −250 65 (1, 0) −335 335
g5 1 (1, 1) 50 (1, 1) −50 (1, 1) −50 50
g6 1 (1, 1) 200 (1, 1) 100 (1, 1) 100
g7 0 (1, 1) 690 (1, 1) 715 (1, 1) 690
g8 0 (1, 1) 680 (1, 1) 730 (1, 1) 550
g9 0 (0, 0) (1, 1) −5 5 (0, 0)

Generator profit 1160 460 940 85 435 910
Consumer surplus 1380 1480 1830
Congestion rent 560 640 740

Total welfare 3100 460 3060 85 3005 910

Table 4: Profits by generator (πi) before compensation is disbursed, and rents by
stakeholder group for each market rule case; on-off status and initial operational
status by generator

feasible flows on the network in the second, low-demand period, the market operator
shuts down generator g4 at the end of the first period. Now, this generator incurs
losses from generating at a nodal price below marginal costs in the first period and
the shutting-down costs, and she is compensated accordingly.

In this case, welfare is reduced by 3 % compared to the No-loss case, while the
required compensation payments are almost twice as high. Assuming that every dollar
disbursed in compensation payments is a 100 % loss of welfare, the overall utility
and profits in the system is 30 % lower than in the best-possible outcome, the game-
theoretic case. At the same time, it is interesting to note that in the No-loss &
active case, consumer surplus and congestion rents are substantially larger than in the
other cases – before accounting for the transfers necessary to finance the compensation
payments.

Of course, the question is why some generators were already operational at the
beginning of the model horizon. If this is because the market operator/ISO dispatched
them on the previous day, and then allows them to incur losses on the following day,
this may not seem equitable. If, on the other hand, this was a decision taken by
the generators themselves based on faulty projections or bad planning, it could be
argued that letting them lose money from such myopic decisions is a good penalty
to incentivize better planning. We do not venture further in this discussion here; our
intention here is only to illustrate that a no-loss rule and compensation may not always
be necessary from a game-theoretic point of view.

4.5 Numerical implementation and a note on computation

Reformulating the complementarity conditions of the demand-side player (equations 19)
and the generators (equations 17b and 17c) using disjunctive constraints yields a
mixed-integer linear program (Fortuny-Amat and McCarl, 1981). This approach to
determine a binary quasi-equilibrium requires 3 |T | |I| = 54 binary variables for the
generators and 2 |T |

(
|J | + |L| + |N | − 1

)
= 68 binary variables for the disjunctive-

constraints reformulation of the ISO. The total number of binary variables is there-
fore |T |

(
2 (|I|+ |J |+ |L|+ |N |−1)+ |I|

)
= 122. The large scalars K̃ for the disjunctive

constraints reformulation and the constraints on assigning the correct values κ on
ti , κ

off
ti

(equations 21c and 21d) were set to 1000.
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No-loss rule Game-theoretic No-loss & active
t1 t2 t1 t2 t1 t2

Price n1 18 12.8 16.5 12.8 13.5 12.8
n2 18 11.6 17 11.6 11 11.6
n3 18 14 16 14 16 14
n4 26 20 26 20 28.5 20
n5 26 18.8 26 18 26 18.8
n6 26 17.6 27 17 23.5 17.6

Generation g3 25 25
g4 40 25 25
g5 50 25 40 25 37.5 25
g6 50 30 50 25 50 30
g7 50 50 50 50 50 50
g8 50 50 50 50 50 50
g9 50 40

Load d1 100 50 100 50 100 50
d2 10 30 65 40 30
d3 30 50 50 37.5 50
d4 100 50 75 50 100 50

Total dispatch 240 180 240 190 237.5 180

Table 5: Dispatch and price for each market structure (prices in $/MWh, dis-
patch in MWh)

This compares to |T | |I| = 18 binary variables to compute the welfare-optimal
dispatch and integer pricing following the approach proposed by O’Neill et al. (2005).
Our method is therefore more computationally expensive, but the number of binary
variables increases only linearly in the number of time periods, and sublinear in the
number of generators, load units, nodes and lines. Solving the resulting equilibrium
problem for every permutation of binary variables instead and checking for incentive
compatibility and profitable deviations ex-post (i.e., the brute-force approach) grows
exponentially in complexity and requires solving 2|T | |I| > 262, 000 (linear) equilibrium
problems.

The numerical model presented in this section is implemented in GAMS and solved
using the GUROBI solver. The code includes the possibility of multiple bidding blocks
for each generator and demand unit, as in the model proposed by Gabriel et al. (2013),
even though this option is not used here. The GAMS code is published under a
Creative Commons Attribution 4.0 International License and is available for down-
load at https://github.com/danielhuppmann/binary_equilibrium. An algorithm
for enumerating all permutations and checking for deviation incentives ex-post was
also implemented to verify the accuracy of our methodology.

5 Conclusions and outlook

Non-cooperative games with binary decision variables are often encountered in real-
world applications, from engineering to economics. It is well known that equilibria
in such problems do not necessarily exist, and even if they do exist, finding them is
mathematically challenging. The most frequently studied example is the power market
uplift problem, which seeks to reconcile the difficulty of finding market-clearing prices
– based on the short-term, efficient dispatch – with obtaining incentive-compatible
outcomes in decentralized, non-cooperative markets. To date, no approach to exactly
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solve such games exists.
In this work, we propose an exact solution method for binary equilibrium problems

based on computing optimal responses for each player for both values of the binary
variable (or vector), rather than assuming a linearization of the binary variable or
relaxing the optimality conditions. We then add an explicit incentive-compatibility
constraint to ensure that no player has a profitable deviation. We define the notion
of a binary quasi-equilibrium to describe situations where no equilibrium exists for
the original problem, but in which compensation payments can align the incentives
of players such that no player has a profitable deviation and a stable equilibrium is
realized.

To this end, we introduce a market operator that acts as an equilibrium selection
mechanism according to an upper-level objective function. By recasting the binary
equilibrium problem as a hierarchical multi-objective program subject to a binary
quasi-equilibrium, our method allows to explicitly incorporate the trade-off between
market efficiency and the budget required for compensation payments to obtain an
incentive-compatible market outcome. With regard to the power market, this can
be interpreted as striking a balance between maximizing short-run welfare (consumer
utility less generation costs) and the amount of uplift payments, which are usually
funded through taxation, usage fees, or price mark-ups.

Instead of a shadow price from a marginal relaxation of the integral constraint,
our method yields a “switch value,” which is the loss a player would incur if she
were to deviate from her individually optimal decision. The switch value can also be
readily interpreted as the compensation payment a player should receive if the market
operator requires her to deviate from the individually optimal strategy. As elaborated
earlier, we also believe that the switch value can be used for algorithmic improvements
and new approaches to solve binary problems (e.g., act as a stopping criterion, guide
a branch-and-bound algorithm).

Most importantly, we show that this method can be reformulated and solved as
a mixed-binary linear program under general conditions, and that the solution is at
least as good as the current practice under certain assumptions. Hence, the approach
can be applied to a wide range of real-world problems, including Nash equilibria in
energy and natural resource markets. The approach allows to include a variety of
market regulations, such as “no-loss” rules common in power markets. These rules
can be formulated as linear constraints and therefore do not substantially increase the
numerical complexity of obtaining a binary quasi-equilibrium.

The solution method for binary equilibrium problems proposed in this work can
be extended to include Generalized Nash games (cf. Harker, 1991) or games with
individual joint constraints (Nabetani et al., 2011), as well as equilibrium problems
in discrete rather than binary variables. Furthermore, more general non-cooperative
games can be solved in this framework, such as games based on conjectural variations
(Wogrin et al., 2013). Extending the mathematical approach to stochastic applications
is also straightforward.

In economic applications, the binary variables can be interpreted as on/off deci-
sions, or as market-entrance or investment decisions in a dynamic, two-stage setting.
Lumpy investment in the European power grid capacity by national regulators, each
seeking to shift rents towards their domestic constituents, is a natural next applica-
tion of the binary equilibrium method (cf. Huppmann and Egerer, 2015). The Eu-
ropean regulatory agency ACER and the inter-TSO compensation mechanism under
its purview are very similar to the structure of the structure of our proposed method,
where an upper-level coordination player guides the non-cooperative players towards
a beneficial equilibrium.

Because most current power markets are based on a welfare-optimal dispatch with
ex-post compensation payments, there may exist numerous gaming opportunities for
large utilities or other market participants in the current setting; the settlement in 2013
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between the Federal Energy Regulatory Commission (FERC) and JP Morgan regard-
ing manipulative bidding strategies is a case in point3. It will be the subject of future
research to analyze whether our solution method for binary equilibrium problems will
be more or less prone to market power exertion and strategic behavior. Our method
explicitly incorporates game-theoretic considerations (i.e., deviation incentives) rather
than simplistic no-loss rules, and it includes the trade-off between maximizing market
efficiency and minimizing compensation payments. As a consequence, we believe that
our approach has significant potential to improve the current practice in power market
operation. In particular, our approach allows to include the incentives of non-active
players to enter the market; hence, the behavior of non-dispatched generators enter-
ing the market through self-commitment (or “self-scheduling”) can be more effectively
addressed (cf. Sioshansi et al., 2010).

As a numerical application, we solve the power market uplift problem analyzed
by Gabriel et al. (2013). We illustrate that the current practice in power market
operation can lead to situations where players have profitable deviations. In particular,
when considering the nature of the non-cooperative game in our stylized example,
the market operator prefers to deviate from the welfare-optimal dispatch, because a
slight reduction in market efficiency is traded for a strong reduction in compensation
payments necessary to maintain incentive compatibility of the market outcome.

To illustrate the flexibility of our approach, we also solve the model under a hypo-
thetical market regulation stating that a) no generator may lose money, and b) only
active generators may receive compensation. This yields a welfare loss of 3 % relative
to the optimal solution. At the same time, compensation payments are almost twice as
high as in the currently used approach, so that compensation payments eat up almost
a third of total welfare in the market. We take this as a warning that market rules
may have rather counter-intuitive effects, even when they are implemented with the
aim of preventing strategic behavior or mitigating other inefficiencies.
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versus closed loop capacity equilibria in electricity markets under perfect and oligopolistic
competition. Mathematical Programming, 140(2):295–322, 2013.

Appendix
GAMS codes, a numerical test case & additional examples

The GAMS code for the binary-equilibrium model presented in Chapter 4 is published under
a Creative Commons Attribution 4.0 International License and is available for download
at https://github.com/danielhuppmann/binary_equilibrium. The repository also includes
an application of this method to a natural gas market investment and production game to
illustrate how the binary equilibrium approach can be applied to more general cases where
players interact in settings with multiple binary variables.

A numerical test case

To illustrate the numerical properties of the binary-equilibrium method, we apply the power
market model presented in Chapter 4 to the open-source model and data set provided by
H. Pandzic, Y. Dvorkin, T. Qiu, Y. Wang, and D. Kirschen at the Renewable Energy Analysis
Lab (REAL), University of Washington, Seattle, USA (Online, http://www.ee.washington.
edu/research/real/gams_code.html). This open-source data and model were specifically
adapted to provide an easily scalable test case, using demand and wind timeseries over multiple
days and apply different settings to the dataset (differentiated by favourable or unfavourable
wind situations, wind penetration, power plant cost characteristics, grid congestion, etc.).

The test cases were run on a Dell Optiplex 9020 workstation (Windows 7, 8-core 64bit
Intel i7-4790 CPU@3.6GHz, 16GB RAM) using the GUROBI solver in GAMS 24.4.6, and
setting the GUROBI options to 3 threads on 6 cores.
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For the present purpose, we use 7 consecutive days, each day represented by 12 two-
hour timesteps, 48 nodes (two out of three regions in the dataset), 64 power plants, and 79
lines (with transmission constraints). Then, we apply two different scenarios: first, a case
with favourable wind conditions, in which not much congestion occurs in the network. In
this case, the welfare-optimal solution (768 binary variables) was found within 0.5-2 seconds,
except for day6, where it took 92 seconds (optimality threshold 0.01%). Using the respective
starting point, GUROBI took between 102 and 150 seconds to determine that this was indeed
the optimal outcome, and that no welfare improvement (considering the trade-off between
maximum welfare and compensation payments) is possible (9,552 binary variables, at a 0.1%
optimality threshold). For details, see the parameter “report summary” in the results file in
the github repository output/report MOPBQE region 1 2 wind fav.gdx.

As a second case, we set the switch in the original dataset to “unfavourable wind con-
ditions”. As before, computation times are up to ten seconds for the social-welfare problem
(WF-max), and between 102 and 150 seconds for the binary equilibrium problem (Bin Eq),
except for Day 3, where the solver encountered numerical problems and did not find any
solution.

Over the entire week, congestion rents are much higher than in the “favourable wind
case”, and the binary equilibrium method identified reductions of compensation payments of
up to 35%, at no discernible loss of aggregate, or gross, welfare (i.e. before compensation
payments. In Table 7, we show both the compensation required to guarantee no losses as well
as the incentive-compatible compensation payments (“IC comp”), in line with the discussion in
Section 3.5 (Problem 15). Note that the compensation payments are around 10% of generators
profits – they may seem small compared to the overall welfare, but this is because the consumer
surplus is computed as the difference between the actual price and the load-shedding price
bound.

Over the entire week, congestion rents are much higher than in the case with favorable
wind conditions, and the binary equilibrium method identified reductions of compensation
payments of up to 35%, at no discernible loss of aggregate welfare. For further details, please
refer to output/report MOPBQE region 1 2 wind unfav.gdx in the github repository.

Last, let us point out that there are almost 10,000 dispatch options for the 64 generators,
already accounting for eliminating all dispatch schedules that are not possible due to minimum
up- or downtime constraints (this is shown in the report “dispatch options” in the gdx report
file). If one were to try brute-force enumeration of all permutations of options to determine
stable Nash equilibria, this would require to solve 10128 equilibrium problems for these test
instances. In all cases, we also tried to solve the binary-equilibrium model directly without
using the starting point derived from the socially optimal outcome. In no case was a solution
found within the specified time limit of one hour.
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