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Executive Summary 

Making the case for pre-event disaster risk reduction 

Given the series of large-scale flood disasters that have occurred in recent years, there is a growing 
recognition among community leaders, businesses, insurers, governments and international donors of 
the need to invest in risk reduction measures before such events happen.  Due to the costs of risk 
reduction measures, these actions need to be justified and as a result there is an increasing need to 
utilize decision-support tools, which can help to make the case for action to reduce disaster risks and 
build flood resilience when faced with limited resources. 

Across stakeholders, the specific objectives from the use of decision-support tools include (i) 
demonstrating the efficiency of the action ex-ante (before the flood); (ii) aiding in the selection of a 
particular intervention in enhancing community flood resilience from a suite of possible options; (iii) 
helping communities make the right choice when faced with limited investments; (iv) demonstrating the 
benefits of donor funding of community flood resilience projects; and (v) monitoring the successes and 
weaknesses of past interventions to generate lessons learned for future work.  

Typically, discussion on decision-support for disaster risk reduction (DRR) in floods (as well as for other 
hazards) has focused on cost-benefit analysis (CBA), however there are a number of other tools available 
to support decision-making. These include cost-effectiveness analysis (CEA), multi-criteria analysis 
(MCA) and robust-decision-making approaches (RDMA), which have been applied to similar problems, 
and can also be used to aid decision-making regarding flooding. 

This white paper provides an overview of the opportunities and challenges of applying these different 
tools, and guides the reader to select among them. Selection depends on the desired objective, 
circumstances, data available, timeframe to perform analyses, level of detail, and other considerations. 
We first focus on the CBA decision-tool, as this has been the mainstay of research and implementation. 
We then go beyond CBA to consider the other techniques for prioritising DRR investments.  While our 
analysis is specific to flood DRR actions, the conclusion are also applicable to other hazards. 

The key findings arising from this white paper with relevance to research, policy and implementation of 
flood DRR decision-support tools, are: 

1) Following a comprehensive review of the quantitative CBA flood DRR evidence, we find that flood 
DRR investments largely pay off, with an average of five dollars saved for every dollar spent through 
avoided and reduced losses; 

2) Using CBA for flood risk reduction assessment should properly account for low-frequency, high-
impact flood events, and also tackle key challenges such as intangible impacts; 

3) Decision-making can be improved by using various decision support tools tailored to the desired 
outcomes and contexts. 

This white paper is the foundation upon which the Zurich flood resilience alliance work on integration of 
a decision toolbox will proceed ‘on the ground,’ with established community-based risk assessment 
tools, in particular Vulnerability Capacity Assessments (VCA) or Participatory Capacity and Vulnerability 
Assessments (PCVA). Based on these findings we propose a way forward over the next several years on 
informing risk-based decision making as part of the alliance program.  
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Finding 1: CBA studies show that for every dollar spent on selected flood risk reduction measures, an 

average of five dollars is saved through avoided and reduced losses 

CBA, which is based on the economic efficiency criteria of maximizing benefits net of costs over time, 
has been the primary analytical approach used to provide quantitative information regarding the 
prioritisation of risk reduction solutions. Applying CBA from a risk-based perspective involves four main 
steps as shown in Figure 1: (1) estimating the amount of flood losses expected in the future under the 
status quo (without risk reduction); (2) identifying possible risk reduction measures and their associated 
costs; (3) estimating how much of the future flood losses would be reduced with such measures in place 
(that is, estimation of benefits); (4)   calculating the economic efficiency of the measures. The measures 
are said to be economically efficient if benefits exceed costs. 

 

 

Figure 1: Risk-based methodology for assessing the efficiency of disaster risk reduction 
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Based on a literature review that summarizes only those published studies from academia and practice 
for project evaluations and appraisals and which rigorously estimated disaster risk probabilistically, we 
summarize found (or identified) evidence for flood DRR. The studies demonstrate that investing in flood 
DRR can pay in many contexts and for many flood risk reduction interventions. This holds true for 
project appraisals that seek to understand whether an investment should be done, as well as project 
evaluations, that aim to identify whether the project indeed produced positive benefits over its lifetime. 
As shown in Figure 2, the majority of studies reported higher benefit-cost ratios, i.e., benefits exceeding 
costs, while showing variations around best estimates (lines around the dots). 

 

Figure 2: Summary of key studies on the economic efficiency of investments in flood risk reduction 

Note: The horizontal axis is fixed at 1, where benefits just equal costs, every point above the line thus indicates 
that projects exhibit larger benefits than costs. 

Taking a simple average across all studies reviewed leads to a benefit-cost ratio for flood hazard close to 
5; this means that for every one dollar spent on flood risk reduction, an average of five dollars is saved 
through avoided and reduced losses. Many of the highest economic returns exist for behavioural DRR 
strategies such as information and education, preparedness, forecasts and warning systems, and 
emergency response. Similarly, restoration of floodplains and flood proofing also demonstrate high 
economic returns. While there are instances where flood risk reduction measures analysed have not had 
benefits greater than costs, the available evidence reviewed suggests that it is most often possible to 
find an economically efficient risk reduction measure that can improve the protection of a given 
community against flood.  Although the existing economic evidence for flood DRR appears strong, 
knowledge gaps and challenges remain.  
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Finding 2: A flood risk reduction assessment needs to properly account for high-impact, low-frequency 

flood events, and also tackle key challenges such as intangible impacts  

 

From Finding 1, we see that there are often significant economic outcomes in conducting a CBA of flood 
DRR interventions to assist in either their ex-ante implementation or to justify their investment ex-post. 
The analysis highlights that CBA can be a useful if a number of key challenges for conducting such a 
rigorous CBA are considered including:  properly incorporating disaster risk arising from low-frequency, 
high-impact events; valuing indirect and intangible losses and distribution of both costs and benefits to 
different stakeholders in a community; including multiple hazards; assessing portfolios of systemic 
interventions vs. single interventions; and accounting for uncertainty and change over time.  

Provide proper account of disaster risk 

There has been a push towards undertaking CBA analysis from a probabilistic perspective, which 
involves gauging the uncertainty of flood event occurrences (and magnitudes) and their associated 
annual probabilities.  For example, consider a 20-year return period event with annual probability of 5 
percent, or a 100-year return period event with an annual probability of 1 percent.  Implementing a 
rigorous probabilistic (i.e., risk-based) analysis is of considerable importance for two main reasons: (1) 
flood risk is inherently probabilistic (this means that looking only at one flood event does not capture 
the entire set of possible flood events the community might soon face and their respective return 
periods) and (2) flood risk reduction options are efficient for certain levels of risk but not necessarily for 
all (e.g., a certain option may reduce risk up to 50-year return periods, while risk financing (insurance) 
may best cover higher level risk (such as beyond 100 years)).  Thus, a risk-based analysis is critical for 
determining the level of risk and whether DRR – instead of risk financing for example – is the 
appropriate course of action. As a standard tool, exceedance probability (EP) curves, exhibiting the 
probability that losses will be greater than a given level, are a key outcome of this risk-based 
methodology with the area under the curve representing the total expected annual damages.  EP curves 
are utilized not only to understand the magnitude of future expected losses without DRR in place, but 
importantly, by how much these future losses can be expected to be reduced through the DRR 
intervention, for example for a flood impacted home with and without elevation.  Graphically, the flood 
DRR shifts the EP curve to the left and therefore reduces the expected loss as depicted in Figure 3.  
Benefits from a particular flood resilience measure may affect different parts of an EP curve (low-end, 
mid-range or right-hand tail), as illustrated. In the selection of a particular intervention to enhance 
community flood resilience from a suite of possible options, this layering of risk is a significant factor to 
be considered.   
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Figure 3: Exceedance probability (EP) curve showing potential benefits of disaster risk reduction.   
Note: The EP curve represents the probability that losses will be a given amount, and flood risk reduction 

intervention shifts the EP curve to the left and therefore reduces the expected loss.  

Even in developed countries, availability of good data is not guaranteed.  In low-income countries, data 
availability and quality becomes a key challenge for comprehensively assessing disaster risk and the 
benefits of DRR. Gaps and uncertainties are related to the following issues and elements of measuring 
risk: 

 Hazard probability: In many settings, it can be difficult to obtain scientific information on how often 
a hazard such as a flood can be expected (frequency), and how large it might be (magnitude). 
Estimates can often be based on only a limited number of data points. 

 Assessing vulnerability:  Vulnerability curves often do not exist and this information has to be 
generated, which is often fraught with complications. 

 Assessing exposure: The dynamics of population increase, urban expansion and increase of welfare 
should be accounted for. Fundamental changes in infrastructure, population and vulnerabilities over 
time mean that damage estimates from long past events are not relevant in today’s context.  

In addition to issues with conducting baseline risk analysis, key gaps of particular importance in the flood 
resilience space have to do with proceeding from direct and tangible risk assessment to accounting for 
indirect and intangible effects. Furthermore, assessing portfolios of risk reduction and systemic 
intervention constitute frontiers of analysis. 

Considering indirect effects and intangibles  

In an ideal world, a comprehensive CBA should include all relevant social, economic and ecological 
impacts while at the same time distinguishing between reductions of the direct impacts from the shock 
itself such as loss of life and damages to (infra)structure, as well as indirect losses including increased 
morbidity due to lack of sanitation facilities, unemployment and reduced income due to business 
interruption, etc. Probabilistic risk assessment has focussed on direct, tangible impacts, less so on the 
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indirect and intangible effects, which are very important as demonstrated by the White Paper on 
Resilience. Especially in the developing world, where reportedly over 95% of deaths from natural 
hazards occur, how to address mortality and morbidity risks is a key consideration. The common 
approach to quantifying fatality is value of statistical life (VSL) estimates, typically based on projections 
of lost future earnings. However VSL estimates do not avoid value judgments and thus introduce 
substantial controversy. The same holds true for softer environmental and social values, such as 
existence values for environmental goods as well as cohesion of a social group or community.  

Assessing portfolios of options and systemic interventions 

While assessments of the economic efficiency of DRR may focus on hazard and risk-specific 
interventions, it may likely be the case that the best DRR interventions are comprised of a portfolio of 
interventions. What is more, these options may be integrated in broader developmental contexts, and 
depend on investments in systemic interventions in sectors such as education, health or infrastructure, 
which may bring about large DRR related benefits by building resilience. 

 
Two case studies were recently carried out by the research team in different economic and geographic 

contexts. These two examples illustrate the significant opportunities a risk-based CBA offers, while at 

the same time tackling some of these key challenges. 

Example 1: A comprehensive and spatially-detailed flood risk cost-benefit analysis on a metropolis: 

Case study of the City of New York1 

After Hurricane Sandy in 2012, which led to losses of nearly $80 billion, different flood risk reduction 

strategies have been proposed for New York City by scientists, engineers, NGOs and policy makers. 

Some structural measures (e.g. flood barriers) are effective in lowering the probability of the flood 

hazard and protecting large parts of the city, but come at a very high initial investment cost (those 

could cost as much as $20 billion to build, not accounting for annual maintenance cost over the life of 

the structure). ‘Softer’ measures, such as introducing more stringent building codes, support current 

initiatives to reduce exposure and vulnerability, and entail lower investment costs, but these changes 

will not keep flood waters from entering the city. This case study, undertaken by Wharton and 

focusing on storm surge flood hazard only, combines several strengths: (1) it is done for a large area 

(the entire New York/New Jersey coastal area); (2) it covers residential, commercial, and industrial 

assets as well as public infrastructure; (3) it builds on the most advanced technics of storm surge 

simulation, which itself builds on the more recent modelling from hurricane science; it also builds on 

the most recent flood vulnerability analyses (i.e., how asset are damaged by a flood); (4) it compares 

several comprehensive, feasible flood protection options that have been discussed with the local 

decision makers (i.e., the Mayor’s office); (5) it accounts for both direct and indirect losses;  (6) since 

CBA results are sensitive to the selected discount rate and uncertainties inherent to modelling, the 

study provides transparent sensitivity analysis (i.e., varying parameters) and compare the results; and 

(7) after all the CBAs were done under current climate conditions, the entire analysis was done again 

                                                           

1 Aerts, Botzen, Emanuel, Lin, de Moel and Michel-Kerjan (2014). Evaluating Flood Resilience Strategies for Coastal 
Megacities. Science, 344: 473-475. 
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for 2040 and 2080 climate and urban development scenarios since investment in flood protection can 

last for several decades and must then account for future conditions The CBA results suggest that 

flood risk reduction strategies for coastal cities should be flexible enough to allow for a change in 

policy when more detailed and reliable information becomes available on, for example, rising sea 

levels.  

Example 2: A CBA analysis linked to participatory decision-making for flood-exposed farming 

households: Case of Uttar Pradesh in Northern India.2 

This study tackled two key challenges:  estimating a broad array of direct and indirect, and tangible 

and intangible impacts and measures; and a lack of integration of CBA within the decision-making 

process. The study involved integrating CBA in a participatory and iterative community-based 

decision-process evaluating the historical as well as future performance of Investments made to build 

the embankment of the Rohini River in northern India. The study showed that deriving realistic and 

relevant impact information has to be supported by a participatory process involving communities 

that have been affected by floods and other hazards. It also demonstrated the value of taking such a 

broad-based approach to improve the robustness of results. While strict flood engineering-based 

estimates of direct, structural losses showed high benefit-cost ratios, when the stresses on the 

community’s values were included in the analysis, the project became less efficient, and eventually 

even inefficient (costs higher than benefits).  The assessment took into account a host of tangible and 

intangible effects on society, and related costs (such as land compensation costs, chance of 

embankment failure, as well as disbenefits associated with waterlogging), which traditional 

engineering analysis of infrastructure projects tends to ignore.  This has important implications when 

considering revisions to the design and implementation of the project so that any further investments 

provide solid and comprehensive benefits to those to be protected by this flood protection project. 

 

Overall then, it is possible to overcome some of the challenges associated with CBA by applying latest 
insights from science and application. The studies we reviewed mostly looked at risk probabilistically, -
yet often relied on incomplete distributions of flood return periods or may only look at the annual 
average losses, the average across all possible flood events, which is not representative of high-level 
disasters, such as the 100 year event.  Often, studies looked at portfolios of options rather than 
individual solutions. Indirect effects were also sometimes included. The consideration of intangibles 
remains a challenge for CBA, and systemic intervention methods are not yet really included, but this is 
the most difficult to tackle.  

 

 

                                                           

2 Kull, D., Mechler, R. Hochrainer-Stigler, S. (2013). Probabilistic Cost-Benefit Analysis of Disaster Risk Management 
in a Development Context. Disasters 37(3): 374-400. 
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Figure 4: Uptake of best practice of CBA for risk-based DRR studies 

 

Finding 3: Decision-making can be improved by using various decision support tools tailored to the 
desired outcomes and contexts 

 

Ultimately, economic efficiency underlying CBA is only one decision-making criterion of relevance for 
prioritizing DRR flood risk reduction investments. Decisions on investment to increase flood risk 
resilience are likely to be made based on a number of criteria, some of which are more or less 
transparent.    

Criteria such as risk-effectiveness, robustness, equity and distributional concerns, and acceptability have 
been found to be key for deciding on implementing DRR projects.  There are other decision support 
techniques such as cost-effectiveness analysis (CEA), multi-criteria analysis (MCA) and robust decision-
making approaches (RDMA) that can be used to measure achievement of these criteria.  These tools can 
be used to make a more comprehensive case for DRR. As a challenge, they do not lead to easily 
communicable metrics for presenting the results, such as benefit-cost ratios.   

These decision-support tools are applicable for different objectives can be used to inform various types 
of decisions in many different contexts, including: Project appraisal; Evaluation; Informational/Advocacy 
study; and Iterative decision-making.  Table 1 summarizes the key advantages, challenges and 
applicability of CBA, CEA, MCA and robust approaches. The table illustrates that no one tool is perfect 
for every situation. Each has its strengths and weaknesses and is suited to different decision-making 
contexts. We provide exemplary illustrations of the opportunities of each technique. 
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Applying a decision-support toolbox to the work of the Zurich flood resilience alliance  

CBA and the other tools presented in this white paper are not simply for the selection or ex-post 
evaluation of flood DRR interventions. They all represent systematic decision-making processes used to 
identify and agree on the most important benefit and cost aspects amongst risk managers and key 
stakeholders. Specifically, part of the usefulness of these tools is the process of defining values, 
objectives, costs and benefits as part of a wider assessment and decision-making process that includes 
stakeholder participation; detailed participatory analysis of the factors contributing to flood risk and 
vulnerability; quantitative and qualitative methods for evaluating the impacts of flood disasters; and 
transparent and inclusive processes for qualitative and quantitative data collection and analysis. From a 
resilience-perspective, the utility of decision-support tools is strongly related to their use within a 
decision-making process. For example, in selecting the communities to work in it is imperative that a 
transparent, impartial, and consistent process be in place in order to minimize unwanted external 
influences in the community selection process. 

Table 1: Applicability of different decision-support tools for assessing flood risk reduction 

Tool Opportunities Challenges Typical Application 

CBA Rigorous framework based on 
comparing costs with benefits 

Need to monetize all 
benefits, difficulty in 
representing intangible 
impacts, such as value of 
life 

Well-specified hard-resilience 
projects with economic 
benefits (e.g., flood risk 
prevention) 

CEA Ambition level fixed, and only 
costs to be compared. Intangible 
benefits, particularly loss of life, 
do not need to be monetized 

Ambition level needs to be 
fixed and agreed upon 

Well-specified interventions 
with important intangible 
impacts, which should not be 
exceeded (loss of life, etc.) 

MCA Consideration of multiple 
objectives and plural values 

Subjective judgments 
required, which hinder 
replication 

Multiple and systemic 
interventions involving plural 
values (e.g. investing in 
infrastructure and education) 

Robust 
approaches 

Address uncertainty and 
robustness 

Technical and computing 
skills required 

Projects with large 
uncertainties and long 
timeframes (context of climate 
change where flood return 
periods may become more 
uncertain) 

Note: CBA-Cost Benefit Analysis; CEA-Cost-Effectiveness Analysis; MCA-Multi-Criteria Analysis      

Work of the Zurich flood resilience alliance will analyse how decision-making techniques discussed here 
integrate into existing community participatory approaches, such as the International Federation of the 
Red Cross (IFRC)’s Vulnerability Capacity Assessments (VCA), or Practical Action’s Participatory Capacity 
and Vulnerability Assessment (PCVA), in order to ensure the application of their systematic decision-
making capabilities (best practice use of the tool for community based work). These participatory 
processes are completed in conjunction with the collection of secondary information to provide a 
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baseline of communities risk to different hazards and opportunities to build on communities’ existing 
capacities to reduce risks and strengthen resilience.   

In particular, linking to VCA/PCVA provides a good entry point for collecting baseline information and 
monitoring data on risk and resilience, as well as for gleaning community views on potential costs and 
benefits.  Furthermore, the impact-driven and quantitative thinking needed for decision-making can be 
leveraged through VCA/PCVA to enable communities to gain additional perspective on their own 
vulnerability and risk, especially around current and future risk, and to develop innovative approaches to 
community- based DRR and resilience. Existing CBA evidence on the returns to the various flood DRR 
interventions could be useful in this regard to potentially highlight underinvested areas.  Further, once 
the VCA/PCVA process has started in the selected communities, CBAs can potentially provide two useful 
roles: (1) to assist in the decision-making process on which DRR strategies to employ based upon the 
economic efficiency criterion, or (2) to provide insight into the intangible benefits of the various DRR 
interventions to assist in prioritizing them for a further quantitative analysis.  Then, from an ex-post 
perspective, CBA is useful in monitoring just how effective the various DRR interventions have been 
given their implementation.  Further understanding, developing, applying and testing the role in 
community case study contexts of a decision toolbox comprised of the different tools (not just CBA) 
along this entire flood DRR implementation spectrum will be the focus of future work of the flood 
resilience alliance. 

Figure 5 gives examples of how CBA and other tools might be built into Zurich flood resilience alliance 
decision-support processes, beginning from site/community selection and extending to monitoring and 
evaluation of the implemented flood DRR interventions.  Importantly, this work will also directly connect 
with complementary work being done by all the partners of the Zurich flood resilience alliance on 
operationalizing community flood resilience (see also White Paper on Resilience).     

 

Figure 5: Entry points for using decision-support tools for building flood resilience   
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1 Point of Departure: Decision-making Tools for Flood Disaster Risk 
Reduction  

Disaster risk reduction (DRR) practitioners and analysts emphasize the need for prioritising pre-disaster 
actions in lieu of the predominant focus on post-disaster provision of relief and reconstruction 
assistance. Yet, there is a significant bias towards reliance on ex-post response rather than ex-ante risk 
reduction. Despite wide acceptance that disasters can be mitigated by risk reduction actions, very little 
money is actually spent reducing risk before an event strikes (Benson and Twigg 2004; Hoff et al. 2003; 
Kellett and Caravani 2013; see also alliance white paper on resilience: Keating et al. 2014) 

One explanation for the bias towards ex-post aid is the limited information regarding the comprehensive 
quantitative and qualitative benefits and costs of DRR. Even information on the cost of the DRR project, 
which can be perceived to be trivial to obtain, is in reality a significant challenge. 

Efficiency considerations of DRR are of growing importance for many decision makers in the private and 
public sectors (including insurers, governments, international financial institutions, donors, NGOs). 
Increased scrutiny of DRR investments is leading to a growing demand for information about the relative 
economic efficiency (i.e., benefits greater than the costs) of DRR options. Given that DRR tends to have a 
limited budget, there is a clear need to direct investments towards risk reduction strategies that have 
high economic returns.  

Decision-making Tools for DRR 

A number of decision support techniques can be applied to the challenge of assessing the quantitative 
and qualitative costs and benefits. These tools include cost-benefit analysis (CBA), cost-effectiveness 
analysis (CEA), multi-criteria analysis (MCA), and robust decision-making approaches (RDMA) among 
others.  While all of these techniques have their pros and cons, and have been widely implemented to 
salient issues pertaining to sustainability, CBA has been the dominant tool in use in OECD countries to 
prioritize physical flood risk prevention.  

CBA can provide quantitative information regarding the prioritisation of various risk reduction strategies 
based on the notion of economic efficiency. It has been used for investment purposes in many 
infrastructure projects around the world.  However, while CBA has been applied to the assessment of 
DRR, this is mostly done to justify an investment project that has already been approved (World Bank 
2010). Furthermore, it is typically conducted short of best-practices, with an important issue being the 
lack of taking a proper risk-based approach given the probabilistic nature of the disaster data. Despite its 
ex-post investment justification use, there has been relatively little public reflection regarding CBA’s 
capacities for evaluating investment in disaster risk reduction measures.  

Aside from CBA, there has also been very little reflection and use of other decision-tools (one exception 
is Benson and Twigg 2004). As argued by the alliance’s white paper on community resilience, a holistic 
understanding of disaster risk reduction – including the notion of resilience – is a useful entry point for 
furthering the discourse. Building disaster resilience requires a shift in emphasis from infrastructure-
based options that lend themselves easily to cost and benefit considerations, to a strong focus on using 
preparedness and systemic interventions. A resilience approach will likely require more quantitative 
information which is not readily available. Furthermore, it emphasizes other criteria beyond cost-
efficiency as of key importance. Given this, other tools such as cost-effectiveness analysis, multi-criteria 
analysis and robust decision-making approaches deserve more attention. The various tools available to 
support decision-making on DRR investments beyond CBA are based on evaluative criteria beyond 
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economic efficiency. There is need for more discussion regarding the use of these other decision-
support techniques for DRR, partially to address some of CBA’s limitations. 

The contribution of the Zurich Flood Resilience Alliance 

Work over the next several years on decision-making under risk as part of the Zurich flood resilience 
alliance program will address decision-making for policy makers, analysts and implementers and further 
develop and apply methodologies in order to quantify the relative costs and benefits of flood protection 
measures, implementable at the appropriate level. These developed methodologies in turn will help 
inform the action partners, potential donors, governments, as well as individuals and businesses at risk, 
on the costs and benefits of investing in flood risk reduction with an emphasis on pre-event investment. 

Our vision is that the methodology will embrace different decision-support tools (such as CBA, cost-
efficiency analysis, and robust decision-making approaches) to effectively and robustly inform the 
various decision-making contexts and actors on how to evaluate flood risk reduction projects. We will 
also discuss the appropriate contexts for each tool, how robust specific measures are, the technical 
capacity and data that needs to be developed to apply such a methodology, etc. 

Importantly, this work will also directly connect with complementary work being done by all the 
partners of the Zurich flood resilience alliance on operationalizing community flood resilience.  
Assessments for examining options to reduce, prepare for, and finance disaster risk, may be used as 
heuristic decision support tools to aid practitioners and policymakers to comprehensively categorise, 
organise, assess and present information on the various costs and benefits of specified DRR strategies. 
Input on the economic efficiency of interventions coupled with information on values and preferences is 
crucial. Decision-making processes on flood DRR will benefit from an organisation’s iterative decision-
making, instead of directly leading to the prioritisation of any one intervention. 

To lay the basis for the work, this report presents the existing evidence regarding the benefits of pre-
event disaster risk reduction to enhance resilience and explores the methodological underpinnings 
including key omissions and challenges. The report starts with a focus on CBA decision-tool, as this has 
been the mainstay of research and implementation; specifically, we review the pros and cons as well as 
the evidence of applying CBA for DRR, and suggest how risk can be better brought into this tool.  

We then consider other key techniques for prioritising DRR investments, such as CEA, MCA and RDMA, 
for which we provide salient examples. We end with suggestions for applying the decision-tools to on-
going alliance work including case studies. 

This white paper is organized as follows: Section 2 provides an overview of the four main decision 
support tools for flood DRR; Section 3 reviews and summarizes the CBA-specific evidence for 
implementation of flood risk reduction measures; Section 4 presents opportunities and key challenges 
for applying a risk-based CBA technique to flood DRR.  Section 5 is a detailed discussion of how the key 
challenges are tackled in practice, and how CBA informs decision-making (Section 6). More detail on the 
other decision-making tools for prioritizing investments into DRR are the subject of Section 7, before we 
provide concluding remarks and options for moving forward. 
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2 Decision Tools for Flood DRR: Overview 

Among the variety of tools for project appraisal and evaluation which are receiving interest in the 
climate adaptation field are (1) cost-benefit analysis (CBA), (2) cost-effectiveness analysis (CEA),  
(3) multi-criteria analysis (MCA) and (4) robust decision-making approaches RDMA (see Mechler 2012). 

Table 2 summarizes the key advantages, challenges and applicability of CBA, CEA, MCA and robust 
approaches. The table and discussion below illustrate that no one tool is perfect for every situation. 
Each tool has its strengths and weaknesses and is suited to different decision-making contexts. 

Table 2: Applicability of different decision-support tools for assessing flood risk reduction 

Tool Opportunities Challenges Typical Application 

CBA Rigorous framework based on 
comparing costs with benefits 

Need to monetize all 
benefits, difficulty in 
representing intangible 
impacts, such as value of 
life 

Well-specified hard-resilience 
projects with economic 
benefits (e.g., flood risk 
prevention) 

CEA Ambition level fixed, and only 
costs to be compared. Intangible 
benefits, particularly loss of life, 
do not need to be monetized 

Ambition level needs to be 
fixed and agreed upon 

Well-specified interventions 
with important intangible 
impacts, which should not be 
exceeded (loss of life, etc.) 

MCA Consideration of multiple 
objectives and plural values 

Subjective judgments 
required, which hinder 
replication 

Multiple and systemic 
interventions involving plural 
values (e.g. investing in 
infrastructure and education) 

Robust 
approaches 

Address uncertainty and 
robustness 

Technical and computing 
skills required 

Projects with large 
uncertainties and long 
timeframes (context of climate 
change where flood return 
periods may become more 
uncertain) 

Note: CBA-Cost Benefit Analysis; CEA-Cost-Effectiveness Analysis; MCA-Multi-Criteria Analysis 

Source: Mechler 2012 

Building on internal rate of return (profit) reasoning used in the corporate sector to compare the private 
benefits and costs of an investment, CBA has been used by governments as a major decision support 
tool to organize and calculate the societal costs and benefits, inherent trade-offs and economic 
efficiency of public policy, programme or project (Brent 1998). 

Cost-effectiveness analysis (CEA) is a special case of CBA used to identify least-cost options to meet a 
certain, pre-defined target or policy objective. It may also be used when the benefits of alternative 
options are assumed to be similar enough that only costs need to be calculated. Therefore, a CEA is 
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designed to identify the least cost project, where project costs themselves are typically the main cost 
category. CEA does not require the quantification of benefits because they are assumed to be fixed or 
decided upon beforehand as a target (such as reducing disaster fatalities and losses to a certain level or 
maintaining a particular environmental flow). Thus, an advantage of CEA is that there is no need to 
monetize benefits of DRR, which are often hampered by uncertainty, such as reduced flood risk and 
health impacts of floods. 

Another decision-support approach is multi-criteria analysis (MCA). The distinguishing feature of MCAs 
is that their objective is to provide a structured way of comparing costs and benefits which are 
expressed in different terms. This is in contrast to CBA and CEA where the first step is to monetize all 
costs and benefits so they may be compared. While a CBA might monetize lives and environmental 
values in order that they may be compared “apples to apples,” an MCA provides a structured way of 
weighing options with all costs and benefits in their original units, be they quantitative or qualitative 
judgements. In this way, an MCA may be referred to as a ‘qualitative CBA’ – it attempts to optimize 
benefits over costs (as in CBA), but without the requirement that all costs and benefits be quantified. 

A broad theory of decision processes relating to robustness, or robust decision-making approaches 
(RDMA), have been receiving increasing emphasis recently, particularly in the context of climate change 
adaptation. This set of approaches comprises quantitative as well as qualitative methodologies. They 
draw focus away from optimal decisions (such as supported with CBA) and aim to identify options with 
minimum regret, that is, minimal losses in benefits in a chosen strategy where some parameters have 
been uncertain. 

When are the different tools applicable, and what are the decisions they can support?  Figure 6 suggests 
a structured method for identifying a suitable decision-support technique:  

 If there is a clear and single objective, such as maximizing economic efficiency, impacts are 
measurable and benefits are indicated in monetary terms, CBA is a useful tool to consider.  

 If benefits are framed only qualitatively, then CEA can be of good value.  
 If other objectives, such as equity, legitimacy and acceptability enhance economic considerations, 

MCA approaches are to be considered with stakeholders or, if the impacts are not properly 
indicated in quantitative terms, with expert panels.  

 If a project has long time frames and high uncertainty, then robust methods could be explored. 
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Figure 6: Decision tree for identifying a suitable decision-support technique 

Source: Modified from UN Framework Convention on Climate Change, Assessing the Costs and Benefits 
of Adaptation Option, 2011. 

This decision tree is a starting point for introducing conventional wisdom on the applicability of CBA, 
CEA and MCA. However it captures only the traditional decision tools, neglecting the importance of 
deep uncertainty and the applicability of robust decision making approaches. Furthermore, it does not 
consider the importance of how well the approach fits with the cultural context of a community 
(acceptability) and how community-based interventions involving diverse stakeholders are decided 
(process).  

Yes to all 
No 

Yes No 

Yes 
No 
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3 Using Cost-Benefit Analysis to Make the Economic Case for Flood 
Disaster Risk Reduction – Overview and Evidence  

3.1 What is Cost-Benefit Analysis? 

CBA is a framework that supports transparent, coherent, and systematic decision-making based upon a 
common monetized yardstick that can be used to evaluate various risk reduction strategies (Czajkowski, 
Kunreuther and Michel-Kerjan 2012; Mechler and Islam 2013).  

In a CBA, all costs and benefits accruing over time are monetized and aggregated so that they can be 
compared using the common economic efficiency criterion. In general, if the stream of discounted 
benefits exceeds the stream of discounted costs (i.e., positive net present value economic benefits) a 
proposal is considered ’economically efficient’ (see Box 1). When comparing options (including the ‘do-
nothing’ option), the option with the highest net present value is considered optimal. In this way, CBA is 
similar to rate-of-return assessment methods undertaken by firms to assess whether or not an 
investment is profitable.  However, unlike private investment decisions, CBA is often used to estimate 
the overall profit (benefit) to society, and thus whether or not social welfare is maximized in regard to 
the policy. One of CBA’s main strengths is its explicit and rigorous accounting of benefits and costs 
within a common metric – money. 

Box 1: Various Measures of Economic Efficiency in CBA 
• Net present value (NPV): costs and benefits arising over time are discounted through a fixed discount rate 
and the difference taken, which is the net discounted benefit in a given year. The sum of the net discounted 
benefits is the NPV. If the NPV is positive (benefits exceed costs), then a project is considered desirable. 
• The benefit-cost ratio is a variant of the NPV. The total discounted benefits are divided by the total 
discounted costs.  By definition, a benefit-cost ratio of 1 means that the expected discounted benefit of 
implementing the mitigation equals its cost. Any measure where a benefit-cost ratio is greater (less) than 1 is 
considered to be cost-effective (not cost effective) and should (should not) be implemented as the benefits exceed 
(do not exceed) costs and a project thus adds (does not add) value to society. 
• Economic Rate of Return (ERR): Whereas the former two criteria use a fixed discount rate, this criterion 
calculates the interest rate internally, which is considered the return of the given project. A project is rated 
desirable if this ERR surpasses an average return on public capital determined beforehand. 
 

Resource and time commitments, as well as expertise required differ significantly for these different 
purposes and applications. The scope of the costs and benefits considered often depends on who the 
CBA users are, for instance if the end user is a development bank or a municipality, between small-scale 
and large-scale investments, the planning of physical infrastructure or capacity building measures. At a 
very early stage, it is critical to achieve consensus among the involved parties on the scope and breadth 
of the CBA to be undertaken. It is also important to know who is undertaking the CBA analysis. The head 
of development of a city, for instance, will have a different view than an engineering firm. CBA has also 
different levels of resource and time commitment depending on how in-depth the analysis is to be (see 
Table 3). 
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Table 3: Resource and time commitment according to CBA goals 

Goal Purpose Resource and time commitment 

Project appraisal Detailed evaluation of accepting, modifying or 
rejecting a project, often by singling out the 
most efficient measure among alternatives 

+++ 

Evaluation Ex-post evaluation of a project after completion ++ 

Informational study Provide a broad overview of costs and benefits + 

Source: Mechler (2005) 

 

Here we provide in the context of flood DRR the four main steps for conducting CBA from a risk-based 
perspective (see Grossi and Kunreuther 2005; Mechler 2005). 

1. Risk analysis: The flood risk under the status quo (without risk reduction) has to be estimated. 
This entails estimating and combining hazard(s), exposure and vulnerability to estimate risk. 

2. Identification of risk reduction measures and associated costs: Potential flood risk reduction 
projects and alternatives can be identified and the costs, both up front and ongoing, measured. 

3. Analysis of risk reduction: As disaster risk is a downside risk, benefits are the risks avoided. The 
core benefits generated by investments in disaster risk reduction are reductions in future 
impacts and losses, such as reduced average annual losses. 

4. Calculation of economic efficiency: Economic efficiency is assessed by comparing benefits and 
costs using different metrics, for instance the number of years the risk reduction measure or the 
asset at risk will exist (which in turn requires decisions on the discount rate used to make values 
comparable over time). 
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Figure 7: Risk-based methodology for conducting CBA of disaster risk reduction 

Source: Mechler (2005) 

We provide more details on these four steps in Section 4.  In addition to determining the best option 
using economic efficiency as the criterion, one also must consider CBA through a societal lens by 
considering how losses are distributed, as they relate to the impact of the different alternatives on the 
affected parties. 

3.2 General Summary of Flood DRR CBA Evidence 

CBA has been widely used for many purposes and applications (see, e.g., Dasgupta and Pearce 1978; 
World Bank 2010; Michel-Kerjan et al. 2012; Mechler 2012; Czajkowski, Kunreuther and Michel-Kerjan 
2013).  In the United States, CBA of flood control projects was mandated by Congress under the 1936 
Flood Control Act and has been used for evaluation of risk reduction projects since the 1950s. It has, in 
effect, been standard practice for more than half a century for organizations such as the U.S. Federal 
Emergency Management Agency (FEMA) and the U.S. Army Corps of Engineers. To many U.S. 
(government) decision makers, economic efficiency has been a very important aspect when devising 
disaster-related policies. It may even be said that in the United States, cost-benefit considerations have 
“at times dominated the policy debate on natural hazards,” although it remains unclear to what extent 
decisions have been rigorously based on this tool (Burby 1991). The UK government’s Department for 
Environment, Food and Rural Affairs (DEFRA) and the World Bank also generally advocate the use of CBA 
for projects and policies including those related to disaster risk reduction (see, e.g., Ministry of 
Agriculture 2001; Penning-Rowsell et al. 1992). Lately, the development cooperation context has moved 
to the forefront due to interest by international financial institutions, donors and NGOs to gauge the 
economic efficiency of their interventions.  
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As NGOs are picking up on decision-support and conducted analysis, two descriptive examples of CBA 
application in the DRR realm as applied by the Zurich flood resilience alliance partners, International 
Federation of the Red Cross (IFRC) and Practical Action (PA) may be illustrative of applications 
performed and experiences gained.  In both cases, the DRR activities were found to be mostly 
economically efficient, evaluated from an ex-post perspective, although these analyses did not apply the 
four step risk-based procedure we outline in Section 3.1.  

IFRC Experience 

To better understand the economic efficiency of community-based DRR, as well as the use of CBA for 
community-based DRR in the Red Cross Red Crescent context, the IFRC and some of its member 
National Societies implemented three case studies between 2008 and 2010 on three separate DRR 
programmes in Nepal, the Philippine and Sudan. 

Table 4 lists the results of the case-study CBAs in those countries, reported as the benefit–cost ratio. The 
analysis periods were selected based on actual programme start dates, foreseen project life spans and 
data limitations.  The resulting benefit–cost ratios ranged from less than 1 to more than 25. Most results 
were substantially above 1.0, meaning that the community-based DRR programme and activities can be 
considered economically efficient. 

Table 4: CBA results of the three countries’ DRR programmes 

 
Source: IFRC/RC 2010 
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All three case studies produced lessons and recommendations for the use of CBA in community-based 
DRR programs.   

A primary recommendation is that extensive, in-depth CBA should not be applied across-the-board to all 
Red Cross Red Crescent community-based DRR programming. An attempt to do so would be neither 
realistic nor useful given the cost and time commitments required. Rather, community-based DRR 
programmes should be selected for extensive CBA studies based on their implementation timeframes, 
data availability, the scope of the programme, the relevance and applicability of CBA to support decision 
making, and the opportunity to develop reference CBA values for common types of DRR interventions. 
At the same time more qualitative, easier-to-implement approaches to comparing intervention options 
could likely be implemented across-the-board by the Red Cross Red Crescent drawing on the alternative 
methodologies described in other parts of this paper. 

For the Red Cross Red Crescent it is also essential to capture distributional aspects of interventions. CBA 
generally treats the beneficiaries of a project as a homogenous group, whether it is a single community, 
all communities in a region, or an entire country. It therefore tends not to account for differences in the 
distribution of costs and benefits. If within a targeted community certain people benefit or perceive to 
benefit less than others, CBA does not capture this quantitatively. For the Red Cross, which is focused on 
serving the most vulnerable, any CBA must be complemented by methodologies that consider how costs 
and benefits are distributed.   

CBA for community-based DRR is additionally challenging in that the main benefit of community-based 
DRR is a reduction of disaster losses, which can be very difficult to measure and which often accrue over 
long-term periods further complicating the issue of distribution of costs and benefits mentioned above. 
Often baseline data on losses does not exist, or due to changing disaster patterns driven by such 
processes as climate change, past experiences cannot be considered relevant for current and future 
conditions. Better information and rigorous, but easy-to-use models for calculating potential disaster 
losses are needed. 
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A Cost-Benefit Analysis of Practical Action’s Livelihood- Centred  
Disaster Risk Reduction Project in Nepal 

 

Practical Action undertook a retrospective study to gather evidence 
on the cost-effectiveness of the Livelihoods Centred Disaster Risk 
Reduction (LCDRR) approach adopted for a flood vulnerable 
community development project in Nepal. The objectives of the 
project were to improve the socio-economic status of communities 
vulnerable to natural disasters, and to enhance the capacity of 
stakeholders at different levels to adopt a livelihood-centred 
approach to disaster risk reduction, by integrating what is known 
about natural hazards into their livelihood strategies. 

The study applied the analytic framework of social cost-benefit 
analysis (SCBA), which provides a quantitative monetary estimate of 

the overall net welfare benefits attributable to the project activities as well as an estimate of the 
economic benefit-cost ratio of the overall project (Willenbockel 2011). 

The overall benefit-cost ratio ranged from 1.13 to 1.45, while under moderately optimistic assumptions 
the estimated benefit cost ratio rises to 2.04. These figures were based on a very cautious and 
conservative evidence-based evaluation of the project benefits and excluded a range of potential 
ancillary gains for which the project documentation provides anecdotal evidence. Such unaccounted 
additional benefits include the reduction of losses from landslides, environmental improvements 
associated with tree plantations and other measures aimed at the reduction of slash and burn 
agriculture, as well as the health impact and social benefits associated with the improvements in food 
security and diversification of diets. 

However, none of the estimates take into account that the frequency of extreme weather events in the 
form of both droughts and floods is expected to increase 
due to climate change, and that correspondingly the 
benefits of investments in irrigation and flood protection 
infrastructure are likely to increase. Given the current state 
of climate science, projections of the impact of climate 
change on precipitation patterns, flood and drought risks at 
local scales remain highly uncertain. In the presence of this 
uncertainty a focus on ‘no-regret’ measures that foster the 
resilience of communities under any future climate is 
advised. The LCDRR approach with its emphasis on 
community-level activities which increase livelihood 
opportunities and reduce vulnerability appears very 
appropriate in this respect. 

These findings indicate that the livelihood-centred approach to disaster risk reduction adopted in this 
project resulted in a significant net contribution to the economic welfare of the target communities and 
delivered value for money. 
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3.3 Summary of Evidence 

In order to provide a more comprehensive overview of the CBA applications with regard to flood DRR, 
we summarize the evidence found for 27 studies in terms of key results.  Overall, these evaluations 
demonstrate that investing in DRR can pay in many contexts and for many interventions and hazards. 
The large majority of studies reported exhibited benefit-cost ratios larger than 1, positive net present 
values and high economic rates of returns. However, a few studies also calculated that some 
interventions did not provide positive net values (Kull et al. 2008; Hochrainer-Stigler et al. 2010; Venton 
et al. 2010; ECA 2009; ERN-AL 2010). 

Our review differentiates between ex-ante appraisal and ex-post evaluations. While it is very difficult to 
generalize, it may be said that a global average of the benefit-cost ratios across interventions, regions 
and hazards may be around 4 with some important outliers. This statement is based on the review of all 
available estimates in the literature, as well as the MMC (2005) study.  

Taking a simple average across all studies reviewed3 would lead to a benefit-cost ratio of 3.7, with 
average ranges for earthquake and wind hazards close to 3, flood hazard close to 5, and drought (one 
study only) around 2. Except for flood risk, the estimates rely on very few observations. Overall, they are 
rather similar to the MMC study results with risk reduction benefit-cost ratios for flood risk reduction 
broadly similar, with lower values for wind, and with higher estimates for seismic hazards. 

                                                           

3 In total, of the studies reviewed, 27 estimates were considered based on whether B/C ratios were calculated and 
a risk-based approach was pursued. Two studies, MMC (2005) and Hochrainer-Stigler et al. (2010), offered a range 
of estimates. 



 

23 

 

Figure 8: Results for flood risk reduction in terms of benefit-cost ratios – Evaluations and Appraisals 

Note: Results displayed here show best estimates (or averages) (dots) and ranges of benefit-cost ratios (lines). The 
horizontal axis is fixed at 1, where benefits equal costs. Every point above the line thus indicates that the projects 
exhibit larger benefits than costs. 

Source: Updated based on Mechler (2012) 

Based on a similar dataset and review, Hawley et al. (2012) summarize a number of flood DRR CBAs and 
classify results by the type of risk reduction strategy undertaken as well as where in the watershed the 
mitigation was implemented.  The specific flood DRR strategies summarized fall into one of three main 
categories:  (1) Structural and Non-structural – levees, dams, diversions and channel improvements, 
flood gates, restoration of floodplain, detention basins; (2) Exposure and Property Modification – zoning 
and land-use planning, voluntary purchase, building codes and regulation, house elevation, other flood-
proofing; and (3) Behavioural – information and education, preparedness, forecasts and warning 
systems, emergency response.   

Watershed locations also fall into one of three main geographic classifications: (1) Deltaic – point at 
which the river reaches the sea; (2) Central – areas defined by a gradual slope of the terrain where the 
transporting capacity of the river has slowed significantly and leading to deposition; and (3) Upper – 
areas where the gradient is high and increased velocity leads to quicker flow streams and high erosion rates. 

Their analysis of existing economic returns from flood DRR (where  benefit-cost ratios were determined) 
illustrate that many of the highest economic returns exist for behavioural DRR strategies as well as restoration 
of floodplains and flood proofing. Figure 9 provides a summary of their findings by Hawley et al. 2012. 
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Figure 9: Benefit-cost ratios by strategy type 

Source: Hawley et al. 2012 

Although there is evidence that exposure reduction and behavioural response modification DRR 
strategies have some of the highest benefit-cost ratios, these are typically the least utilized strategies in 
general and by watershed locations. Comparing results across studies with very different 
methodological designs is difficult, so it is useful to also compare the findings of the MMC (2005) study, 
which took a consistent approach across all the hazards and cases analysed in the U.S. context (see Box 
2). This large and comprehensive study was mandated by the U.S. Senate to gauge the returns on the 
benefits of federal hazard mitigation grants. In retrospective analysis, investments in more than 5,400 
disaster risk reduction programs in the United States, including the retrofit of buildings against seismic, 
windstorm and flood risk, amounting overall to US$3.5 billion, were estimated to have led to a 
discounted net present value of societal benefits of US$14 billion overall. Thus, on average, every dollar 
spent by the U.S. Federal Emergency Management Agency (FEMA) on risk reduction can be attributed 
with having provided the country about $4 in future benefits (MMC 2005; see Box 2). 

When considering these broad summary estimates, there are a number of caveats to keep in mind. The 
evidence base compiled here using estimates of benefit-cost ratios is limited at a relatively small 
number of studies with most evidence reported for flood risk.  Variation is considerable.  A few studies, 
of which some do not use ranges for representing results, exhibit very high values of up to 17, and 
estimated ranges stretch from nearly 0 to 50 for the benefit-cost ratio.  Concerning applicability, while 
these numbers may have some appeal for policymakers suggesting DRR can indeed pay back, this does 
not mean that it automatically does.  Whether DRR leads to positive and large returns depends, on 
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project design, context and choices regarding DRR interventions.  In fact, a few evaluation studies show 
that some projects may not have been economically efficient or barely so. As well, methodological 
depth and choices vary significantly across studies, with some studies going into more detail than 
others. We now proceed to discussing these choices by way of the best-practice criteria and challenges 
identified before. 

Box 2: The U.S. Multi-hazard Mitigation Council (MMC) Study (2005) 
Mandated by the U.S. Senate to better understand the benefits of risk reduction investments, the Federal 
Emergency Management Agency (FEMA) commissioned the Multihazard Mitigation Council (MMC) of the National 
Institute of Building Sciences (NIBS) to perform a study on the costs and benefits of DRR using CBA.  

Carried out by an interdisciplinary team of more than 30 experts, the study comprised two elements:  (i) a 
benefit-cost analysis of FEMA post disaster grants given to affected communities to build future resilience, and (ii) 
quantitative and qualitative research on the impacts of the grants in sample communities. The benefit-cost 
analysis of the future savings from FEMA mitigation grants, $3.5 billion which were given to states and 
communities over the years 1993 to 2003, examined a sample of 357 of 5,479 grants. The MMC review based its 
benefit estimates of the reduced impacts across seismic risk, windstorm (hurricane and tornado) and flood risk on 
the comprehensive HAZUS risk model. The review estimated a substantial number of impacts as follows:  

 Reduced direct property damage (e.g., buildings, contents, bridges, pipelines);  

 Reduced direct business interruption loss (e.g., damaged industrial, commercial, and retail facilities);  

 Reduced indirect business interruption loss (e.g., ordinary economic ripple effects);  

 Reduced (nonmarket) environmental damage (e.g., wetlands, parks, wildlife);  

 Reduced other nonmarket damage (e.g., historic sites);  

 Reduced societal losses (casualties, homelessness); and  

 Reduced need for emergency response (e.g., ambulance service, fire protection). 
An estimate for the sample of 357 grants was scaled up leading to a total discounted present value of $14 billion in 
terms of societal benefits, which overall would mean a benefit-cost ratio of about 4. There is important variation 
across hazard, interventions and locations. Importantly, work funded by these grants was divided into projects 
building hard resilience (hazard-proofing or relocating buildings, lifelines and infrastructures, improving drainage 
systems and land conditions), as well as process-based activities leading to stimulating soft resilience by means of 
hazards, vulnerability, and risk assessments, planning, raising awareness and strengthening institutions. 
 
The study also estimated the present value of potential annual savings of FEMA to the U.S. Treasury alone due to an 
annual budget investment on these grants of $265 million to amount to $967 million, which leads to an average benefit-
cost ratio of fiscal benefits only of 3.7. In general, flood risk exhibited highest returns, as flooding is more frequent than 
wind and earthquake risk. Results were crosschecked and indicated in terms of ranges. A very few of the grants for 
earthquake and wind risk did not produce positive net returns (or benefit-cost ratios larger than 1), while some 
interventions such as for wind risk produced very large effects –benefit-cost ratios in the range of 50 (See Table 5). 

Table 5: Summary results of the MMC (2005) study 

Hazard  Average 
 Benefit-cost Ratio  

Average  
Benefit-cost 
Ratio Project 

Average  
Benefit-cost 
Ratio Process 

Range of  
estimates  
overall 

Earthquake  1.5 1.4 2.5 0-4.0 

Wind  3.9 4.7 1.7 0.05-50 

Flood  5.0 5.1 1.3 1.3-7.6 

Average  4.0       

Source: MMC 2005 
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4 Opportunities and Challenges of Implementing a Risk-based CBA for 
Flood Resilience 

There are significant economic opportunities involved in conducting a CBA of flood DRR interventions to 
assist in either their ex-ante implementation or to justify their investment ex-post. However, there are 
also challenges in using CBA for a valid economic assessment of flood DRR from a risk-based perspective. 
Here we proceed to lay out key issues in a rigorous risk-based CBA application.  With the proper 
prioritization, some of challenges associated with flood DRR CBA –such as the complexities involved in 
estimating risk and the benefits of risk reduction measures - can be overcome; guidance manuals and 
reports lay out methodologies, which can be applied (Penning-Rowsell et al. 1992; Benson and Twigg 
2004; Mechler 2005; Czajkowski, Kunreuther and Michel-Kerjan 2012).  
 

4.1 Implementing a Risk-Based CBA Methodology 

4.1.1 Probabilistic Risk 

Disaster risk is probabilistic in nature; DRR options are efficient for certain levels of risk but not 
necessarily for all. Thus a risk based analysis is critical for determining the level of risk and whether DRR, 
rather than risk financing for example, is the appropriate course of action. 

While many events (sickness, stock market fluctuations, business default) are probabilistic, they often 
can be fairly well approximated by average values (means or the expectation) based on utilizing normal 
distributions, except in cases where the tails of the distributions are fat. For example, the large financial 
crises of the previous decades have brought with them recognition that there is need to consider the 
tails (extremes). Clearly, for disaster risk this is very important, as disasters by nature are ’non-normal’ 
events because of their low-probability, high-impact character. 

Analysing risk and the benefits of reducing risk in a risk-based/probabilistic framework, as opposed to an 
expected-losses framework, makes an important difference. Costs, which can be divided into investment 
and maintenance costs are deterministic, that is, they arise for sure and often early on in the process. 
Benefits, created due to the savings in terms of avoided direct and indirect losses, on the other hand are 
probabilistic and arise only in case of disaster events occurring. This is to say, that in most of the cases 
(years) where there are (fortunately) no disasters, no benefits arise from risk reduction projects. Thus, 
the viability of such a project is tied very closely to the expectation of the occurrence of disasters.4 As a 
consequence, for disasters that occur relatively rarely (e.g., extreme floods), benefits are smaller 
because they are averaged over many years, and it may be more difficult to secure investment funds 
than for more frequent events. If the probabilistic nature of the risks and benefits is not taken into 
account, benefits can be overestimated, which seems to occur frequently. 

DRR options relate to risk as well, and are differentially efficient for certain so called ‘layers of risk.’ In 
general, for the low- to medium-loss risk layers aggregating events that happen relatively frequently, 
prevention is likely more economically efficient than insurance in reducing burdens. The reason is that 

                                                           

4 This would not be the case for DRR projects that generate benefits regardless of whether a disaster occurs, for 
example, the use of bio-dykes to protect from floods. They deliver improved flood resilience and provide resources 
such as fuel wood and bamboo or rattan fencing materials regardless of whether a flood occurs.  
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the costs of prevention often increase disproportionately with the severity of the consequences. 
Moreover, individuals and governments are generally better able to finance lower-consequence events 
from their own means, for instance, savings or calamity reserve funds, and often with the help of 
international assistance. The opposite is generally the case for costly risk-financing instruments, 
including insurance. Catastrophe insurance premiums fluctuate widely and are often substantially higher 
than the pure risk premium (average expected loss), mainly because the insurer’s cost of capital is 
reflected in the premium. For this reason, it may be advisable to use those risk-financing instruments 
mainly for lower probability hazards. Finally, most individuals and governments find it too costly to 
reduce risk or insure against very extreme risks occurring less frequently than, say, every 500 years, and 
for such infrequent risk, often little risk reduction planning occurs (Kunreuther and Michel-Kerjan 2011). 

4.1.2 A Risk-Based CBA Methodology for Flood Disaster Risk Reduction 

From a risk-based perspective, the economic efficiency of risk reduction measures for reducing losses 
from a disaster can be estimated by first constructing exceedance probability (EP) curves (see below for 
more details) -- the probability that losses will be greater than a given level -- for an impacted entity 
such as a home with and without the flood risk reduction measure in place.  Benefits are quantified 
through reductions in the losses after measures have been applied and discounted over the relevant 
time horizon.  Cost estimates of each risk reduction measure are derived from various sources, such as 
engineers or construction companies. Combining these estimates, economic efficiency outcomes can be 
computed.  The most attractive flood risk reduction measure from an economic standpoint is the one 
with the highest benefit-cost ratio assuming there are no budget constraints with respect to the cost of 
the investment. Using an economic efficiency metric captures the concept of the complex interactions of 
three main components that affect the final decision: (i) vulnerability of the exposed structure, (ii) the 
hazard level of the area, and (iii) the cost of the measure discussed.  Here we provide more details on 
the four steps of a risk-based approach we outline in Section 3.1: (1) risk analysis; (2) identification of 
risk reduction measures and associated costs; (3) analysis of risk reduction; and (4) the calculation of 
economic efficiency.  

4.1.3 Risk Analysis 

The standard approach for the step 1 risk analysis component of the risk-based methodology is to 
estimate natural disaster risk and potential impacts defined as a function of hazard, exposure 
(inventory), and vulnerability (UNISDR 2004; Grossi and Kunreuther 2005) as depicted in Figure 10. 

 

 

Figure 10: Elements of direct risk 

Source: Keating et al. 2014 
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First, the risk of the hazard phenomenon is determined, which in the case of flooding is characterized by 
frequency and intensity (water depth, duration, and flow velocity). Next, the exposure (or 
inventory/portfolio) of properties at risk is characterized by first assigning geographic coordinates to a 
structure or collection of structures and then determining how many structures in the portfolio are at 
risk from floods of different water depths and associated frequencies.  The hazard and inventory 
modules enable one to calculate the vulnerability or susceptibility to damage of the structures at risk. In 
essence, this step quantifies the physical impact of the natural hazard phenomenon on the property at 
risk.  Vulnerability is typically characterized as a mean loss (or the full distribution of the losses) given a 
hazard level.  Based on this measure of vulnerability, the financial loss to the property inventory is 
evaluated.  It is important to keep in mind that a risk-based CBA methodology is part of a broader effort 
aimed at improving community resilience to natural disasters (see Box 3). 
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Box 3: Elements of Risk Analysis within a Resiliency Framework 

To inform the work of the Zurich flood resilience alliance, Keating et al.’s (2014) white paper on 
Operationalizing Resilience Against Natural Disaster Risk sets out a conceptualization of disaster 
resilience which emphasizes the fact that communities are complex and interactive systems. The white 
paper outlines the way in which disasters can undermine long-term economic, social and environmental 
objectives, and that these indirect risks are often neglected in disaster risk reduction decision-making. 
Figure 11 shows a complex system linking development/wellbeing, risk (direct and indirect), and key 
sites where ‘resilience’ influences long-term outcomes. 

 

Figure 11: Charting the development-risk-resilience system 

Source: Keating et al., 2014 

Direct risk, as discussed above, influences the development process via, for example, direct damage to 
productive assets. Indirect risk influences development via interactions with the state and its 
development and disaster resilience. 

This conceptualization of resilience has significant implications for the practice of risk-based CBA and 
other decision-support tools. Decision-support tools, including risk-based CBA can be used to evaluate 
and prioritize interventions which enhance disaster resilience, but to do this we must first identify the 
drivers and responses of long-term development/wellbeing outcomes in the face of risk. The alliance is 
undertaking to develop an indicator of community flood resilience which is using a comprehensive and 
applied method to explore, validate and measure the properties of community flood resilience. This 
measurement tool is based on systems thinking and will help identify where a communities’ systems 
may be vulnerable to a flood event, and policies to address these weaknesses. Once indirect risk and 
policies to address these have been identified, risk-based tools can be used to inform decision-making 
about choice of resilience enhancing interventions. 
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Exceedance Probability (EP) Curves 

Disasters, as low-probability, high-impacts events, follow extreme event distributions which are very 
different from normal distributions (see Hochrainer 2005). Such risk requires probabilistic analysis to 
adequately represent the potential for impacts as well as the benefits in terms of reduced impacts. A 
standard statistical concept for the probabilistic representation of natural disaster risk is the loss-
exceedance curve, which traces the likelihood (y-axis) that damage does not exceed pre-specified levels 
(x-axis). The inverse of the exceedance probability (EP) is the recurrency period, that is, an event with a 
recurrence of 100 years on average will occur only every 100 years. An important property of a loss-
exceedance curve is the area under the curve. This area (the sum of all damages weighted by their 
probabilities) represents the expected annual damages, that is, the annual amount of damage that can 
be expected to occur over a certain time horizon. This concept helps to translate infrequent events and 
damage values into an expected annual loss that can be used for planning purposes. Examining the 
probability distribution of the losses, though, presents a challenge as discussed further below. 

To illustrate how an EP curve is constructed, consider the following example in Table 6.  Suppose there is 
a set of natural disaster events, Ei, which could damage a portfolio of structures. Each event has an 
annual probability of occurrence, pi, and an associated loss, Li. The number of events per year is not 
limited to one; numerous events can occur in the given year. A list of 15 such events is listed in Table 6, 
ranked in descending order of the amount of loss. In order to keep the example simple and calculations 
straightforward, these events were chosen so the sum of the probabilities for all of the events equals 1. 

 

Table 6: Events, losses, and probabilities 

Event 

(Ei) 

Annual probability of 
occurrence 

(pi) 

Loss 

(Li) 

Exceedance 
probability 

(EP(Li)) 

 

E[L] =(pi * Li) 

1 0.002 25,000,000 0.0020 50000 

2 0.005 15,000,000 0.0070 75000 

3 0.010 10,000,000 0.0169 100000 

4 0.020 5,000,000 0.0366 100000 

5 0.030 3,000,000 0.0655 90000 

6 0.040 2,000,000 0.1029 80000 

7 0.050 1,000,000 0.1477 50000 

8 0.050 800,000 0.1903 40000 

9 0.050 700,000 0.2308 35000 

10 0.070 500,000 0.2847 35000 

11 0.090 500,000 0.3490 45000 

12 0.100 300,000 0.4141 30000 

13 0.100 200,000 0.4727 20000 

14 0.100 100,000 0.5255 10000 

15 0.283 0 0.6597 0 

Average Annual Loss (AAL)   =   $760,000 
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As seen in Table 6, the annual probability that the loss exceeds a given value is one minus the probability 
that all the other events below this value have not occurred. A resulting illustrative exceedance 
probability curve is shown in Figure 12 below. The x-axis measures the loss in dollars and the y-axis 
depicts the annual probability that losses will exceed a particular level. 

4.1.4 Assessing the Benefits of DRR  

Steps 2 and 3 of the risk-based methodology involve the identification of risk reduction measures and 
associated costs as well as the analysis of the reductions in future impacts and losses due to the 
investment in disaster risk reduction.  And as discussed, an EP curve is an important tool for assessing 
natural disaster risk potential.  DRR measures typically decrease the vulnerability and therefore reduce 
the expected loss.  Graphically, DRR shifts the EP curve to the left and therefore reduces the AAL value 
as depicted in Figure 12.  One thing to keep in mind is that the benefits from a particular mitigation 
measure may affect different parts of an EP curve (low-end, mid-range or right hand tail), as shown in 
Figure 12. 
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Figure 12: Exceedance probability (EP) curve showing potential benefits of disaster risk reduction.   
Note: The EP curve represents the probability that losses will be a given amount, and flood risk reduction 

intervention shifts the EP curve to the left and therefore reduces the expected loss.   
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4.1.5 Calculation of Economic Efficiency 

Economic efficiency is assessed (step 4) by comparing benefits and costs using different metrics. Three 
decision criteria are of major importance: 

 Net Present Value (NPV): Costs and benefits arising over time are discounted and the difference 
taken, which is the net discounted benefit in a given year. The sum of the net discounted 
benefits is the NPV. A fixed discount rate is used for expressing future values in today’s terms to 
represent the opportunity costs of using the public funds for the given project. If the NPV is 
positive (benefits exceed costs), then a project is considered desirable. 

 The Benefit-Cost Ratio is a variant of the NPV. The total discounted benefits are divided by the 
total discounted costs.  By definition, a benefit-cost ratio of 1 means that the expected 
discounted benefit of implementing the mitigation equals its cost. Any measure where a 
benefit-cost ratio is greater than 1 is considered to be cost-effective and should be implemented 
as the benefits exceed costs and a project thus adds value to society.  Any measure with a 
benefit-cost ratio less than 1 (implying that the upfront cost of mitigation is higher than the 
expected discounted benefit) should not be implemented.  Due to its intuitiveness the benefit-
cost ratio is often used. 

 Economic Rate of Return (ERR): Whereas the former two criteria use a fixed discount rate, this 
criterion calculates the interest rate internally, which is considered the return of the given 
project. A project is rated desirable if this ERR surpasses an average return on public capital 
determined beforehand. 

These criteria offer different messages for different applications.  For example, the UK government 
often uses the NPV rule, while the World Bank seems to prefer the ERR (HMT 2007; World Bank 2010). 
In many circumstances, the three methods are equivalent. Arguably, the benefit-cost ratio offers the 
highest intuitive appeal due to its relative metric (benefits per costs). However it is worth noting that 
benefit-cost ratios may advise investment in alternatives which create lower overall net economic 
values. 

Finally, using the data from the EP curves with and without mitigation in place coupled with estimates of 
the upfront costs of the mitigation measures, one can undertake a series of sensitivity analyses to 
determine the relative cost-efficiency of specific mitigation measures varying different parameters used 
in the analysis.  Time horizon and discount rates can have very large impacts on the economic efficiency 
measures.  Therefore, relevant sensitivity analyses will depict the EP curve for two extreme cases: the 
one where mitigation will have the highest economic efficiency, for example, the highest benefit-cost 
ratio (best case) and one where this ratio is among the lowest (worst case).  Typical variations are on the 
discount rates (0-15%) and time horizon (1, 5, 10, 25 years). 

4.2 Key Challenges in Implementing a Risk-Based CBA 

A rigorous CBA will properly address disaster risk arising from low-frequency, high-impact events; value 
indirect and intangible losses; include multiple hazards; assess portfolios of systematic interventions vs. 
single interventions; and account for uncertainty and change over time. 

4.2.1 Properly Accounting for Issues and Elements of Measuring Risk 

Even in developed countries, availability of good data for comprehensively assessing disaster risk and 
the benefits of DRR are not guaranteed.  In low-income countries, acquisition of quality data becomes a 
key challenge. Gaps and uncertainties are related to the following issues and elements of measuring 
risk: 
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 Hazard probability: In many settings it can be difficult to obtain scientific information on how 
often a hazard such as a flood can be expected (frequency), and how large it might be 
(magnitude). Estimates can often be based on a limited number of data points only (see Box 4.) 

 Damage assessments: Data will not be available for all relevant direct and indirect effects, 
particularly for the non-monetary effects. Estimates of damages from natural disasters 
therefore often focus mainly on direct damages and loss of life. Yet, even figures on direct 
damages should be regarded as rough approximations since very few countries have systematic 
and reliable damage reporting procedures. In the case of infrequent but high impact events, 
previous damage estimates may be from a very long time ago when population, urbanization 
and infrastructure were significantly different from today. 

 Vulnerability assessments:  Vulnerability curves do often not exist and this information has to be 
generated, which is often fraught with complications. 

 Exposure assessments: The dynamics of population increase, urban expansion and increase of 
welfare should be accounted for. Fundamental changes in infrastructure, population and 
vulnerabilities over time mean that damage estimates from long past events are not relevant in 
today’s context. 

 Identifying the benefits of risk reduction: Often it is difficult to accurately measure the total 
costs, benefits of avoided loss, and co-benefits of risk reduction measures, particularly relating 
to indirect and intangible impacts on complex social and environmental interactions which may 
flow from DRR investments. 

 Discounting the future: The discount rate used reduces benefits over the lifetime of a project 
and thus has very important impact on the result.   

Tackling these gaps and challenges, and creating the requisite data is associated with considerable costs, 
effort and expertize. The depth and robustness of assessments to be conducted thus depends upon the 
objectives of the respective CBA including the availability of data on hazard, vulnerability and exposure, 
and finally impacts. Because finding data on the elements of risk is time-intensive and difficult and 
because information on the degree of damage due to a certain hazard (vulnerability) is usually not 
readily available, , many CBA estimations are based on past impacts and sometimes try to update these 
to current conditions (see Mechler 2005). 
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Box 4: Applying a Risk-Based CBA Methodology when Dealing with Limited Hazard Data 

In many settings it can be difficult to obtain scientific information over a relatively long period of time on how 
often a hazard such as a flood can be expected (frequency), and how large it might be (magnitude).  Furthermore, 
even if this data is able to be collected questions of its accuracy and consistency need to be addressed.  Available 
hazard data (quantitative and qualitative) may come from a number of sources including: records from 
municipalities, water authorities, environment agencies, and ministry; media reports; existing documentation from 
construction or other projects; community based risk assessment methods; existing hydrological monitoring 
stations, stream flows, and rainfall maps; site investigations; and photos and satellite images.  To assign 
probabilities to hazards of different magnitudes, practitioners need to triangulate all this information and most 
likely make a number of assumptions.  For weather-related disasters like flooding, considerations of changing 
frequencies and intensities due to climate change need to be accounted for potentially. (Modified from ADPC and 
UNDP 2005; IFRC/RC 2010).   

Examples of CBA working with limited hazard data: 

International Federation of the Red Cross (IFRC/RC 2010) 

Communities may be able to supply information on the past impacts of disasters yearly, bi-yearly, or longer such as 
every five-to-ten years.  For example, in the Philippines, floods occur every year, so flood frequencies did not need 
to be considered.  Here the analysis was thus deterministic in nature.  In the Sudan CBA study location, droughts 
occur at a similar magnitude twice every five years (on average).  Thus, an annual drought frequency of 40 percent 
was used. In the Nepal analysis, stakeholders differentiated between normal yearly flooding and high-magnitude 
floods, which occur every five-to-ten years. The practitioners incorporated both these factors into the CBA by 
averaging their impacts over each year in the analysis period – for example, by spreading the impact of a flood that 
occurs only every ten years over ten years, to obtain its annual impact. 

Practical Action (Willenbockel 2011) 

As an outcome of the baseline vulnerability assessment it was determined that crop damage occurs every eight-to-
ten years.  A flood probability of 0.1, or a 10 year flood event, was used to estimate a crop loss of 8 percent given 
the occurrence of a ten-year flood with no dam protection.  Thus, the annual expected value of avoided crop losses 
due to the construction of a dam was 0.008 multiplied by the value of annual crop production in the impacted 
area. 

Risk to Resilience project with NGO partners in Rawalpindi, Pakistan (Kull et al. 2013) 

Detailed loss data from past events on the Lai River were estimated as a 100-year event.  Based on this event, as 
well as an assumption of no losses below the five-year flood, a truncated Pareto distribution was employed to 
generate a loss exceedance curve. This was then refined through hazard estimates of the 25- and 50-year floods 
from a previous study. Losses were updated to current conditions through inflation and exposure adjustments, 
with population growth used to drive exposure dynamics. Integration under the final estimated loss exceedance 
curve resulted in an average annual expected flood loss of around PKR 3.7 billion (USD 60 million). 

4.2.2 Valuing Indirect and Intangible (Non-Monetary) Losses  

Crucial to the application of this risk-based methodology is the ability to identify and estimate the 
baseline natural disaster economic losses to the area of interest (see Baseline Risk and VCA box).  
However, depending on the scale and nature of the costs and benefits of specific measures, this might 
be a hard task. For instance, natural disaster losses can be categorized across economic as well as social 
and ecological losses that are direct, indirect, tangible, and intangible in nature (see Balbi et al. 2013).  

Putting a monetary value on these latter effects is challenging because ecological goods are typically not 
traded in markets, although the environmental economics discipline has developed techniques to 
monetize ecological effects. Methods for quantifying intangible impacts fall into two broad categories – 
revealed preference and stated preference techniques. Revealed preference techniques estimate the 
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value of intangible assets by investigating, for example, the difference in value of houses with a water 
view to those without, to quantify the amenity of looking at an attractive harbour (hedonic pricing), or 
the costs expended to visit a nation park to value an endangered species or the forest generally (travel 
cost). Stated preference techniques utilized advanced surveys to illicit estimates of the value people 
place on intangible assets and can even estimate existence value (Markantonis et al. 2012). 

Ideally, a comprehensive CBA should include all relevant social, economic and ecological impacts while 
at the same time distinguishing between reductions in direct (stock) and indirect (flow) losses, being 
careful to avoid double counting (Mechler 2004:13). It would also account for any future change in 
construction, population growth, and flood hazard modification due to future climate change over the 
period of time the analysis focuses on.  It should also include all the levels of uncertainty associated with 
future scenarios and decision making of agents influencing future scenarios. While attaching a monetary 
value to indirect and intangible assets is challenging, it is critically important that they are incorporated 
because in many cases indirect and intangible values are the ones which are valued most by people. 

Table 7: Categories and characteristics of disaster impacts 

Categories of impacts Characteristics 

Direct Immediate effect due to direct contact with the hazard (e.g., loss of 
life, physical and monetary loss) 

Indirect  Occurs as a result of and in response to the direct impacts in the 
medium-long term (e.g., relief, recovery, reconstruction costs, 
longer term socio-economic effects) 

Tangibles Impacts that have a market value and can generally be measured in 
monetary terms (e.g., structural losses) 

Intangibles Non-market impacts, such as on health or impacts on natural 
resources 

Quantitative disaster risk modelling has focussed on direct, tangible impacts, less so on the indirect and 
intangible effects (see Box 3).  Indirect disaster losses are difficult to identify and quantify and hence are 
seldom considered in cost-benefit analyses.  This is despite the fact that there is increasing evidence that 
indirect losses from disasters can be significant (see Cavallo and Noy 2010). In poor communities, the 
inability of households and businesses to fully recover can greatly exacerbate poverty leading to what is 
referred to as disaster induced poverty traps (Barnett et al. 2008). At the macro scale, recent research 
has attempted to quantify the indirect impacts of disasters in terms of loss in GDP, consumption, 
inflation, trade and investment (Burby 1991; Hochrainer 2006; Hochrainer 2009). It is certainly possible 
to include these effects in a CBA; however data availability is again a key constraining factor. In many 
cases, benefits of DRR come as reduced effects on household or country income and assets, but there 
are no databases that systematically assess such effects nor are there standards for measuring these 
impacts. 

Especially in the developing world, where reportedly over 95% of deaths from natural disasters occur, a 
challenge is to identify DRR measures that can cost effectively reduce mortality and morbidity risk 
(Cropper and Sahin 2009). If mortality and morbidity risk can be estimated it is important to value 
fatalities and injuries so as to be commensurate with other benefits and costs of the project. The most 
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common approach to quantifying fatality is value of statistical life (VSL) estimates, typically based on 
projections of lost future earnings. However VSL estimates do not avoid value judgments and thus 
introduce substantial controversy (World Bank and UN 2010; Viscusi and Aldy 2003).  We note that 
applying a VSL is controversial, and for this reason we recommend not making use of a point value, but 
applying a sensitivity analysis to the results over a range of VSL estimates.  The same holds true for 
‘softer’ environmental and social values, such as existence values for environmental goods as well as 
cohesion of a social group or community.  

4.2.3 Assessing Portfolios of Systemic Interventions vs. Single Interventions 

While assessments of the economic efficiency of DRR often focus on hazard and risk-specific 
interventions and their specific costs, it may likely be the case that the best DRR interventions rather 
comprise of a portfolio of interventions. What is more, these options may be integrated in broader 
developmental contexts, and comprise investments into systemic interventions in sectors such as 
education, health or infrastructure, which may bring about large DRR related benefits by building 
resilience (see Box 3). A focus on bolstering resilience in terms of maintaining key system functions in 
the face of adversity rather than reducing source-specific risk calls for a systemic  understanding of the 
interrelationship of development, resilience and shocks. As discussed by Moench et al. (2007), the 
importance of resilience in social systems for reducing the impacts from extreme events is of high 
relevance and has been well explained by Amartya Sen and others, for example, for events such as 
droughts in India and China (see Sen 1999). 

Such focus on systemic thinking also invokes a distinction between hard and soft measures (see Moench 
et al. 2007). Hard resilience refers to the strengthening of structures and physical components of 
systems in order to brace against shocks imposed by extremes such as earthquakes, storms and floods. 
In contrast, soft resilience can be built by a set of less tangible and process-oriented measures as well as 
policy in order to robustly cope with events as they occur and minimize the adverse outcomes. To some 
extent, preparedness is part of soft resilience measures, yet structural measures can also exhibit some 
elements. It may be argued that the key distinction is learning to live with risk, rather than assuming risk 
can fully be eliminated. The role of inclusive and systemic approaches has been underlined recently with 
high confidence by the IPCC SREX report (IPCC 2012): 

Effective risk reduction generally involves a portfolio of actions to reduce and transfer 
risk and to respond to events and disasters, as opposed to a singular focus on any one 
action or type of action (high confidence). Such integrated approaches are more 
effective when they are informed by and customized to specific local circumstances (high 
agreement, robust evidence). Successful strategies include a combination of hard 
infrastructure-based responses and soft solutions such as individual and institutional 
capacity building and ecosystem-based responses. 

4.2.4 Accounting for uncertainty 

Natural disasters pose challenging problems for decision makers because they involve potentially large 
losses that are extremely uncertain. Note that there are a variety of ways of representing uncertainty in 
the loss estimates. Many EP methodologies combine probabilistic representation of hazard with mean 
descriptions of vulnerability.  Approaches like this are relatively simple to deal with computationally, and 
with what is called primary uncertainty. By representing the hazard in a probabilistic manner, these 
methods characterize the uncertainty as to whether or not an event will occur.  If an event does occur, 
the methodology indicates which event (as described by hurricane class or peak wind speed) it will be.  
While it is obvious that different events produce different levels of loss, we do not often think about the 
fact that a specific event has the potential to produce different levels of loss.  Thus, the use of mean 
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vulnerability curves ignores the additional uncertainty associated with other factors.  We call these 
other sources of uncertainty, secondary uncertainty. 

Secondary uncertainty is the uncertainty in the size of loss, given that a specific event has occurred. 
Many factors affect the size of loss from a specific event. Although the magnitude of loss in an event 
follows certain trends, there is a level of uncertainty regarding the exact, quantifiable effect.  The 
inclusion of secondary uncertainty calculations produces smoother EP curves with longer tails, providing 
a more accurate assessment of the potential losses caused by a natural catastrophe.  Note that 
secondary uncertainty does not affect the average annual loss – only the EP curves.   

Secondary uncertainty accounts for the uncertainty coming from sources such as:  

 Hazard uncertainty: Flood inundation uncertainty refers to the variable nature of the area 
inundated. This uncertainty is high in landscapes where erosion and deposition caused by 
previous floods change the landscape and inundated area, making subsequent floods harder to 
predict. Also, climate change is changing the frequency, intensity and duration of heavy rainfall, 
which has implications for flood risk (IPCC 2012) 

 Vulnerability uncertainty: Vulnerability uncertainty refers to the uncertainty in the amount of 
damage a building sustains given a specific local hazard condition.  Identical buildings subject to 
the same level of hazard tend to perform differently due to vulnerability uncertainty. The 
uncertainty in building performance may come from different construction quality, unknown 
building characteristics, and from the inherent uncertainty in building performance response to 
the intensity and duration of the hazard. 

 Specification uncertainty: Specification uncertainty can arise from several sources.  For example, 
the level of geographic resolution, construction characteristics, and local conditions can all be 
modelled at varying levels of detail. Technological advances are reducing this uncertainty where 
the results of more detailed GIS information are accessible. 

 Portfolio data uncertainty:  Portfolio data uncertainty has to do with how detailed the model 
input data is and what data is available. 

A further key uncertainty relates to the scale of analysis. While generally (with the exception of risk 
financing options) DRR will be implemented on community and subnational levels, there is interest 
particularly by policymakers to generalize and work with national information, and global information at 
the level of international development and humanitarian assistance. This holds true for CBA more 
widely. While originally strictly focused on a project well specified in time and space, it has been used to 
inform larger-scale decisions (such as large-scale dam siting) and global climate change policy. As Gowdy 
suggests, however, as the remit of the analysis widens, it becomes less clear how the intervention 
produces costs and benefits, who benefits and who is disadvantaged, and what other external factors 
come in (Gowdy 2007). 

One additional complication is the dynamic nature of (changing) hazard, exposure and vulnerability, and 
therefore risk. Unless future risk patterns are known, the costs and benefits of risk reduction cannot be 
accurately calculated. While this is important as risk prevention investments are associated with time 
horizons of 10, 20 or 30 years, the future patterns are however often unknown or very difficult to 
project forward. Many dyke systems and other infrastructure investments have even longer life spans, 
which compound this uncertainty. 
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Box 5: Addressing Key Challenges through Baseline and Community Based Risk Assessments - 
Vulnerability and Capacity Assessment (VCA) and Participatory Capacity and Vulnerability 
Assessment (PCVA)  

In order to measure vulnerability of communities and households, Anderson and Woodrow (1991) developed the 
Capacity and Vulnerability Analysis matrix. This largely qualitative participatory and monitoring approach came to 
be widely accepted and used by many NGOs in their work on DRR (see ActionAid 2005; Davis 2004). 

In working with communities on implementing DRR activities, the International Federation of the Red Cross (IFRC) 
and Practical Action use participatory assessment processes to gather, organize and analyse information on the 
vulnerability and adaptive capacity of communities. These processes are completed with the collection of 
secondary information to provide a baseline of communities’ risk to different hazards.   

These participatory approaches are particularly valuable in helping to understand the key challenges discussed 
above, namely: (1) the multitude of benefits and local values attached to these; (2) the historical perspective not 
only in regard to major disasters but also the less intense but recurrent minor shocks and stresses; and (3) 
providing an opportunity to link community perceptions with what science and policymakers are predicting will 
occur in the future due to existing underlying issues and climate change.  This merger of traditional with scientific 
knowledge adds great value to planning approaches that attempt to consider multiple hazards and accommodate 
increasing uncertainty.    

VCAs/PCVAs aim to support communities to:  

 Identify key vulnerabilities of communities 

 Understand communities’ perceived and actual risks 

 Analyse the resources and capacities available to reduce said risks 

 Develop action plans to address identified vulnerabilities and risks.  

In working with communities on implementing DRR activities, Practical Action identifies and estimates the historic 
and potential natural disaster situation and works with the community to estimate the social, environmental and 
economic losses expected in the area of interest through their participatory capacity and vulnerability assessment 
(PCVA) process.   

The baseline aims to measure DRR project progress and process measurement as well as the outcomes of project 
interventions through the following tools: (1) Participatory assessments -- used to enable communities to genuinely 
participate in project design, planning, and management to promote increased ownership, accountability and 
impact; (2) Key informant interview – identify key stakeholders and engage them in the planning process;  
(3) Household surveys – used to assess economic, social and environmental asset base for the key demographics in 
the community; (4) Scientific and traditional knowledge – bring technical specialists and the communities together 
to discuss existing natural disaster scenarios and current capacity and asset base to identify key opportunities and 
risks. These tools collectively aim to capture notions of the community’s physical, natural, financial, and social 
capital and identify critical DRR activities which match their vulnerability and livelihood profile.  

The aims of PCVA are to: 

 Assess risks and hazards facing communities and the capacities they have for dealing with them; 

 Involve communities, local authorities and humanitarian and development organizations in the assessment 
from the outset; 

 Draw up action plans to prepare for and respond to the identified risks; identify risk-reduction activities to 
prevent or lessen the effects of expected hazards, risks and vulnerabilities. 

This process of community selection => baseline risk assessment => vulnerability and capacity assessment => leads 
to the prioritization of DRR activities through probabilistic CBA in order to circle back to a reduced baseline risk.   

It is an integral part of disaster risk reduction and contributes to the creation of community-based disaster risk 
reduction programs at the rural and urban grass-roots level. The assessments ultimately enable local priorities to 
be identified and appropriate action taken to reduce disaster risk. 
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4.3 Review of the Economic Evidence for DRR from CBA in Light of the Key 
Challenges 

After presenting the key opportunities and challenges of CBA for DRR, we now present a comprehensive 
overview of the evidence found in the literature in light of these challenges.  The discussion is based on 
a large review done by Mechler (2012) for the UK Foresight Report “Reducing Risk of Future Disasters.”  

Table 8 lists in chronological order the 27 CBA studies on DRR interventions found in the literature in 
terms of location (country), hazards, and types of DRR covered. It also scans the studies on whether they 
address the five key challenges of conducting a CBA from section 4.2: properly addressing disaster risk 
arising from low-frequency, high-impact events; valuing indirect and intangible losses; including multiple 
hazards; assessing portfolios of systematic interventions vs. single interventions; and accounting for 
uncertainty and change over time. The review distinguishes between using CBA for ex ante project 
appraisals as well as ex post evaluations of implemented projects. Some of the studies have focussed on 
the USA because the regulation there has required cost-benefit analysis for each project receiving 
federal funding, and documentation for the projects is readily accessible. Lately, the development 
cooperation context has moved to the forefront due to interest by international financial institutions, 
donors and NGOs to gauge the economic efficiency of their interventions, and a number of studies have 
been conducted for this context.  

Table 8: Studies on the CBA of flood risk reduction including coverage of key criteria 

Study-detail Coverage of 
risk 

Intangibles Indirect 
effects 

Portfolios of  
interventions 

Systemic 
intervention 

EVALUATIONS  (ex post) 
  
FEMA (1998): Ex-post evaluation of 
implemented risk prevention measures in the 
paper and feed industries (USA) 

D         

BTRE (2002): Flood risk reduction (Australia) E         

Venton and Venton (2004): Risk reduction of 
floods, Bihar and Andhra Pradesh (India) 

D         

MMC (2005): Review of wide set of risk 
reduction grant programs (USA) 

E         

MMC (2005): Community flood risk prevention – 
Freeport, New York (USA) 

E         

MMC (2005): Community flood risk prevention - 
Jefferson County, Alabama (USA) 

E         

MMC (2005): Community flood risk prevention – 
Tuscola County, Michigan (USA) 

E         

MMC (2005): Community flood risk prevention – 
Jamestown  USA) 

E         

MMC (2005): Community multihazard risk 
reduction  - Horry County (USA) 

E         

MMC (2005): Community landslide risk 
prevention - Multnomah County, Oregon (USA) 

E         

Islam and Mechler  (2007): Flood risk 
prevention– (Bangladesh) 

E         

Kull et al. (2008): Flood risk prevention (India) E         

White and Rorick (2010): Flood risk reduction 
interventions in Kalali district (Nepal) 

E         

Eucker et al. (2012): Community-based flood risk 
reduction in 4 districts (Bangladesh) 

D         

http://www.bis.gov.uk/foresight/our-work/policy-futures/disasters
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Study-detail Coverage of 
risk 

Intangibles Indirect 
effects 

Portfolios of  
interventions 

Systemic 
intervention 

APPRAISALS (ex-ante) 
  
World Bank (1996): Flood risk prevention 
(Argentina) 

E         

Dedeurwaerdere (1998): Flood risk prevention 
measures –Pampanga province (Philippines) 

E         

Mechler (2004): Sovereign risk transfer – 
(Honduras and Argentina) 

P         

Mechler (2005):  Flood risk prevention –  
(Piura Peru) 

E         

Mechler (2005): Flood risk prevention and 
integrated water management -  
(Semarang, Indonesia) 

E         

Kull et al. (2008): Flood risk prevention  
-  Uttar Pradesh, India 

E         

Subbiah et al. (2008): Early warning for 
hurricane  and flood risk across a number of 
case studies (Bangladesh, Sri Lanka, Vietnam, 
Thailand, Indonesia, India, Philippines) 

E         

ECA (2009) and CCRIF (2010): Climate risk 
adaptation cost curves applied to national and 
subnational level DRR options 

E         

Hochrainer-Stigler et al. (2010): Structural risk 
reduction against hurricane, flood, and 
earthquake risk  
--(St. Lucia, Indonesia, Turkey, and India) 

E         

Venton et al. (2010): Flood risk prevention as 
part of safer islands programme  (Maldives)  

E         

Willenbockel (2011): A Cost-Benefit Analysis of 
Practical Action’s Livelihood-Centred Disaster 
Risk Reduction Project in Nepal. Brighton: IDS. 

P     

Czajkowski et al. (2012): Elevation of 300,000 
single-family residences in two counties in Texas 
to protect against riverine and surge flooding 

P     

Aerts et al. (2014): Assessment of multiple 
interventions in New York City 

P     

Note: D: Deterministic analysis, E: Expected value, P: Probability distribution considered. Shaded boxes indicate 
coverage of the attribute in the study. 

Source: Updated from Mechler (2012) 

4.3.1 Coverage of key DRR related challenges 

As Table 8 highlights, there has been no consistent approach to using CBA in estimating the benefits to 
DRR in light of key challenges.  For example, not all of the studies listed utilize a risk-based approach nor 
are all benefit types typically considered in the analysis.  Assessing multiple DRR interventions are not 
the norm, and systematic interventions are almost completely ignored. Most interventions cover 
structural measures, and here most prominently flood risk prevention. Yet, preparedness has 
increasingly been tackled. Risk financing assessments have held some appeal and some studies have 
aimed at assessing more comprehensive packages, such as flood risk prevention coupled with water 
management plans, or seismic retrofit integrated with risk financing (see Table 8). 
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Coverage of risk  

As discussed above, implementing a risk-based methodology is a central challenge to CBA for DRR. While 
a few studies take a deterministic approach and compare effects of interventions between actual events 
only, most analyses consider disaster risk probabilistically.  Only a few studies take probabilistic analysis 
as far as relating benefit-cost ratios to layers of risk. 

Valuing intangible and indirect effects  

Most studies with a few exceptions (Venton and Venton 2004; Mechler 2004; MMC 2005; Mora et al. 
2009; Mechler et al. 2008) take monetary costs avoided as a proxy for benefit. This approach is not 
strictly correct from a methodological perspective, since benefits in CBA should technically be estimated 
in terms of avoided reduction in utility or consumption. By estimating benefits in this way, indirect 
effects are generally not factored into DRR analyses, as they would be under the resource-intensive 
utility/consumption estimation method. As one example, Mechler et al. (2008) focussed their 
assessment entirely on the indirect effects, aiming at understanding what disaster risk means for the 
livelihoods of small scale farmers. The study is based on, among other statistical sources, a survey with 
small scale farmers, which reported important large income losses. As such information is not regularly 
reported, this case study conducted extensive surveys to elicit such information, which then led into the 
modelling analysis. 

While it is possible to estimate indirect and intangible values for many elements, as the MMC (2005) 
study notes, the requisite data often is not available. Methods for estimating the monetized value of 
non-market impacts include contingent valuation and choice experiment methods. Both of these 
methods elicit individual willingness-to-pay for specific environmental goods or health effects. 
Contingent valuation methods use marketed goods to infer intangible value. For example, by statistically 
analysing the impact of a mountain view on house prices, analysts can estimate the value placed on that 
view by the community. Choice experiment methods use carefully designed surveys to ask people their 
willingness-to-pay for the good. In some cases, the data issue can be addressed by using benefit-transfer 
methods. Benefit-transfer methods essentially transfer the estimated values from one study to the 
specific case being analysed. This method works well if the transfer is valid, that is, if the populations 
and intangibles in question are similar enough that the transfer is reasonable. Benefit-transfer is 
attractive because it is significantly less resource intensive than generating new estimates. Both the 
primary valuation process and the transfer between cases can, however, be controversial. As a result, 
non-monetized costs and benefits are often ignored. 

Accounting for human impacts in CBA, however, poses key ethical issues. A contentious area of 
discussion concerns whether non-market values, such as impacts on human life, can and should be 
included into cost-benefit calculations. Many argue against measuring the ’immeasurable’ due to value 
judgments involved, others argue in favour of doing so, as else such values may be omitted from 
decision-making. Very few CBA studies in DRR have done so, and one interesting example was carried 
out by Smyth et al. (2004) and is discussed in the next case study section.  

Clearly, indirect and intangibles impacts matter, and as another example (to be discussed in more detail 
as well in Section 5), Kull et al. (2013) evaluated the historical performance of the embankment of the 
Rohini River in northern India since 1973 and found, when making the analysis more realistic by 
considering a host of intangible effects, that a project may eventually become inefficient.  

Assessing portfolios of interventions 

Whereas earlier studies often focussed on single interventions, many analyses reviewed here studied 
multiple interventions for flood, seismic, drought and windstorm risk. As another example from Mechler 
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et al. (2008), a combined intervention of risk reduction and risk financing was studied for helping 
drought-exposed farmers deal with extremes. While simple interventions showed positive benefit-cost 
(with irrigation showing higher returns); a joint intervention produced even better results. For example, 
in an integrated approach where irrigation ameliorating frequent drought events was combined with 
insurance for dealing with more extreme droughts, benefits accrued were more the addition of the 
approaches individually because of the way they interact with one another. Assessing portfolios of 
interventions thus requires some more advanced analysis in order to work towards a good estimate of 
risk, which is necessary to understand how frequent and infrequent risks are tackled and modified. 

Assessing systemic interventions 

Studies assessing systemic interventions such as building community capacity overall through enhanced 
education and health interventions, were assessed in only 3 studies (Venton and Venton 2004; Eucker et 
al. 2012; Venton et al. 2012). The robustness of the estimates compiled is not clear, and none of the 
three studies use best practice for estimating risk based on probability, which renders estimates not 
robust. 

4.4 Opportunities and Challenges Inherent to CBA More Broadly  

Although we have discussed in detail specific key challenges in implementing a rigorous risk-based CBA, 
several other methodological opportunities and challenges are inherent to CBA, and we discuss a few 
key ones here. 

Discounting and choice of discount rate 

The choice of discount rates heavily affects CBA results.  The Stern Review (2006) on the economics of 
climate change led to intense debate due to the suggestion made to use low discount rates in order not 
to discount away future debilitating climate change, while mainstream economists suggested that 
market rates should be used instead. A similar argument could be made for catastrophic risk 
characterized by fat tails (that is, events happening with low recurrence and leading to large impacts 
over future time periods), which would call for lower discount rates for DRR projects also. A number of 
studies take this point into account and conduct sensitivity analyses across different discount rates. 

Consideration of behavioural biases in implementation  

Studies suggest that individuals are not willing to invest funds to reduce future losses even if they are 
residing in highly hazard-prone areas (Mileti 1999). Simple steps, such as securing a water heater (for 
example, with plumbers' or Teflon tape), can normally be done by residents for under $5 in materials and 
one hour of their own time (Levenson 1992). This measure can reduce damage by preventing the heater 
from toppling during an earthquake, creating gas leaks and causing a fire. Yet residents in earthquake-prone 
areas are not adopting such simple and other loss-reduction measures. Following is a more detailed analysis 
of the factors that influence the decision to adopt protective measures.  

There are four principal reasons why homeowners do not appear to want to invest in mitigation 
measures: short time horizons, desire for a quick return on investment, budget constraints and lack of 
perception of added economic value.  

First, when considering the recoupment of their investment in a mitigation measure, in general, 
individuals consider relatively short time horizons. Even if the expected life of the house is 25 or 30 
years, the person may only look at the potential benefits from the mitigation measure over the next 3 to 
5 years. This may be based on their expected length of stay in the current residence.  
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A related reason why mitigation is often unattractive is that individuals expect a quick return on their 
investment. Financially this is consistent with using a high discount rate for evaluating potential future 
payoffs. In order to test this hypothesis, Loewenstein and Prelec (1992) proposed a behavioural model 
of choice whereby the discount function is steep and hyperbolic, rather than exponential. Their model 
and related results appear to explain the reluctance of individuals to incur the high immediate cost of 
energy-efficient appliances in return for reduced electricity charges over time (Hausman 1979; Kempton 
and Neiman 1987).  

Third, many individuals perceive the probability of a disaster causing damage to their property as being so 
low that they consider an investment in protective measures as unnecessary. Even if there is some concern 
with the potential of a hazard, budget constraints lead homeowners to place mitigation as a low priority 
item for the use of their funds. It is not unusual for one to hear the phrase, “We live from payday to 
payday” when asked why a household has not invested in protective measures (Kunreuther et al. 1978). 

Finally, individuals may have little interest in investing in protective measures if they believe that the 
measures will have limited added economic value to them. For example, they may not consider an 
investment to be cost effective if they believe that it will not increase the resale value of their property. 
If they are financially responsible for only a small portion of their losses should a disaster occur, the 
measure would be even less attractive. In addition, if they have limited assets at stake, they may feel 
they can walk away from their destroyed property without much financial harm. Similarly, if residents 
anticipate liberal government disaster relief, they have even less reason to invest in a mitigation 
measure (Kunreuther 2000). 

A basic point to recognize from these results is that whether particular mitigation measures will be 
viewed as worth adopting by a homeowner is not a foregone conclusion but requires a detailed 
assessment of the costs and benefits under various hazard scenarios. 

Accounting for risk aversion 

Risk-averse individuals are willing to pay more than their expected losses to avoid the risk of incurring 
very large losses at one time. In principle, this would also hold true in developing countries where 
absent reliable safety nets, a large loss can threaten livelihoods and even lives. There is some evidence 
on willingness to pay for insurance premiums beyond expected loss (e.g., farming households in India, 
see Bhavnani et al. 2010) yet, in most cases very tight budget constraints, particularly for those at low 
incomes, mean that in effect there is no demand for insurance, unless it is heavily subsidized. Apart from 
Kind (2013), case studies in this report did not take risk aversion into account. Losses to housing 
structures were expressed in risk-neutral terms as mean damage ratios or expected losses. To take 
account of risk aversion, expected utility rather than expected value becomes the basis of the 
calculations, where expected utility might be expressed in terms of an equivalent monetary gain. In 
practice, it is not straightforward to determine a utility function, and to simplify, often a method is used 
that makes use of the mean and variance of the distributed losses, weighted by a risk aversion 
parameter.  

Limited role in informing decisions 

The general principle underlying CBA is the Kaldor-Hicks-Criterion, which holds that those benefiting 
from a specific project or policy should potentially be able to compensate those that are disadvantaged 
by it (Dasgupta and Pearce 1978). Whether compensation is or can actually be done, however, is often 
not of importance in practice. Techniques for considering the distribution of costs and benefits exist, yet 
these are relatively complicated and have not found wide usage (Little and Mirrlees 1990). CBA’s ability 
to influence decision process and learning may be limited as the World Bank (2010) review shows. Using 
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CBA for ex-ante project appraisal is critical for the deliberative thinking necessary for proper risk 
reduction of low-probability, high-consequence events such as floods.  However, CBA cannot easily 
resolve conflicts and strong differences in value judgements that are often present in controversial 
projects and policies (for example, nuclear power, bio-technology, but also flood management (see also 
Wenz 1988; Gowdy 2007)). The distribution of costs and benefits remains a key challenge.  

Taking account of time evolving risks, such as climate change 

A cost-benefit analysis that considers benefits accrued may be sensitive to changes in the baseline risk 
level over time. This is particularly relevant today where climate change is expected to adjust hazard 
levels. A methodology for including climate change in the benefit calculations is illustrated in the case of 
the Rohini River basin in India and of New York City in the USA. This and other approaches, however, are 
still in their infancy and present an appreciable methodological challenge for future research. A key 
challenge here is how to represent uncertainty in the effect of climate change on hazard levels. To date 
it has not been possible to credibly assign probabilities to climate scenarios, particularly beyond the 
medium term (beyond 2030). Moreover, climate change is not the only driver of adjustments in risk over 
time. We note that any increase in hazard intensity might in the future be outweighed by autonomous 
decreases in asset vulnerability or exposure (e.g., individuals moving away from high hazard regions). 
Other drivers of increasing risk are economic development and urbanisation (e.g., Nicholls et al. 2007). 
Jakarta is an interesting case in point as recent analyses showed that urbanisation itself has increased 
flood hazard significantly over the past few decades by reducing the effectiveness of natural and 
manmade drainage systems (Lloyd’s of London 2008). Loss estimates that do not incorporate such 
changes should be treated with caution. In the next section we will discuss alternative tools.  

 

Box 6: From Vulnerability to Resilience (V2R)  

The incidence of disasters is increasing and climate change is expected to result in more frequent and severe 
hazards. Poor people's livelihoods will be the hardest hit, because they often live in risk prone areas and have few 
resources to protect themselves against disasters. Practical Action is working with communities to reduce the risks 
of disasters through strengthening disaster preparedness such as early warning systems, and preventing hazards 
through better environmental management, and by strengthening communities’ capacity to cope. Our approach, 
known as from Vulnerability to Resilience (V2R), sets out key factors that contribute to peoples' vulnerability: 
exposure to hazards and stresses; fragile livelihoods; future uncertainty; and weak governance. It provides a 
framework for local communities to explore the linkages between these factors and how to plan actions to 
strengthen their resilience. 

The V2R is a participatory process that engages the local community with local authorities and stakeholders to 
analyse their situation, to actively participate in local development planning and to voice their demands or 
influence wider institutions where appropriate.  

The V2R can prompt practitioners to see possible opportunities to make programmes more successful. For 
example, traditional food security projects have benefitted from including disaster risk reduction interventions. 
The V2R framework is a means to an end; the increased resilience of poor people to multiple hazards and an 
uncertain future. 

http://practicalaction.org/conceptual-framework-for-reducing-vulnerability-1 

https://practicalaction.org/climate-change-dealing-with-uncertainty
http://practicalaction.org/conceptual-framework-for-reducing-vulnerability-1
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5 Highlighting and Tackling the Challenges: Illustrative Flood Risk Reduction 
CBA Case Studies 

This section discusses two specific case studies where a CBA approach was developed to measure the 
efficiency of specific risk reduction measures. As mentioned above, undertaking CBA can be done for 
different purposes,  at different levels of analysis, from focusing on a single building (e.g., the owner 
would like to retrofit his building against flood or simply flood-proof it) to undertaking an analysis for a 
large number of buildings with similar construction (e.g., all single-family houses or all commercial 
buildings in a city) or to a community, city or region (including residential, commercial, industrial and 
public construction and infrastructure). 

The CBA can focus not only on the avoided direct economic loss (e.g., reconstruction of a building 
damaged by a disaster) but can include the value of life when mitigation measures are expected to save 
lives and reduce health costs to the victims of the disaster as well as indirect costs to the community 
(e.g., evacuation costs from residential homes and business interruption). The modelling of the hazard 
can range from deterministic scenarios to probabilistic risk assessment including uncertainty on possible 
futures (e.g., impact of climate change on damage from storm surge and flooding to property in New 
York City in the next 20 to 50 years). This section focuses on the following case studies undertaken by 
the research team, that together provide complementary views on how to use risk-based CBA 
methodology in practice: 

a) A CBA analysis for the City of New York. Here we initially focus on storm surge flood hazard only 
and do not include the value of lives potentially saved by protection measures. But we combine 
residential and commercial exposure (including business interruption) and integrate uncertainty 
about avoided flood risk estimates and future climate scenarios in the analysis. Finally, the 
quantification focuses on both collective flood mitigation measures (i.e., a barrier system) and 
individual measures (i.e., flood-proofing houses).  

b) An analysis studying historical and future river embankment performance in the Rohini River 
basin in northern India using backward- and forward-looking risk estimation techniques 
integrated with stakeholder dialogue. The analyses highlights that CBA can be a useful tool if 
certain issues are considered properly, including: complexities in estimating risk; data dependency 
of results; negative effects of interventions; and distributional aspects. Intervention design and 
uncertainties should be qualified through dialogue, indicating that process is as important as 
numerical results. 

5.1 Evaluating Flood Resilience Strategies for Coastal Mega-Cities: Illustration 
with New York City  

Location 

Prompted by the occurrence of Hurricane Irene in 2011 and especially Hurricane Sandy in 2012, 
different flood risk reduction strategies have been proposed for New York City (NYC) by scientists, 
engineers, NGOs and policymakers (Aerts et al. 2013a; NYC 2013). Some measures are effective in 
lowering the probability of the flood hazard and protecting large parts of the city, for example, through 
barriers, levees, and wetland restoration or beach strengthening. However, some of these large scale 
engineering options have received criticism since their initial investment costs are very high, as Aerts et 
al. (2013a) show. Other measures lower exposure and vulnerability by linking to current policies, for 
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example, through zoning regulations and enhancing building codes (Aerts and Botzen 2011). These 
measures may considerably reduce the potential damage that floods cause and entail lower investment 
costs than flood protection infrastructure such as storm surge barriers, but they do not prevent flood 
waters from entering the City.  

Approach 

Aerts et al. (2014) provide a comprehensive cost-benefit analysis of flood risk reduction strategies by 
focusing on both main strategies (preventing flooding and reducing vulnerability), and some derivatives: 

1. The Resilient Open City strategy (S1) builds upon enhancing current building codes in NYC (Aerts 
and Botzen 2011), by elevating or wet-or dry- flood proofing of both existing and new buildings.  

2. The Storm Surge Barrier Strategies 2a, b and c (S2a,b,c) described in Aerts et al. (2013a) aim at 
lowering flood probabilities in NYC and parts of New Jersey (NJ), with different sets of storm 
surge barriers and, additionally, protective measures such as levees and beach nourishments.  

 S2a “Environmental dynamics” consists of three barriers to close off parts of NYC and NJ, 
while preserving the wetland dynamics of Jamaica Bay.  

 S2a is expanded to S2b, “Bay closed” by adding a fourth barrier that closes off Jamaica Bay.  

 S2c, “NJ-NY connect” replaces three barriers from S2b with one large barrier in the Outer 
Harbor, thereby protecting a larger area. The barriers systems are designed to withstand an 
extreme surge of 25-30ft. 

3. S3, the “hybrid solution” proposed by Aerts et al. (2013a), combines cost-effective building code 
measures of S1 only in high risk 100-year return flood zones (defined by the U.S. Federal 
Emergency Management Agency, FEMA) with protection of critical infrastructure to reduce 
economic losses due to business interruption. S3 includes moderate local flood protection 
measures, such as levees and beach nourishment that are also part of S2c. These building code 
measures and local protection measures are adjustable to future climate change as they can be 
upgraded if flood risk increases. 

Figure 13: Left panel: strategy S2c; right panel: strategy S3 (discussed below) 

Source: Aerts et al., 2014 
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As Aerts et al. (2014) explain: “Strategy S2c (left panel) reduces the length of the coastline of the NYC-NJ 
area as much as possible, to minimize flood protection costs. Two storm surge barriers are developed: 
one large barrier that connects Sandy Hook in NJ and the tip of the Rockaways in Queens, NY and a 
barrier in the East River. Some lower spots (bulkheads, levees, or landfill) on the inside of the protection 
system will be elevated to accommodate rising water levels caused by Hudson River peak discharges 
during a storm event. Strategy S3 (right panel) combines cost effective flood-proofing measures with 
local protection measures of critical infrastructure. Such a ‘hybrid solution’ aims at keeping options open: 
either (a) building codes can be further enhanced in the future with additional local protection measures 
or (b) storm surge barriers can be developed.” 

The CBAs of building code strategies for S1 and part of S3 pertain to three main categories of measures:  
elevation, wet flood proofing, and dry flood proofing. The costs and benefits of the application of each 
measure are estimated for 2ft, 4ft, and 6ft above the current height of existing buildings. A distinction is 
made for each strategy whether it applies to existing buildings or only new residential buildings. A 
further distinction is made between application of the measures in the 1/100 and 1/500 FEMA flood 
zones, based on the maps that were available in 2012. Elevation is applicable to both 1/100 high-risk 
named “A” and “V” zones, while wet and dry flood proofing is only analysed for application in A zones 
since these stand-alone measures are less effective to cope with high velocity waves in V zones, 
especially if flood depths are high.  

Detailed cost estimates of the building code measures are provided in Aerts et al. (2013a). These cost 
estimates are based on GIS information on the current and projected (until 2040), building stock in NYC 
flood zones. Based on the number and characteristics of these buildings and engineering cost estimates 
of flood proofing buildings, flood zone aggregated costs of applying a building code strategy to all 
buildings for which this strategy can be applicable are obtained. Aerts et al. (2013a) estimate the 
investment and maintenance costs of the storm surge barrier strategies based on costs of barrier 
designs made for NYC by engineering firms, and by checking on the reliability of these estimates by 
examining costs of large storm surge barrier projects conducted around the world in relation to the 
characteristics of their designs. In addition, the costs of additional flood protection works, such as 
strengthening the coastline around the barriers are included by assessing where such reinforcements 
are needed, and by calculating their costs based on published literature of unit prices. 

The resulting cost estimates show that flood proofing existing buildings through elevation is very 
expensive (between $2.3bn and $2.6bn in the A zone). The total costs of dry or wet flood-proofing these 
buildings is lower, but nevertheless substantial (between $0.25bn and $1bn in the A zone) (Aerts et al. 
2013a). Flood proofing of new buildings is cheaper. Especially, elevation is considerably less costly if it is 
applied to new instead of old buildings, since additional costs of elevating a building are low when this is 
done during construction of a building (Aerts et al. 2013a). The investment costs of the flood protection 
strategies S2a,b,c are much higher than the building code options: namely, about $19bn for S2a,b and 
$13bn for S2c. The hybrid solution (S3) investment costs are about $11bn. 

The risk reduction benefits of the building code and flood protection strategies are estimated using a 
probabilistic flood risk model, which is an extension of Aerts et al. (2013b), that estimates potential 
flood damage on the census block level in NYC. Average annual flood damage estimates of this model 
are based on 549 synthetic storm surge scenarios produced by a coupled hurricane – hydrodynamic 
model. This model is based on the HAZUS MH4 methodology using a detailed database for NYC, and 
applies flood depth-damage curves to calculate potential damage to buildings and vehicles, for each of 
the particular 549 inundation scenarios. The risk to other categories (like infrastructure), and indirect 
economic effects (business interruption) have been added to the model damage output based on 
observed consequences of Hurricane Sandy (Aerts et al. 2013a). The coupled hurricane model also 



 

48 

simulates the effects on surge heights of increased storminess due to climate change. Therefore, future 
risk and avoided flood damage by each strategy was also simulated using different climate change 
conditions, related to both sea level rise and storminess. This resulted in three climate change scenarios 
which built on the Global Climate Model simulations used by Lin et al. (2012) and sea level rise 
projections for NYC produced by Horton et al. (2010). Another future scenario represents the increase in 
urban exposure, due to new construction in flood zones until the year 2040. It should be noted that 
those benefit-cost ratio (BCR) and (Net Present Value) NPV estimates include only reduced annual flood 
risk to building stock as benefit (including business interruption and infrastructure losses).  

Results 

Aerts et al. (2014) present the results of an extensive cost-benefit analysis of the aforementioned 
strategies which was conducted over a 100 year period. A time horizon of 150 years has also been used 
for the flood protection strategies, but these results are very similar to the calculations with a 100-year 
time horizon. Sensitivity of the results to the discount rate is examined by conducting all cost-benefit 
analyses using a low (4%) and high (7%) value of the discount rate. Moreover, all cost-benefit analyses 
are conducted using an interval of a lower (-22%) and upper (+17%) value of the avoided flood damage 
estimate which reflects the 95% confidence interval of the water level caused by a storm and 
uncertainty in the resulting damage estimate (and thus risk reduction of a strategy). Finally, the 
influence on the results of delaying the investment in flood protection infrastructure by 25 years is 
examined. 

None of S2a,b,c nor S3 is economically beneficial under current levels of flood risk and the low climate 
change scenario, although the proposed S3 by Aerts et al. (2014) shows the highest Net Present Value 
(NPV) and benefit cost ratio. Under the middle climate change scenario and high discount rate (7%) S3 is 
the only strategy that would make sense economically. When a low 4% discount rate is considered, all 
strategies make economic sense if sea level rise occurs and climate change increases storminess. In that 
case, S2c results in the highest NPV. All storm surge barriers are economically feasible if flood risk 
develops according to the high rapid ice melt scenario. Since trends in flood risks are still highly 
uncertain (Lin et al. 2012), flood management strategies for coastal cities must also be flexible to allow 
for a change in policy when more detailed and reliable information becomes available on, for example, 
sea level rise. Therefore, Aerts et al. (2014) propose to start with implementing building code measures 
that are part of S3 which are already cost effective under current climate conditions: namely, elevating 
new buildings +6ft in V zones and +4ft in A zones. Moreover, critical infrastructure should be protected 
against flooding by mainstreaming adaptation measures into recovery and repair works. If climate 
develops according to the middle climate change scenario – meaning that storminess increases – then 
NYC should consider investing in storm surge barrier S2c.  

Highlights 

Overall, this study by Aerts et al. (2014) shows that a comprehensive and spatially detailed flood risk 
analysis on a metropolis scale can provide a robust cost-benefit evaluation for policy makers, despite the 
modelling of large uncertainties related to discounting, risk estimates, time horizons of investments, and 
future scenarios of development of flood risk. Future work could aim to integrate reduction of 
casualties, health risks, and environmental impacts of the flood protection strategies. 
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5.2 Studying River Embankment Performance and a People-Centred Approach 
in the Rohini River Basin in India 

This study tackles two key challenges: (i) few studies have rigorously taken a retroactive approach and 
evaluated whether, and to what extent, implemented DRR has brought about benefits; and (ii) there is a 
lack of integration of CBA with the decision-process, particularly those concerned with the distributional 
effects. Integrating CBA in a participatory and iterative community-based decision-process (see Figure 
14). Kull et al. (2013) evaluated the historical (as well as future) performance of the embankment of the 
Rohini River in northern India since 1973.  The key finding of this study was that deriving realistic 
parameters and assumptions through a participatory process is indeed feasible and delivers robust 
results.  While strict flood engineering-based estimates showed high benefit-cost ratios, when rendering 
the analysis more realistic by considering a host of other and intangible societal effects and costs (such 
as land compensation costs, real embankment performance, as well as disbenefits associated with 
waterlogging), which traditional engineering analysis of infrastructure projects tends to ignore, the 
assessed project becomes less efficient. 

 

Figure 14: CBA as part of an iterative shared learning dialogue 

Source: Moench et al. 2008 

Location 

The Rohini River is part of the Gangetic Basin, located primarily in the Gorakhpur and Maharaganj 
Districts of Uttar Pradesh State, India. Starting in Nepal, the river flows approximately north to south, 
ending at its junction with the Rapti River near Gorakhpur City. Like all of eastern India, the Rohini is 
prone to floods during the monsoon. There is always some annual flooding, with major floods occurring 
most recently in 1998, 2001, and 2007. The primary flood risk reduction strategy in the Rohini Basin, 
started in the 1970s, is to reduce the hazard through the construction of embankments. These fail 
frequently, often due to insufficient maintenance, while sometimes their designs simply are exceeded. 
So, the question addressed in this case was what can be said about embankment performance ex post 
and how can performance be made more resilient. 
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Figure 15: Location of the Rohini River 

Approach 

Kull et al. (2013) conducted a CBA of engineered flood risk prevention, continued operation and 
maintenance of the 113.1 kilometres of existing embankments along the Rohini River, assuming no 
further embankments would be built. A contrasting decentralised ‘people-centred’ strategy was also 
designed and analysed for projected economic performance. The multiple interventions within this 
strategy, including also the types of flood risks they were assumed to reduce, are listed Table 9. The 
table exhibits the different types of interventions at individual, community and societal levels, as well as 
the frequent data gaps, where no solid data is available to estimate the returns to these strategies. As 
discussed above, data gaps are particularly pronounced for intangible and indirect risks as well as for the 
impacts related to softer options and more systemic interventions, such as strengthening self-help 
groups or enhancing flood-adapted agriculture, compared to hard-resilience interventions, such as 
maintaining flood drainage points. 

Owing to the objectives and data/resource limitations, a combined backward- and forward-looking risk analysis 
was performed. Flood risk was first estimated based on two recent large-scale events, updated to current 
conditions, and then adapted to incorporate downscaled climate change projections to localized scales. 

Basin-wide flood losses for the large 1998 and 2007 floods were estimated primarily using results from a 
household survey (reviewed in Hochrainer et al. 2011), calibrated with secondary data. Application of 
survey results to the full basin took into account differences in the risk profiles of the survey sample 
versus the full basin. Secondary data was used to estimate public infrastructure losses. 

Observed regional population dynamics were employed to account for changes in exposure. Between 
1998 and 2007 some housing transitioned from mud to brick construction and rural communication 
improved (particularly mobile telephones), leading to decreases in flood vulnerability. It was estimated 
that the 1998 flood was approximately a 50-year event, and the 2007 flood a 25-year event. These two 
events, as well as an assumption that floods below two-year return periods do not cause losses, were 
used to develop a truncated Pareto distribution for the loss frequency curve. 
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Table 9: Key benefits and potential for quantification in the Rohini case study 

 

Source: Kull et al. 2013 

These backward-looking risk estimates were then adapted using a forward-looking methodology to 
incorporate potential climate change impacts. A statistical down-scaling model was developed to 
investigate potential climate change impacts on precipitation patterns in the Rohini Basin up to 2050 
(Opitz-Stapleton and Gangopadhyay 2011). Projections were analysed under the SRES A2 and B1 
scenarios (Nakicenovic and Swart 2000). Precipitation projections were then applied in a hydrologic–
hydraulic model to determine potential climate-induced changes in flooded areas. 

Under the assumption that flood losses are related linearly to flooded areas, the loss exceedance curve 
developed during the backward-looking analysis was adapted to incorporate projected future climate 
change impacts. It is accepted that this flooded area verses loss assumption oversimplifies a complex 
issue, particularly for small events and economic flow losses, however the limitations of the flood 
modelling warranted such a simplification. Such assessment limitations are common in often data-
sparse development contexts. Benefits and costs in future years were exposure-adjusted based on 
projected population growth. 

Results 

The key finding of this study was the ability to derive realistic parameters and assumptions through a 
participatory process in order to arrive at robust results. While the strict flood engineering estimate 
showed high benefit-cost ratios, when rendering the analysis more realistic by considering a host of 
other and intangible effects, the assessed project became less economically efficient. Traditional 
engineering analysis of infrastructure projects tends to ignore dis-benefits and often does not capture all 
societal costs. Taking such an engineering approach first based on official embankment costs and 
hydrologic engineering analysis at a discount rate of 10%, the authors arrived at a benefit-cost ratio of 
about 4.6, indicating high economic efficiency. It might therefore be concluded that the embankments 
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have been worthwhile. When refining the analysis, however, the economic efficiency reduced greatly. 
By considering real land compensation costs, the benefit-cost ratio was about halved. Further adding to 
the analysis, a truer assessment of embankment performance caused by insufficient maintenance (as 
also reflected in the costs) leading to failures, the benefit-cost ratio further reduced to about 1.6. When 
these disbenefits, plus the disbenefits of not being able to divest of beneficial water flows from 
recurrent flooding, were explicitly taken into account, the embankments became economically 
inconclusive (benefit-cost ratio of 1.0). Considering that all disbenefit assumptions and computations 
were conservative, and reflecting on the many uncertainties within this probabilistic analysis, it thus 
cannot finally be concluded with confidence that the performance of embankments in this case has 
been truly economically viable (see Figure 16).  

 

 

Figure 16: Evaluation of the performance of embankments along the Rohini River basin in India 

Source: Kull et al. 2008 
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6 Actual Usage of CBA for Decision Making 

The previous sections have provided the detailed CBA risk-based assessment methodology, associated 
case study context, as well as the available quantitative evidence for the operational application of CBA, 
but have not explicitly focused on the decision-making utilization of the CBA technique. Table 3 in 
section 3 provides the three main general decision-making contexts in which a CBA is applied: ex-ante 
project appraisal, ex-post project evaluation, or a study done for informational purposes.   

CBA has been applied to the assessment of various disaster risk reduction strategies in developed 
countries. For instance, the U.S. FEMA mitigation grant program (see Box 2) mandates that local 
communities undertake CBA in advance of spending federal money to protect against future disasters 
(ex-ante project appraisal). But such ex ante mandates are more challenging in low-income countries 
where CBA is often done from an ex-post evaluation perspective (World Bank 2010) in contrast to the 
cost-effectiveness of ex-ante actions to reduce risk and prepare for events (Mechler 2012).   

In addition to being an optimization tool used to select (or justify ex-post) the risk reduction strategy 
that is most economically efficient, CBA also involves systematic decision-making processes used to 
identify and agree on the most important benefit and cost aspects amongst risk managers and key 
stakeholders (IFRC 2010). Not utilizing CBA for ex-ante DRR project appraisal may not capture this 
important attribute of the technique. 

They way decisions under risks are made is nicely illustrated by Daniel Kahneman, a professor of 
psychology at Princeton University, in his Nobel address (2003) and book, Thinking, Fast and Slow (2011) 
who characterizes two modes of thinking as “System 1” and “System 2” by building on a large body of 
cognitive psychology and behavioural decision research (see Box 7). The intuitive System 1 operates 
automatically and quickly with little or no effort and no sense of voluntary control. It uses simple 
associations (including emotional reactions) that have been acquired by personal experience with events 
and their consequences. The deliberative System 2 initiates and executes effortful and intentional 
mental operations as needed, including simple or complex computations or formal logic.  We argue that 
using CBA for ex-ante project appraisal is critical for the deliberative System 2 thinking necessary for 
proper risk reduction of low-probability high consequence events such as floods. 
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Box 7: Intuitive and Deliberative Thinking as Inputs to Risk Reduction 

A large empirical literature has revealed that individuals, small groups and organizations often make decisions 
under risk and uncertainty by undertaking processes that can be characterized as intuitive thinking.  Choices are 
often made by emotional reactions and simplified rules that have been acquired by personal experience. There is a 
tendency to misjudge probability levels, focus on short time horizons, utilize simple heuristics in choosing between 
alternatives and selectively attend to subsets of goals and objectives.  

Intuitive thinking works well when decision makers have extensive experience on the outcomes of different 
decisions and recent experience is a meaningful guide for the future. These processes do not work well for low-
probability, high-consequence events for which the decision maker has limited or no past experience. There is 
evidence that intuitive thinking plays a role in people poorly estimating the risks posed by climate change. This has 
relevance for climate adaptation decisions and judging the importance of mitigation policy goals.  

A wide range of formal methods and tools have been developed to evaluate alternative options and make choices 
in a systematic manner even when probabilities are difficult to characterize and/or outcomes are uncertain,  
characterized as deliberate thinking. These methodologies often focus attention on potential short and long-term 
consequences and evaluate the options under consideration evenly, not favouring the status quo. The relevance of 
these decision aids for making more informed choices depends on how the problem is formulated and framed, the 
nature of the institutional arrangements and the interactions between stakeholders. Alternative frameworks that 
do not depend on precise specification of probabilities and outcomes can be considered in designing risk reduction 
strategies for climate change. 

Successful policy response strategies and instruments that constitute risk reduction often take into account how a 
range of stakeholders perceive the likelihoods and consequences associated with climate change and their 
behavioural responses to uncertain information and data, creating incentives that align with people’s intuitive 
propensities. One example is the creation of financing mechanisms for cost-effective technologies that allow 
people to enjoy immediate economic rewards from the investment rather than forcing them to incur a high 
upfront cost, which discourages them for adopting these measures.  

 

Here we provide a few examples of where CBA is/has been used in a deliberative System 2 fashion for 
ex-ante flood risk mitigation decision making. 

United States 

Established in 1988, the Hazard Mitigation Grant Program provides funding to undertake projects aimed 
at significantly eliminating or reducing future risk from natural hazards including floods. Although a 
presidential declaration of major disaster triggers the availability of funds event ex-post, certain aspects 
of the program’s funds are event ex-ante in nature such as the pre-disaster mitigation program. 
Regardless of the specific grant program, in order to receive any mitigation funding a complete grant 
application must be submitted for which economic efficiency of the mitigation effort must be 
demonstrated. The Federal Emergency Management Agency (FEMA) benefit cost analysis (BCA) program 
is used to demonstrate economic efficiency. 

“BCA is the method by which the future benefits of a mitigation project are determined 
and compared to its cost. The end result is a BCR, which is derived from a project’s total 
net benefits divided by its total project cost. The BCR is a numerical expression of the 
cost effectiveness of a project. A project is considered to be cost effective when the BCR 
is 1.0 or greater.” FEMA BCA Reference Guide (2009) 
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From a flood risk perspective, flood insurance study (FIS) data is utilized to establish risk by taking into 
account probabilities of flooding. For example, the FIS must indicate the source of flooding as riverine or 
coastal with the associated 10-, 50-, 100-, and 500-year flood events used as the riverine or coastal flood 
hazard inputs. FEMA building depth-damage functions are then applied to estimate both building and 
content losses by building type. Other non-property losses can be estimated as well including 
displacement and loss of function costs. Possible flood mitigation projects include: 
Acquisition/Demolition, Acquisition/Relocation, Elevation, Mitigation reconstruction, Dry flood proofing, 
and Minor localized flood reduction projects such as culverts, floodgates, minor floodwall systems, and 
stormwater management activities.  Detailed cost estimates, including maintenance costs, must be 
provided for these mitigation efforts. Finally, while cost effectiveness of the mitigation project must be 
shown through CBA, another important portion of the mitigation grant application is the justification of 
the decision making process that resulted in identification of the project proposed including a 
description of the process used to select this project as the best solution to the problem (FEMA BCA 
Reference Guide 2009). 
 

The Netherlands 

Flood management policies in the Netherlands have for centuries focused on preventing floods by 
building comprehensive connected systems of flood protection infrastructure, consisting of dykes, 
dunes, sluices, and storm surge barriers. The country depends on these engineering measures for keeping 
dry two-thirds of its low-lying lands. These flood-protection measures have safety standards such that 
they should not fail more often than once in 1,250 to 10,000 years. These flood safety standards have 
been set on the basis of a CBA conducted by ‘The First Delta committee,’ who advised the government 
on flood protection after a destructive North Sea flood occurred in 1953 (van Dantzig 1956).  

Despite these high safety standards, extreme river discharges of the Meuse and Rhine rivers threatened 
to flood large areas in 1993 and 1995. The main dyke system did not fail during these events, but un-
embanked populated areas were flooded and more than 250,000 people and 1 million animals needed 
to be evacuated. These near-catastrophes resulted in calls for improved flood risk management. In view 
of climate change, the sustainability of the traditional engineering approach of dyke heightening has 
been questioned in the Netherlands. After the critical situations in 1993 and 1998, an additional 
approach has been promoted which is to reduce flood risk by improving the natural dynamics and 
resilience of water systems. In particular, this entails improving discharge capacities of rivers by land use 
change, restoration (widening and deepening) of floodplains, expansion of wetlands, and the creation of 
additional water courses. In addition to reducing flood risk, these alternative flood control policies called 
‘Room for the River’ create side benefits, such as the creation of new wildlife habitats, nutrient and 
contaminant assimilation and recycling, as well as recreational and amenity values.  

Brouwer and van Ek (2004) used CBA to evaluate these alternative flood control policies for the lower 
river delta in the west of the Netherlands, where the Rhine and Meuse flow into the North Sea. This 
evaluation considers hydraulic, hydrological, ecological, economic and social effects of the alternative 
flood control policies. Hydrological changes associated with the proposed policies were assessed and 
translated into their associated ecological effects (vegetation) using a “hydrological-ecological dose-
effect model.” The economic value of the expected non-priced social and environmental benefits (public 
safety, biodiversity conservation and landscape amenities) was based on a meta-analysis of 30 
international studies of the economic value of wetlands, expressed as willingness-to pay (WTP). Average 
WTP values were applied to value the creation of additional wetlands, which is a simple ‘benefit 
transfer’ valuation method. Stakeholder analysis was used to assess effects of the flood policies on 
inhabitants of affected areas, farmers, environment (representatives), water supply companies, and 
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recreation. These effects were scored qualitatively, while some were monetized in the CBA. In 
particular, these include the costs of purchasing (farm) land and of increased damage to crops and 
grazing in areas that will be incidentally flooded, as well as benefits to the recreational sector. Other 
cost categories include infrastructure and operation and maintenance costs. Material flood damage 
avoided is the most important benefit category which was estimated using a flood damage model. This 
model accounts for an increase in future exposure due to economic growth.  

Although investing in higher and stronger dykes is a cost-effective option if financial costs and benefits 
are considered, the land use changes and floodplain restoration implied by the alternative flood control 
policy can be justified by a CBA that includes monetized long-term ecological and socio-economic 
benefits (Brouwer and van Ek 2004). Although a financial (cash flow) CBA results in a €2.1bn net loss, 
accounting for immaterial economic values of public safety, landscape and nature conservation results 
in an overall net gain of €860mln in present values, as calculated by an extended economic CBA. The 
main outcome of this study is that the Dutch government should implement the alternative flood 
control project “Room for the River.” This is, moreover, supported by a multi-criteria analysis (MCA), 
although that result is sensitive to qualitative scoring of the immaterial (environmental) benefits of 
floodplain restoration (Brouwer and van Ek 2004). In general, this study illustrates the importance of 
including non-financial effects in CBA of flood risk reduction policies if these involve significant 
environmental effects. A drawback of this particular study is that it does not test sensitivity of the results 
to the applied benefit transfer method to monetize immaterial values. Nevertheless, this CBA provided 
the economic rationale for the implementation of the “Room for the River” project, which is currently 
being implemented in the Netherlands and is planned to be finished in the year 2015. 

In order to successfully adapt to climate change and sea level rise, it is recognized in the Netherlands 
that additional flood protection policies are needed to increase discharge capacities of rivers. For 
example, the “Second Delta committee,” who advises the government on long-term flood risk reduction, 
has proposed that safety standard of flood defences should be increased by a factor of ten.  

Kind (2013) performs a CBA to estimate optimal safety standards of all protected low-lying areas of the 
Netherlands. The optimization principle of the CBA is to minimize all costs associated with floods, 
including flood protection and expected residual flood damages. The latter are estimated over time 
using a flood risk model which simulates a large number (>600) of inundation scenarios per protected 
area. This model includes the effects of climate change and economic growth which are based on a 
single scenario for the year 2050. Applied monetized immaterial damages include the loss of life (€7mln 
per life), injury (€100,000) and stress or inconvenience (€2,500). Environmental damages were 
estimated at 2-6% of total flood damage. A small risk premium of 8% of material damages was included 
to account for individual risk aversion. The CBA shows that it is economically efficient to raise protection 
standards especially along the rivers Rhine and Meuse. However, for many coastal areas, existing legal 
flood protection standards are high relative to economically optimal standards. These results are robust 
to a Monte Carlo uncertainty analysis of 10,000 draws of random distributions of uncertain cost 
parameters. Although this CBA is comprehensive in the monetization of a variety of immaterial effects of 
flood protection, it lacks a systematic sensitivity analysis of how overall results depend on the 
monetization of these individual effects or the assumed discount rate. Overall, the CBA results of Kind 
(2013) do not support the advice by the ’Second Delta committee’ to raise all flood safety standards by a 
factor of ten. The Dutch government has not agreed to implement that advice either. 
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NGO and Development Context 

Venton et al. (2010) reviews several CBA studies that have been conducted by NGOs on disaster risk 
reduction in communities in developing countries. In particular, Venton et al. (2010) examines 13 CBA 
cases in detail of which 3 were implemented by the Red Cross (in Nepal, Philippines and Sudan), to 
inform ongoing and planned DRR programs.  

In general, CBA’s ability to influence decision process and learning for decisions in a development 
context seems to be limited as a recent internal World Bank review shows. This review shows that the 
usage of cost-benefit analysis for informing decisions on projects has been declining. CBA seems often 
only to have been done after key decisions had been taken with the technical analysis often prepared by 
consultants, while senior project staff appeared to be more interested in aspects related to project 
safeguards, procurement, and financial management.  As another consequence, the potential of CBA to 
support learning during project appraisal and implementation has been considered very limited (World 
Bank 2010). 
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7 Other Decision Making Tools for Flood Resilience Investments 

The previous sections focussed to a larger extent on the evidence, challenges and opportunities 
associated with CBA. We now proceed to presenting examples on alternative approaches for decision-
support.  

7.1 Tool # 1. Cost-Effectiveness Analysis 

Table 10 shows the outcome of a CEA on options to control dengue infection in two communities in 
Antigua and Barbuda (Jerath 2014). In instances such as this one, the decision to undertake the risk 
reduction activity (reduce instance of dengue fever) was considered a priori to be worthwhile, hence the 
goal of the analysis was to identify the least costly method for achieving the goal. In this case it was the 
highest number of people protected against dengue fever for the least per capita cost. The portfolio of 
measures which were found to be the most cost-effective result in a total cost of $17,678 at $4 per 
person in Yorks and $3 per person in Piggotts. This table illustrates Watkiss and Hunt’s (2012) assertion 
that a key strength of CEAs is that they are typically relatively easy to undertake and the results are 
clearly understood by a wide variety of stakeholders. 

Table 10: Cost effectiveness analysis of vector control micro-project in Antigua and Barbuda (FIU) 

Hazard Proliferation of mosquitoes

Scope of CEA Health risk for community members against potential dengue infection

Communities served Yorks and Piggotts

DRR Measure Vector Control Micro-project includes:

a. Reducing access of mosquitoes to open stagnant water in households

b. Elimination of mosquitoes at larval and adult stage using chemical treatment

c. Strong public education and awareness campaign

Total Cost $17,678 

Benefit or 

Unit of Effectiveness 

Number of persons protected against potential dengue infection

COMMUNITY-WISE ANALYSIS

Yorks   Piggotts

Number of people protected 

against dengue infection as 

result of DRR measure

2,145 2,865

Cost-Effectiveness Ratio 

or CER 

(The cost per person of 

protecting against potential 

dengue infection)

$4 $3 

  

A disadvantage of CEA is that the pre-defined target or policy objective may be economically suboptimal 
or determined in an arbitrary or not-transparent manner. While the fact that CEA does not consider 
uncertainty in benefits may be advantageous, the corresponding lack of consideration of uncertainty in 
costs is a key disadvantage. CEA is not recommended in situations of high uncertainty (Watkiss and Hunt 
2012). Finally, Watkiss and Hunt (2012) argue that CEA tends to evaluate technical options and ignores 
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capacity building and non-technical options, for many of the same reasons that CBA does, in particular 
because the costs are less easily quantified. 

One example is an assessment of the cost-effectiveness of seismic retrofit in Romania conducted by the 
World Bank (World Bank 2004). Cost-effectiveness analysis was used to select possible seismic 
retrofitting options for a number of sub-projects under a seismic retrofitting component of a 
comprehensive DRR project.  Among others, the selection of sub-projects was guided by their 
contribution to life safety while the cost of retrofitting was to be minimized below a total of 60 percent 
of the cost of replacement in disaster events.  

Jones et al. (2013) argue that CEA should be applied only in situations where uncertainty is low in 
regards to both the future risk and the success of the possible interventions. They find that CEA is 
appropriate in situations such as: 

 A decision has already been made that investment in the arena in question will take place, and 
the cheapest and/or most effective option is desired. 

 The benefits of different investments are thought to be generally equal. 

 Benefits are considered greater than costs in the long term but difficult to quantify because they 
are indirect and/or intangible, usually environmental or social. 

7.2 Tool # 2. Multi-Criteria Analysis 

Multi-criteria analysis (MCA) (also called multi-criteria decision analysis or evaluation) has been 
identified as a methodology which is particularly useful and popular for environmental decision-making 
(Huang et al. 2011). In practice, MCA is a broad term referring to a flexible set of decision processes 
from informal weighting of values exercises to the use of computerized algorithms for ordering options. 
A key application consideration revolves around who determines weightings. If weightings are 
determined by one analyst or a small group of experts, then the analysis may have internal consistency 
and defendable fundamentals, but may lack public acceptance and legitimacy. The potential for MCA to 
be used in a stakeholder setting is a key strength. When utilized in a stakeholder process MCA can be a 
framework for stakeholders to jointly articulate values and explore potential trade-offs. 

Wood et al. (2014) undertook a participatory MCA approach to address the question of where to place 
tsunami vertical-evacuation refuges in the coastal community of Ocean Shores (Washington DC, USA). 
Levy et al., (2007) used a computational MCA to model preferences of multiple stakeholders in the 2000 
Tokai floods in Japan and generate recommendations based on preference criteria. Many other MCAs 
have been conducted relating to flood specifically (Ares and Serra 2008; Rohde et al. 2006; Brouwer and 
van Ek 2004; Chen and Hou 2004; Kenyon 2007; Levy 2005; Levy et al. 2007; Musungu et al. 2012), and 
cover a wide range of decisions from project selection through to appraisal in both developed and 
developing countries. Typically MCA is employed because the benefits are not easily quantifiable. In 
broad environmental decision-making it is sometimes the case that ‘flood control measures’ are 
considered as one criterion within a MCA (explained below). 

With an emphasis on low cost (not least cost as in CEA, and optimal cost in relation to benefits as in 
CBA), the methodology is organized around objectives, criteria and indicators. Criteria are attributes, 
which can be used to compare the performance of different (policy) options in achieving one’s stated 
objectives (economic, social, environmental and fiscal criteria). As another methodological element, 
indicators are verifiable measures, which can be used to monitor changes over time and space in the 
behaviour of the attributes mentioned above. They can be expressed in quantitative (monetary or not) 
or qualitative terms. 
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The approach is based on the following principles (i) policies have multi-dimensional impacts on human 
societies and the environment; (ii) the impacts can be clustered into economic, social, environmental 
and governance categories and objectives in terms of reducing or increasing these impacts, for which 
criteria (such as improved economic performance or high employment) are specified, which are later 
measured by way of indicators; (iii) dimensions, criteria and indicators are then weighted subjectively, 
and can be aggregated to one numerical, dimensionless index, which might be used to compare the 
performance of different strategies and projects. An advantage of MCA relative to CBA is that it does not 
require the monetization of difficult to value non-market and/or intangible costs and benefits of DRR, 
such as ecological effects. However, disadvantages of MCA are that the expression of impacts in 
different terms than only monetary makes them difficult to compare, weighting of different criteria can 
be seen as subjective, and decisions based on MCA may be economically sub-optimal.  

MCA is seen as an attractive and important decision-support methodology in environmental decision 
making in particular (Steele et al. 2009). It is probable that MCA is perceived as more palatable and 
flexible than CBA (and CEA) because it allows for a systematic exploration of options without the need to 
monetize all values, which as discussed above is often seen as contentious when applied to 
environmental or social assets, and human lives. 

In relation to disasters such as flooding, typically the objective of the MCA is to determine a preferred 
ordering of the available flood risk reduction options. Options might include dykes of various sizes, 
ecosystem restoration, retrofitting and building regulations, land use planning or a combination of 
these. Particularly at the community level, the suite of options to be evaluated is determined by a 
stakeholder process such as a Shared Learning Dialogue in Moench et al. (2008) and Khan et al. (2012) 
by the Institute for Social and Environmental Transitions – International (ISET). The outcomes of this 
process are coupled with a vulnerability analysis and together these inform the MCA. Where each 
option ranks in the preference order depends on how it rates according to various criteria. Criteria 
broadly relate to social, economic and environmental objectives, again determined by a stakeholder 
process (see Steele et al. 2009 for discussion of the application broadly to environmental decisions). 

The first step of any MCA analysis is to assess how each option measures up to each criteria separately 
(Steele et al. 2009; Moench et al. 2008; Khan et al. 2012). Moench et al. (2008) suggest several high level 
questions to be addressed in the MCA stakeholder process to inform the determination of final criteria 
for evaluation of options at the community level: 

1. Can the relationship between the proposed intervention and the risks faced by communities be 
clearly demonstrated? 

2. Does the proposed strategy have major distributional implications? 
3. Is the strategy accessible to the intended beneficiaries? 
4. Is the proposed strategy based on a sustainable operational model? 
5. Is the strategy consistent with emerging and projected social or other trends? 
6. Is the effectiveness of the proposed strategy dependent on key assumptions or threshold values 

that may be incorrect or may change? 
7. Are the capacities for implementing a given strategy available within the society or can they be 

developed with relative ease? 
8. Are there additional questions beyond the above that relate to the viability of proposed 

strategies in the specific region of concern? 

Typically, each option is then scored (either cardinally or ordinally) against each criterion (Steele et al. 
2009) (see Tables 11 and 12).  
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Table 11: Qualitative comparison matrix 

 

Source: Khan et al. (2012) 

For example, Khan et al.’s (2012) “qualitative CBA” of rural climate adaptation strategies in Nepal 
follows this process, comprised of stakeholder process to identify options and categorize costs and 
benefits as economic, social and environmental. 

Table 12: Illustrative qualitative ranking 

 

Source: Khan et al. 2012 

A scale of 1-to-5 or 1-to-10 was then used to score the costs and benefits of each option. Khan et al. 
(2012) found that economic costs were fairly easily captured but social and environmental scoring took 
more deliberation. They emphasize that while this is challenging, this is exactly the strength of the 
process because it draws explicit attention to these values and creates space for discussion. The process 
was further deepened when distributional impacts based on gender and poverty were considered. 

There exist various methods for aggregating the scores to finally determine where each option falls in 
the preference ranking. The choice of aggregation method depends on the objectives of the analysis, the 
data requirements and preference for how mathematical the process is. Similarly various methods are 
available for assigning weights to the criteria. From the weighted scores the options can then be given a 
final score and ranked accordingly. Typically the weighted scores are added linearly, although more 
complex algorithms exist (Steele et al. 2009). 

As another example, MCA has been applied to DRR in the UNEP project multi-criteria analysis for 
Climate Change (MCA4C), which was commissioned to provide practical assistance to governments in 
preparing climate change mitigation and adaptation strategies. The objective was to assist government 
decision-makers, particularly in developing countries to identify and examine policy options and 
measures for climate change that are low cost, environmentally effective and in line with national 
development priorities (see UNEP 2011; http://www.mca4climate.info). One case study within the 
MCA4C project looked at increasing structural resilience in Mumbai. One of the options explored was 

http://www.mca4climate.info/
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improving building codes to amend existing building regulations and where necessary, introducing new 
regulations to ensure that in 20 years’ time all floodplain buildings are on stilts, and earthquake-proof. 
Figure 17 below shows how the building codes option stacked up against the criteria identified by the 
stakeholders. The option is measured against each criterion on a scale of 100 (perfect fit) to 0 (no fit at 
all). The criteria range from public sector costs for creating additional employment, reducing mortality 
to improving legal context and governance. Some criteria would clearly apply to most flood risk 
reduction decisions worldwide and are quantifiable, e.g. mortality and public sector cost. Other criteria 
are especially context specific and much more subjective, such as “improve political stability” which was 
a consideration in this case due to the impact of flood risk reduction measures on informal settlements 
and the social/political ramifications that stem from this. A key strength of MCA is the capacity to 
include these types of intangible impacts if they are identified as important by stakeholders. 

 

Figure 17: Using MCA to score achievement of buildings codes options against key criteria 

Source: UNEP 2011 

MCA in this project appeared to be a promising process-based tool for achieving buy-in and interest of 
policy-advisers/makers, yet, as Figure 17 shows, there is a high degree of subjective judgment involved. 
As a consequence, it is difficult to replicate the evaluation route taken and the choices made by an 
analyst. In this regard the methodology is more comprehensive, but less rigorous than CBA. 

7.3 Tool # 3. Robust Decision-Making Approaches 

Decisions, particularly those which have implications in the longer term, need to hold up even if there 
are unpredictable changes in the future. RDMAs attempt to make risk-based decisions without assigning 
probabilities to future scenarios. They have developed from a perceived need to make decisions under 
uncertainty regarding future socioeconomic and climatic conditions, in instances where assigning 
probabilities is difficult. Further to this is the need to make decisions in situations where stakeholders 
have very different worldviews and find it difficult to come to consensus regarding, for example, likely 
future scenarios, and preferences and values.  Kalra et al. (2014, pg. 15) define a robust decision as “one 
that performs well across a wide range of futures, preferences, and worldviews, thought it may not be 
optimal in any particular one.”  RDMA uses ranges or, more formally, sets of plausible probability 
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distributions to describe deep uncertainty that play a role in evaluating alternative strategies for today 
and the future.  In contrast to expected utility theory, it assesses different strategies on the basis of their 
robustness rather than their optimality. In the context of the design of a facility to reduce the likelihood 
of damage from storm surge and sea level rise, choosing Design 1* may be optimal based on a specific 
set of estimates of the likelihood of each scenario occurring. However, Design 2* may have a higher 
expected loss than Design 1* but much less variance in its outcomes, and thus be a preferred choice by 
the community.  

Kalra et al. (2014) contend that the process of agreeing on robust decisions works by inverting the 
traditional steps of CBA and MCA outlined above. They argue that traditional decision-making processes 
first require adequate consensus regarding probable future scenarios, preferences and values.  RDMA, 
on the other hand, starts by exploring options under many future scenarios, without needing consensus 
on which is likely.  Similarly in regards to preferences and values, options are tested against multiple 
value systems. The “stress-testing” of options under multiple scenarios is used to identify critical 
vulnerabilities to uncertainties. If the vulnerabilities are significant, then this may discount an option; if 
they are smaller they may be addressed with small adjustments and/or add-on measures (Chambwera 
et al. 2014). 

Lempert et al. (2013) discuss the case of RDMAs for managing flood risks in Ho Chi Min City.  This RDMA 
engaged stakeholders to evaluate the robustness of various flood risk reduction options and portfolios 
thereof. Computational runs simulated 1,000 scenarios with a spread of socio-economic and climatic 
uncertainty. The plan identified by more traditional risk reduction processes was found to be fairly 
robust for future population and economic trends. However the analysis found that it was not robust to 
increases in rainfall intensity and river rise that have a good chance of occurrence due to climate 
change. The process allowed for the identification of additional measures to reinforce the plan in case of 
rainfall increase and river rise. 
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Figure 18: Risk reduction strategies in Ho Chi Minh City, and their robustness to increases in  
river levels and rainfall intensity. 

Source: Lempert et al. 2013 

This example illustrates how climate information can be used to identify various thresholds or bounding 
cases beyond which certain policies will fail. In some cases robust decision methods generate probability 
thresholds for certain scenarios above which a decision maker might choose a different risk reduction 
strategy. 

The iterative and repeated analysis with varying assumptions and scenarios, across multiple variables, 
means that formal RDMAs can be very complex, requiring statistical and mathematical expertise (see 
Lempert and Collins 2007; Ranger et al. 2010). However the broad concept of ‘robust decisions’ is 
applicable at many levels. A qualitative framework has been worked out in the IPCC SREX framed around 
the concept of low regrets. Such options are defined as follows: 

“Measures that provide benefits under current climate and a range of future climate change 
scenarios, called low-regrets measures, are available starting points for addressing projected 
trends in exposure, vulnerability, and climate extremes. They have the potential to offer benefits 
now and lay the foundation for addressing projected changes (high agreement, medium 
evidence). Many of these low-regrets strategies produce co-benefits, help address other 
development goals, such as improvements in livelihoods, human well-being, and biodiversity 
conservation, and help minimize the scope for maladaptation.” (IPCC 2012). 

As one example, managing drought risk in the context of food insecurity in West Africa may be an 
interesting case in point. Drought risk is a concern of life and death for the Sub-Saharan region, and in 
West Africa, droughts have been observed over the last few decades to exhibit an increasing trend. In 
IPCC terminology, confidence in this trend truly occurring is medium, meaning rather solid, but not fully 
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pervasive. Projections suggest that droughts may increase in the future, but with only low confidence.  
This signal induced by climate change appears thus weak, probably too weak to commit action of 
climate adaptation on future droughts to serious review, including economic analysis using CBA. Yet, 
importantly, there are many risk factors and options creating benefits now and likely in the future that 
can be tackled. Among the risk factors are today’s rainfall variability (hazard), population growth 
(exposure), ecosystem degradation and poor health and educational systems affecting vulnerability. 
Among the options that can be taken are improved water management, sustainable farming practices, 
drought resistant crops and drought forecasting. This approach thus overall emphasises effective and 
robust portfolios of risk reduction as well as systemic interventions. The framing of low regrets options 
analysis discussed here and in the IPCC publication is largely conceptual, yet there are analytical tools 
that can be employed to operationalise the concepts, and application has occurred to environmental 
and climate change related problems. 
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8 Concluding Remarks 

There is increasing interest and need to make the economic case for increased investments into DRR by 
policymakers including community and national disaster managers, government officials charged with 
investment decisions, donors, NGOs and international financial institutions. The focus of applied work 
has been largely on CBA; while there is increasing interest in the use of other tools such as cost-
effectiveness analysis, multi-criteria analysis and robust decision-making approaches. These tools are 
not applied as widely as CBA, and their applicability needs to be further studied. 

Our discussion started with an examination of the applicability of CBA for resilience interventions. CBA is 
focused on economic efficiency only, which has led to it being heavily criticized as being too restrictive. 
However, if the core element of the strategy at stake is public investment, then using CBA to help such 
decisions can be defended. 

CBA is a quantitative technique and thus requires a certain expertise and access to data. This should not 
constitute an obstacle to its implementation though. As we show in this report, there are a limited 
number of steps to follow to perform a risk-based CBA, all of which have been done in numerous 
contexts now.  In several developed countries (e.g., France, UK, USA), the use of CBA is required for a 
number of investments that use government funds. We illustrated how CBA has been used with 
significant benefits in developed and developing countries alike. We find CBA as a decision-support tool 
indeed useful, yet mostly for hard-infrastructure type of options and a context with good and sufficient 
data. This is often likely to be case in an OECD-context, less so for applications in developing countries. 

The extent to which government investment decisions on DRR are really informed by cost-benefit 
assessments remains an open question.  Also, the applicability becomes more limited, particularly for a 
developing country characterised by a shifting emphasis from infrastructure-based options (such as 
large dam projects) to preparedness and systemic interventions (such as institutions and human 
resources needed to reduce risk and prepare). 

Going beyond CBA, we showed also that there are complementary decision tools that have been 
developed, such as cost-effectiveness analysis, multi-criteria analysis and robust decision-making 
approaches, that can been used with important benefits. Having such a tool kit at the disposal of local, 
region and national decision makers will be key to balancing among different investment options, or 
selecting the best options given limited budget. 

Options for going forward: Applying a decision-support toolbox  
CBA should never be used in isolation, but should be part of a wider assessment and decision-making 
process that includes stakeholder participation; detailed participatory analysis of the factors 
contributing to flood risk and vulnerability; quantitative and qualitative methods for evaluating the 
impacts of flood disasters; and transparent and inclusive processes for qualitative and quantitative data 
collection and analysis (IFRC 2010). 

Thus, as a way forward, we propose that CBA and other relevant decision making techniques discussed 
here may be integrated into existing community participatory approaches such as the Red Cross (IFRC)’s 
Vulnerability Capacity Assessments (VCA), or Practical Action’s use of the Participatory Capacity and 
Vulnerability Assessment (PCVA), in order to ensure the application of their systematic decision making 
capabilities. The IFRC and Practical Action in working with communities on implementing flood DRR 
activities already extensively use participatory assessment processes to gather, organize and analyse 
information on the vulnerability and adaptive capacity of the communities. Additionally, these 
participatory processes are completed in conjunction with the collection of secondary information to 
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provide a baseline of communities risk to different hazards.  Therefore, linking to VCA/PCVA, in 
particular, provides a good entry point for collecting baseline and monitoring data on risk and resilience, 
as well as for gleaning community views on potential costs and benefits.  What is more, the impact-
driven and quantitative thinking needed for decision making can be leveraged through VCA/PCVA to 
enable communities to gain potentially non-traditional perspectives of their own vulnerability and risk, 
especially around current and future risk, and to develop innovative approaches to community-based 
DRR and resilience.  To integrate such decision-making tools with existing VCA/PCVA processes, 
practitioners would likely simply need to add lines of questioning to the existing process of gathering 
quantitative data on outcomes and impacts in the field. 

Going beyond the vulnerability and capacity assessments, from a truly integrated perspective, decision 
tools may be helpful if utilized from the outset of a community-based flood resilience initiative, where 
they can improve accuracy and reliability. Unless solid flood risk and resiliency baselines have been put 
in place at the start of the flood resilience-enhancing initiative, ex-post analyses require baselines to be 
reconstructed retroactively. This is generally difficult, and will affect the quality of the assessments. CBA 
and other tools add a more quantitative approach to existing qualitative decision-support tools utilized 
in the VCA/PCVA processes.  As such, they can be adapted to operate in line with existing processes, 
such as VCA/PCVA and to enhance project review and revision processes arising from routine monitoring 
and evaluation. 

Work over the next several years on decision making under risk and uncertainty as part of the Zurich 
flood resilience alliance program will address decision making for policy makers, analysts and 
implementers and further develop and apply methodologies in order to quantify the relative costs and 
benefits of flood protection measures, implementable at the appropriate level. These developed 
methodologies in turn will help inform the relevant partners, potential donors, governments, as well as 
individuals and businesses at risk, on the costs and benefits of investing in flood risk reduction with an 
emphasis on pre-event investment.   

Figure 19 is an illustrative example of how specifically CBA might be built into the Zurich flood resilience 
alliance decision-making process beginning from site/community selection to monitoring and evaluation 
of the implemented flood DRR initiatives.  For example, in selecting the communities in which to work, it 
is imperative that a transparent, impartial, and consistent process be in place in order to minimize 
unwanted external influences in the community selection process.  Existing CBA evidence on the returns 
to the various flood DRR initiatives could be useful in this regard to potentially highlight underinvested 
areas.  Further, once the VCA/PCVA process has started in the selected communities, CBAs can 
potentially provide two useful roles here: (1) to assist in the decision-making process of which DRR 
strategies to employ based upon the economic efficiency criterion, or (2) to provide insight into the 
intangible benefits of the various DRR initiatives to assist in prioritizing them for a further quantitative 
analysis.  Finally, as has been shown earlier in section 3.2 in regard to the CBAs implemented by the IFRC 
and PA from an ex-post perspective, CBA is useful in monitoring just how effective the various DRR 
initiatives have been given their implementation. Further understanding, developing, applying and 
testing the role in a community case study context of a decision toolbox comprised of the different tools 
(not just CBA) importantly along this entire flood DRR implementation spectrum will be a key focus of 
the future work under the alliance. 
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Figure 19: Entry points for using decision-support tools for building flood resilience 

Importantly, this work will also directly connect with complementary work being done by all the 
partners of the Zurich flood resilience alliance on operationalizing community flood resilience. Further 
work of the alliance will build on this notion and over the next years test, refine and implement some of 
the thinking presented here, which will help to take the debate further on making informed decisions on 
DRR that are efficient, equitable and acceptable to the beneficiaries of DRR interventions. 
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