Provided by Helsingin yliopiston digitaalinen arkisto

Metadata, citation and similar papers at core.ac.uk

On Reconfiguring 5G Network Slices

Matteo Pozza, Patrick K. Nicholson, Diego Lugones,
Ashwin Rao, Hannu Flinck, and Sasu Tarkoma

Abstract—The virtual resources of 5G networks are expected
to scale and support migration to other locations within the
substrate. In this context, a configuration for 5G network slices
details the instantaneous mapping of the virtual resources across
all slices on the substrate, and a feasible configuration satisfies
the Service-Level Objectives (SLOs) without overloading the sub-
strate. Reconfiguring a network from a given source configuration
to the desired target configuration involves identifying an ordered
sequence of feasible configurations from the source to the target.
The proposed solutions for finding such a sequence are optimized
for data centers and cannot be used as-is for reconfiguring 5G
network slices.

We present Matryoshka, our divide-and-conquer approach for
finding a sequence of feasible configurations that can be used
to reconfigure 5G network slices. Unlike previous approaches,
Matryoshka also considers the bandwidth and latency constraints
between the network functions of network slices. Evaluating
Matryoshka required a dataset of pairs of source and target
configurations. Because such a dataset is currently unavailable,
we analyze proof of concept roll-outs, trends in standardization
bodies, and research sources to compile an input dataset. On
using Matryoshka on our dataset, we observe that it yields close-
to-optimal reconfiguration sequences 70X faster than existing
approaches.

I. INTRODUCTION

5G network slicing redefines the telecommunications mar-
ket by converging the best of 5G connectivity and Net-
work Function Virtualization (NFV) to enable new business
opportunities in diverse domains such as mobile services,
manufacturing, consumer and enterprise applications. While
5G can support applications with exceptional requirements
for latency, throughput, and dense connectivity [1], [2], NFV
enables the softwarization of Network Functions (NFs) . To
fully leverage the benefits of 5G slicing, there is also a trend
towards distributing NFs in a way that real-time functionality
is deployed close to the access, whereas less critical functions
run in the core network — preferably collocated in cloud to
reduce costs. In this emerging scenario, there is a need to
evolve traditional network-centric management towards more
agile service-driven processes. That is, network operators need
new cost-effective mechanisms to adapt network slices to
varying, customer-specific workloads. In this context, adap-
tation implies dynamically auto-scaling slices to provision
capacity, and to migrate their NFs to achieve the expected
service performance [3]. The key challenge for operators is to
concurrently coordinate customer slices individually within a

Matteo Pozza, Ashwin Rao, and Sasu Tarkoma are with the University of
Helsinki.

Patrick K. Nicholson, Diego Lugones, and Hannu Flinck are with Nokia
Bell Labs.

This is the author version that has been accepted for publication on January
28! h, 2020, in IEEE Journal on Selected Areas in Communications (JSAC)
- Series on Network Softwarization & Enablers.

much finer timescale (e.g., a few times per day [4]) compared
to traditional resource aggregation and over-provisioning prac-
tices.

Telecommunication networks leverage network functions
to operate on their traffic. For example, network functions
collect statistics, modify packet headers, or drop packets
matching patterns of malicious traffic. Network functions built
following the principles of NFV are called Virtual Network
Functions (VNFs), and each network slice consists of several
interconnected VNFs. Each VNF can have a variable number
of instances, and each VNF instance runs as a Virtual Machine
(VM).! These virtual resources need to be placed on the
substrate such that the substrate is not overloaded and the
Service-Level Objectives (SLOs) of all the network slices are
met. We refer to the mapping of the virtual resources across
all slices on the substrate as the configuration. A configuration
details the location of the virtual resources in the network, and
it is feasible if the SLOs of each slice are satisfied without
overloading the substrate. NFV enables network operators to
change the configuration. This may be required for various
reasons including a slice is added or removed, the demands
of a slice change, or some nodes of the substrate require
maintenance.

Reconfiguring network slices consists of the following three
steps: i) finding a new configuration, ii) finding an ordered
sequence of feasible configurations from the current con-
figuration to the new configuration, and iii) performing the
actual migration of VMs. To increase business value, all
three steps must be performed as fast as possible, thus the
time budget is very small [7]. The first and the third step
have received significant research attention [8], [9], [10]. In
contrast, the problem of finding an ordered sequence of VM
migrations has been studied in the context of data centers,
however the proposed solutions cannot be used as-is when
reconfiguring 5G network slices. For instance, Dow etal. [11]
propose a variant of A* search, however, their algorithm
does not simultaneously consider the bandwidth and latency
requirements of the services. In Figure 1, we observe that their
solution finds migration sequences only for a small number of
network slice reconfiguration scenarios even when it was given
a large time budget. This highlights the need for an algorithm
that i) takes into account 5G requirements, and ii) is able to
provide solutions efficiently.

In this paper we introduce Matryoshka, a divide and conquer
algorithm to find a migration sequence for reconfiguring 5G
slices. Our approach is designed to work at scale with large 5G

!In this work we use the term virtual machine (VM) to refer to a virtualized
instance of a network function. Network functions can be virtualized using tra-
ditional VMs, or light-weight virtualization techniques such as containers [5]
and Unikernels [6].

https://core.ac.uk/display/339408745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

—

B~ O 0 O

Dataset instances (%)

0 10 20 30 40 50 60
Completion time (m)

Fig. 1: State-of-the-art algorithm: A* search. The algorithm
used for finding a sequence of VM migrations to reconfigure
virtual networks in data centers fails to scale with the stringent
constraints of 5G networks. A low percentage (< 6%) of
migration sequences is found even after running for more than
one hour on high-end servers.

networks by leveraging parallelism to reduce completion time.
Initially, Matryoshka creates an abstraction of the configura-
tion space in the form of a directed graph that we refer to as the
migration graph, in which the edges represent VM migrations.
Then, it runs a heuristic for traversing the migration graph
over paths that do not violate the SLOs. When evaluating
Matryoshka, we found that publicly available data about 5G
deployments at scale is rather scarce. So, we collected infor-
mation from specifications, telecommunications organizations
and other sources to model the physical substrate, as well as
the requirements of the network slices to generate sufficient
reconfiguration examples to stress our algorithm. In summary,
our contributions are:

o An algorithmic approach for creating appropriate migration
strategies of virtual network functions running on 5G net-
work slices. To the best of our knowledge, this is a first effort
to understand how to change the configuration of such slices
in a timely fashion while including critical 5G constraints
in terms of bandwidth and latency.

o A modeling dataset of 5G slicing, for research purposes,
which we use to represent potential substrates and create
multiple network configurations for evaluating and compar-
ing Matryoshka to state-of-the-art techniques.

Evaluating the performance of the approach of Dow etal. [11]
for reconfiguring 5G network slices requires a dataset of
pairs of source and target configurations. In §III, we detail
the dataset we created for the network slices reconfiguration
problem because such a dataset is currently unavailable for
5G networks. The dataset contains several problem instances,
i.e., examples of the network slices reconfiguration problem
without solutions. Each problem instance is characterized by a
pair of feasible source and target configurations; a description
of a problem instance is presented in §III-D. We present and
evaluate Matryoshka, our algorithm to efficiently solve the
network slices reconfiguration problem in §IV and §V.

II. BACKGROUND

In this section, we first provide an overview of network
slicing and configuring slices in 5G networks. We then present

an overview of the problem of reconfiguring 5G networks, and
how A* search has been leveraged to address similar problems.

A. Network Slicing

5G networks will offer network services to a wide range
of use cases including hand-held devices, self-driving cars,
and e-health devices. These use cases are characterized
by different requirements, e.g., in terms of bandwidth and
latency, and simultaneously satisfying all such requirements
is a key challenge for network operators. The 3rd Generation
Partnership Project (3GPP) has therefore proposed network
slicing, i.e., multiplexing logically independent networks on a
substrate where each network is tailored for a single use case.

The virtual resources of each network slice can be divided
into two groups. The first group comprises the virtual resources
that handle basic services of the mobile network, such as
registration and mobility. These virtual resources are typically
shared between the network slices because their services are
common across all use cases. For instance, a network operator
can configure the Access and mobility Management Function
(AMF) [12] to be shared across multiple slices. The second
group comprises the virtual resources that are specifically
designed to serve users of a specific use case, and consequently
are not shared between network slices. These virtual resources
are typically organized into chains of variable length [13].
In this work we focus on the second group, and we assume
each use case is assigned an isolated virtual network which is
instantiated on a shared substrate.

5G network slices are expected to use virtual network
functions (VNF) which can be instantiated in any general-
purpose computing node, thus allowing the slices to scale
and adapt with the demands. A VNF is instantiated as Virtual
Machines (VMs) or containers, and the number of VMs can
be adjusted according to instantaneous network load. For
example, an increase in the traffic load can trigger a firewall
VNF to scale-out and instantiate additional VMs, while a
decrease in the traffic load can trigger it to scale-in and
decommission idle VMs.

B. Configuration for Network Slices

A configuration for network slices describes the mapping
of the virtual resources across all slices on the shared sub-
strate [14]. Specifically, it details the mapping of the VMs
and virtual links across all slices on the computing nodes
and links between the nodes. Figure 2a shows an example
of two network slices configured on the same substrate. The
first network slice depicted as blue VMs has VMs vl and
v3 mapped to host n2, VMs v2 and v4 mapped to host n4,
and VM v5 mapped to host n3. The mappings of virtual links
reflect the mappings of the VMs, i.e., v3 and v4 have a virtual
link which is mapped on the path between n2 and n4.

A given configuration can either be feasible or infeasible.
A configuration is feasible if (i) the requirements of the
corresponding use cases are met, and (ii) the physical network
is not overloaded. Conversely, a configuration not fulfilling
these two conditions incurs in violations of SLOs, and is
therefore infeasible.

(a) Source

(b) After migration #1

(c) After migration #2 (d) Target reached

Fig. 2: Example of network slices reconfiguration. The substrate comprises hosts nl, n2, n3, n4 and their links, while the two
network slices respectively comprise VMs v1, v2, v3, v4, v5 and links between them, and VMs v6, v7, v8, v9 and links between
them. Network slices are initially configured as in Figure 2a and they must be reconfigured as in Figure 2d. Three migrations of
VMs are required to obtain the target configuration. All configurations traversed during the reconfiguration must be feasible.

C. Reconfiguring Network Slices

The scale-in and scale-out of the VNFs causes the configura-
tion of network slices to change. For example, an aggressive
scale-out policy can quickly saturate the capacity of a node
which can result in SLO violations. To avoid such undesired
configurations, network slices must be reconfigured to more
desirable configurations.

The task of reconfiguring network slices involves the fol-
lowing three sub-tasks. The first sub-task is identifying a new
configuration reflecting the objective of the mobile operator.
For example, the mobile operator might be interested in
distributing the load in the network as evenly as possible.
The second sub-task consists in identifying a sequence of VM
migrations to transform the network slice from the current con-
figuration, called source, to the desired configuration, called
target. Figure 2 shows an example in which reconfiguring the
network slices involves three intermediate steps. In each step,
exactly one VM is migrated from one node in the substrate
to another. Note that it is essential to ensure that each inter-
mediate configuration obtained is feasible. This ensures that
(i) the reconfiguration does not violate any SLOs, and (ii) the
network stays in a feasible configuration if the reconfiguration
process is abruptly interrupted. The third and final sub-task is
performing these VM migrations. In this paper we focus our
attention on the second sub-task.

D. A* Search

A* search algorithm has been used by Dow etal. [11] to
find a sequence of operations to reconfigure virtual networks in
data centers. This algorithm guides the exploration for a path
from a given source node to a target node with a heuristic that
prioritizes nodes which are more likely to lead to the target
node. The algorithm maintains two sets of nodes: an openset
and a closedset. The openset contains all the nodes discovered
by the algorithm whose neighbors haven’t been discovered yet,
while nodes whose neighbors have been discovered end up
in the closedset. Each node in the openset has an associated
priority. The algorithm starts from the source node and it
repeats the following loop: (i) pick the node with the highest
priority in the openset, (ii) discover its neighbors, (iii) assign
a priority value to each neighbor, (iv) put each neighbor
in the openset, and (v) put the node in the closedset. The
priority value assigned to each node is a combination of its

actual distance from the source node, which is computed while
exploring the graph, and its distance from the target node,
which is obtained through the heuristic.

III. MODELING DATASET

In this section we describe our best effort for modeling
a large-scale 5G network. As existing data from previous
generations of mobile technologies is not sufficient to under-
stand 5G slicing end-to-end, we consulted multiple sources of
information such as standardization entities and specifications,
as well as 5G trials. Given the constant evolution of the
standard, the modeling dataset may not necessarily reflect
real-world parameters. However, the modeling methodology
presented here can be used to incorporate updates and adapt
to modifications.

In our attempt to model 5G slicing as thoroughly as possi-
ble, we first describe the expected features of the substrate and
the capability of network slices. Then, we provide a definition
of the problem instance for slice reconfiguration, and describe
how we generate them to evaluate our proposal. Last, we
discuss the validity of the modeling dataset in the context of
our research.

A. Modeling Physical Substrate

1) Graph: In Figure 3, we present a high-level picture of
a 5G network substrate. It exhibits a structure consisting of
three levels: pre-aggregation, aggregation, and core. Nodes are
organized in a ring in the first two levels, and in a mesh
in the core level [15], [16], [17]. Nodes of different levels
are interconnected in a hierarchical fashion. Each node in the
aggregation ring is connected to at most seven nodes in the
pre-aggregation ring, while each node in the core mesh is
connected to at most two nodes in the aggregation ring [18].
The pre-aggregation ring corresponds to the so-called edge
of the mobile network. The nodes of the pre-aggregation
ring are called Centralized Units (CUs) and they correspond
to the computing nodes to which base stations are directly
attached [19]. We construct the network starting from the
area to be covered. We obtain the number of CUs by dividing
the whole area by the coverage area of a single CU, which
we found to be 4 km? approximately.” We then calculate the

2The details on how the value was computed can be found in Appendix A.

Fig. 3: 5G substrate. The network comprises three hier-
archical levels: pre-aggregation ring (green), aggregation ring
(cyan), and core mesh (red). The nodes in the pre-aggregation
ring are the Centralized Units (CUs). In the figure, thicker links
indicate higher available bandwidth. Similarly, bigger nodes
indicate greater computational capacity.

number of nodes in the aggregation and core levels, as well
as the links between the nodes of each level.

In our study, we are interested in the part of the network
where we can actually instantiate the VMs of the network
slices. This feature can be offered by all nodes from the core to
the pre-aggregation ring, the latter offering the lowest latency
to the users [20], [21], [22]. Note that in 5G networks base
stations are reduced to their minimal functionalities since the
signal processing is offloaded to the CUs [23]. For this reason,
they do not represent a good candidate for instantiating VMs
of network slices and we do not represent them in our model.

2) CPU and memory: Each network node corresponds to
a rack of servers, thus the number of CPUs and amount
of memory available in the node is the sum of the CPUs
and available memory of each server in the node. We have
dimensioned each server with 28 cores and 64GB of memory,
which is in line with the specifications of carrier-grade appli-
ances [24]. The number of servers available at each node in
the network depends on its hierarchy level, with resources at
the end tending to be scarce [22]. Hence, we model nodes in
the pre-aggregation ring with a small number of servers, i.e., 4
servers, and increase this number towards the core, i.e., X8 in
the aggregation ring and x16 in the core mesh.

3) Bandwidth: Each network link represents multiple optic
fiber connections, each of which has 100 Gbps bandwidth in
both directions as predicted by commercial 5G forecasts [25],
[26], [27], [28]. Similarly to the case of computational ca-
pacity, the total bandwidth available at each link decreases
from the core to the pre-aggregation ring. We model the pre-
aggregation ring, the aggregation ring, and the core mesh
with 200 Gbps, 400 Gbps, and 800 Gbps links, respectively.
Furthermore, the pre-aggregation ring and aggregation ring are
interconnected through 200 Gbps links, while the aggregation
ring and core mesh are interconnected through 400 Gbps links.
Note that the bandwidth used in one direction is independent
of the bandwidth used in the other direction of the link.

4) Latency: All links between nodes at the same hierarchy
level incur a latency of 2 ms, whereas the latency between
pre-aggregation ring and core mesh is approximately 10 mil-
liseconds [27]. The physical distance between the aggregation

Use cases Bandwidth / km? E2E Latency
Download Upload

eMBB 750 Gbps 125 Gbps 10 ms

URLLC 10 Gbps 10 Gbps 1 ms

mMTC 100 Gbps 100 Gbps 50 ms

TABLE I: Requirements for 5G use cases [1], [31]. E2E
latency corresponds to the one-way latency in the path from the
user to the last VM of the network slice serving the user.

ring nodes and core mesh nodes is approximately four times
the distance between the pre-aggregation and aggregation ring
nodes [20]. As a consequence, links interconnecting the pre-
aggregation ring to the aggregation ring incur a latency of
2 ms, while links interconnecting the aggregation ring and
core mesh have a latency of 8 ms. Note that each node adds
a latency of approx. 50 us when receiving, processing, and
forwarding data packets [29], [30].

B. Modeling Network slices

1) Graph: Figure 4 illustrates an example of a network
slice. Each network slice is comprised of a number of VNFs
linked or chained to each other. Each VNF can be instantiated
over one or more VMs to scale according to the traffic load.
The VMs of a VNF typically need not communicate with each
other as they are expected to run independently. Instead, when
considering two adjacent VNFs, each VM of the first VNF is
linked to each VM of the second VNF. Thus, links between
pairs of adjacent VNFs form complete bipartite graphs.

2) CPU and memory: The amount of CPUs and memory
required by a network slice corresponds to the sum of CPU
and memory requirements of its VNFs, while the requirements
of a VNF add up to the amount of CPU and memory in
all its VMs. Each VM is modeled to have 4 CPUs and 4
GB of memory [32]. We use the number of CPUs and the
amount of memory to abstract fine-grained metrics that can
be leveraged to identify if a node can host additional VMs.
As an example, the CPU ready value recorded among the VMs
running in a node indicates much more reliably if a node can
host additional VMs or not [33]. The metrics we used do not
affect the quality of our dataset because our objective is to
obtain pairs of feasible configurations.

3) Bandwidth: Table 1 groups the estimated 5G require-
ments for three well-known macro use cases: 1) enhanced
mobile broadband (eMBB), ii) ultra-reliable low-latency com-
munication (URLLC), and iii) massive machine-type commu-
nication (mMTC). These macro scenarios abstract out specific
application use cases whose requirements would fall within a
combination of these macro use cases. For example, smart
buildings have requirements from both eMBB and mMTC
use cases, while augmented reality belongs to both eMBB
and URLLC use cases [34]. The bandwidth values in
Table I are for each pair of adjacent VNFs in the corresponding
network slices, and the total bandwidth is split evenly among
all VM links when a VNF consists of multiple VMs. Figure 4
illustrates the bandwidth splitting. Assume the network slice
serves mMTC users, and consider VNF; and VNF,. Then,
the bandwidth requirements for download, e.g., from VNF, to

| o—’,,;le VMM &A‘?\}
100% 50“% VM, L2505, > VM,, g
% > T e v {:
* VM i VMZ‘Z VMIX,] VM/A,:‘} VMGI
1,1 1]
VMZ‘3 VMa,z VMM §VM5,2
™,
VM
i 4,6
VNFl VNF2 VNF3 VNF‘l VNF5

Fig. 4: Example of network slice. Each slice comprises a
sequence of VNFs, and each VNF is composed of a number of
VMs. Given two adjacent VNFs, the links between their VMs
form a complete bipartite graph, and the required bandwidth is
split evenly between the links.

BN eMBB URLLC mMTC

Fig. 5: Density of use cases in pre-aggregation ring. Each
CU serves either a single use case (left), two use cases (center),
or all three use cases (right). The percentages indicate the
fraction of CUs serving each use case. Note that a CU can
simultaneously serve multiple use cases.

VNF; is 100 Gbps, and the same holds for upload, e.g., from
VNF, to VNF,. If VNF; is instantiated with a single VM
and VNF; is instantiated with four VMs, there are four links
between VNF; and VNF,. As a consequence, the bandwidth
splits evenly among the links, so that each link gets 25% of
the overall amount, i.e., 25 Gbps in both directions.

4) Latency: Table I also illustrates the latency requirements
of all use cases. Latency requirements are end-to-end (E2E),
thus implying that the total latency incurred in the path from
the user to the last VNF of the network slice must yield below
the indicated threshold. The same latency figures apply for the
opposite path as well, i.e., from the last VNF of the network
slice to the end-user. Since we consider only the portion of
the network behind the CUs, the latency between the UE and
CU is subtracted from total E2E latency requirement. Such
UE-to-CU latency amounts to 0.5 ms [20].

C. Scenarios and User distribution

The end users of each scenario can be distributed across the
network in various ways. From an operator perspective, such a
distribution is reflected by the CUs that are associated to each
scenario. For each CU associated with a given use case, the
operator would deploy a network slice for serving the users
connected to that CU. The fraction of CUs associated with a
certain use case is henceforth called density. Note that a CU
can be associated to more than one use case simultaneously.

D. Problem instances

With the purpose of evaluating our algorithm and state-of-
the-art techniques, we create multiple input scenarios to solve.

We first define what a problem instance is and consists of. We
then iterate over its components, providing for each of them
the values that have been used.

1) Definition: A problem instance consists of two input
configurations, along with the details of the substrate and the
network slices. The two input configurations are a source con-
figuration, i.e., how VMs are placed in the network initially,
and a target configuration, i.e., how VMs should be placed at
the end of the reconfiguration procedure. Solving the problem
instance entails finding a sequence of VM migrations that
allow reconfiguring the network slices from source to target
without violating SLOs or overloading the network in the
process. Next, we analyze the additional parameters we used
for defining the substrate, the network slices, as well as source
and target configurations of each problem instance.

2) Substrate: We defined four substrates by varying the
geographical coverage area of the 5G network in 25, 50, 75,
and 100 km?. As discussed, the coverage area of a single CU is
approximately 4 km?. Thus, the four generated substrates have
7,13, 19, and 25 CUs in the pre-aggregation ring, respectively.

3) Network slices: We consider different densities of use
cases for the three scenarios depicted in Figure 5. In all
these scenarios, there are two aspects to consider: i) the
number of CUs serving a use case is always the same for
the other use cases, and ii) a CU can serve multiple use cases
simultaneously. In the first case, each CU serves only a single
use case (either eMBB, URLLC, or mMTC), thus each use
case has 33% of the CUs associated to it. In the second case,
each CU serves two use cases, e.g., eMBB and URLLC, thus
each use case has 66% of the CUs associated to it. In the latter
case, each CU serves all three use cases simultaneously, and
therefore each use case has 100% of the CUs associated to it.

4) Source and target configurations: Given the substrate
and a number of network slices from the modeling dataset,
there is a high number of possible configurations. This is due
to fact that each VM can be potentially placed in any node of
the physical substrate. We therefore need some guidelines on
how to select source and target configurations for the problem
instance. Specifically, our aim is to represent a scenario in
which network reconfiguration is required.

One such scenario is when a network operator is interested
in reconfiguring the network to use spare resources at the edge.
For this context, the source configuration represents a config-
uration where a share of the resources at the edge are unused.
Conversely, the target configuration represents a configuration
in which the resources at the edge are leveraged as much as
possible. For the source, we identify the configuration whose
CPU usage in the pre-aggregation ring is as low as possible.
This way, CUs are likely to have spare resources which
indicates a yet unexploited opportunity of consolidating the
VMs at the edge. For the target, we identify the configuration
whose bandwidth usage of links in the substrate is as low as
possible. With this, VMs are consolidated in the CUs to a
larger extent, resulting in significant bandwidth savings.

5) Generation of problem instances: To generate a problem
instance, we first select one of the four substrates, i.e., 25,
50, 75, 100 km?2, and one of the three density levels for
the network slices, ie., 33%, 66%, and 100%. For each

of the use cases, we then randomly select the number of
VNFs composing the network slice between three (i.e., small
network slice) and five (i.e., big network slice). Furthermore,
we randomly select the scaling factor of each VNEF, i.e., the
number of VMs with which the VNF is instantiated, between
x2, x4, x6, and x8. Note that the first VNF corresponds to a
load balancer instantiated with a single VM, as depicted in
Figure 4. After the number of VNFs and the scaling factors
are decided, the network slices are generated. Finally, we run a
simple Integer Linear Programming (ILP) model implemented
on a commercial solver® to find pairs of source and target
configurations. Given the extremely large amount of possible
combinations of parameters, we set a time limit of 10 minutes
as the solving time for finding each configuration. The main
driver for using an ILP to find source and target configurations,
instead of a more scalable heuristic, is the simplicity of the
formulation and usage of the library.

The ILP is used only to obtain the pairs of source and target
configurations, and we do not use it to find the sequence of
VM migrations to reconfigure the network slices. Furthermore,
getting optimal source and target configurations is not the
main goal. Instead, we are interested in finding pairs of
feasible configurations that require a non-trivial number of
VM migrations to reconfigure the network slices.

E. Characterization and validation

The dataset consists of 241 problem instances. Table Ila
illustrates the distribution of the problem instances across
all combinations of substrate and use case density. Instances
with use case density of 33% are predominant because they
comprise a much smaller number of network slices, and thus
the search for source and target configurations requires less
computing time. Note that we were not able to generate any
instance when combining a very large substrate (75-100 km?)
and high use case density (100%).

Table IIb shows the average number of VNFs. Across all
combination of parameters, there is a predominance of small
network slices, i.e., comprising three VNFs. Instead, Table Ilc
shows the average number of VMs. Note that the relationship
between VNF and VM is one-to-many because a VNF can
have multiple instances, each one of which corresponds to
a different VM. Combinations of parameters that result in
simpler problem instances, e.g., substrate of 25 km? and use
case density of 33%, record a higher average number of VMs.
When considering more difficult parameter combinations, we
were able to generate source-target configuration pairs only
for network slices with a small number of VMs. For example,
when considering a substrate of 50 km? and a use case density
of 100%, i.e., each CU is used simultaneously by all use
cases, the average number of VMs per network slice is 9.33.
Specifically, the ILP was unable to generate source-target
configuration pairs when dealing with higher numbers of VMs.

We define the lower-bound of a problem instance as the
number of VM migrations that are required to reconfigure
network slices from source to target when the substrate is
overprovisioned, i.e., hypothetical infinite bandwidth and zero

3IBM CPLEX Optimization Studio 12.7.1

latency on links. The scenario resembles a reconfiguration
problem within a data center where bandwidth and latency
requirements are less stringent than in 5G. The lower-bound
is one indicator of the complexity of a problem instance
because finding longer sequences is computationally harder
in the general case. Table IId shows the average lower-bound
of the problem instances in the dataset. All combinations of
parameters record a similar average lower-bound, spacing from
18 to around 28 VM migrations.

As described in §III-D4, each pair of source and target
configurations represents a scenario in which resources on the
network edge are initially unused, while after the reconfigu-
ration the network is leveraging such edge resources as much
as possible. In the following, we assess the degree to which
the problem instances represent these scenarios. Table Illa
and Table IIIb compare two metrics computed separately on
source and target configurations to illustrate the actual benefits
of reconfiguring the network slices. Table IIla compares the
average CPU usage in the CUs. Note that the usage of CUs
CPU in target configurations is higher. Observe also that a
significant share of the VMs are instantiated in the CUs even
in source configurations because of stringent bandwidth and
latency requirements, thus justifying the limited difference. On
the other hand, Table IIIb compares the average bandwidth
usage in the substrate. The reduction in bandwidth usage in the
target configurations is outstanding, reducing the bandwidth
usage to zero for some combinations of parameters, i.e., all
VMs of a network slice are consolidated in the same host.

IV. MIGRATION SEQUENCES WITH MATRYOSHKA

As shown in Figure 1, state-of-the-art techniques for solving
the reconfiguration problem are not suitable for 5G. We there-
fore design Matryoshka, which addresses the complexity of 5G
requirements using different strategies, such as optimizations
and speedup improvements through parallelization. Similarly
to the work of Dow et al. [11], our technique is also based
on A* search. In this section, we illustrate the components of
Matryoshka, namely (i) the A* search optimizations, (ii) the
divide-and-conquer approach, and (iii) the parallelization.

A. A* search optimizations

The optimizations we have designed for A* search are
aimed at (i) reducing the search space, and (ii) improving
the speed of the steps done by the algorithm. To explain the
details of our optimizations, we introduce the concept of a
migration graph. Given a problem instance, a migration graph
consists in a directed graph in which each node represents
one of the possible configurations of the network slices and
each edge represents a VM migration. For a network with
n hosts and a total of k VMs across all network slices, a
migration graph has n¥ nodes, and each node has k(n — 1)
incoming edges and k(n — 1) outgoing edges. Figure 6 shows
an example of a migration graph. Green nodes with vertical
hatching represent feasible configurations, while red nodes
with horizontal hatching represent infeasible configurations.
Since the source and target configurations correspond to two
nodes in the migration graph, solving the problem instance can

Subst. Density Subst. Density

(km2.)|| 33% 66% 100% (km?.)||33% 66% 100%
25 |[25.31] 2.91] 0.83 25|[3.78] 3.10] 3.00
50 |[27.39]7.05 0.83 50|[370 3.24[3.00
75 || 17.43] 2.07] 0.00 75||3.67] 3.27] N/A
100 || 14.52] 1.66] 0.00 100|[3.72] 3.50] N/A

(a) % of instances.
slice (AVG).

TABLE II: Dataset characterization.

(b) Number of VNFs in a network (c) Number of VMs in a network (d)

Subst. Density Subst. Density

(km2.)|| 33% 66% 100% (km>.)|| 33% 66% 100%
25|[14.22] 9.487 9.67 25|[22-18] 25.14] 21.00
50|[14.28] 10.14] 9.33 50|[2548] 28.12] 18.00
75| 13:43] 10.07| N/A 75| 23.79] 26.08] N/A
100|[12:83[10.17| N/A 100|[28:29] 27.00] N/A

Reconfiguration problem

slice (AVG) lower-bound (AVG)

Table Ila shows the composition of the dataset when problem instances are grouped by

the coverage area of their substrate and their use case density. For each group, we show the following metrics: the number of
VNF:s in the network slices (IIb), the number of VMs in the network slices (Ilc,) and the problem instance lower-bound, i.e., the
minimum number of VM migrations to solve the reconfiguration problem (IId). The values shown correspond to the average
values computed over all the problem instances in the group. The darker the cell shade, the closer the value is to its maximum.

Subst. Density

(km?2.) 33% 66% 100%
25 |[57.75 = 64.03] 80.03 — 83.97] 100.0 — 100.0
50 |[31.66 — 3531 71.02 — 74.42] 96.70 — 98.21
75 |[31.66 — 35.31| 71.02 — 74.42| 96.70 — 98.21
100 |[4775 — 49.29] 77.11 — 78.00 N/A

Subst. Density

(km?.) 33% 66% 100%
25 |[54.03 = 22.10] 79.84 — 29.57| 91.94 — 65.32
50 |[37.02 = 0.00] 61.65 — 25.14| 64.66 — 22.41
75 |[3343 = 0.00] 39.66 —» 0.00 N/A
100 |[39.67 > 2.86] 60.78 — 29.45 N/A

(a) AVG edge CPU utilization (%)

(b) AVG bandwidth utilization (%)

TABLE III: Comparison between source and target configurations (source — target). Reconfiguring from source to target
shifts the VMs towards the network edge, thus resulting in higher CPU consumption in the CUs and lower bandwidth utilization
within the network. The darker is the cell shade, the bigger is the difference between the values.

vl —nl

v3—->n2 v3-nl
S« v
T
¥ ,f’,.‘a'

v2-nl 1 vl->nl | tvl-nl
v3-n2 Y :
>
> y
Ve) S
& i A
& v3->n2 v3-nl i
vl - n2! @ vl - n2
Y vl ->nl
vli-nl i
)‘9' P v3-n2
&7 !
> 7
A vl-n2
vi-n2| & . vl - n2; v2 12

v3—nl

A
@ v3-n2 u3—>nl@

Fig. 6: Example of a migration graph. This migration graph
consists of a substrate with two hosts nl, n2 and a slice with
three VMs v1, v2, v3. Each node describes a configuration,
and each directed edge describes the migration of a VM to
a different host. For example, the edge v2 — n2 represents
the migration of VM v2 to host n2. Green nodes with vertical
hatching represent feasible configurations, while red nodes with
horizontal hatching represent infeasible configurations.

be interpreted as finding a path from source node to target node
traversing only green nodes. The sequence of directed edges
comprising the path represents a sequence of VM migrations
that solves the problem instance.

In the following, we leverage the migration graph to illus-
trate four optimizations we designed to speed up A* search.

1) Reducing search space: When discovering new nodes,
A* search assigns a low priority to red nodes because we are
interested in finding paths comprising green nodes. Neverthe-
less, storing a red node and its priority in the openset is (i)

not scalable because there is an exponential number of red
nodes in a migration graph, and (ii) useless because we do
not accept a path comprising a red node as a solution for the
problem instance. We tuned A* search to discard red nodes as
soon as they are discovered, thus gaining benefits in memory
occupied and speed of reads/writes in openset. Avoiding red
nodes ensures that neither SLOs are violated nor is the network
overloaded during reconfiguration. The red nodes represent
infeasible configurations, therefore in this context discarding
red nodes is not just a simple optimization. Instead, it hides a
portion of the search space that would eventually be discarded.

2) Early pruning: Given a problem instance, there can be
pairs of VMs for which the SLOs enforce them to be always
instantiated in the same host. For example, the SLOs may
require that the latency between the two VMs must be less than
1 ms, and the substrate may not have any links with a latency
lower than 1 ms. Before starting A* search, we pre-process
the network slices to identify pairs of VMs falling in this
category. For all such pairs, we tune A* search to discard the
edges representing the possible migrations of any of the two
VMs. This significantly reduces the out-degree of the nodes
in the migration graph, thus speeding up the exploration.

3) Reducing scope of feasibility checks: Assigning a color
to a node requires checking all the SLOs: if the configuration
of the node incurs one or more violations, then the node is red,
otherwise it is green. When exploring a neighbor of a green
node instead, it is sufficient to check the SLOs related with
the VM and host of the migration leading to the neighbor.
For example, suppose we are examining a neighbor reached
by migrating VM v1 to host nl. We can limit the check to
the SLOs dealing with (i) CPU and memory of host nl, and
(i1) bandwidth and latency of the virtual links of vI. If the
SLOs are not violated, then the node is green because the

Create chain of subsets
S cS,..cS =T

migr_seq = {}, start_conf=$
i=1

Run A* search from start_conf
and find a confimplementing S,
- new_seq, new_conf

migr_seq = migr_seq + new_seq
start_conf=new_conf
i=i+l

return migr_seq

) ¢

Fig. 7: Divide-and-conquer to reconfigure from source S
to target T. Each v — n represents a mapping of VM v to
host n. We use multiple strategies to create different chains
of subsets of the mappings of the target configuration. For each
chain, we consider each subset starting from the smallest one,
and we iteratively use A* search to find a sequence of VM
migrations leading to a feasible configuration that implements
the mappings of the subset. The different chains are processed
by different cores simultaneously.

node from which we arrived is also green and therefore all
the other SLOs are met. Reducing the scope of the feasibility
check saves time during the graph exploration.

4) Red nodes cache: The high in-degree and out-degree
of nodes in a migration graph makes A* search more likely
to visit a single node multiple times during the exploration.
This can result in a waste of time because the configuration
of a node is checked every time the node is visited. To
address this issue, we introduced a cache for red nodes. Every
time a red node is detected, a signature of its configuration,
e.g., the value returned by a hash function, is stored in the
cache. Subsequently, on discovering a new node, we check
its signature in the cache. If we get a cache hit, then its
configuration is infeasible and the node can be discarded. If
we get a cache miss instead, then we proceed with checking
the feasibility of the configuration.

B. Divide-and-conquer approach

We define a mapping as an indication of which host is
instantiating a certain VM. For example, a mapping vl — nl
indicates that VM v1 is instantiated at host n1. A configuration
thus consists of a collection of mappings, one for each of
the VMs of the network slices. On each VM migration, the
configuration changes the mapping of the migrated VM to the
new host.

The original version of A* search, which we call plain A*
search, stops only when it finds the node whose configuration
corresponds to the target configuration, i.e., the mappings of
the configuration are all equal to the ones of the target config-
uration. Instead, our divide-and-conquer approach proceeds
as follows. From the mappings of the target configuration, we
create a chain of subsets Sy, S, ... S such that Vi < j, §; C §j,
i.e., the mappings in §; are in S;. We then consider the subsets
one after the other, starting from the smallest one: we run

A* search to find a feasible configuration which implements
the mappings contained into the subset. Once we find one
such configuration, we record the sequence of VM migrations
leading to the configuration, we select the next subset of
mappings in the chain, and we run A* search again starting
from the latest configuration found. The process is repeated
till the end of the chain of subsets. The last run of A* search
will reach the target configuration because the last subset
corresponds to the entire set of mappings. Finally, we join
the sequences of VM migrations obtained by the several runs
of A* search, thus obtaining a sequence of VM migrations
reconfiguring from source to target.

We present an example of our divide-and-conquer approach
in Figure 7. The chain of subsets in this example is Sj, Sy,
and S3, where S3 contains all the mappings of the target
configuration, S; = {vl — n5,v2 — nl,v3 — n6,v4 — n3},
and S = {vl — n5,v2 — nl}. We consider S, first, and
we run A* search from the source configuration to find a
feasible configuration that implements the mappings in Sj.
This takes advantage of the small number of mappings, and the
existence of many configurations meeting these requirements,
allowing A* search to stop at the first configuration found in
the exploration. When one such configuration is found, the
sequence of VM migrations leading to the configuration is
saved.

The subsequent iteration considers the mappings in S
instead, and it runs A* search starting from the configuration
found in the previous iteration. The same applies in the last
iteration, where we consider the mappings in S3. Also the
problems in these iterations are easier than the problem in
plain A* search because we run A* search starting from partial
solutions, i.e., configurations that already implement a subset
of the mappings in the target configuration. At the end of the
last iteration, we join together the sequences of VM migrations
obtained in the different iterations. In this way, we obtain
a sequence of VM migrations reconfiguring from source to
target.

C. Parallelization

There are many ways of creating chains of subsets when
adopting the divide-and-conquer approach. We define a strat-
egy as a set of criteria used to indicate how and how many
mappings to select for creating a chain of subsets. For exam-
ple, in Figure 7 we can see four different strategies being used
for creating chains of subsets, by varying how mappings are
selected for each subset (sorting by VM or by destination node
in the substrate) and the difference in the number of mappings
between consecutive subsets (2 or 3).

Unfortunately there is no clear hint on why one strategy
should perform better over the others. Therefore, we leverage
the multicore capabilities of modern computers to process the
different chains of subsets in parallel. For example, in Figure
7 the four chains of subsets are processed on different cores.
Matryoshka organizes the parallel processing of different
chains of subsets in two different modes: independent mode
and sharing mode. In both modes, each core handles a chain
of subsets created by a different strategy.

1) Independent mode: In this mode, each core processes
its own chain of subsets independently. Matryoshka simply
returns the sequence of VM migrations returned by the fastest
core to terminate the processing of the chain of subsets.

2) Sharing mode: In this mode, Matryoshka stops the
processing in all the cores when one of them provides the
sequence of VM migrations for the first subset in the chain
of subsets. At this point, Matryoshka re-creates the chains of
subsets using the same strategies but using the configuration
found as the new source configuration. Then, it launches the
processing of the new chains on the cores, repeating the loop
until it finds the sequence from the source to the target.

V. EVALUATION

We implemented state-of-the-art A* search and Matryoshka
using Python 3.5. In this section, we use the dataset described
in §III to evaluate Matryoshka and compare it with state-
of-the-art A* search. Our dataset consists of 241 problem
instances having different values of coverage area of the
substrate and density of use cases, the details of which
are in Table Ila. Henceforth, we use the expression dataset
instances to refer to the set of 241 problem instances of the
dataset. In the following, we define the research questions of
our evaluation, we provide a general description of the tests
conducted, and finally we show the results.

A. Research questions

The evaluation answers the following three questions:

Question a) Is Matryoshka able to solve more problem
instances than state-of-the-art A* search in a limited time
window? Matryoshka was designed because state-of-the-art
techniques are unlikely to find a VM migration sequence for
reconfiguring 5G network slices. One aim of the evaluation is
to test whether Matryoshka meets its design goals.

Question b) What is the quality of the solutions provided
by Matryoshka? Given the subdivision into sub-problems,
Matryoshka is not guaranteed to find the shortest sequence of
VM migrations. The aim is to assess the degradation in quality
of the solutions, in terms of additional VM migrations required
compared to the state of the art and also the theoretical lower-
bound. Note that this lower-bound might represent migration
sequences that include infeasible configurations.

Question c¢) Which instances are more difficult to solve for
Matryoshka? The problem instances having a large substrate
area and a high use case density are expected to be hard to
solve. We corroborate this by examining the time required by
Matryoshka to solve the problem instances in our dataset.

B. Methodology

To answer the research questions, we run the state-of-the-
art A* search and Matryoshka on the problem instances of the
dataset. In particular, we run both Matryoshka in independent
mode and Matryoshka in sharing mode. We allow up to 60
minutes of solving time for each problem instance. Although
this time limit is high for realistic scenarios, we use it to
highlight the strengths and weaknesses of the approaches along
with the hardness of the problem instances.

We generate the strategies used by Matryoshka varying two
parameters: (i) the number of mappings considered simultane-
ously, and (ii) the criterion for the selection of the mappings
at each iteration. For the number of mappings, we consider
strategies varying from a single mapping to five mappings at
a time. For selection we use the following two criteria. Using
the first criterion, we consider one network slice at a time: we
first select the migrations involving VMs of a certain network
slice, and we select other migrations after all the migrations
of that slice are completed. Using the second criterion, we
consider a destination host at a time. In this case, we first
select all the migrations whose VMs need to be reconfigured
to a given destination host before selecting other migrations.
The advantage of adopting these two criteria is that they allow
obtaining measurable achievements within the reconfiguration
process, e.g., two network slices reconfigured over four. Both
criteria sort the mappings in ascending order using an internal
identifier, for example using the first criterion the network
slices are sorted using a numeric id. To mitigate any bias
coming from this feature, we consider also a variant of the
two criteria in which we pick the mappings in descending
order, resulting in a total of four criteria. Finally, we generate
the strategies by performing all the possible combinations of
the values of the two parameters, for a total of 20 strategies
obtained. Note that we tune the machine on which we run
the evaluation to allocate 20 cores to Matryoshka to avoid
slowdowns due to core contention between different strategies.

To answer our research questions, we proceed as follows:

Question a) We measure the time required to solve each
problem instance. We then compute the Cumulative Distribu-
tion Function (CDF) of the number of problem instances that
are solved over time.

Question b) During our evaluation, we observed that Ma-
tryoshka was able to solve more problem instances than the
state-of-the-art A* search. We therefore consider two subsets
of problem instances, S1 and S2, where S1 contains the
problem instances solved by all techniques while S2 contains
problem instances solved only by Matryoshka in independent
mode and sharing mode. For each problem instance in S1 and
S2, we use the lower-bound on the number of VM migrations
required as the baseline. We then compare the length of the
sequence of VM migrations found by the techniques evaluated
against this baseline. Specifically, we look at the absolute
(ABS) and relative (REL) difference in the length of the
sequences.

Question c) We consider the problem instances in subset S2.
For both Matryoshka modes, we group the problem instances
by substrate area and use case density, and we compute the
average of the recorded solving times.

C. Results

In the following, we present the results and answer each of
our research questions. For brevity, we use SOTA to refer to
the state-of-the-art A* search described in the work of Dow
et al. [11]. Similarly, we use MAT-I and MAT-S to refer to
Matryoshka in independent and sharing modes respectively.

Question a) In Figure 8, we present the distribution of
the completion time for each of the techniques, and we

100

801

60 1

404

201

Dataset instances (%)

0 10 20 30 40 50 60
Completion time (m)

Fig. 8: CDF of the number of problem instances solved.

MAT-I and MAT-S are able to solve 8x more problem instances

than SOTA within the first 10 minutes of solving time.

100
75
50
25

S1 instances (%)

S1 instances (%)

0 2 4 0.2 04 06 038 1.0
(#Migr - LB) (#Migr - LB)/LB
(a) SI-ABS (b) SI-REL
100 — == _ 100 pra
S o S Aol
> 75 v v 75 e
) g o A
Q 7/ 9 i
g 50 / £ 50 o
g / z i
g 25{ / g 25
o~ / m E:
“ o, 4 RN
0 5 10 15 0.0 0.2 04 06 038 1.0
(#Migr - LB) (#Migr - LB)/LB
(c) S2-ABS (d) S2-REL

Fig. 9: Differences between number of VM migrations
given by the reconfiguration technique (#Migr) and lower-
bound (LB). The first column (Fig. 9a and Fig. 9c) shows
the CDF of absolute differences (ABS). The second column
(Fig. 9b and Fig. 9d) shows the CDF of relative differences
(REL), i.e., absolute difference divided by LB. In the first row
(Fig. 9a and Fig. 9b), the CDFs are computed over the problem
instances solved by all three techniques (S1). In the second row
(Fig. 9c and Fig. 9d), the CDFs are computed over all problem
instances solved by both MAT-I and MAT-S (S2). MAT-I and
MAT-S add a maximum of five VM migrations in the majority
of the cases, which is in line with the performance of SOTA.

observe that Matryoshka is more likely to find a VM migration
sequence compared to SOTA. Specifically, SOTA requires
more than 60 minutes for approximately 95% of the problem
instances. As described in Section I, we can conclude that
SOTA is not a suitable technique for reconfiguring network
slices. Instead, both MAT-I and MAT-S are able to solve more
than 40% of the problem instances already after 10 minutes of
execution. After the whole 60-minute time window, MAT-I and
MAT-S are able to solve around half of the problem instances
of the dataset. Please note that MAT-S performs slightly better
than MAT-I, which confirms the theoretical advantages of the
sharing mode over the independent mode.

Question b) Figure 9 illustrates the CDFs computed over
ABS and REL. For the subset of problem instances in S1, Fig-

ure 9a shows that MAT-I incurs a maximum of five additional
VM migrations, which is in line with SOTA. We also observe
that the behavior of MAT-S is similar to that of SOTA for
approximately 90% of the problem instances. Figure 9b shows
that both MAT-I and SOTA incur up to 30% additional VM
migrations. Instead, MAT-S incurs an overhead of up to 60-
70% over the lower-bound. This hints that the benefits brought
by MAT-S in terms of number of problem instances solved are
counter-balanced by a general lower quality of the solutions.

Focusing on the results of subset S2, we can see that MAT-1
and MAT-S record very similar performance. Figure 9c shows
that both techniques incur an overhead of less than ten VM
migrations in the majority of the cases. Figure 9d shows that
the overhead corresponds to less than 50% of the lower-bound
for the greatest part of the problem instances solved.

Question c) Table IVa shows the average solving time of
the problem instances solved by MAT-I grouped by substrate
area and use case density. As expected, the bigger substrates
have higher running time. Surprisingly instead, the increase in
the use case density brings a reduction of the average solving
time. We can justify this unexpected outcome by considering
that (i) the number of problem instances generated with higher
use case density is smaller and (ii) the few such problem
instances that have been solved record a short solving time.
This suggests that the higher the use case density, the easier it
is to identify two extreme groups of problem instances. Indeed,
each problem instance is either computationally easy to solve,
or it requires more than 60 minutes of execution.

Table IVb shows the same statistics for MAT-S. In the case
of MAT-S, the collected data is fully aligned with common
sense, as bigger substrates and higher use case density result in
higher average solving time. Please note that in both Table IVa
and Table IVb the number of samples over which each average
is computed varies significantly.

VI. DISCUSSION

a) Optimality criterion: When running A* search, Ma-
tryoshka assigns a unitary cost to each VM migration incurred,
thus finding sequences comprising the fewest VM migrations.
This choice reflects the aim of reconfiguring the network slices
as quickly as possible. We argue that an operator could be
interested in other aims as well, such as finding a solution
whose VM migrations do not occur on leased lines. In this
case, the cost of each VM migration should reflect how much
the migration is aligned with the objective, e.g., how much the
migration uses leased lines. We plan to extend Matryoshka to
support customized objectives by developing an algorithm to
produce and assign costs according to the objectives in input.

b) Other domains: State-of-the-art reconfiguration tech-
niques fail in 5G contexts also because they are designed for
data center networks, in which latency requirements of ap-
plications are typically not critical. The advent of AR devices
such as Google Glass and Microsoft HoloLens brings a new set
of latency-sensitive applications to data center networks [35],
thus making past techniques likely to fail in this domain too.
Despite being designed for 5G networks, Matryoshka can be
easily extended to also reconfigure generic virtual networks
for latency-sensitive applications deployed in data centers.

| Density

3% 6%
T 25 [133534 | 901 @
E [50 [287.4238) | 237.90 ()
o 75 [57154.(28) | 41670)
£ [T100 598.68 (1)
Z (2) MAT-I

| Density
3% 66%

=T 25 | 17620 (36) 10.90 (2)
E 50 | 191.94 37) | 26260 ()
= | 75 [30950 29) | 33951)
] 100 80325 (8) [(108269. @) |
Na)

a

(b) MAT-S

TABLE IV: Characterization of problem instances solved by Matryoshka. Matryoshka is most effective in solving problem
instances with low use case density (33%). The tables also show the AVG completion time(s) of MAT-I and MAT-S. The number
of samples over which each AVG value has been computed is indicated in parentheses. The columns related to 100% density are
missing because none of the corresponding problem instances has been solved.

c) Limitations: At the current stage, Matryoshka does
not have bounds on the time required to solve a problem
instance. In addition, Matryoshka does not have bounds on
the distance from optimality of the solutions provided. Despite
the encouraging results on both solving time and quality of
solutions, operators need such bounds to better define the
contexts in which Matryoshka can or cannot be used. Finding
such bounds is a top priority in our research agenda.

Lastly, Figure 8 shows that around 50% of problem in-
stances are unsolved even considering the whole 60-minutes
time window. Matryoshka thus represents just the first step in
the direction of finding a complete solution to the reconfig-
uration problem. We hope the dataset will stimulate further
research on the problem, possibly leading to the development
of even faster techniques.

d) Management of State and Violation of SLOs: Virtual-
ized Infrastructure Managers (VIMs) allow network operators
to launch, migrate, and tear down VMs. By monitoring and
managing the life cycle of the virtual resources, these plat-
forms assist in managing the state of the network resources.
They also perform basic actions in response to pre-defined
triggers, e.g., scale out when VM CPU ready exceeds a 5%
threshold [33]. Knowing how to reconfigure the entire network
without violating SLOs can complement their capabilities.
Matryoshka addresses this by providing a sequence of such
actions for reconfiguring network slices.

SLOs are known to be stringent [4], and violating them can
result in monetary losses for network operators. Nevertheless,
some researchers have proposed ways of managing occasional
SLO violations in network slicing that might come from
overbooking the substrate [36]. In contrast, Matryoshka looks
for a solution that does not violate any SLOs.

VII. RELATED WORK

a) Modeling Datasets: When data from real deployments
is scarce, researchers usually leverage mathematical modeling
[32], simulation techniques or both [37]; or simply obfuscate
the data in cases where confidentiality agreements apply [36].
The first approaches can lead to inaccurate results given
the complexity added by the multiple layers of network
virtualization, whereas the second approach is typically not
reproducible. To overcome these issues, researchers have cre-
ated shared dataset collections. For example, SNDIib [38]
and the Internet Topology Zoo [39] collect topologies of
real networks, while Crawdad [40] collects traces from users

of various wireless technologies. Unfortunately, we have not
found available public datasets about 5G networks at scale,
which justify the modeling dataset contributed in Section III.

b) Reconfiguration: In the past years, several papers have
investigated how to reconfigure virtual networks by migrating
VMs. Most of these propose a heuristic on how to order the
VM migrations. The work of Li et al. [41] prioritizes the
migration of the VMs whose page dirtying rate is higher.
Sarker et al. [8] propose to migrate the “less chatty” VMs
first. The work of Bari et al. [9] prioritizes the migrations
that result in more available bandwidth. A similar idea is
developed also in the work of Lu et al. [42]. More aligned with
Matryoshka, other works focus on avoiding, or minimizing,
the SLO violations, such as the work of Ghorbani et al. [43],
the work of Al-Haj et al. [44], and the already-mentioned
work of Dow et al. [11]. Nevertheless, these works focus
on VM requirements such as CPU, memory, and bandwidth,
thus neglecting latency requirements spanning several VMs
simultaneously. Thus, they are inadequate for reconfiguring
network slices in 5G networks.

c) Network slicing: Despite not being commercialized
yet, network slicing has already received significant attention
from the research community [45]. More precisely, researchers
have focused on how to configure network slices so far.
Indeed, the majority of the work focuses on both theoretic and
technical aspects of resource management, i.e., allocating the
virtual resources of the network slices on the shared substrate.
The work of Samdanis et al. [46] proposes a 5G network
slices broker, which takes care of configuring the network
slices on the physical substrate. Network slice requirements
also include a time duration, after which the corresponding
virtual resources are deallocated from the network. The works
of Zhang et al. [47] and Ksentini et al. [48] focus on resource
reservation in the Radio Access Network. The first work
proposes a model to allocate radio resources maximizing link
capacity, while the second work focuses on the mechanisms
to enforce resource allocation decisions. Finally, the work of
Salvat et al. [36] proposes the principles of overbooking in
network slices resource allocation to maximize the revenue of
the operator. While these works focus on how to configure
network slices, i.e., finding an optimal placement of virtual
resources in the network, to the best of our knowledge our
work represents the first effort on studying how to reconfigure
network slices, finding a sequence of migrations that changes
the current placement of virtual resources to a new one.

VIII. CONCLUSIONS

We proposed Matryoshka, a divide-and-conquer technique
to find a sequence of VM migrations to reconfigure 5G
network slices. Given that 5G networks are in their early stages
of deployment, we collected technical details from a variety
of sources to create a dataset of 5G scenarios. We trust that
our modeling dataset will spark research activities towards
solving more complex 5G scenarios. We then used the dataset
to compare Matryoshka with state-of-the-art techniques. Our
results show that Matryoshka clearly outperforms state-of-the-
art techniques by being 10 times more effective in finding good
quality migration sequences. We believe that our divide-and-
conquer approach can be beneficial also in other contexts in
which A* search still represents the state of the art.

In the future we plan to develop mathematical bounds for
the completion time of Matryoshka and also for the quality of
its output to assess its effectiveness theoretically. Moreover,
we plan to integrate our technique into network slices or-
chestration platforms to realize a unique system offering both
configuration and reconfiguration of network slices.

IX. ACKNOWLEDGEMENT

This work has been supported by Nokia Bell Labs. The
work is in part supported by the Nokia Center for Advanced
Research (NCAR) and the 5G FORCE research project.

REFERENCES
[
2

—

3rd Generation Partnership Project (3GPP), “Service requirements for

next generation new services and markets,” TS 22.261, Sep. 2018.

S. Elayoubi, M. Fallgren, P. Spapis, G. Zimmermann, D. Martin-

Sacristdan, C. Yang, S. Jeux, P. Agyapong, L. M. Campoy, Y. Qi,

and S. Singh, “5g service requirements and operational use cases:

Analysis and METIS II vision,” in European Conference on Networks

and Communications, EuCNC 2016, Athens, Greece, June 27-30, 2016,

2016, pp. 158-162.

[3] Next Generation Mobile Networks (NGMN), “Description of Network
Slicing Concept,” https://www.ngmn.org/wp-content/uploads/160113_
NGMN_Network_Slicing_v1_0.pdf, Jan 2016.

[4] D. Lugones, J. A. Aroca, Y. Jin, A. Sala, and V. Hilt, “Aidops:
a data-driven provisioning of high-availability services in cloud,” in
Proceedings of the 2017 Symposium on Cloud Computing, SoCC 2017,
Santa Clara, CA, USA, September 24-27, 2017, 2017, pp. 466—478.

[5] S. Soltesz, H. Potzl, M. E. Fiuczynski, A. Bavier, and L. Peterson,
“Container-based Operating System Virtualization: A Scalable, High-
performance Alternative to Hypervisors,” in Proceedings of the 2Nd
ACM SIGOPS/EuroSys European Conference on Computer Systems
2007, ser. EuroSys '07. New York, NY, USA: ACM, 2007, pp. 275-
287.

[6] A. Madhavapeddy and D. J. Scott, “Unikernels: Rise of the Virtual
Library Operating System,” Queue, vol. 11, no. 11, pp. 30:30-30:44,
Dec. 2013.

[7] S. Vassilaras, L. Gkatzikis, N. Liakopoulos, I. N. Stiakogiannakis, M. Qi,
L. Shi, L. Liu, M. Debbah, and G. S. Paschos, “The algorithmic aspects
of network slicing,” IEEE Communications Magazine, vol. 55, no. 8,
pp. 112-119, 2017.

[8] T. K. Sarker and M. Tang, “Performance-driven live migration of
multiple virtual machines in datacenters,” in 2013 IEEE International
Conference on Granular Computing, GrC 2013, Beijing, China, Decem-
ber 13-15, 2013, 2013, pp. 253-258.

[91 M. F. Bari, M. F. Zhani, Q. Zhang, R. Ahmed, and R. Boutaba,

“CQNCR: optimal VM migration planning in cloud data centers,” in

2014 IFIP Networking Conference, Trondheim, Norway, June 2-4, 2014,

2014, pp. 1-9.

J. Liu, L. Su, Y. Jin, Y. Li, D. Jin, and L. Zeng, “Optimal VM migration

planning for data centers,” in IEEE Global Communications Conference,

GLOBECOM 2014, Austin, TX, USA, December 8-12, 2014, 2014, pp.

2332-2337.

—

[10]

[11]

[12]
[13]

[14]

[15]

[16]

(17]

(18]
[19]

[20]
[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

(34]

[35]

E. M. Dow and J. N. Matthews, “WAYFINDER: parallel virtual machine
reallocation through a* search,” Memetic Computing, vol. 8, no. 4, pp.
255-267, 2016.

3rd Generation Partnership Project (3GPP), “System architecture for the
5G System (5GS),” TS 23.501, Dec. 2018.

Internet Engineering Task Force (IETF), “Service Function Chaining
Use Cases in Mobile Networks,” Internet Draft, May 2018.

F. Hao, M. S. Kodialam, T. V. Lakshman, and S. Mukherjee, “Online
allocation of virtual machines in a distributed cloud,” IEEE/ACM Trans.
Netw., vol. 25, no. 1, pp. 238-249, 2017.

S. Asif, 5G Mobile Communications: Concepts and Technologies. CRC
Press, 2018.

Zakaria Tayq, “Fronthaul integration and monitoring in 5G net-
works,” Doctoral Dissertation, University of Limoges, https:/tel.
archives-ouvertes.fr/tel-01708493/document, Dec 2017.

Cisco, “Cisco data center infrastructure 2.5 design guide,”
https://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_
Center/DC_Infra2_5/DCI_SRND_2_5a_book.html, 2011, last access:
Feb 2020.

5G-XHaul, “Network Topology Definition,” Deliverable 2.3, Jan. 2017.
3rd Generation Partnership Project (3GPP), “NG-RAN; Architecture
description,” TS 38.401, Sep. 2018.

International Telecommunication Union (ITU), “Transport network sup-
port of IMT-2020/5G,” TR, Feb. 2018.

European Telecommunications Standards Institute (ETSI), “MEC in 5G
networks,” WP 28, Jun. 2018.

S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, “A
survey on mobile edge networks: Convergence of computing, caching
and communications,” IEEE Access, vol. 5, pp. 67576779, 2017.

A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S.
Berger, and L. Dittmann, “Cloud RAN for Mobile Networks - A
Technology Overview,” IEEE Communications Surveys and Tutorials,
vol. 17, no. 1, pp. 405-426, 2015.

Nokia, “Nokia AirFrame open edge server,” https://onestore.nokia.com/
asset/205107, last access: Feb 2020.

Cisco, “A Network Infrastructure for the Future with 5G - Introducing
the NCS 500 Series of Routers,” https://www.cisco.com/c/dam/m/
en_us/network-intelligence/service-provider/digital-transformation/
knowledge-network-webinars/pdfs/0306-msn-ckn.pdf, last access: Oct
2018.

Nokia, “Microwave Network Evolution - Software Defined Networking
and a Layer 3 VPN Vision,” https://pages.nokia.com/T00275.5G.MW.
white.paper.html, last access: Feb 2020.

Netmanias, “Survey on 5G RAN Practical
Scenario: From 2-tier (4G) to 3-tier (5G),”
netmanias.com/en/post/reports/13103/5g-c-ran-fronthaul/

Deployment
https://www.

brief-survey-on-5g-ran-practical-deployment-scenario-from- 2-tier-4g- to-3-tier-5g,

Jan. 2018, last access: Feb 2020.

M. Jaber, M. A. Imran, R. Tafazolli, and A. Tukmanov, “5g backhaul
challenges and emerging research directions: A survey,” IEEE Access,
vol. 4, pp. 1743-1766, 2016.

D. Sattar and A. Matrawy, “An empirical model of packet processing
delay of the open vswitch,” CoRR, vol. abs/1706.06631, 2017.
VMWare, “Network I/O Latency on VMware vSphere®5,”
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/
pdf/techpaper/network-io-latency-perf- vsphere5- white- paper.pdf,
access: Feb 2020.

Next Generation Mobile Networks (NGMN), “SG White Paper,”
https://www.ngmn.org/wp-content/uploads/NGMN_5G_White_Paper_
V1_0.pdf, Feb 2015.

C. Fuerst, S. Schmid, P. L. Suresh, and P. Costa, “Kraken: Online and
elastic resource reservations for cloud datacenters,” IEEE/ACM Trans.
Netw., vol. 26, no. 1, pp. 422-435, 2018.

VMware, “Performance Troubleshooting - CPU
Ready Time,” https://learnvmware.online/2018/03/08/
performance-troubleshooting-cpu-ready-time/, Mar. 2018, last access:
Feb 2020.

International Telecommunication Union (ITU), “Framework and overall
objectives of the future development of IMT for 2020 and beyond,”
Tech. Rep. M.2083-0, Sep. 2015.

Z. Chen, W. Hu, J. Wang, S. Zhao, B. Amos, G. Wu, K. Ha, K. Elgazzar,
P. Pillai, R. L. Klatzky, D. P. Siewiorek, and M. Satyanarayanan, “An
empirical study of latency in an emerging class of edge computing
applications for wearable cognitive assistance,” in Proceedings of the
Second ACM/IEEE Symposium on Edge Computing, San Jose / Silicon
Valley, SEC 2017, CA, USA, October 12-14, 2017, 2017, pp. 14:1-14:14.

last

[36] J. X. Salvat, L. Zanzi, A. Garcia-Saavedra, V. Sciancalepore, and
X. Costa-Perez, “Overbooking network slices through yield-driven end-
to-end orchestration,” in Proceedings of the 14th International Con-
ference on Emerging Networking EXperiments and Technologies, ser.
CoNEXT ’18. New York, NY, USA: ACM, 2018, pp. 353-365.

[37] R. Jain, The art of computer systems performance analysis - techniques
for experimental design, measurement, simulation, and modeling., ser.
Wiley professional computing. Wiley, 1991.

[38] “SNDIib - library of test instances for Survivable fixed telecommunica-
tion Network Design,” http://sndlib.zib.de/home.action, 2006.

[39] “The Internet Topology Zoo,” http://www.topology-zoo.org/.

[40] “CRAWDAD - Community Resource for Archiving Wireless Data At
Dartmouth,” https://crawdad.org/.

[41] X. Li, Q. He, J. Chen, K. Ye, and T. Yin, “Informed live migration
strategies of virtual machines for cluster load balancing,” in Network
and Parallel Computing - 8th IFIP International Conference, NPC 2011,
Changsha, China, October 21-23, 2011. Proceedings, 2011, pp. 111-
122.

[42] T. Lu, M. Stuart, K. Tang, and X. He, “Clique migration: Affinity
grouping of virtual machines for inter-cloud live migration,” in 9th [EEE
International Conference on Networking, Architecture, and Storage, NAS
2014, Tianjin, China, August 6-8, 2014, 2014, pp. 216-225.

[43] S. Ghorbani and M. Caesar, “Walk the line: consistent network updates
with bandwidth guarantees,” in Proceedings of the first workshop on
Hot topics in software defined networks, HotSDN@SIGCOMM 2012,
Helsinki, Finland, August 13, 2012, 2012, pp. 67-72.

[44] S. Al-Haj and E. Al-Shaer, “A formal approach for virtual machine
migration planning,” in Proceedings of the 9th International Conference
on Network and Service Management, CNSM 2013, Zurich, Switzerland,
October 14-18, 2013, 2013, pp. 51-58.

[45] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, “Network
slicing in 5g: Survey and challenges,” IEEE Communications Magazine,
vol. 55, no. 5, pp. 94-100, 2017.

[46] K. Samdanis, X. Costa-Pérez, and V. Sciancalepore, “From network
sharing to multi-tenancy: The 5g network slice broker,” IEEE Com-
munications Magazine, vol. 54, no. 7, pp. 32-39, 2016.

[47] H. Zhang, N. Liu, X. Chu, K. Long, A. Aghvami, and V. C. M. Leung,
“Network slicing based 5g and future mobile networks: Mobility, re-
source management, and challenges,” IEEE Communications Magazine,
vol. 55, no. 8, pp. 138-145, 2017.

[48] A. Ksentini and N. Nikaein, “Toward enforcing network slicing on RAN:
flexibility and resources abstraction,” IEEE Communications Magazine,
vol. 55, no. 6, pp. 102-108, 2017.

APPENDIX

Computing Coverage Area of CU: We sum download
and upload bandwidth requirements of each macro use case.
eMBB: 750 + 125 = 875 Gbps/km?; URLLC: 10 + 10 =
20 Gbps/km?; mMTC: 100 + 100 = 200 Gbps/km>. Then,
we obtain the number of VNF instances required for sig-
nal processing dividing the bandwidth values by the ca-
pacity of a VNF instance for signal processing, i.e., 160
Gbps. eMBB: [875/160] = 6 VNF instances/km?; URLLC:
[20/1607 = 1 VNF instance/km?; mMTC: [200/160] = 2
VNF instances/km?. Every CU is equipped with a single Nokia
AirFrame [24] for traffic processing, which is equipped with
28 cores. Since each VNF instance requires 4 CPU cores, each
CU can host 7 VNF instances. Finally, we obtain the coverage
area of a single CU for each macro use case. eMBB: 7/ 6 =
1.17 km?; URLLC: 7/ 1 = 7 km?*; mMTC: 7 / 2 = 3.5 km”.
We now take the average of the three coverage areas to get a
single coverage value for a CU. (1.17 +7 +3.5) /3 =3.89 »
4 km?.

