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Maximum Principle for Infinite-Horizon Optimal Control Problems

under Weak Regularity Assumptions∗

S. M. Aseev† V. M. Veliov‡

Abstract

The paper deals with first order necessary optimality conditions for a class of infinite-horizon
optimal control problems that arise in economic applications. Neither convergence of the integral
utility functional nor local boundedness of the optimal control is assumed. Using the classical
needle variations technique we develop a normal form version of the Pontryagin maximum
principle with an explicitly specified adjoint variable under weak regularity assumptions. The
result generalizes some previous results in this direction. An illustrative economical example is
presented.

1 Introduction

Infinite-horizon optimal control problems arise in many fields of economics, in particular in problems
of optimization of economic growth. Typically, the initial state is fixed and the terminal state (at
infinity) is free in such problems, while the utility functional to be maximized is given by an
improper integral on the time interval [0,∞).

It is well known that the infinite time-horizon may cause the appearance of various “patholog-
ical” phenomena in the relations of the corresponding general version of the Pontryagin maximum
principle [15]. Although the state at infinity is not constrained, such problems could be abnormal
(ψ0 = 0 in this case) and the “standard” transversality conditions at infinity of the form

lim
t→∞ψ(t) = 0 (1)

or
lim
t→∞〈ψ(t), x∗(t)〉 = 0 (2)

may be inconsistent with the core conditions of the maximum principle (the adjoint system and the
maximum condition). Here x∗(·) is an optimal trajectory and (ψ0, ψ(·)) is a pair of adjoint variables
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corresponding to the optimal pair (x∗(·), u∗(·)) according to the core conditions of the maximum
principle. Examples exhibiting pathologies of these types are given in [4, 10, 15, 18, 21]. These
examples clearly demonstrate that general complementary conditions on the adjoint variables (if
such exists) must differ from (1) and (2).

A considerable progress in understanding of the “right” form of such complementary conditions
on the adjoint variables has been made in the last decade. In the case of autonomous problems
with discounting it was proved in [3, 4] that if the discount rate is sufficiently large (this situation is
referred in the literature as “the case of dominating discount”) then the maximum principle holds
in normal form with the “right” adjoint variable ψ(·) specified by an explicit formula similar to
the classical Cauchy formula for the solutions of systems of linear differential equations. In some
situations this Cauchy type representation of ψ(·) implies transversality conditions at infinity of
the form (1) or (2), and an even stronger exponential pointwise estimate for ψ(·) (see [4, 5, 6] for
more details). Recently, the main constructions and results in [3, 4] were extended in [2, 9].

The approach used in [2, 3, 4, 9] is based on an appropriate regularization of the infinite-horizon
problem, namely on its explicit approximation by a family of standard finite-horizon problems.
However, there are inherent limitations for the applicability of this approach. In particular, appli-
cation of the approximation techniques typically needs some uniformity of the convergence of the
improper integral utility functional for all admissible controls (see e.g. condition (A3) in [2]) and
boundedness of the optimal one (at least in a local sense). In many cases of interest regularity
conditions of this type either fail or cannot be verified a priory. For instance, in problems without
discounting and in models of endogenous economic growth (especially with declining discount rates)
the corresponding integral utility functionals may diverge to infinity.

An alternative approach to derivation of first order necessary optimality conditions for infinite-
horizon optimal problems, which is based on the classical needle variations technique, was recently
developed in [6, 7]. The advantage of this approach is that typically it can be realized under
less restrictive regularity assumptions than ones akin to the approximations based techniques. In
particular, this approach can produce a complete set of necessary optimality conditions even in the
case when the optimal objective value is infinite (see [6, 7]). A local modification of the notion
of weakly overtaking optimality (see [10]) can be employed in this case. The normal form version
of the maximum principle obtained in [6, 7] involves the same explicit single-valued representation
for the adjoint variable ψ(·) as in [2, 3, 4, 9] but under weaker assumptions on the convergence
of the improper integral utility functional. We mention that the same approach proved to be also
productive for distributed control systems, as shown in [22] for a class of age-structured optimal
control problems.

The main goal of the present paper is to extend the results obtained in [6, 7] to a more general
class of infinite-horizon optimal control problems satisfying a weak regularity assumption. It should
be emphasized that due to the economic nature of many optimal growth models the standard
regularity assumptions that are common in the optimal control theory could be rather burdensome.
In many cases of interest the improper integral utility functional could diverge to infinity, and
natural admissible controls or the corresponding utility flows could not be a priory bounded (even
locally). Notice, that the validity of the Pontryagin maximum principle in finite-horizon problems
under weak regularity assumptions is well known (see [11, Theorem 5.2.1] and [12, Theorem 22.17]).

Another extension of the results in [6, 7] is that the objective integrand and the right-side of
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the differential equation defining the problem (control system) need not be continuous with respect
to the control variable u. The Lebesgue-Borel measurability in (t, u) is required instead, which
is useful in several economic models, where the objective integrand and the control system are
discontinuous in u (for example, models in which fixed costs are involved).

The proof of the main result—Pontryagin’s maximum principle for infinite-horizon problems—
adapts the one in [7] with some essential modifications that are needed because the weak regularity
assumption in the present paper does not require local boundedness of the admissible (and the
optimal) controls, and continuity of the data of the problem with respect to the control is also not
required. The analysis is based on a modification of the classical needle variation technique.

The paper is organized as follows. In Section 2 we state the problem, formulate the weak
regularity assumption and introduce the notion of optimality used in present paper. Section 3
presents the main result and its proof. In Section 4 we consider an illustrative economic example.

2 Statement of the problem and preliminary discussions

Let G be a nonempty open convex subset of Rn and let

f : [0,∞)×G×Rm → Rn and f0 : [0,∞)×G×Rm → R1.

Throughout the paper we assume that for almost every t ∈ [0,∞) the derivatives fx(t, x, u) and
f0

x(t, x, u) exist for all (x, u) ∈ G×Rm, and the functions f(·, ·, ·), f0(·, ·, ·), fx(·, ·, ·), and f0
x(·, ·, ·)

are Lebesgue-Borel (LB) measurable in (t, u) for every x ∈ G, and continuous in x for almost every
t ∈ [0,∞) and every u ∈ Rm.

The LB measurability in (t, u) [12, Definition 6.33] means that the functions (and the sets) to
which the property applies are measurable with respect to the σ-algebra generated by the product
of the Lebesgue σ-algebra on [0,∞) and the Borel σ-algebra on Rm.

The LB measurability replaces the usual assumption of Lebesgue measurability in t and con-
tinuity in u of the functions involved in the assumption above. An important property is that for
any function g : [0,∞)× Rm → Rn which is LB measurable, the superposition t 7→ g(t, u(t)) with
a Lebesgue measurable function u : [0,∞) → Rm is Lebesgue measurable [12, Proposition 6.34]. In
particular, this implies that the functions t 7→ f(t, x(t), u(t)), t 7→ fx(t, x(t), u(t)), etc., that appear
below with a continuous x : [0,∞) → Rn and a Lebesgue measurable function u : [0,∞) → Rm,
are Lebesgue measurable on [0,∞).

Consider the following optimal control problem (P ):

J(x(·), u(·)) =
∫ ∞

0
f0(t, x(t), u(t)) dt → max , (3)

ẋ(t) = f(t, x(t), u(t)), x(0) = x0, (4)
u(t) ∈ U(t), (5)

where x0 ∈ G is a given initial state of the system and U : [0,∞) 7→ 2Rm
is a LB measurable

multivalued mapping with non-empty values U(t) ⊂ Rm, t ≥ 0. The LB measurability of U(·)
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means that its graph, i.e. the set grU(·) = {(t, u) ∈ [0,∞) × Rm : u ∈ U(t)} is a LB measurable
subset of [0,∞)×Rm.

Since the utility functional (3) on an infinite horizon admits its values to be infinite, there are
several concepts of optimality that can be used in the context of problem (P ) (see, for example [10]).
The one that we use in the present paper will be specified at the end of this section. Before that
we make some preliminary considerations.

We consider any Lebesgue measurable function u : [0,∞) 7→ Rm satisfying condition (5) for all
t ≥ 0 as a control. If u(·) is a control then the corresponding trajectory is a locally absolutely
continuous solution x(·) of the initial value problem (4), which is defined on some finite or infinite
time interval [0, τ), τ > 0, in G (if such solution exists). The local absolute continuity of x(·)
means that x(·) is absolutely continuous on any compact time-interval [0, T ], T > 0, of its domain
of definition [0, τ).

By definition, a pair (x(·), u(·)), where u(·) is a control and x(·) is the corresponding trajectory,
is an admissible pair (in problem (P )), or a process, if the trajectory x(·) is defined on the whole
infinite time interval [0,∞) and the function t 7→ f0(t, x(t), u(t)) is locally integrable on [0,∞)
(i.e. integrable on any finite time interval [0, T ], T > 0). Thus, for an arbitrary admissible pair
(x(·), u(·)) and any T > 0 the integral

JT (x(·), u(·)) :=
∫ T

0
f0(t, x(t), u(t)) dt

is finite.
Note, that if all functions f(·, ·, ·), f0(·, ·, ·), fx(·, ·, ·), and f0

x(·, ·, ·) are locally bounded1, then
for any control u(·) ∈ L∞loc[0,∞) the corresponding trajectory x(·) exists (and is unique) in G on
some maximal time interval [0, τ), τ > 0 (see [1, Chapters 2.5.1-2.5.3]), and in the case τ = ∞ the
pair (x(·), u(·)) is admissible.

Now we recall two basic concepts of optimality used in the literature (see [10]).
In the first one, the integral in (3) is understood in improper sense, i.e. for arbitrary admissible

pair (x(·), u(·)) by definition

J(x(·), u(·)) = lim
T→∞

∫ T

0
f0(t, x(t), u(t)) dt,

if the limit exists.

Definition 2.1. An admissible pair (x∗(·), u∗(·)) is called strongly optimal in problem (P ) if the
corresponding integral in (3) converges (to a finite number) and for any other admissible pair
(x(·), u(·)) we have

J(x∗(·), u∗(·)) ≥ lim sup
T→∞

∫ T

0
f0(t, x(t), u(t)) dt.

In the second one, the integral in (3) is not necessary finite.
1The local boundedness of these functions of t, x and u (take φ(·, ·, ·) as a representative) means that for every

T > 0, every compact D ⊂ G and every bounded set V ⊂ Rm there exists M such that ‖φ(t, x, u)‖ ≤ M for almost
all t ∈ [0, T ], and all x ∈ D and u ∈ V .
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Definition 2.2. An admissible pair (x∗(·), u∗(·)) is called finitely optimal in problem (P ) if for
any T > 0 this pair (restricted to [0, T ]) is optimal in the following optimal control problem (PT )
with fixed initial and final states:

JT (x(·), u(·)) =
∫ T

0
f0(t, x(t), u(t)) dt → max ,

ẋ(t) = f(t, x(t), u(t)), x(0) = x0, x(T ) = x∗(T ),
u(t) ∈ U(t).

It is easy to see that the strong optimality implies the finite one.
The following weak regularity assumption plays a key role for the validity of the general version

of the Pontryagin maximum principle for a finitely optimal process (x∗(·), u∗(·)) in problem (P )
(similar assumptions for problems with finite time-horizons one can find in [11, Chapter 5], [12,
Hypothesises 22.25]). In fact, this assumption will be used later on for an arbitrarily fixed admissible
pair (x∗(·), u∗(·)).

Assumption (A1). There are a continuous function γ : [0,∞) 7→ (0,∞) and a locally inte-
grable function ϕ : [0,∞) 7→ R1, such that {x : ‖x−x∗(t)‖ ≤ γ(t)} ⊂ G for all t ≥ 0, and for almost
all t ∈ [0,∞) we have

max {x : ‖x−x∗(t)‖≤γ(t)}
{
‖fx(t, x, u∗(t))‖+ ‖f0

x(t, x, u∗(t))‖
}
≤ ϕ(t). (6)

Notice, that due to the continuity of the functions fx(·, ·, ·) and f0
x(·, ·, ·) with respect to x, the

maximum in (6) is achieved.
Assumption (A1) is implied by the following condition (see [12, Hypothesises 22.16])): there

exist a constant c ≥ 0, a locally integrable function d : [0,∞) 7→ R1 and a continuous function
γ : [0,∞) 7→ (0,∞), {x : ‖x− x∗(t)‖ ≤ γ(t)} ⊂ G, t ≥ 0, such that for almost every t ∈ [0,∞) and
all x : ‖x− x∗(t)‖ ≤ γ(t) we have

‖fx(t, x, u∗(t))‖+ ‖f0
x(t, x, u∗(t))‖ ≤ c

{‖f(t, x, u∗(t))‖+ |f0(t, x, u∗(t))|
}

+ d(t).

We also mention that if u∗(·) ∈ L∞loc[0,∞), and the functions fx(·, ·, ·) and f0
x(·, ·, ·) are measur-

able in t, continuous in (x, u) and locally bounded, as in [6, 7], then assumption (A1) also holds
true.

The following lemma will be used below.

Lemma 2.3. Let (x∗(·), u∗(·)) be an admissible pair for which (A1) is fulfilled. Then the function
k : [0,∞)×Rm 7→ R1 with values given for almost every t ≥ 0 and all v ∈ Rm by the equality

k(t, v) = max {x : ‖x−x∗(t)‖≤γ(t)}
{
‖fx(t, x, v)‖+ ‖f0

x(t, x, v)‖
}

(7)

is LB measurable. Moreover, the function k(·, u∗(·)) is locally integrable.
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Proof. Since {x : ‖x − x∗(t)‖ ≤ γ(t)} ⊂ G, t ≥ 0, the set-valued mapping t 7→ F (t) = {x : ‖x −
x∗(t)‖ ≤ γ(t)} is compact convex valued and continuous, with F (t) ⊂ G, t ≥ 0. Hence, there is a
countable family {ξi(·)}∞i=1 of continuous selectors of F (·) such that the set

⋃∞
i=1 ξi(t) is dense in

F (t) for any t ≥ 0. Hence, for almost every t ≥ 0 and all v ∈ Rm we have

k(t, v) = sup
i∈N

{‖fx(t, ξi(t), v)‖+ ‖f0
x(t, ξi(t), v)‖

}
.

Thus, the function k(·, ·) is LB measurable as a supremum of a countable family of LB measurable
functions.

The last claim follows directly from assumption (A1), since k(t, u∗(t)) ≤ ϕ(t).

Define the Hamilton-Pontryagin function H : [0,∞) × G × Rm × R1 × Rn → R1 for problem
(P ) in the usual way:

H(t, x, u, ψ0, ψ) = ψ0f0(t, x, u) + 〈f(t, x, u), ψ〉,

t ∈ [0,∞), x ∈ G, u ∈ Rm, ψ ∈ Rn, ψ0 ∈ R1.

In the normal case, where ψ0 = 1, we simply write H(t, x, u, ψ) instead of H(t, x, u, 1, ψ).
Any finitely optimal process (x∗(·), u∗(·)) satisfies the following general version of the maximum

principle, which is proved in [15] under the standard regularity conditions. Namely, the proof given
in [15] is valid if u∗(·) ∈ L∞loc[0,∞), U(t) ≡ U , t ≥ 0, and the functions f(·, ·, ·), f0(·, ·, ·), fx(·, ·, ·)
and f0

x(·, ·, ·) are measurable in t, continuous in (x, u), and locally bounded.

Theorem 2.4. Let (x∗(·), u∗(·)) be a finitely optimal admissible pair in problem (P ) and let (A1)
be fulfilled. Then there is a non-vanishing pair of adjoint variables (ψ0, ψ(·)), with ψ0 ≥ 0 and
a locally absolutely continuous ψ(·) : [0,∞) → Rn, such that the core conditions of the maximum
principle hold, i.e.

(i) ψ(·) is a solution to the adjoint system

ψ̇(t) = −Hx(t, x∗(t), u∗(t), ψ0, ψ(t)),

(ii) the maximum condition takes place:

H(t, x∗(t), u∗(t), ψ0, ψ(t)) a.e.= sup
u∈U(t)

H(t, x∗(t), u, ψ0, ψ(t)).

The main points of the proof of this theorem coincide with those in the original proof of
Halkin’s result (see [15, Theorem 4.2]). Therefore we give only a sketch. Similarly to [15], the proof
is based on the consideration of the family of auxiliary optimal control problems (PT ) on finite time
intervals [0, T ], T > 0, appearing in Definition 2.2. The only difference is that the original proof
of Halkin’s theorem is based on the standard regularity assumptions. The finite optimality of the
admissible pair (x∗(·), u∗(·)) in problem (P ) implies that on any finite time interval [0, T ], T > 0,
the core conditions of the Pontryagin maximum principle for the process (x∗(·), u∗(·)) hold with a
corresponding non-vanishing pair of adjoint variables ψ0

T ≥ 0, ψT (·). This implies the validity of
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the core conditions of the infinite-horizon maximum principle after taking a limit in the conditions
of the maximum principle for these auxiliary problems (PT ) as T →∞ (see details in [10, 15]).

However, due to [11, Theorem 5.2.1], assumption (A1), together with Lemma 2.3, also implies
the core conditions of the maximum principle for the process (x∗(·), u∗(·)) which is optimal in all
corresponding finite-horizon problems (PT ) on time intervals [0, T ], T > 0, with fixed endpoints
(see Definition 2.2). Thus, the scheme of the proof of Theorem 4.2 in [15] can be reproduced with
some minor modifications also for Theorem 2.4.

The next concept of optimality takes an intermediate place between the strong and the finite
ones (see [10, 15]).

Definition 2.5. An admissible pair (x∗(·), u∗(·)) is called weakly overtaking optimal if for arbitrary
ε > 0, T > 0 and any other admissible pair (x(·), u(·)) there is a T ′ > T such that

∫ T ′

0
f0(t, x∗(t), u∗(t)) dt ≥

∫ T ′

0
f0(t, x(t), u(t)) dt− ε.

This concept of optimality appears to be the most useful among the numerous alternative
definitions proposed in the context of economics (see [10]), therefore we adopt it in this paper.
Similarly to [6, 7], because of the usage of needle variations, it turns out that Pontryagin’s necessary
optimality conditions obtained in the next section are valid even for a local version of the weak
overtaking optimality. Namely, it is enough to test the optimal pair (x∗(·), u∗(·)) against admissible
pairs (x(·), u(·)) for which u(·) differs from u∗(·) only on a set of “small” measure.

Definition 2.6. An admissible pair (x∗(·), u∗(·)) is called locally weakly overtaking optimal (LWOO)
if there exists δ > 0 such that for any other admissible pair (x(·), u(·)) satisfying

meas {t ≥ 0 : u(t) 6= u∗(t)} ≤ δ,

and for arbitrary ε > 0, T > 0 there is a T ′ > T such that
∫ T ′

0
f0(t, x∗(t), u∗(t)) dt ≥

∫ T ′

0
f0(t, x(t), u(t)) dt− ε.

Obviously, the property of local weak overtaking optimality is weaker than the property of
weak overtaking optimality but it does not imply the finite optimality, in general. The property of
local weak overtaking optimality should be compared with the corresponding “local” version of the
property of finite optimality. However, as it can be shown any LWOO admissible pair (x∗(·), u∗(·))
is locally finite optimal and Theorem 2.4 holds true since it is valid also in the case of locally finite
optimal admissible pair (x∗(·), u∗(·)).

Notice, also that the concept of finite optimality is very weak. It can happen that even in
simple situations this concept does not recognize strongly optimal pairs (which exist) in the set
of all admissible ones (see discussion of Halkin’s example in [6].) In the next section we show
that the concept of weak overtaking optimality (see Definition 2.5 and its local modification given
in Definition 2.6) provides a reasonable compromise between the concepts of strong optimality
(Definition 2.1) and finite optimality (Definition 2.2). On the one hand, this concept of optimality
is general enough and applicable even in the situation of infinite optimal utility value, on the other
hand, this concept of optimality still admits the development of complete versions of the maximum
principle.
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3 Maximum principle

This section presents the main result in the paper – a normal form version of the Pontryagin
maximum principle with explicitly specified adjoint variable for the infinite-horizon problem (P ).
The analysis is based on the notion of simple needle variation (see for example [1, Chapter 1.5.4]),
using the weak regularity assumption (A1) and the following growth assumption for a given process
(x∗(·), u∗(·)):

Assumption (A2): There exist a number β > 0 and a nonnegative integrable function λ : [0,∞) 7→
R1 such that for every ζ ∈ G with ‖ζ − x0‖ < β equation (4) with u(·) = u∗(·) and initial condition
x(0) = ζ (instead of x(0) = x0) has a solution x(ζ; ·) on [0,∞) in G, and

max x∈[x(ζ;t),x∗(t)]

∣∣∣〈f0
x(t, x, u∗(t)), x(ζ; t)− x∗(t)〉

∣∣∣
a.e.≤ ‖ζ − x0‖λ(t).

Here [x(ζ; t), x∗(t)] = co {x(ζ; t), x∗(t)} denotes the line segment with vertices x(ζ; t) and x∗(t).

This assumption was introduced in [7] as an invariant counterpart of the dominating discount
condition in [3, 4, 6]. Notice that a locally bounded function λ(·) satisfying the inequality in (A2)
always exists. The essence of (A2) is that such an integrable λ(·) does exist. Thus (A2) is an
asymptotic assumption which complements in the infinite horizon case the local assumption (A1).
It should be noted also that due to (A2) for any initial state ζ ∈ G, ‖ζ − x0‖ < β, the function
t 7→ f0(t, x(ζ; t), u∗(t)) is locally integrable on [0,∞).

The following auxiliary statement is needed in order to apply theorems on existence, continuous
dependence and differentiability with respect to initial data of the solution of a differential equation
under assumption (A1) (see [1, Chapters 2.5.1-2.5.6]).

Lemma 3.1. If (x∗(·), u∗(·)) is a process and (A1) holds, then for every x ∈ G for which the set
Gx := {t ≥ 0 : ‖x− x∗(t)‖ ≤ γ(t)} is nonempty, the function t 7→ f(t, x, u∗(t)) is locally integrable
on Gx.

Proof. Since (x∗(·), u∗(·)) is a process, we have that t 7→ f(t, x∗(t), u∗(t)) is locally integrable. For
t ∈ Gx define ξ(t) = x−x∗(t). Then the function ξ : Gx → Rn is continuous, ‖ξ(t)‖ ≤ γ(t), t ∈ Gx,
and

f(t, x, u∗(t)) = f(t, x∗(t) + ξ(t), u∗(t)) = f(t, x∗(t), u∗(t)) + 〈fx(t, x∗(t) + ξ̃(t), u∗(t)), ξ(t)〉,

where ξ̃ : Gx → Rn is measurable and ‖ξ̃(t)‖ ≤ ‖ξ(t)‖ ≤ γ(t), t ∈ Gx. Now the statement follows
from the local integrability of t 7→ f(t, x∗(t), u∗(t)) on Gx and (A1).

Consider the following linear differential equation (the linearization of (4) along (x∗(·), u∗(·)):

ẏ(t) = fx(t, x∗(t), u∗(t)) y(t), t ≥ 0. (8)
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Due to (A1), the partial derivative fx(·, x∗(·), u∗(·)) is measurable and locally integrable. Hence,
for any given time τ ≥ 0 and vector y∗(τ) ∈ Rn there is a unique (Carathéodory) solution y(·) of
equation (8) with y(τ) = y∗(τ), which is defined on the whole time interval [0,∞). Moreover,

y(t) = Y∗(t) Y −1
∗ (τ) y∗(τ), t ≥ 0, (9)

where Y∗(·) is the fundamental matrix solution of (8) normalized at t = 0. This means (see, for
example [16, Chapter IV]) that the columns ξi(·), i = 1, . . . , n, of the (n×n)-matrix function Y∗(·)
are (linearly independent) solutions of (8) on [0,∞) that satisfy the initial conditions

ξj
i (0) = δi,j , i, j = 1, . . . , n,

where
δi,i = 1, i = 1, . . . , n, and δi,j = 0, i 6= j, i, j = 1, . . . , n.

Analogously, consider the fundamental matrix solution Z∗(·) (normalized at t = 0) of the linear
adjoint equation

ż(t) = − [fx(t, x∗(t), u∗(t))]∗ z(t).

Then
Z−1
∗ (t) = [Y∗(t)]∗ , t ≥ 0. (10)

Lemma 3.2. Let (A1) and (A2) be satisfied. Then the following estimation holds:
∥∥∥ [Y∗(t)]∗ f0

x(t, x∗(t), u∗(t))
∥∥∥ ≤ √

nλ(t) for a.e. t ≥ 0. (11)

Proof. Define ζi ∈ Rn as the vector with components ζj
i = δi,j , i, j = 1, . . . n. Due to (A2) for

every α ∈ (0, β) the solution x(x0 + αζi; ·) of equation (4) with u(·) = u∗(·) and initial condition
x(0) = x0 + αζi (instead of x0) exists on [0,∞) and

∣∣∣〈f0
x(t, x∗(t), u∗(t)), x(x0 + αζi; t)− x∗(t)〉

∣∣∣
a.e.≤ αλ(t). (12)

Due to Lemma 3.1 and the theorem on differentiation of the solution of a differential equation with
respect to the initial conditions (see e.g. Chapter 2.5.6 in [1]), we get the following equality

x(x0 + αζi; t) = x∗(t) + αξi(t) + oi(α, t), i = 1, . . . , n, t ≥ 0.

Here the vector functions ξi(·), i = 1, . . . , n are columns of Y∗(·), and for any i = 1, . . . , n we have
‖oi(α, t)‖/α → 0 as α → 0, uniformly with respect to t on any finite time interval [0, T ], T > 0.
Then in view of (12) we get

∣∣∣〈f0
x(t, x∗(t), u∗(t)), ξi(t) +

oi(α, t)
α

〉
∣∣∣

a.e.≤ λ(t), i = 1, . . . , n, t ≥ 0.

Passing to the limit with α → 0 in the last inequality for a.e. t ≥ 0 and i = 1, . . . , n we get
∣∣∣〈f0

x(t, x∗(t), u∗(t)), ξi(t)〉
∣∣∣

a.e.≤ λ(t), i = 1, . . . , n, t ≥ 0.

This implies (11).
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Due to (10) and Lemma 3.2 assumption (A2) implies that the function ψ : [0,∞) → Rn defined
as

ψ(t) = Z∗(t)
∫ ∞

t
[Z∗(s)]−1f0

x(s, x∗(s), u∗(s)) ds, t ≥ 0. (13)

is locally absolutely continuous. Indeed, the integral in (13) converges absolutely for any t ≥ 0 due
to the integrability of λ(·).

By a direct differentiation we verify that the so defined function ψ(·) satisfies on [0,∞) the
adjoint system

ψ̇(t) = −Hx(t, x∗(t), u∗(t), ψ(t)).

(We remind that in the case ψ0 = 1 we omit this variable in the Hamilton-Pontryagin function.)

The following result is a version of the Pontryagin maximum principle for infinite-horizon prob-
lem (P ) under regularity assumption (A1) and growth assumption (A2).

Theorem 3.3. Let (x∗(·), u∗(·)) be a LWOO admissible pair in problem (P ). Assume that (A1) and
(A2) are satisfied. Then the vector function ψ : [0,∞) 7→ Rn defined by (13) is (locally) absolutely
continuous and satisfies the core conditions of the normal form maximum principle, i.e.

(i) ψ(·) is a solution to the adjoint system

ψ̇(t) = −Hx(t, x∗(t), u∗(t), ψ(t)), (14)

(ii) the maximum condition takes place:

H(t, x∗(t), u∗(t), ψ(t)) a.e.= sup
u∈U(t)

H(t, x∗(t), u, ψ(t)).

Proof. The local absolute continuity of the vector function ψ : [0,∞) → Rn defined by (13), and
also that it satisfies (14) has already been proved. We shall prove condition (ii) ad absurdum by
using a modified form of the simple needle variations of the control u∗(·).

Assume that condition (ii) fails. Then there are a set Ω ⊂ [0,∞) of positive measure and an
ε > 0 such that the multivalued mapping Γ: Ω → 2Rm

, defined by equality

Γ(t) = {u ∈ U(t) : H(t, x∗(t), u∗(t), ψ(t)) ≤ H(t, x∗(t), u, ψ(t))− ε}, t ∈ Ω,

has non-empty values, and its graph, i.e. the set

gr Γ(·) = {(t, u) : t ∈ Ω, u ∈ Γ(t)}

is a LB measurable subset of [0,∞)×Rm since the function t 7→ H(t, x∗(t), u∗(t), ψ(t)) is Lebesgue
measurable and the function (t, u) 7→ H(t, x∗(t), u, ψ(t)) is LB measurable. Due to the Yankov-von
Neumann-Aumann selection theorem (see, for example [11, Theorem 4.1.1.], [17, Theorem 2.14])
there is a Lebesgue measurable selection of Γ(·), i.e. a Lebesgue measurable function v : Ω → Rm

such that v(t) ∈ Γ(t) for all t ∈ Ω.
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Due to [19, Chapter IX, Theorem 2] there is a τ ∈ Ω which is a point of approximate con-
tinuity of the Lebesgue measurable functions f(·, x∗(·), u∗(·)), f0(·, x∗(·), u∗(·)), f(·, x∗(·), v(·)),
f0(·, x∗(·), v(·)), k(·, v(·)) and v(·). Here k(·, ·) is the function defined in Lemma 2.3, and according
to this lemma k(·, v(·)) is a measurable function.

This means (see [19, Chapter IX, §5]) that for each of these functions of t (take φ(·) as a
representative) there is a measurable set M ⊂ [0, τ ] such that τ ∈ M, φ(·) is continuous at τ along
M, and

lim
α→0+

meas {M ∩ (τ − α, τ ]}
α

= 1.

Clearly, we may assume that M is the same for all the above functions.
Further in the proof, we denote v = v(τ). Then

H(τ, x∗(τ), u∗(τ), ψ(τ)) ≤ H(τ, x∗(τ), v, ψ(τ))− ε. (15)

For any 0 < α ≤ τ define

uα(t) :=

{
u∗(t), t /∈ (τ − α, τ ] ∩M,

v(t), t ∈ (τ − α, τ ] ∩M.
(16)

The above defined control uα(·) is a modified version of the standard simple variation of u∗(·)
commonly used in optimal control (see, for example [1, Chapter 1.5.4]). Denote by xα(·) the
trajectory that corresponds to uα(·) (notice that xα(·) coincides with x∗(·) on [0, τ − α]).

According to Lemma 2.3, the function t 7→ k(t, u∗(t)) is locally integrable. Moreover, the
function t 7→ k(t, v(t)) is continuous at τ along M. Hence, by construction (see (16)) for all
sufficiently small α > 0 the function t 7→ k(t, uα(t)) is locally integrable on [0,∞), since k(·, uα(·))
coincides with k(·, v(·)) on the set (τ −α, τ ]∩M and coincides with k(·, u∗(·)) on its complement in
[0,∞). Moreover, due to the continuity of k(·, v(·)) at τ along M and v(τ) = v, for all sufficiently
small α > 0 we have

k(t, v(t)) ≤ k(τ, v) + 1, t ∈ (τ − α, τ ] ∩M.

Hence, for all sufficiently small α > 0 we can estimate k(·, uα(·)) in the following way:

k(t, uα(t)) ≤ k(t) := max {k(t, u∗(t)), k(τ, v) + 1}, t ≥ 0, (17)

where k(·) is locally integrable on [0,∞).
The last estimate implies that for all sufficiently small α > 0 the function xα(·) is defined at

least on the time interval [0, τ ]. This fact follows from Lemma 3.1, the local existence theorem [1,
Theorem 2.5.2.] and estimate (17). Due to this circumstance, estimate (17) and the property that
τ is a point of approximate continuity of functions f(·, x∗(·), u∗(·)), f(·, x∗(·), v(·)), k(·, v(·)) and
v(·) and the equality v(τ) = v, we obviously have

xα(τ)− x∗(τ) = α [f(τ, x∗(τ), v)− f(τ, x∗(τ), u∗(τ))] + o(α), (18)

where here and further o(α) denotes a function of α > 0 that satisfies ‖o(α)‖/α → 0 as α → 0.
Note that o(α) may depend on v and τ (which are fixed in the present consideration).
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Denote by y∗(·) the solution of the linear equation (8) on [0,∞) with the condition

y(τ) = f(τ, x∗(τ), v)− f(τ, x∗(τ), u∗(τ)). (19)

As argued above, for all sufficiently small α > 0 the trajectory xα(·) corresponding to uα(·) exists
at least on [0, τ ] (and equals x∗(t) for t ∈ [0, τ−α]) and from (18) we have that ‖x∗(τ)−xα(τ)‖ ≤ c′ α
with some constant c′.

The following lemma provides the key tool for proving the maximum principle.

Lemma 3.4. There is a number α0 > 0 such that for every α ∈ (0, α0] the following two properties
hold:

(i) for the control function uα(·) defined in (16) the corresponding trajectory xα(·) exists on
[0,∞) and the pair (xα(·), uα(·)) is admissible;

(ii) there is a constant c ≥ 0 and a function σ : (0, α0]×[τ,∞) → [0,∞) with limα→0 σ(α, t) → 0
for any fixed t ≥ τ , such that for every α ∈ (0, α0] and T > τ

JT (xα(·), uα(·))− JT (x∗(·), u∗(·))
α

= H(τ, x∗(τ), v, ψ(τ))−H(τ, x∗(τ), u∗(τ), ψ(τ)) + η(α, T ), (20)

where the function η(α, T ) satisfies the following inequality for every T̃ ∈ [τ, T ]:

|η(α, T )| ≤ σ(α, T̃ ) + c

∫ ∞

T̃
λ(t) dt. (21)

Proof of Lemma 3.4. Consider the Cauchy problem

ẋ(t) = f(t, x(t), u∗(t)), x(τ) = xα(τ). (22)

Due to Lemma 3.1 and the continuous dependence of the solution of a differential equation on the
initial condition (see e.g. Chapter 2.5.5 in [1]), there is a sufficiently small α0 > 0 such that for all
α ∈ (0, α0] the solution x̃α(·) of (22) exists on [0, τ ] and ‖x̃α(0)−x∗(0)‖ < β. Then the first part of
(A2) implies that the solution x̃α(·) exists in G on [0,∞). Thus for all α ∈ (0, α0] the solution xα(·)
also exists on [0,∞), since xα(t) = x̃α(t) for t ≥ τ . Due to (A2) the function t 7→ f0(t, xα(t), uα(t))
is locally integrable. Hence, (xα(·), uα(·)) is an admissible pair.

Due to Lemma 3.1 and the theorem on differentiability of the solution of a differential equation
with respect to the initial conditions (see [1, Chapter 2.5.6]) the following representation holds:

x̃α(t) = x∗(t) + αy∗(t) + o(α, t), t ≥ 0, (23)

where y∗(·) is the solution of the Cauchy problem (8), (19). Here ‖o(α, t)‖/α → 0 as α → 0 and
the convergence is uniform in t on every finite interval [τ, T ], T > τ .

Let us prove that for any sufficiently small α > 0 the following estimate holds:

max x∈[xα(t),x∗(t)]

∣∣∣
〈
f0

x(t, x, u∗(t)), y∗(t) +
o(α, t)

α

〉∣∣∣
a.e.≤ c1 λ(t), t ≥ τ, (24)
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where c1 ≥ 0 is independent of α and t.
Due to (A2)

max x∈[x̃α(t),x∗(t)]

∣∣∣〈f0
x(t, x, u∗(t)), x̃α(t)− x∗(t)〉

∣∣∣
a.e.≤ ‖x̃α(0)− x∗(0)‖λ(t), t ≥ 0.

Then using (23) we obtain that

max x∈[x̃α(t),x∗(t)]

∣∣∣〈f0
x(t, x, u∗(t)), αy∗(t) + o(α, t)〉

∣∣∣
a.e.≤ ‖αy∗(0) + o(α, 0)‖λ(t).

Choosing c1 ≥ ‖y∗(0)‖+ 1, dividing by α and taking into account that x̃α(t) = xα(t) for t ≥ τ we
obtain (24).

It is clear that τ is a point of approximate continuity also the function t 7→ f(t, x∗(t), uα(t))
(with the same set M and with uα(τ) = v(τ) = v) Therefore, we can represent
∫ τ

τ−α
f0(t, xα(t), uα(t)) dt = αf0(τ, xα(τ), v)+

∫ τ

τ−α

[
f0(t, xα(t), uα(t))− f0(t, x∗(t), uα(t))

]
dt + o(α).

The integral in the right-hand side can be estimated in absolute value by
∫ τ

τ−α
k(t, uα(t)) ‖xα(t)− x∗(t)‖ dt ≤

∫ τ

τ−α
k(t) c′α dt ≤ o(α),

where we use that for an appropriate constant c′ we have ‖xα(t)− x∗(t)‖ ≤ c′α for t ∈ [τ − α, τ ].
Using this and (23) (where x̃α(t) = xα(t) for t ≥ τ) for all α ∈ (0, α0] we get

1
α

[
JT (xα(·), uα(·))− JT (x∗(·), u∗(·))

]
(25)

=
1
α

∫ τ

τ−α
f0(t, xα(t), uα(t)) dt− 1

α

∫ τ

τ−α
f0(t, x∗(t), u∗(t)) dt

+
1
α

∫ T

τ

[
f0(t, xα(t), u∗(t))− f0(t, x∗(t), u∗(t))

]
dt

= f0(τ, x∗(τ), v)− f0(τ, x∗(τ), u∗(τ)) +
o(α)
α

+
∫ T

τ

〈∫ 1

0
f0

x(t, x∗(t) + s(xα(t)− x∗(t)), u∗(t)) ds, y∗(t) +
o(α, t)

α

〉
dt.

On the other hand, according to (9), (10), (19), and (13)
∫ ∞

τ
〈f0

x(t, x∗(t), u∗(t)), y∗(t)〉 dt

=
〈

Z∗(τ)
∫ ∞

τ

[
Z∗(t)

]−1
f0

x(t, x∗(t), u∗(t)) dt, f(τ, x∗(τ), v)− f(τ, x∗(τ), u∗(τ))
〉

= 〈ψ(τ), f(τ, x∗(τ), v)− f(τ, x∗(τ), u∗(τ))〉.
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Using this equality in (25) we obtain (20) with

η(α, T ) :=
∫ T

τ

〈∫ 1

0
f0

x(t, x∗(t) + s(xα(t)− x∗(t)), u∗(t)) ds, y∗(t) +
o(α, t)

α

〉
dt

−
∫ ∞

τ
〈f0

x(t, x∗(t), u∗(t)), y∗(t)〉 dt +
o(α)
α

.

Let T̃ be any number between τ and T . Define

σ(α, T̃ ) :=

∣∣∣∣∣
∫ T̃

τ

〈∫ 1

0
f0

x(t, x∗(t) + s(xα(t)− x∗(t)), u∗(t)) ds, y∗(t) +
o(α, t)

α

〉
dt

−
∫ T̃

τ
〈f0

x(t, x∗(t), u∗(t)), y∗(t)〉 dt +
o(α)
α

∣∣∣∣∣ .

Due to (A1), we apparently have for a fixed T̃ that σ(α, T̃ ) → 0 as α → 0. Moreover, due to (24)
we have

∣∣∣∣
∫ T

T̃

〈∫ 1

0
f0

x(t, x∗(t) + s(xα(t)− x∗(t)), u∗(t)) ds, y∗(t) +
o(α, t)

α

〉
dt

∣∣∣∣ ≤ c1

∫ ∞

T̃
λ(t) dt.

Moreover,
∣∣∣∣
∫ ∞

T̃
〈f0

x(t, x∗(t), u∗(t)), y∗(t)〉 dt

∣∣∣∣

=
∣∣∣∣
〈

Z∗(τ)
∫ ∞

T̃

[
Z∗(t)

]−1
f0

x(t, x∗(t), u∗(t)) dt, f(τ, x∗(τ), v)− f(τ, x∗(τ), u∗(τ))
〉∣∣∣∣

≤ ‖Z∗(τ)‖
∥∥∥∥
∫ ∞

T̃
[Y∗(t)]∗ f0

x(t, x∗(t), u∗(t)) dt

∥∥∥∥ ‖f(τ, x∗(τ), v)− f(τ, x∗(τ), u∗(τ))‖

≤ c2

∫ ∞

T̃
λ(t) dt,

where in the last inequality we use Lemma 3.2.
Combining the above two inequalities and the definition of σ(α, T̃ ) we obtain (21) with c :=

c1 + c2. ¤

Now we continue with the proof of the theorem. Let us fix an arbitrary number ε0 > 0, and let
us choose the number T̃ > τ in such a way that

∫∞
T̃ λ(t) dt ≤ ε0. According to Definition 2.6 for

every α ∈ (0, α0] ∩ (0, δ], for ε := α2, and for the number T = T̃ there exists Tα ≥ T̃ such that

JTα(xα(·), uα(·))− JTα(x∗(·), u∗(·)) ≤ α2.

Then from (20) we obtain that

H(τ, x∗(τ), v, ψ(τ))−H(τ, x∗(τ), u∗(τ), ψ(τ)) ≤ α− η(α, Tα).
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Since T̃ ∈ [τ, Tα], we obtain from (21)

H(τ, x∗(τ), v, ψ(τ))−H(τ, x∗(τ), u∗(τ), ψ(τ)) ≤ α + σ(α, T̃ ) + c

∫ ∞

T̃
λ(t) dt

≤ α + σ(α, T̃ ) + ε0.

Passing to the limit with α → 0 and then taking into account that ε0 was arbitrarily chosen, we
obtain that

H(τ, x∗(τ), u∗(τ), ψ(τ)) ≥ H(τ, x∗(τ), v, ψ(τ)).

This inequality contradicts (15), which completes the proof of the theorem.

4 Example

Here we apply Theorem 3.3 to a stylized (micro-level) economic model studied earlier in [6] by
means of another version of the maximum principle.

Consider the following problem (P1):

J(K(·), I(·)) =
∫ ∞

0
e−θt

[
ept(K(t))σ − b

2
(I(t))2

]
dt → max ,

K̇(t) = −νK(t) + I(t), K(0) = K0,

I(t) ≥ 0.

Here K(t) is the capital stock at time t, I(t) is the investment, ν > 0 is the depreciation rate,
K0 > 0 is a given initial state, θ ≥ 0 is the discount rate, p ≥ 0 is the (exogenous) exponential rate
of technological advancement, bI2(t) (b > 0) is the cost of investment I(t), and σ ∈ (0, 1] defines the
“production function”. We set G = (0,∞) and U(t) ≡ [0,∞), t ≥ 0. As far as the utility functional
admits its values to be infinite the optimality of an admissible pair (K∗(·), I∗(·)) in problem (P1)
is understood in the sense of Definition 2.6.

Following [6], we transform the problem (P1) to an equivalent one by introducing the following
variables

x(t) = e−αtK(t), u(t) = e−αtI(t), t ≥ 0, with α =
p

2− σ
.

In terms of the new variables x(·) and u(·) the model takes the form of the following problem (P̃1):

J(x(·), u(·)) =
∫ ∞

0
e−ρt

[
(x(t))σ − b

2
(u(t))2

]
dt → max ,

ẋ(t) = −(ν + α)x(t) + u(t), x(0) = K0, (26)

u(t) ≥ 0.

Here ρ = θ − 2α is a new “discount rate” which can be even non-positive. As above we set
G = (0,∞) and U(t) ≡ [0,∞), t ≥ 0, and we are looking for an admissible LWOO control u∗(·) in
problem (P̃1). Obviously, (P̃1) is a particular case of problem (P ).
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Let (x∗(·), u∗(·)) be a LWOO admissible pair (if it exists) in (P̃1).
It can be directly shown that the optimal trajectory x∗(·) is uniformly positive, so there is a

sufficiently small number η > 0 such that x∗(t) ≥ η, t ≥ 0.
In problem (P̃1) functions f(·, ·, ·) and f0(·, ·, ·) are the following:

f(t, x, u) = −(ν + α)x + u, f0(t, x, u) = e−ρt

[
xσ − b

2
u2

]
, t ≥ 0, x ∈ G, u ∈ R1.

Hence,

fx(t, x, u) = −(ν + α), f0
x(t, x, u) =

σe−ρt

x1−σ
, t ≥ 0, x ∈ G, u ∈ R1, (27)

and the assumption (A1) is satisfied with continuous function γ(·) and locally integrable function
ϕ(·) defined as follows:

γ(t) ≡ η/2, ϕ(t) = ν + α +
2σe−ρt

η1−σ
, t ≥ 0.

Consider condition (A2). For arbitrary ζ > 0 the solution x(ζ; ·) of equation (26) with u(·) =
u∗(·) and initial condition x(0) = ζ (instead of x(0) = x0) is defined on (0,∞) by

x(ζ; t) = e−(ν+α)tζ + e−(ν+α)t

∫ t

0
e(ν+α)su∗(s) ds, t ≥ 0. (28)

Here the integral in (28) is finite since (x∗(·), u∗(·)) is a process and the integral appears also in
the similar formula for x∗(·).

Set β = η/2. Then due to (27) and (28) for arbitrary ζ : |ζ − x0| < β we have

max x∈[x(ζ;t),x∗(t)]

∣∣∣〈f0
x(t, x, u∗(t)), x(ζ; t)− x∗(t)〉

∣∣∣
a.e.≤ ‖ζ − x0‖2σe−ρte−(ν+α)t

η1−σ

=
2σ‖ζ − x0‖

η1−σ
e−(θ+ν−α)t, t ≥ 0.

Hence, if

θ + ν > α

(
=

p

2− σ

)
. (29)

then assumption (A2) is satisfied. In what follows we assume that this condition is fulfilled. 2

Due to Theorem 3.3, the LWOO process (x∗(·), u∗(·)) satisfies the core conditions of the maxi-
mum principle together with the adjoint variable ψ(·) defined as (see (13) and (27))

ψ(t) = e(ν+α)t

∫ ∞

t
e−(ν+α)s σe−ρs

(x∗(s))1−σ
ds = σe(ν+α)t

∫ ∞

t

e−(ν+θ−α)s

(x∗(s))1−σ
ds, t ≥ 0. (30)

2In the opposite case, i.e. when θ + ν ≤ α there is no LWOO admissible pair (x∗(·), u∗(·)) in problem (P̃1), as it
can be shown directly.
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As far as x∗(t) ≥ η, t ≥ 0, equality (30) implies

ψ(t) ≤ σ

η1−σ
e(ν+α)t

∫ ∞

t
e−(ν+θ−α)s ds =

σ

η1−σ(ν + θ − α)
e−ρt, t ≥ 0. (31)

On the other hand, as it is shown in [6], the following estimate holds true for the LWOO control
u∗(t):

u∗(t)
a.e.≤ M =

4
b

σ

η1−σ

(
1

θ + ν − α
+ 2

)
, t ≥ 0.

Due to (26), this estimate immediately implies that x∗(·) is uniformly bounded from above:

x∗(t) ≤ κ = max {K0,
M

ν + α
}, t ≥ 0.

Hence, due to (30) we get the opposite estimate for ψ(·):

ψ(t) ≥ σ

κ1−σ
e(ν+α)t

∫ ∞

t
e−(ν+θ−α)s ds =

σ

κ1−σ(ν + θ − α)
e−ρt, t ≥ 0. (32)

Combing estimates (31) and (32) we get the following characterization of the asymptotic be-
havior of the adjoint variable ψ(·):

σ

κ1−σ(ν + θ − α)
e−ρt ≤ ψ(t) ≤ σ

η1−σ(ν + θ − α)
e−ρt, t ≥ 0. (33)

Note, that due to (33) both the standard transversality conditions ψ(t) → 0 as t → ∞ and
ψ(t)x∗(t) → 0 as t →∞ are valid only if the discount rate ρ = θ − 2α is positive, i.e. if α < θ/2.

In the case
θ

2
≤ α < θ + ν,

the discount rate ρ = θ−2α is non-positive, and (33) implies that both these standard transversalty
conditions fail. In this case a solution with a finite objective value does not exist, although a LWOO
solution exists, as it is shown in [6].

As far as (P̃1) is an autonomous problem with exponential discounting e−ρt, t ≥ 0, one can
reformulate Theorem 3.3 in an equivalent way in terms of the current value adjoint variable ξ(·):
ξ(t) = eρtψ(t), t ≥ 0.

Due to (30) the current value adjoint variable ξ(·) is defined by the following equality:

ξ(t) = σe(ρ+ν+α)t

∫ ∞

t

e−(ν+θ−α)s

(x∗(s))1−σ
ds, t ≥ 0, (34)

and (see (33))
σ

κ1−σ(ν + θ − α)
≤ ξ(t) ≤ σ

η1−σ(ν + θ − α)
, t ≥ 0.

Thus, although function ψ(·) can be unbounded (if ρ = θ−2α is negative, i.e. in the case α > θ/2),
the corresponding current value adjoint variable ξ(·) is always bounded for all admissible values of
the parameters (see (29)).
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The current value adjoint system for problem (P̃1) reads as

ξ̇(t) = (ρ + λ)ξ(t)− σx∗(t)σ−1 = (ν + θ − α)ξ − σx∗(t)σ−1 (35)

and the maximum condition takes the form

u∗(t)
a.e.=

1
b
ξ(t) t ≥ 0. (36)

Due to Theorem 3.3 and (29) the current value adjoint variable ξ(·) defined by (34) is the unique
bounded solution of (35) while the LWOO control u∗(·) satisfies (36).

Thus we come up with the following system of equations determining the LWOO solution in
problem (P̃1):

ẋ(t) = −(ν + α)x(t) +
1
b
ξ(t), x(0) = K0,

ξ̇(t) = −σx(t)σ−1 + (ν + θ − α)ξ(t), ξ(·) is bounded.

According to Theorem 3.3 this specific “boundary value problem” has a unique solution. This
property makes it possible to apply standard methods of investigation, based on the fact that
(x(0), ξ(0)) = (K0, ξ(0)) must belong to the stable invariant manifold of the above system (see e.g.
[14]).

In the particular case σ = 1 the solution is explicit. Noticing that α = p in this case we obtain:

ξ(t) ≡ 1
ν + θ − p

, t ≥ 0.

Hence, the LWOO optimal control for the original problem is

I(t) =
ept

b(ν + θ − p)
, t ≥ 0,

provided that θ + ν > p. We stress again that in the case θ + ν ≤ p a WLOO solution does not
exist, and that in the case θ

2 ≤ p < θ+ν the LWOO solution produces infinite objective value, thus
it has no “classical” meaning.
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