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Abstract

The study of how transmissible an infectious pathogen is and what its main routes of transmission are is key
towards management and control of its spread. Some infections which begin with zoonotic or common-source
transmission may additionally exhibit potential for direct person-to-person transmission. Methods to discern
multiple transmission routes from observed outbreak datasets are thus essential. Features such as partial ob-
servation of the outbreak can make such inferences more challenging.

This thesis presents a stochastic modelling framework to infer person-to-person transmission using data ob-
served from a completed outbreak in a population of households. The model is specified hierarchically for the
processes of transmission and observation. The transmission model specifies the process of acquiring infection
from either the environment or infectious household members. This model is governed by two parameters, one
for each source of transmission. While in continuous time they are characterised by transmission hazards, in
discrete time they are characterised by escape probabilities.

The observation model specifies the process of observation of outbreak based on symptom times and serological
test results. The observation design is extended to address an ongoing outbreak with censored observation
as well as to case-ascertained sampling where households are sampled based on index cases. The model and
observation settings are motivated by the typical data from Hepatitis A virus (HAV) outbreaks.

Partial observation of the infectious process is due to unobserved infection times, presence of asymptomatic
infections and not-fully-sensitive serological test results. Individual-level latent variables are introduced in
order to account for partial observation of the process. A data augmented Markov chain Monte Carlo (DA-
MCMC) algorithm to estimate the transmission parameters by simultaneously sampling the latent variables is
developed. A model comparison using deviance-information criteria (DIC) is formulated to test the presence
of direct transmission, which is the primary aim in this thesis. In calculating DIC, the required computations
utilise the DA-MCMC algorithm developed for the estimation procedures.

The inference methods are tested using simulated outbreak data based on a set of scenarios defined by varying
the following: presence of direct transmission, sensitivity and specificity for observation of symptoms, values
of the transmission parameters and household size distribution. Simulations are also used for understanding
patterns in the distribution of household final sizes by varying the values of the transmission parameters.

From the results using simulated outbreaks, DIC6 consistently indicates towards the correct model in almost all
simulation scenarios and is robust across all the presented simulation scenarios. Also, the posterior estimates
of the transmission parameters using DA-MCMC are fairly consistent with the values used in the simulation.

The procedures presented in this thesis are for SEIR epidemic models wherein the latent period is shorter
than the incubation period along with presence of asymptomatic infections. These procedures can be directly
adapted to infections with similar or simpler natural history. The modelling framework is flexible and can be
further extended to include components for vaccination and pathogen genetic sequence data.
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Chapter 1

Introduction

“Indeed, what is history but an interpretation of time?”

- Lindsey JK (2004)

Analysing data from infectious disease outbreaks poses two intrinsic challenges: (i) transmissibility of infection
produces dependent observations and (ii) partial observation of the infection process often resulting in the size
of missing data surpassing that of observed data (Kypraios & Minin, 2018). These challenges in the data can be
accounted for, in part, by using mechanistic models to explicitly model dependencies and inference procedures
to deal with latent state models.

As opposed to empirical models that directly address uncertainty in the observations, mechanistic models de-
scribe the underlying processes that generate the data. Mechanistic models explicitly specify the following:
dependence in observations, dependence between observed and missing data, and the model in terms of epi-
demiologically meaningful parameters.

This chapter briefly presents the general framework of infectious disease modelling along with some associated
terminology. Some modelling aspects of outbreaks in households are provided as a background for the methods
presented in this thesis. Some selected literature on direct (or person-to-person) transmission is discussed. As
the inference methods in the thesis are developed under the Bayesian framework, some relevant Bayesian ideas
are presented. The chapter ends with summarising the scope and structure of the thesis.

1.1 Stochastic modelling of infectious diseases

1.1.1 Infectious disease modelling

The natural history of the infection in question defines the relevant compartments (infection states) through
which an infected individual progresses. An SIR compartmental model indicates that individuals progress
through susceptible (S), infected (and infectious) (I) and removed (R) states. Removal may refer to the indi-
vidual not contributing to the infection risk process due to recovery from infection, quarantine or death. The
model is specified for transitions between the states using a mechanistic formulation.

The contact structure between susceptible and infectious individuals along with contact rates and the prob-
ability of infection given such a contact defines the rate of transition S ! I. For a homogeneously mixing
population, the transmission rate (�) encapsulates the per-capita contact rate and the chance of infection,
given a contact between susceptible and infectious individuals. The removal rate (�) specifies the rate of tran-
sition I ! R. Deterministic models decribe these transitions using rates of change in the compartment size
(frequency or density of individuals in a state) in the form of a system of di↵erential equations.

Models for infections with di↵ering natural history require relevant modifications. Additional compartments
are added when more infection states are present such as SEIR models where the infected but not yet infectious

1



(E) state indicates that individuals do not become infectious immediately after infection. An SIS model is used
when a recovered individual is immediately at risk (susceptible) to infection.

Stochastic models describe the probabilities (or intensities) for change in the size of compartments over time.
The size of compartments define a discrete state-space and the transitions in the state-space is defined using
counting processes (Andersen et al., 1993). In stochastic epidemic models, the counting processes are parame-
terised using mechanistic formulations.

One of the most explored epidemic models is the general stochastic epidemic model (GSEM). This is an SIR
model where the transitions in the state-space {S, I} over the epidemic duration [0, T ], {(S(t), I(t)), t 2 [0, T ]},
are Markovian in nature. Here, {(S(t), I(t))} are the numbers of individuals in the model states S and I,
respectively, at time t. Following Knock & Kypraios (2018), the conditional probabilities that infection and
removal events occur during the time interval [t, t+ �t) given all observations up to t (history, Ht) are

8
<

:

P [S(t+ �t)� S(t) = �1, I(t+ �t)� I(t) = 1|Ht] = �S(t)I(t)�t+ o(�t)

P [S(t+ �t)� S(t) = 0, I(t+ �t)� I(t) = �1|Ht] = �I(t)�t+ o(�t).
(1.1)

The literature for stochastic modelling of infectious disease falls into two broad categories: (i) stochastic models
characterising epidemic behaviour along with their analytical results and (ii) statistical inference from infectious
disease data using stochastic epidemic models.

1.1.2 Stochastic models to study epidemic behaviour

Stochastic models are useful for understanding epidemic behaviour: insights can be obtained by analytical solu-
tions when possible and by use of simulations. For example, for an epidemic model with given state transitions,
the fraction (or number) of individuals infected at the end of outbreak (final size) is of interest. The distribution
of final size and the associated probability of a major outbreak in the SIR model is described in Britton (2010).

A quantity of fundamental importance in infectious disease epidemiology is the basic reproduction number
(R0), defined as “the expected number of secondary infections that result from a single infectious individual in

an entirely susceptible population” (Grassly & Fraser, 2008). A key result in infectious disease epidemiology
is the threshold behaviour that relates R0 to critical vaccination coverage (Vc) in a homogeneously mixing
population: Vc = 1 � (R0)�1 (Grassly & Fraser, 2008). R0 > 1 indicates a positive probability for occurrence
of a major epidemic. Thus achieving a critical vaccination coverage would imply that a major outbreak will
not occur.

The notions of final size and basic reproduction number can also be extended to a population of households.
Household final size data present the distribution of number infected by household size. Household reproduction
number is calculated based on how infectious an household is and for how long (Fraser, 2007).

1.1.3 Statistical inference for epidemic data

While stochastic epidemic models o↵er useful insights about the epidemic behaviour, having observed some
data from an outbreak, appropriate statistical procedures are required to infer the underlying transmission
dynamics. A key step in this process is to specify the appropriate likelihood function based on an underlying
epidemic model.

For a completed SIR outbreak with n infection and n removal events (in a population of N � n individuals),
the data consist of the infection times tI = {t

I

1
, . . . , t

I
n} and removal times tR = {t

R

1
, . . . , t

R
n } occurring during a

time interval [0, T ]. Note that these are ordered times such that the time of the first infection is tI
1
and that the

subsequent infection times are tI�1
= {t

I

2
, . . . , t

I
n}. Following O’Neill & Roberts (1999), the density of (tI�1

, tR)
conditional on (�, �, tI

1
) is given by
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�I(tRi �)
nY

j=2

�I(tIj�)S(t
I

j�) exp

⇢
�

TZ

t
I
1

✓
�I(t)S(t) + �I(t)

◆
dt

�
. (1.2)

Note that both the infection and recovery processes are assumed to be Markovian as described in Section 1.1.1.
Thus the labels (i, j) do not refer to specific individuals but the order of occurence of events.

Statistical inference becomes more challenging when the infection times are not observed, a common type of
partial observation in epidemics of the SIR type. The observed data consist only of the removal times tR

and the expression (1.2) is required to be marginalised with respect to the unobserved infection times. This
introduces multiple integrals in the expression which may render the likelihood analytically intractable.

Becker & Britton (1999) and the references therein provide likelihood-based procedures to infer from completely
observed data and martingale based procedures for partially observed data. O’Neill & Roberts (1999) provide
a procedure to fit GSEM to partially observed data in the Bayesian setting.

While most literature on statistical inference on infectious disease data use observed datasets to develop and
/ or demonstrate modelling and inference procedures, some are devoted to devoloping the necessary models,
estimators and their asymptotic properties towards statistical inference (building the required theory for data
analysis) without using any observed datasets (Becker & Hasofer, 1997 and Britton, 1998).

1.1.4 Some modelling considerations

Time

The GSEM is specified in continuous time. However, epidemic models and their associated data have also
been considered using other time scales, for example, discrete time or generations defined by infectious periods.
Assuming that the infectious period is fixed and that infections occur towards the end of infectious periods
(Reed-Frost assumptions), epidemic models can be defined in generations and result in chain binomial models
(Becker, 1989 and Britton, 2010). The chain binomial model description is useful even when infections are not
observed by generation, for example, household final size data (non-temporal) can be described by marginalis-
ing over possible epidemic chains.

A modification to the GSEM is that the infectious period is not exponentially distributed making the removal
process non-Markovian (Streftaris & Gibson, 2004). Such models require additional book-keeping in terms of
time since infection and labelling of infected individuals (labels are not interchangeable as in the Markovian
case).

Population structure

Assuming homogeneity in susceptibility, infectivity and mixing (contact process) across all individuals in the
population may be suitable for some situations. When sub-groups in a population have varying levels of
susceptibility and/or infectivity such as age-dependence, such heterogeneities have been accounted for using
multi-type models (see Britton, 1998). Ignoring such heterogeneities may have strong implications.

Empirical studies have been conducted to understand mixing patterns (Mossong et al., 2008). Mixing at more
than one level such as mixing at population level (global), household level and school or work-place levels
have also been addressed in the epidemic modelling literature. The implications of such extensions on key
parameters such as final size and R0, have also been studied (Ball et al., 1997, Ball & Lyne 2002, 2007).

Observing epidemics in practise and their implications

How an epidemic is observed limits the statistical analysis and what can be possibly inferred from the data.
While this is a vast topic spanning over multiple issues, some of the key issues that are considered towards
statistical analyses are whether the data are temporal (event times) or non-temporal (final size), whether the
entire population, certain sub-population or a sample is observed and presence of missing data and / or latent
variables. Rhodes et al. (1996) provide a hierarchy of information levels in observed data and appropriate
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methods for analysing data from each level. These methods assume that data arise from observing counting
processes.

1.2 Modelling epidemics in households

While homogeneous mixing may be appropriate in some situations such as describing outbreaks in boarding
schools or military bases, they may not reflect realistic contact processes when the population contains natural
grouping structures. From an epidemiological perspective, households are important units for transmission
(House et al., 2012).

1.2.1 The role and importance of households in epidemics

When data are collected at the household level, whether merely observed or designed with respect to some
intervention, the following considerations are approriate or even advantageous:

(i) Many infectious diseases require close contacts for transmission. For such infections, within-household trans-
mission is identified as an important component of spread due to contacts occurring in close proximity and
with prolonged durations (Kinyanjui et al, 2016). For example, Yang et al. (2009b) estimate the household
secondary attack rate for Influenza A (H1N1) to be 27% (95% CI: 12.2% - 50.5%) which is a non-negligible
contribution to the transmission process.

(ii) Household members are co-located and therefore they form an e�cient sampling unit (House et al., 2012).
Sampling households based on index cases is resource-e�cient (as they form an exposure group); resource-
intensive methods can be used to make observations more accurate on a smaller proportion of the population.

(iii) A related issue is that interventions may be targeted at the household level (House et al., 2012).

(iv) Durations that drive the transmission dynamics such as latent period, infectious period and generation time
are estimable in household-based studies (Gough, 1977, Klinkenberg & Nishiura, 2011). In some household-
based studies these quantities have been estimated along with transmission parameters (O’Neill et al., 2000,
Cauchemez et al., 2004).

(v) Estimates of vaccine e�cacy can be directly obtained from household based studies (Lau et al., 2015).

Depending on the research question and available data (along with information on study design and / or obser-
vation of the contact process), models can be specified using one level of mixing (only within-household) or two
levels of mixing that include mixing outside the household (global contacts). From the perspective of epidemic
behaviour, for epidemics with two levels of mixing, the final size distributions, basic reproduction numbers
(individual and household), vaccination thresholds and associated vaccination strategies have been derived in
Ball et al. (1997). A specific derivation of the household basic reproduction number is provided in Fraser (2007).

From the statistical inference perspective, data from household outbreaks have been of two types: temporal
(observation of event times) and non-temporal (observation of final sizes in households). Analyses of both types
of data have been described in the literature (Becker, 1989, O’Neill et al., 2000), especially in the context of
transmission of respiratory infections and will be briefly reviewed in the following.

1.2.2 Final size data

Let k be the number of individuals in a household, all of whom are still susceptible before the start of the
outbreak and let j = 0, 1, . . . , k be the number infected in the household by the end of the outbreak. Then j

is referred to as the outbreak final size in a household of size k.

For a population of households, let nkj be the number of households of size k with j infected individuals at the
end of outbreak. The set of numbers {nkj , k = 1, . . . ,K; j = 0, 1, . . . , k} constitute the final size data from an
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outbreak in a population of households. When only within-household transmission is of interest, chain binomial
models based on the so called Reed-Frost assumption have been used to infer from household level final size
data (Becker, 1989). O’Neill & Roberts (1999) present a Bayesian inference procedure for a measles outbreak
final size data in households of size 3.

The Longini-Koopman model (Longini & Koopman, 1982) accounts for two levels of mixing: within-household
and community transmission. The model is specified for the household-level final size data. They also presented
estimation procedures for truncated data which would arise from case-ascertained sampling, i.e., sampling of
households conditionally on household outbreak final size � 1. O’Neill et al. (2000) present methods to infer
the transmission parameters from final size data with two-levels of mixing using the Longini-Koopman model
in the Bayesian setting. They also generalise the model and infer an additional parameter for probability of
protection due to vaccination.

Demiris & O’Neill (2005) infer transmission rate parameters in a multi-type epidemic model with two levels
of mixing using household final size data along with grouping individuals into strata (based on antibody titre
levels). The problem of intractability of likelihood due to not observing the transmission events is dealt with
using a data-augmentation procedure on random directed graph defining the contact structure at the population
level. O’Neill (2009) modified this inference procedure to observations from sample data. Knock & O’Neill
(2014) extended this approach further to include Bayesian model choice procedures for competing models.

1.2.3 Data containing event time information

Data containing information on observed event times for household members often include the times of onset
of symptoms, removal or being tested positive for infection.

Rampey et al. (1992) present a discrete-time model for rhinovirus infection data in households and estimate
within-household transmission (here, secondary attack rate) and global transmission (here, probability of infec-
tion from the community) parameters using likelihood-based procedures. The data consist of symptom times
and viral culture test results. They use a multitype epidemic model with varying susceptibility and infectivity
levels in an SEIR setting.

O’Neill et al. (2000) present Bayesian methods to infer only within-household transmission in an SEIR setting.
The data consisted of interremoval times (time between two removals) in households of size 2. They provide two
ways to handle the unobserved event times: (i) sample them jointly with parameters using a data-augmentation
algorithm and (ii) marginalise over them using a simulation-based algorithm.

Cauchemez et al. (2004) used a continuous-time model for data on influenza infections in households and
estimate within-household and global transmission parameters along with infectious periods. The data consist
of symptom onset times and relevant laboratory test results. The study design is case-ascertained follow-up
where households are sampled based on symptom times of an index case. A Bayesian MCMC procedure is
used to estimate the model parameters and hypotheses tests were performed using Bayes factors.

Yang et al. (2006) used a discrete-time model on two household-randomised influenza trials data and estimate
within-household and global transmission parameters along with vaccine e�cacy parameters. The data consist
of symptom onset times and relevant laboratory test results. The study design is case-ascertained follow-
up where households are sampled based on symptom times of an index case. A conditional likelihood based
approach is used towards statistical inference. Yang et al. (2009a) extends this analysis to fitting a (discretised)
continuous-time model to include asymptomatic infections under a Bayesian framework.

1.3 Inferring direct transmission: Data and modelling

Understanding the transmission routes, especially, direct (person-to-person) transmission is of epidemiological
importance towards management and control of infection. A particular case in point is influenza which has the
potential to cross zoonotic barriers (of avian and swine origins) and result in a pandemic (Yang et al., 2007b).
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1.3.1 Models to infer direct transmission from oubreak data

The literature described in Section 1.2.2 make use of household-level final size data to estimate within-household
and global transmission parameters. However, those models and their inference procedures require further mod-
ifications to use them for testing the existence of direct transmission from household-level final size data. For
data containing event time information, some procedures for such tests are available in the SIR setting.

Yang et al. (2007a) present an inference procedure to test the existence of direct transmission using a discrete-
time model parameterised with escape probabilities for transmission. In particular, three parameters are used
with respect to transmission from the community, from those within the household or close contacts and from
those outside the household or casual contacts. The authors discuss non-standard conditions due to which
likelihood-ratio type tests cannot be used, one of the relevant conditions to this thesis being that the hypoth-
esised parameter for direct transmission falls at the boundary of the parameter space under a null hypothesis
(i.e. absence of direct transmission). They develop a resampling-based test procedure to test for the existence
of direct transmission. An underlying SIR epidemic model is assumed where the incubation period (duration
from infection to onset of symptoms) is assumed to be the same as latent period (duration from infection to
onset of infectiousness). All infected individuals are assumed to be symptomatic. Simulations were used to
evaluate the performance of the developed inference procedures.

The procedure developed in Yang et al. (2007a) was used as the basis to test person-to-person transmission in
avian influenza A (H5N1) (Yang et al., 2007b). However the procedure is modified to account for data collected
using the case-ascertained design based on methods presented in Yang et al. (2006).

1.3.2 Transmissibility in Hepatitis A virus (HAV) infection

While there is some evidence for direct transmission in Hepatitis A virus (HAV) infections, most research
involved so far do not use data from well-designed studies and / or rigorous statistical approach. Case reports
suggest direct transmission in close contacts, especially within households (Sato, 1988 and Kumbang et al.,
2012).

Victor et al. (2006) conducted a laboratory-based HAV surveillance to identify index cases (first symptomatic
case within a household). They also enrolled the household and school/day-care contacts of index cases. The
data consisted of symptom times and serological test results among the contacts of identified index cases. They
used regression analysis that accounts for correlation among contacts within exposure groups. The results
suggest that household contacts have higher odds of infection compared to school/day-care contacts.

Lima et al. (2015) used HAV genetic sequence data from index cases in households and their household contacts
to investigate direct transmission within the household. Evidence towards direct transmission was evaluated
based on sequence homology between index cases and their household contacts.

1.3.3 Models to infer direct transmission from HAV oubreaks

Zhang & Iacano (2018) estimate the reproduction numbers for HAV from an elementary school outbeak data.
The data consist of symptom times, serological test results and social contact network of the children. They
use likelihood methods to estimate the transmission trees, reproduction numbers and the serial interval. In
addition, they fit an epidemic model to the outbreak data and estimate the model parameters. The results
suggest person-to-person transmission may have played a key role in this elementary school outbreak and that
there was no di↵erence between symptomatic and asymptomatic infections in terms of transmissibility.

This thesis presents methods to estimate transmission parameters for person-to-person transmission from house-
hold outbreak data. A model comparison procedure to test the hypothesis of direct transmission is also devel-
oped. The natural history of infection used resembles that of HAV infection as in Zhang & Iacano (2018). The
data that is assumed to be observed in this application also closely follows the data that would be typically
observed from HAV outbreaks.
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1.4 Bayesian Inference

Having specified a data generating process Py|✓(y|✓) for the observed data (y), Bayesian inference allows to
quantify the uncertainty in the underlying unknown quantities / model parameters ✓. It uses the posterior
probability P✓|y(✓|y) of the parameters given the observed data y along with prior probability P✓(✓) of the
parameters through the Bayes’ rule

P✓|y(✓|y) =
Py|✓(y|✓)P✓(✓)R

⇥
Py|✓(y|✓)P✓(✓)d✓

. (1.3)

The posterior P✓|y(✓|y) contains all information necassary to infer about the parameters from the data. This
representation follows from the Bayesian thinking: all sources of uncertainty about the parameters (data y and
prior P✓) are included in the posterior distribution and that all uncertainty about the parameters is expressed
in terms of probabilities (here, the posterior probability P✓|y(✓|y)).

1.4.1 Why is Bayesian inference used in epidemic modelling?

Analysis of data arising from infectious disease outbreaks is a non-standard problem. In addition to inherently
dependent and incomplete observation, factors such as the natural history of infection, population structure
and observation design render unique settings for each problem.

Classical inference involves parameter estimation using estimators with known distributional properties. This
requires the necessary theoretical results to be developed to arrive at uncertainty quantification for the estima-
tors (O’Neill, 2002). This may involve deriving central limit theorems for estimators of parameters governing
dependent processes, which is rather technical in nature (for example, see Becker & Hasofer, 1997).

When the likelihood is analytically tractable, deriving posterior quantities analytically under Bayesian inference
may involve e↵orts similar to those described for classical inference. However, partial observation introduces
additional integrals to the likelihood expression (cf. Section 1.1.3) which may render the likelihood analytically
intractable. Computational techniques such as Markov chain Monte Carlo (MCMC) methods have made
sampling from the posterior distribution of all model unknowns, including the missing data items, feasible.
Using such techniques require developing algorithms to sample from the correct posterior density.

1.4.2 Bayesian computation

Development and implementation of algorithms to e�ciently sample from the posterior distribution are at the
core of Bayesian computing. MCMC algorithms such as Metropolis-Hastings and Gibbs samplers are used in
this thesis and are briefly described in the following.

Metropolis-Hastings sampler
The Metropolis-Hastings (MH) sampler is useful for drawing samples from an unnormalised target density P (✓)
by using a Markov chain {✓

(t)
} that has the target density as its stationary distribution. A candidate value

✓
0 is generated from the conditional density k(✓0|✓(t)) (known as the proposal density). The candidate value is
accepted (i.e., ✓(t+1) = ✓

0) with probability A(✓0, ✓(t)) where

A(✓0, ✓(t)) = min

(
1,

P (✓0)k(✓(t)|✓0)

P (✓(t))k(✓0|✓(t))

)
. (1.4)

Otherwise, ✓(t+1) = ✓
(t) (Robert & Casella, 2010).

Gibbs sampler
The Gibbs sampler is a special case of the MH algorithm when the full conditional distributions of a multi-
dimensional random variable are available and can be used to sample.

Let ✓ = (✓1, ✓2, . . . , ✓r) be a multi-dimensional random variable for which full conditional distributions of the
form P (✓k|✓�k), k 2 1, . . . , r are available, where ✓�k = (✓1, . . . , ✓k�1, ✓k+1, ✓r). Note that each component ✓k
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can be of one or more dimensions. Then the Gibbs sampler generates a Markov chain {✓(t)
} from the joint

distribution P (✓) by simulating from the full conditional distributions as follows (Robert & Casella, 2010):

8
>>>><

>>>>:

✓
(t+1)

1
⇠ P (✓1|✓

(t)

2
, . . . , ✓

(t)
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(t+1)

1
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(t)
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...

✓
(t+1)

r ⇠ P (✓r|✓
(t+1)

1
, . . . , ✓

(t+1)

r�1
).

(1.5)

Data augmentation
When the model contains latent variables (z), the parameter space (✓) can be augmented to include the latent
variables. If the joint posterior P✓,z|y(✓, z|y) of parameters and latent variables can be hierarchically specified,
sampling from the joint posterior can be performed using a Gibbs sampler approach (see Chapter 3 for further
details).

1.5 Scope and structure of the thesis

1.5.1 What is addressed in this thesis

The main aim of this thesis is to develop methods to test the existence of direct transmission using data observed
from outbreaks in households. Yang et al. (2007a) has addressed similar testing question for the existence of
direct transmission using household outbreak data. This application, motivated by hepatitis A virus (HAV)
infection, extends their work in the following ways: (i) the assumption that the incubation period is the same
as the latent period is modified to allow the latent period to be shorter than the incubation period, i.e. an
individual is infectious before being symptomatic. Consequently there are two unobserved times, namely, times
of infection and onset of infectiousness, (ii) the presence of asymptomatic infections and individuals with false
symptoms and (iii) addition of serological test results that are non-sensitive due to waning of antibodies.

The model state space follows the natural history of HAV infection and the transmission model is developed
to account for transmission from two sources, from the contacts within households and from the environment.
The observations are assumed to be imperfect, including both asymptomatic infections and false symptoms.
The serology is also imperfectly observed due to antibody waning.

The likelihood is provided for the primary setting which is a completed outbreak in a population of house-
holds. The likelihood expression is further extended to an ongoing outbreak with censored observation and a
case-ascertained follow-up design. The case-ascertained follow-up is common in practise as could be seen in
Sections 1.2 and 1.3.

Models are specified in continuous time and parameterised using transmission hazards from both sources (from
infectious household members and from the community) for the three described settings. The model for com-
pleted outbreak in a population of households is additionally specified in discrete time and is parameterised
using escape probabilities per day from both sources. The inference and model comparison procedures are
presented only for this setting (i.e. primary setting in discrete time).

The posterior of the transmission parameters are sampled by augmenting the unobserved infection times using
a Gibbs sampler approach. The infection status is updated along with the infection times for imperfect
observations. Deviance information criteria (DIC) is computed towards model comparison. DIC computation
uses the Gibbs sampler routines for sampling from the joint posterior presented in Chapter 3.

1.5.2 Structure of the thesis

Chapter 2 presents the model for an HAV outbreak. The model is developed hierarchically with a model for
transmission and a model for observation. The model is presented for imperfectly observed completed outbreak
in a full cohort. It is further extended for two other observation designs.
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Chapter 3 presents algorithms to sample from the joint posterior of the model parameters and latent variables
using a data-augmented MCMC approach. Chapter 4 presents model comparison using DIC and procedures
to implement DIC for the described model. Chapter 5 presents the results for evaluating the performance
of parameter estimation and model comparison methods (presented in Chapters 3 and 4) based on simulated
outbreak data. Chapter 6 discusses the results based on simulated data and provides directions on extending
the modelling and inference to include more complex data.
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Chapter 2

Modelling Outbreak Data

“It is not really di�cult to construct a series of inferences, each dependent

upon its predecessor and each simple in itself. If, after doing so, one simply knocks

out all the central inferences and presents one’s audience with the starting-point and

the conclusion, one may produce a startling, though possibly a meretricious, e↵ect.”

- Sir Arthur Conan Doyle (Sherlock Holmes in The Dancing Men)

Statistical modelling aspects to describe the data observed from an outbreak in a population of households
are presented in this chapter. A model for the underlying data generative process is first developed from a
mechanistic interpretation. The observation process of the underlying model further describes the data that
are generated. Some alternative observation designs are also presented in this chapter.

2.1 Outbreak setting and timelines

We assume a closed community of households in which an outbreak occurs. We assume that in a fully suscep-
tible population, the outbreak is initiated by the environment becoming infectious and is further propagated
by infectious individuals (or infectious household members in our setting). An individual can be infected either
by the environment or by an infectious household member (person-to-person transmission). We additionally
assume that person-to-person transmission between members of two di↵erent households is not possible, which
make households independent units of observation.

The outbreak is complete when the environment ceases to be infectious and there are no new infections in the
population any more. Note that the outbreak could be complete earlier, if the entire population is already
infected and recovered or immune i.e., there are no susceptible individuals present. In a perfectly observed
setting, the duration of the outbreak is broadly characterised by three time points as shown in Figure 2.1: (i)
⌧
0, the time when environment becomes infectious (ii) ⌧1 the time when the environment stops being infectious

and (iii) ⌧N the time when the last infectious individual has recovered.

For example, in a setting where the environment is treated, ⌧1 is observed as the time of treatment. When
all infections are treated or infected individuals are quarantined in a closed population, ⌧N can be observed as
the last treated or quarantined infection. In some other settings, it is possible to observe ⌧0 as the time when
environment becomes infectious. In practise, not all three time points are observed. In our setting, none of
these time points are observed and we use time points derived from observations to approximate them.

2.2 State-space and transitions

From the viewpoint of epidemic model structure, the natural history of hepatitis A virus (HAV) infection follows
an SEIR model (i.e, with susceptible, exposed, infectious and removed compartments). From the viewpoint of
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Figure 2.1: Outbreak timelines.The three time points are ⌧0 and ⌧
1 when the environment starts and

stops to be infectious, respectively, and ⌧N when the last infectious individual has recovered. Tc is an observed
time point which is the last observed symptom time (see section 2.5.1).

observations, an infected individual becomes infectious before manifesting symptoms. This, in addition to the
possibility of asymptomatic infections, leads to the following model specification.

2.2.1 State-space and transition times

The state-space of the model consists of the following five states: susceptible (U), infected but not yet infectious
(E), infectious (I), infectious and symptomatic (S), and removed (N). In this context, the removed state refers
only to recovery from infection, but in general, removal may refer to an individual becoming non-infectious due
to recovery, treatment or immunisation. A susceptible individual, upon infection, passes through these model
states. Thus the state-space for a single individual is X = {U,E, I, S,N}.

In this setting, all individuals are susceptible at time ⌧0, i.e., Xi(⌧0) = U, i = 1, . . . , N . For an infected
individual i who manifests symptoms, the evolution of the process Xi(t) is specified in terms of the following
four transition times, tE

i
, tI

i
, tS

i
and t

N

i
:

Xi(t) =

8
>>>><

>>>>:
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I if t
I
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,
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,
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,

(2.1)

where t
E

i
, tI

i
, tS

i
and t

N

i
are the times of infection, onset of infectiousness, onset of symptoms and removal

defined with respect to the time origin ⌧0, the start of outbreak.

Let mi be a binary mark associated with t
E

i
, the infection time. When mi = 1 the individual i is symptomatic

with an observed time of onset of symptoms tS
i
. When mi = 0 the individual i is asymptomatic. For an infected

individual i who does not manifest symptoms, the state S is considered to be latent and the transition is made
directly from state I to state N . The evolution of the process for symptomatic and asymptomatic individuals
is depicted in Figure 2.2.

Figure 2.2: State space of the process defined by natural history of HAV. The natural history of
HAV infection with the following states: susceptible (U), infected but not yet infectious (E), infectious (I),
symptomatic (S) and removed (N). Asymptomatic individuals progress directly from state I to state N .

The process Xi(·) generates a history F
⇤
it
, a �-algebra based on the visited states and corresponding transition

times {t
E

i
,mi, t

I

i
, t

S

i
, t

N

i
} of the process over the interval [⌧0, t] . The observed history Fit is limited to the

observed states and corresponding transition times {t
E

i
,mi, t

S

i
}. Note that although the times of infection t

E

i
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are not part of observation, they are here included in Fit to obtain convenient likelihood expressions.

For an household Hi containing the individual i, Hit = {Fju, j 2 Hi, u  t} denotes the history of all household
members (including i) up to time t.

2.2.2 Sojourn time distributions

The model for infection time t
E

i
defining the transition from state U to E is explained in Section 2.3. Upon

infection, the natural history of infection is modelled in terms of three non-overlapping intervals: the latent
period (tI

i
� t

E

i
), the duration between the onset of infectiousness and symptoms (tS

i
� t

I

i
), and the duration

between onset of symptoms and removal (when the individual becomes non-infectious) (tN
i
� t

S

i
). The densities

of these durations (sojourn times) are given by g̃(·), ũ(·) and ṽ(·), respectively, as shown in Figure 2.3. The
densities of the transition times are defined in terms of the corresponding densities of sojourn (waiting) times:

g(tI
i
|t
E

i
) = g̃(tI

i
� t

E

i
),

u(tS
i
|t
I

i
) = ũ(tS

i
� t

I

i
),

v(tN
i
|t
S

i
) = ṽ(tN

i
� t

S

i
).

The ranges of these three sojourn times are given by (lmin, lmax), (smin, smax) and (nmin, nmax), respectively
(their values are provided in section 3.1). When an infection is asymptomatic, the time of onset of symptom
t
S

i
is not observed. However, the duration of infectiousness of asymptomatic individuals is assumed to be the

same as that of symptomatic individuals. The duration of infectiousness (i.e. the interval between t
I

i
and t

N

i
)

is then sum of the two durations tS
i
� t

I

i
and t

N

i
� t

S

i
. Thus its corresponding density for sojourn time f̃(tN

i
� t

I

i
)

and the density of transition time f(tN
i
|t
I

i
) are obtained by convolution:

f(tN
i
|t
I

i
) =

t
N
iR

t
I
i

v(tN
i
|t
S

i
)u(tS

i
|t
I

i
)dtS

i
.

Figure 2.3: Sojourn times and their densities.

2.3 Transmission model

The probability that individual i is infectious at time t is denoted by Ii(t|Fit�). For a symptomatic individual,
recall that the history Fit of the process includes the transition times t

E

i
and t

S

i
to the states E and S,

respectively. Let Im=1

i
(t|Fit�) be the probability that individual i with symptomatic infection is infectious at

time t, given the history Fit:

I
m=1

i (t|Fit�) =

8
><

>:

0 if Xi(t�) = U,R
t

t
E
i
g(⌧ |tE

i
)d⌧ if Xi(t�) = E,

1�
R
t

t
S
i
v(⌧ |tS

i
)d⌧ if Xi(t�) = S.

(2.2)
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For an asymptomatic individual the history Fit of the process includes only the transition time t
E

i
to state E.

Let Im=0

i
(t|Fit�) be the probability that individual i with asymptomatic infection is infectious at time t, given

the history Fit:

I
m=0

i (t|Fit�) =

8
><

>:

0 if Xi(t�) = U,

tR

t
E
i

g(⌧ |tE
i
)
⇥
1� F (t|⌧)

⇤
d⌧ if Xi(t�) = E,

(2.3)

where F (t|⌧) =
tR
⌧

f(u|⌧)du. It is obvious that the probability of individual i being infectious before being

infected (i.e., Xi(t�) = U) is Ii(t|Fit�) = 0.

Let � be the instantaneous hazard of infection of a still susceptible individual from an infectious household
member. Then the hazard of a still susceptible household member i to be infected by a household member j

that is infectious at time t be

�ij(t|Fit�,Fjt�) = �I
m

j (t|Fjt�). (2.4)

For the sake of completeness, one can define �ij(t|�,�i,�j) = �I
m

j
(t|F 0

jt�,�j)Ui(t|F 0
it�,�i) using both infec-

tiousness Im
j
(t) of j and susceptibility Ui(t) of i. Here F 0

t is the history including relevant covariates up to time
t and (�i,�j), parameters with respect to the covariates. See Rhodes et al. (1996) for a rigorous treatment of
this formulation, Yang et al. (2009), for estimating the antiviral e�cacies and Cauchemez and Ferguson (2011)
for estimating transmission risk factors.

The infectiousness can additionally be defined using a duration-dependent function, especially if a model for
viral shedding is available. In this case �ij(t|·) / �(t� t

E

j
) where �(·) is a function defining the infectivity of j

at time t. Although we do not use any information on covariates or infectivity in our model, it can be extended
using the described formulations.

Let µ be the hazard for an individual being infected by the environment. It is assumed to be a constant as
long as the environment is infectious. If the environment is infectious up to time ⌧1, the infectiousness of the
environment at any time t thus is

µ(t|⌧1) = 1{t⌧1}µ. (2.5)

Finally, the model for infection time is defined. The probability density that individual i is infected on day t
E

i

is given by

Zi(t
E

i |Hit
E
i �) =

⇢
µ(tEi |⌧

1) +
X

j2Hi,

j 6=i

�ij(t
E

i |Fit
E
i �,Fjt

E
i �)

�
exp

"
�

t
E
iZ

u=⌧0

✓
µ(u|⌧1) +

X

j2Hi,

j 6=i

�ij(u|Fiu�,Fju�)

◆
du

#
.

(2.6)
The probability that an individual is not infected during the outbreak up to some time t is given by

Qi(t|Hit�) = exp

⇢
�

tZ

u=⌧0

✓
µ(u|⌧1) +

X

j2Hi,

j 6=i

�ij(u|Fiu�,Fju�)

◆
du

�
(2.7)

The above model is specified in continuous time. However, the time scale of the observed data is generally
in days. Yang et al. (2009) and Cauchemez & Ferguson (2011) use an underlying continuous time model but
provide a discretised likelihood in days. Rampey et al. (1992) and Yang et al. (2006) use a discrete-time model
parameterised using escape probabilities in comparison to the continuous time model using infection hazard
rates (µ,�).
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A discrete-time version of the presented model is provided in Appendix A. The model is specified using escape
probabilities per day (c, q) and follows in the spirit of Rampey et al. (1992).

2.4 Observation model

Of all events pertaining to the underlying transmission process and the natural history of disease, only a portion
is observed. In particular, for each individual in the study population the following data are observed: the time
of onset of symptoms t

S

i
and whether or not an individual tests serologically positive for infection at the end

of outbreak.

Symptoms:
A certain proportion of infected individuals go on to manifest symptoms. The sensitivity parameter (⌘) is the
proportion of symptomatic cases among all infections ⌘ = P (mi = 1|Xi(⌧N ) 6= U).

A certain proportion of non-infected indivduals (are reported to) manifest symptoms and are called false symp-

toms. This proportion is given by (1 �  ) where  = P (mi = 0|Xi(⌧N ) = U) and is called the specificity
parameter. There may be more than one reason for false symptoms (parent’s incorrect recalling or bias given
an already infected child in household or symptoms that are not di↵erential to an underlying infection).

Serology:
Serological tests are performed on sera samples collected at time Ts (some time after the outbreak is complete:
Ts > ⌧N ) from all individuals in the population. Let ai be an indicator for the serological test result being
positive. For an individual i infected at time t

E

i
, the probability of being tested positive for IgM antibodies at

time Ts is given by

P (ai = 1) = R(Ts � t
E

i |↵, tw) = 1[0,tw](Ts � t
E

i ) + (1� 1[0,tw](Ts � t
E

i ))e
�↵(Ts�t

E
i �tw) (2.8)

where, tw is the threshold duration from time of infection t
E

i
after which the IgM antibodies begin to wane.

The parameter ↵ is the rate of decrease in the detectability of antibodies and is related to the waning rate of
antibodies. Figure 2.4 illustrates the observation model for serology.

Figure 2.4: Model for observation of serological test results using IgM antibodies. The probability
of being tested positive (y-axis) is provided for three di↵erent infection times (tE

i
) with respect to the outbreak

timelines : an infection close to the start of outbreak, an infection close to the end of outbreak and an infection
somewhere in between them.

IgM antibodies are a short term indicator of infection. They can be observed immediately after infection but
wane over a short duration defined by tw and ↵. IgG antibodies, on the other hand, o↵er a long term indication
of infection. They can be detected after a certain period (tx) from infection and do not wane over time. In this
setting, we assume that IgM antibodies were tested for. If the serological test involves IgG antibodies, then
the observation can be modelled as

P (ai = 1) = R(Ts � t
E

i |�, tx) = 1� 1[0,tx](Ts � t
E

i ) + (1[tx,1](Ts � t
E

i ))�(�, t) (2.9)

where tx is the threshold duration from infection time after which the IgG antibodies begin to develop. The
parameter � is the rate of increase in the detectability of antibodies and is related to the rate of development
of antibodies. For example, �(�, t) can be a logistic function with t = Ts� t

E

i
� tx and has values in the interval

[0, 1].
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2.5 Likelihood

In this section likelihood expressions are provided for three di↵erent observation settings or designs. The data
that are assumed to be observed consist of symptom times and serological test results y = {(mi, t

S

i
, ai), i =

1, . . . , N}. The missing data z = {t
E

i
, i = 1, . . . , N} are the infection times. Together, they form the complete-

data C = (z,y) = {(tE
i
,mi, t

S

i
, ai), i = 1, . . . , N} and Fit is the history based on C (see Section 2.2.1).

The likelihood expressions are of the complete-data likelihood form (P (z,y|✓) / L(✓; z,y)) based on the com-
plete data C = (z,y). It includes the components of transmission, natural history of infection and observation
as described in the preceding sections; their notations are collected in Table 2.1 for quick reference.

2.5.1 Completed outbreak in a full cohort

In this setting, the likelihood is provided when: (i) all individuals in the population are observed and (ii) the
outbreak is complete i.e., there are no new infections.

Outbreak timelines:

The completed outbreak is defined in Section 2.1 and is characterised by timepoints ⌧0, ⌧1 and ⌧N (see Figure
2.1). In practice, however, these timepoints are not observed. The time point ⌧0 is assumed to be known (see
Section 5.3 for further explanation on this). Let Tc be the last observed symptom time after which there are
no new symptomatic infections. The observed timepoint Tc is used as an approximation for both ⌧1 and ⌧N .
Having observed that the outbreak is complete at Tc, serology samples are collected at Ts(> Tc).

The complete data likelihood.

The complete data contribution from individual i, Ci = (tE
i
,mi, t

S

i
, ai), contains the infection time, whether

symptoms were observed along with the time of symptom onset and the serological test result. Note that for
an asymptomatic individual i, mi = 0 and t

S

i
=1.

The parameters of interest are µ and �. Given the history HiTc of all household members of individual i up to
time Tc for the complete data Ci, the likelihood contribution from an individual i, Li(µ,�;HiTc) is

=

8
>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>:

⌘R(Tc � t
E

i
)
min(t

S
i ,t

E
i +lmax)R

t
I
i=t

E
i +lmin

u(tS
i
|t
I

i
)g(tI

i
|t
E

i
)Zi(tEi |Hit

E
i �)dt

I

i
, if Ci=(t

E
i <Tc,mi=1,t

S
i <Tc,ai=1),

(1� ⌘)R(Tc � t
E

i
)Zi(tEi |Hit

E
i �), if Ci=(t

E
i <Tc,mi=0,t

S
i =1,ai=1),

⌘(1�R(Tc � t
E

i
))

min(t
S
i ,t

E
i +lmax)R

t
I
i=t

E
i +lmin

u(tS
i
|t
I

i
)g(tI

i
|t
E

i
)Zi(tEi |Hit

E
i �)dt

I

i
, if Ci=(t

E
i <Tc,mi=1,t

S
i <Tc,ai=0),

(1� ⌘)(1�R(Tc � t
E

i
))Zi(tEi |Hit

E
i �), if Ci=(t

E
i <Tc,mi=0,t

S
i =1,ai=0),

(1�  )Qi(Tc|HiTc�), if Ci=(t
E
i >Tc,mi=1,t

S
i <Tc,ai=0),

 Qi(Tc|HiTc�), if Ci=(t
E
i >Tc,mi=0,t

S
i >Tc,ai=0).

(2.10)
Note that the complete-data likelihood in (2.10) is marginalised with respect to the time of onset of infec-
tiousness t

I

i
which is also an unobserved time point. A discrete-time version of the complete-data likelihood

(equivalent to (2.10)) is provided in Appendix A.

In the special case of perfect observation, the observation model is deterministic with ⌘ = 1 and  = 1 (i.e., all
infected individuals manifest symptoms and there are no false symptoms). Then the likelihood Li in equation
(2.10) reduces to
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Li =

8
><

>:
Zi(tEi |Hit

E
i �)

min(t
S
i ,t

E
i +lmax)R

t
I
i=t

E
i +lmin

u(tS
i
|t
I

i
)g(tI

i
|t
E

i
)dtI

i
if (tE

i
< t

S

i
 Tc),

Qi(Tc|HiTc), if t
E

i
> Tc.

(2.11)

This thesis examines the current setting of completed outbreak in the whole population. However, under the
assumptions ⌘ ⇡ 1 and  ⇡ 1, the following two alternative observation designs may often be encounterd in
practise. The likelihood under these designs are provided in the following subsections.

2.5.2 Outbreak in progress

In this section, the likelihood is provided when: (i) all individuals in the population are observed (ii) the
outbreak is in progress and is observed up to some time T

0
c from the start of outbreak.

Outbreak timelines:

Let T 0
c be the time up to which the outbreak is observed and that the outbreak is still in progress. In addition,

it is assumed that T
0
c < ⌧

1, i.e., the common source (environment) is still infectious. Otherwise T
0
c ⇡ Tc and

the observations can be analysed as if the outbreak is (almost) complete.

Under the stated assumptions (⌘ ⇡ 1 and  ⇡ 1), serological tests are only performed on symptomatic cases
that occur during the follow-up period in order to confirm the infection. In this case it can be assumed that
samples for serological tests are obtained at tS

i
for symptomatic cases i.e., as and when they occur. Serological

data on the non-symptomatic individuals at T 0
c may be feasible under this observation design but are deemed

redundant when ⌘ ⇡ 1.

The complete data likelihood.

Data under this design is said to arise from a censored process of transmission and observation. The complete
data Ci = (tE

i
, t

S

i
) contain the infection and symptom onset times. The complete data likelihood Li(µ,�;HiTc)

for an individual i is given as

Li =

8
>>>>>>><

>>>>>>>:

min(t
S
i ,t

E
i +lmax)R

t
I
i=t

E
i +lmin

u(tS
i
|t
I

i
)g(tI

i
|t
E

i
)Zi(tEi |Hit

E
i �)dt

I

i
if (tE

i
< t

S

i
 T

0
c),

Zi(tEi |Hit
E
i �)

✓
1�

T
0
cR

t
S
i =t

I
i+smin

min(T
0
c,t

E
i +lmax)R

t
I
i=t

E
i +lmin

u(tS
i
|t
I

i
)g(tI

i
|t
E

i
)dtI

i
dt

S

i

◆
if (tE

i
 T

0
c, t

S

i
> T

0
c),

Qi(T 0
c|HiT 0

c
), if t

E

i
> T

0
c.

(2.12)

Those infected during [T 0
c � (lmax + smax), T 0

c � (lmin + smin)) have some probability of not being symptomatic
until T 0

c whereas those infected during [T 0
c � (lmin + smin), T 0

c] are certainly not symptomatic at or before T
0
c.

2.5.3 Case-ascertained sampling

In this setting, the likelihood is provided when: (i) households are sampled on identifying a symptomatic case
within the household and (ii) all members of the sampled households are followed-up until the outbreak is
complete and there are no new infections.

This observation design is called case-ascertained follow-up and is resource-e�cient because households with
no symptomatic infections are excluded in the sample. However, this design is only useful under the stated
assumptions where infected individuals are almost always symptomatic i.e., ⌘ ⇡ 1 and non-infected individuals
do not manifest false symptoms  = 1. The treatment in this sub-section closely follows Yang et al. (2006)
which uses a conditional likelihood approach in the SIR-type epidemic setting.

Outbreak timelines:

Let Hk, k = 1, 2, . . . ,K be the sampled households. Let tS
k
be the symptom onset time of the index case k of
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the household Hk. t
S

k
is also the time at which the household Hk enters the sample. By assumption of our

model, tS
k
< ⌧

1 as this is the only way an household gets infected. The members of the households in the
sample are followed-up until Tc (Tc as defined in 2.5.1). It is also possible to define the times T k

c up to which
the members of each household Hk are followed-up, but we use Tc for convenience such that max(T k

c ) = Tc.

Figure 2.5: Timelines for an household sampled at t
S

k
under case-ascertained follow-up. All the

household members enter the sample at tS
k
, the symptom onset time of the index case in the household. The

earliest and latest possible infection times for the index case are denoted by t
0 and t

00.

The marginal, full and conditional likelihoods.

Let t
0 = t

S

k
� (lmax + smax) and t

00 = t
S

k
� (lmin + smin) be the earliest and latest possible times of infection

of the index case. Figure 2.5 illustrates the timelines for an household sampled at t
S

k
. For an individual

i, i 2 Hk, i 6= k the marginal likelihood L
m

i
= P (tS

i
> t

S

k
) i.e., the probability that an household member i does

not manifest symptoms before tS
k
, the symptom onset time of the index case. From the Figure 2.5 it is clear that

for any household member i other than the index case to manifest symptoms by t
S

k
must be infected earliest

at t
0 and therefore would escape infection up to t

0. For t
S

i
> t

S

k
to hold, having escaped infection up to t

0, i
would either be infected during (t0, t00] but manifest symptoms after tS

k
or be infected after t00 (which includes

not being infected during the outbreak). Hereafter, the short-hand notations �ij(u|·) = �ij(u|Fiu�,Fju�) and
µ(u|·) = µ(u|T 1) are used.

Lm

i
= exp

⇢
�

t
0R

u=⌧0

µ(u|·)du

�"
t
00R

t
E
i =t0

exp

⇢
�

t
E
iR

u=t0

�
µ(u|·) +

P
j2Hk,

j 6=i

�ij(u|·)
�
du

�⇢
µ(tE

i
|·) +

P
j2Hk,

j 6=i

�ij(tEi |·)

�

⇥

✓
1�

t
S
kR

t
S
i =t

I
i+smin

min(t
S
k ,t

S
i ,t

E
i +lmax)R

t
I
i=t

E
i +lmin

u(tS
i
|t
I

i
)g(tI

i
|t
E

i
)dtI

i
dt

S

i

◆
dt

E

i
+ exp

⇢
�

t
00R

u=t0

�
µ(u|·) +

P
j2Hk,

j 6=i

�ij(u|·)
�
du

�#

The marginal likelihood L
m

i
is of the form Qi(t0)Ai where Qi(t0) = exp

n
�

t
0R

u=⌧0

�
µ(u|·)+

P
j2Hk,

j 6=i

�ij(u|·)
�
du

o
=

exp
n
�

t
0R

u=⌧0

µ(u|·)du
o

because there are no infected members within the household up to t
0. On using Zi(·)

and Qi(·) from equations 2.6 and 2.7, Ai is simply written as

Ai =

t
00Z

t
E
i =t0

Zi(t
E

i |Hit
E
i �)

✓
1�

t
S
kZ

t
S
i =t

I
i+smin

min(t
S
k ,t

S
i ,t

E
i +lmax)Z

t
I
i=t

E
i +lmin

u(tSi |t
I

i )g(t
I

i |t
E

i )dt
I

i dt
S

i

◆
dt

E

i +Qi(t
00
|Hit00�) (2.13)

The likelihood Li is that given in equation (2.11) which, in this case, is called the full likelihood. This is due
to Li being written as if the individual i is followed-up from the start of outbreak without accounting for the
sampling mechanism. For any non-index case household member i, i 6= k, we have t

S

i
> t

S

k
with no infected

household member up to t
0. Therefore the full likelihood Li can be factorised as Qi(t0)Bi where Bi is given as
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8
>>>>>>>><

>>>>>>>>:

min(t
S
i ,t

E
i +lmax)R

t
I
i=t

E
i +lmin

u(tS
i
|t
I

i
)g(tI

i
|t
E

i
) exp

⇢
�

t
E
iR

u=t0

�
µ(u|·) +

P
j2Hk,

j 6=i

�ij(u|·)
�
du

�⇢
µ(tE

i
|·) +

P
j2Hk,

j 6=i

�ij(tEi |·)

�
dt

I

i
, t

S
k<t

S
i Tc,

exp

⇢
�

TcR

u=t0

�
µ(u|·) +

P
j2Hk,

j 6=i

�ij(u|·)
�
du

�
, t

E
i >Tc.

(2.14)
Then the conditional likelihood for i is L

c

i
= Li/L

m

i
= Bi/Ai as Qi(t0) cancels out. Further, the full and the

marginal likelihoods for the index case are the same and is cancelled by conditioning. Thus the index-cases
within the household do not have a likelihood contribution (Yang et al. (2006), Gordon et al (2018). This
reduces the household level contribution of the likelihood to only non-index members.

2.5.4 Joint likelihood for all individuals under observation

The households are assumed to be independent under all the described observation designs. The complete-data
likelihood is then the product of household-level likelihood contributions:

Q
K

k=1
LHk .

Furthermore, in the two settings in Sections 2.5.1 and 2.5.2, each individual’s contribution to the likelihood is
conditioned on the history of all other household members in addition to the individual’s own history. This
allows the household-level contribution to likelihood to be re-organised as a product of individual likelihoods
given the history of all other household members for each day (see §2.7 of Andersen et al. (1993) for a
formal treatment and §6.5 of Davison (2003) for a heuristic treatment). Thus the likelihood is the product of
individual-level contributions to the likelihood over the observation period:

L(µ,�;FiTc , i = 1, . . . , N) =
NY

i=1

Li(µ,�;HiTc). (2.15)

In the case-ascertained follow-up design setting in Section 2.5.3, however, within the households, each indi-
vidual’s contribution to the likelihood is additionally conditioned on the index case, in particular, the earliest
possible time of infection of the index case. Besides, the index cases in the sampled households do not con-
tribute to the likelihood. These require additional book-keeping to be re-organised in the form equivalent to
equation (2.15). Thus the likelihood for the sample of households Hk, k = 1, 2, . . . ,K, is simply given as the
product of household-level contributions to the likelihoods

Q
K

k=1
L
c

Hk
, where

L
c

Hk
=

Y

i2Hk

L
c

i =
Y

i2Hk

Bi

Ai

. (2.16)

2.6 Discrete-time model

Hitherto, the model has been defined in continuous time with two transmission hazards ✓ = (µ,�) as its
parameters. In infinitesimal time intervals transmission hazards from multiple sources towards a susceptible
individual are additive. Heuristically, this would mean that in a small time interval �t, the chance of more
than one event occuring simultaneously is negligible i.e., lim�t!0 o(�t)/�t = 0. This implies that the process is
orderly (§6.5 of Davison, 2003).

In general, the time scale of the observed temporal data are in days. This, in addition to the computational ease
of inference methods, leads towards specifying the model in discrete time. The discete-time model is governed
by two transmission parameters ✓ = (c, q), which are the escape probabilities per day for a still susceptible
individual from the environment and an infectious household member, respectively. Assuming that a still sus-
ceptible individual avoids infection from multiple sources independently each day, the escape probabilities are
multiplicative. The discrete-time version of the model in Section 2.5.1 is provided in Appendix A.
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Henceforth, the discrete-time model will be used for presenting the inference procedures, model compari-
son, simulation and numerical results. Some di↵erences in implementation between the continuous-time and
discrete-time models will mentioned later when necessary.
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Table 2.1: Table of notations and their description

Component Notation Description

Outbreak timepoints
⌧
0 the time at which the environment becomes infectious
⌧
1 the time up to which the environment is infectious
⌧N the time of removal of the last infectious individual
Tc observed symptom onset time of the last symptomatic

case in completed outbreak
Ts serological sample collection time in completed outbreak
T
0
c censoring time for an outbreak in progress

Natural history
t
E

i
time of infection of a susceptible individual i

t
I

i
time of onset of infectiousness of an infected individual i

t
S

i
time of onset of symptoms of an infected individual i

t
N

i
time an infected individual i becoming non-infectious

Fit history of the process for individual i up to time t

Hit history of the process for an household with individual i
(including i) up to time t

g(tI
i
|t
E

i
) transition density for the time of onset of infectiousness (tI

i
)

given the time of infection (tE
i
) with support (lmin, lmax)

u(tS
i
|t
I

i
) transition density for the time of onset of synptoms (tS

i
) given

the time of onset of infectiousness (tI
i
) with support (smin, smax)

v(tN
i
|t
S

i
) transition density for the time of removal (tN

i
) given the time

of onset of symptoms (tS
i
) with support (nmin, nmax)

f(tN
i
|t
I

i
) transition density for the time of removal (tN

i
) given

the time of onset of infectiousness (tI
i
)

Transmission process
- in continuous time µ infection hazard from the environment to a

susceptible individual
� transmission hazard from an infectious individual

to a susceptible household member
- in discrete time c escape probability per day for a susceptible individual

from the environment
q escape probability per day for a susceptible individual

from an infectious household member

Observation process
⌘ sensitivity of symptoms for an infected individual
 specificity of symptoms for a non-infected individual
R↵,tw probability of observing a positive serology given

infection on a certain day
↵ rate of decrease in the detectability of IgM antibodies
tw threshold duration from infection to onset of antibody waning
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Chapter 3

Inference on Direct Transmission

“When the facts change, I change my opinion. What do you do, sir?”

- John Maynard Keynes

This chapter outlines the procedures to estimate the transmission parameters under Bayesian inference for the
discrete-time version of the model presented in Section 2.5.1 (see also Appendix A). The associated observed
and complete data are reviewed. Some aspects of the likelihood such as the appropriate representation of data
and missingness are discussed with reference to inference procedures. This chapter also explains in detail the
estimation procedure based on Markov chain Monte Carlo methods.

3.1 Outbreak data

In this study, observed data are assumed to consist of symptom times and serological test results y =
{(mi, t

S

i
, ai), i = 1, . . . , N}. The missing data z = {t

E

i
, i = 1, . . . , N} are the infection times. Together,

they form the complete data C = (z,y) = {(tE
i
,mi, t

S

i
, ai), i = 1, . . . , N}.

Based on the four possible combinations of observed data (presence of symptoms (mi) and serological test
results (ai)), six types of case status are defined. These case status and their corresponding complete data are
presented in Table 3.1.

Table 3.1: Table presenting the four possible combinations of symptoms and serological data (observed) that
define six types of case status. The complete data (Ci) associated with each case status are indicated. The
symptom data (mi, t

S

i
) indicate presence of symptoms and symptom times; the serological data (ai) indicate

the serological test result at time Ts.

Symptoms (mi, t
S

i
) Serology (ai) Case Status Complete data (Ci)

(i) yes positive (1) symptomatic case (tE
i
< Tc,mi = 1, tS

i
 Tc, ai = 1)

(ii) no positive (2) asymptomatic case (tE
i
< Tc,mi = 0, tS

i
=1, ai = 1)

(iii) yes negative (3) symptomatic case (or)
(4) non-case with false symptoms

(tE
i
< Tc,mi = 1, tS

i
 Tc, ai = 0)

(tE
i
> Tc,mi = 1, tS

i
 Tc, ai = 0)

(iv) no negative (5) asymptomatic case (or)
(6) non-case

(tE
i
< Tc,mi = 0, tS

i
=1, ai = 0)

(tE
i
> Tc,mi = 0, tS

i
> Tc, ai = 0)

For the transmission parameters ✓ = (c, q) to be identifiable the following are assumed to be known: (i) the
parameters that govern the observation model (⌘, ,↵, tw) and (ii) the sojourn time distributions (g̃(tI

i
� t

E

i
),

ũ(tS
i
�t

I

i
), ṽ(tN

i
�t

S

i
)). The support for the sojourn time distributions (lmin, lmax), (smin, smax) and (nmin, nmax)

have not been specified up to this point. The values pertaining to the natural history of hepatitis A virus
infection from existing literature will be used. For the discrete-time model, we use discrete uniform distributions
to model the sojourn time distributions.
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3.2 Likelihood revisited

This section presents some general aspects of the likelihood representations corresponding to partially observed
outbreak data and their relevance for inference procedures.

3.2.1 Structure of the likelihood

The underlying model for event times corresponding to partially observed outbreak is an incompletely observed

multi-state process. When the process is Markovian, they are also known as partially observed Markov processes

(or POMPs).

Equations (2.10) to (2.14) present the complete-data likelihood. It is of the form P (z,y|✓), where y =
{(mi, t

S

i
, ai), i = 1, . . . , N}, the symptom times and serology, are the observed data and z = {t

E

i
, i = 1, . . . , N},

the infection times are the missing data items.

Three reprentations of the complete-data model can be formulated for the book-keeping of the evolving process
as observed in either continuous or discrete time as follows.

(i) The population-level histories are described using number of individuals in each model state {X (t), ⌧0 
t  Tc} at a time point t during the outbreak, where X (t) = {U(t), E(t), I(t), S(t), N(t)}. This representation
is more straight-forward for state-transitions governed by Markov processes. This is because, semi-Markov
processes (with duration-dependent transitions) would require to keep track of the age-of-infection data. Fintzi
et al. (2017) call these compartment-wise trajectories as lumped processes.

Moreover, it is tedious to include any structures in the population such as households in this representation.
The two following representations are amenable to including household structure within a population.

(ii) The household-level histories are described using Pu,e,i,s,n(t), the proportion of households at time t with
the numbers of individuals in each model state within the household as in Kinyanjui et al. (2016) and House
& Keeling (2008).

(iii) The individual-level histories are described for each individual i in the population progressing through the
model state space {Xi(t), ⌧0  t  Tc} at a time point t during the outbreak. This representation is used in
the application presented in this thesis (see Section 2.2.1).

In general, the representation also concerns the choice of the latent variables that is introduced towards data-
augmentation.

3.2.2 Likelihood in presence of missing data

When missing data (or latent variables) are present, the likelihood can be written in one of the following two
forms based on the type of inference procedure and how missing values are treated. These descriptions closely
follow Celeux et al. (2006).

Complete-data likelihood
When inference on the model parameters is easier if both the observed and missing data would be known, the
joint likelihood of observed and missing data P (z,y|✓), also called the complete-data likelihood is specified.
This is particularly suitable for methods like data-augmented MCMC and EM algorithms.

For the application presented in this thesis the following factorisation further clarifies the hierarchical depen-
dence structure:

P (z,y|✓, �,�) = P (y|z, �,�)P (z|✓,�), (3.1)

where ✓ = (c, q) is the set of parameters for the transmission model, � = (⌘, ,↵, tw) is the set of parameters
governing observation of symptoms and serology, and � is the set of parameters governing the sojourn time
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distributions. Henceforward, � and � are assumed to be known and therefore dropped from the notation. The
shorter notation P (z,y|✓) = P (y|z)P (z|✓) will be used.

Observed-data likelihood
The missing data z may neither be useful for specifying and/or computing the likelihood nor be the focus of
inference. In this case, the likelihood can be integrated over z (i.e., missing data) as P (y|✓) =

R
z
P (z,y|✓)dz.

This form of the likelihood is called the observed-data likelihood or integrated likelihood. It is particularly suit-
able for simulation-based methods such as pseudo-marginal methods or particle filtering.

Celeux et al. (2006) describe a third form of likelihood called the conditional likelihood which is used when
inference on the missing data is required and therefore z is considered as an additional unknown quantity. As
this form is not relevant for the application in this thesis, it will not be discussed further.

The likelihood form, whether it is based on complete-data or observed-data model, has implications on the
procedures of sampling from the posterior and model selection.

3.3 Inference in presence of latent variables

This section describes some general aspects of sampling-based procedures that are useful towards doing prob-
abilistic inference in models with missing data or latent variables.

3.3.1 Posterior distribution

Having specified the likelihood, the next step under Bayesian inference is to obtain the posterior distribution of
the model parameters ✓ given that the data y have been observed (see equation (1.3) and its description). In
presence of latent variables or missing data z, the likelihood is specified using either observed-data or complete-
data form as described in Section 3.2.2. Then the posterior distribution is obtained in accordance with the
likelihood specification.

When using the observed-data likelihood Py|✓(y|✓), the marginal posterior can be directly obtained as P✓|y(✓|y) /
P✓(✓)Py|✓(y|✓). However, when the observed-data likelihood is not available in closed form, sampling from
the marginal posterior is not straightforword. On the other hand, when using the complete-data likelihood
Pz,y|✓(z,y|✓), the joint posterior P✓,z|y(✓, z|y) can be obtained by sampling iteratively from its corresponding
full conditional distributions (see Section 3.3.2). Henceforth the subscripts in the probability notation are
dropped and will be used only when needed for clarity.

3.3.2 Data-augmented Markov chain Monte Carlo (DA-MCMC) method

Augmenting the posterior parameter space to include the missing data (z) and simultaneously explore the
joint posterior P (✓, z|y) has been a popular choice due to the flexibility of its implementation (McKinley et al,
2014). A component-wise MCMC sampler such as the Gibbs sampler can be used when the full conditional
distributions P (z|y, ✓) and P (✓|y, z) are available.

P (✓, z|y) can be approximated by iteratively sampling z and ✓ from the following (Robert & Casella, 2000,
Tanner & Wong, 2010):

simulate z(t+1)
⇠ P (z|y, ✓(t)) ,

simulate ✓
(t+1)

⇠ P (✓|y, z(t+1)).

This procedure makes use of the complete-data likelihood form and can be seen, for example, from the full
conditional distribution for updating ✓: P (✓|y, z) / P (✓)P (y, z|✓).

The DA-MCMC method is implemented for the application in this thesis towards estimating the transmission
parameters. The sampling procedures required for its implementation are elaborated in Section 3.4.
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3.3.3 Pseudo-marginal methods

Also pseudo-marginal methods (Andrieu and Roberts, 2009) may be useful in the presence of latent variables.
As opposed to sampling from the joint posterior P (✓, z|y) using DA-MCMC, pseudo-marginal methods sample
from the marginal posterior P̂ (✓|y) using a simulation-based approximation. McKinley et al. (2014) compare
two such algorithms in the context of epidemic models: Monte Carlo within Metropolis algorithm (MCWM)
by O’Neill et al. (2000) and grouped independence Metropolis-Hastings algorithm (GIMH) by Beaumont (2003).

Both algorithms (MCWM and GIMH) use a Metropolis-Hastings (M-H) sampler to draw samples from the
marginal posterior P̂ (✓|y). Here the required (marginalised) likelihood ratio R̂ = L̂(✓0;y)/L̂(✓;y) within the
M-H ratio is obtained by a Monte Carlo (MC) estimate using an importance sampling procedure:

L̂(✓;y) =
1

M

MX

g=1

P (z(g),y|✓)

PIS(z(g),y|✓)
, (3.2)

where PIS(·) is the importance-sampling distribution and z(g) is the gth random sample from PIS(·). While
MCWM computes R̂ at every iteration of the M-H algorithm, GIMH re-uses L̂(✓;y) from the previous iteration
and only computes L̂(✓0;y) for the proposed value ✓0 at the current iteration. The pseudo-marginal methods
thus use the observed-data likelihood form.

Other simulation-based methods such as sequential Monte Carlo (SMC) or iterated-filtering (IF) can be used in
alternative model representations, for example, when the number of individuals in each state are modelled over
the duration of the outbreak (see Section 3.2.1). All of the described methods require likelihood specification.
In absence of a specified likelihood for the observed data, approximate Bayesian computation (ABC) methods
are quite useful (Kypraios et al., 2017).

3.4 Sampling from the joint posterior

This section presents a sampling scheme based on DA-MCMC for the application presented in this thesis. A
component-wise Gibbs sampler is used for the joint exploration of P (✓, z|y) where the components P (z|y, ✓)
and P (✓|y, z) are sampled using either a Gibbs step or a Metropolis-Hastings step. As mentioned in Section
2.6, the implementation of the inference scheme is for the discrete-time model with ✓ = (c, q) being escape
probabilities per day.

The observed data are symptom times and serology y = {(mi, t
S

i
, ai), i = 1, . . . , N}. The missing data are

infection times z = {t
E

i
, i = 1, . . . , N}. Together they form the complete data (z,y) = {(tE

i
,mi, t

S

i
, ai), i =

1, . . . , N}.

3.4.1 Gibbs sampler for updating infection times

The generic set-up of updating the infection times
For an individual i infected during the outbreak with an observed positive serological test result (ai = 1), the
latent (i.e., missing) infection time t

E

i
is sampled from T , the set of candidate infection times (based on the

observed symptom data), using the conditional probability

P (tEi = t|H
0
it, ✓) =

NQ
j=1

j2Hi,j 6=i

Lj(✓;H0
iTc

, t)Li(✓;H0
iTc

, t)

P

t
E
i 2T

NQ
j=1

j2Hi,j 6=i

Lj(✓;H0
iTc

, t
E

i
)Li(✓;H0

iTc
, t

E

i
)

, (3.3)

where Li is the discrete-time version of the likelihood function provided in equation 2.10.

A note on notations: Hit is the generated history based on complete-data for all household members of
individual i, including i, {(tE

j
,mj , t

S

j
, aj), j 2 Hi} (see Chapter 2). Let H

0
it

denote the history based on
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{(tE
j
,mj , t

S

j
, aj), j 2 Hi} \ {t

E

i
}. Thus at each update, tE

i
is sampled from T according to the probability on

the right hand side of (3.3). Also, in continuous time description, in absence of symptoms, the corresponding
time of symptom onset is defined as t

S

i
= 1 (see Table 3.1). For practical purpose, in discrete time, this is

defined as tS
i
= Tc + 1.

When the observed serological test result is negative (ai = 0), the latent infection time is drawn from a 2-
component mixture X + (1 � X)P (tE

i
= t|H

0
it
, ✓), where X = P (tE

i
> Tc|H

0
it
, ✓) is the probability that the

individual was not infected during the outbreak. For individuals who were not infected during the outbreak,
the infection times are set to t

E

i
> Tc.

The set of candidate infection times (T ) for an individual i infected during the outbreak is defined by the ob-
served symptom data (mi, t

S

i
). When the individual is symptomatic (mi = 1, tS

i
 Tc), T is defined based on t

S

i
.

When the individual is asymptomatic (mi = 0, tS
i
= Tc+1), T is defined by the entire duration of the outbreak.

In the discrete-time model, the number of candidate infection times is finite, i.e., T is a finite set. Thus the
denominator (normalising constant) in (3.3) is a finite sum and the probabilites for all possible infection times
(T ), given the parameters and observed values is computed. This allows a Gibbs update through direct sam-
pling from the full conditional distribution.

In the simple case when q = 1, i.e., in the absence of person-to-person transmission, (3.3) reduces to

P (tEi = t|H
0
it, q, c) =

Li(✓;H0
iTc

, t)
P

t
E
i 2T

Li(✓;H0
iTc

, t
E

i
)
. (3.4)

Updating the infection times for each combination of observed data
For each of the four combinations of observed data (see Table 3.1), the infection status and time is sampled
using equation (3.3) as follows:

(i) When yi = (mi = 1, tS
i
 Tc, ai = 1), i.e, the time of symptom onset (tS

i
) is observed and the serological test

is positive, tE
i
is drawn from the set candidate infection times T = {t

S

i
�(lmax+smax), . . . , tSi �(lmin+smin)} =

{t
0
i
, ..., t

00
i
} and (3.3) becomes

P (tEi = t|H
0
it, ✓) =

NQ
j=1

j2Hi,j 6=i

Lj(✓;H0
iTc

, t){
t+lmaxP

t
I
i=t+lmin

⌘R(Tc � t)u(tS
i
|t
I

i
)g(tI

i
|t)Zi(t|H0

it�1
)}

t
00
iP

t
E
i =t

0
i

NQ
j=1

j2Hi,j 6=i

Lj(✓;H0
iTc

, t
E

i
){

t
E
i +lmaxP

t
I
i=t

E
i +lmin

⌘R(Tc � t
E

i
)u(tS

i
|t
I

i
)g(tI

i
|t
E

i
)Zi(tEi |H

0
it
E
i �1

)}

. (3.5)

(ii) When yi = (mi = 0, tS
i
= Tc + 1, ai = 1), i.e., the symptoms are not observed but the serological test is

positive, then t
E

i
is drawn from the set of candidate infection times T = 1, 2, . . . , Tc and (3.3) becomes

P (tEi = t|H
0
it, ✓) =

NQ
j=1

j2Hi,j 6=i

Lj(✓;H0
iTc

, t)(1� ⌘)R(Tc � t)Zi(t|H0
it�1

)

TcP

t
E
i =0

NQ
j=1

j2Hi,j 6=i

Lj(✓;H0
iTc

, t
E

i
)(1� ⌘)R(Tc � t

E

i
)Zi(tEi |H

0
it
E
i �1

)

. (3.6)

(iii) When yi = (mi = 1, tS
i
 Tc, ai = 0), i.e, the time of symptom onset (tS

i
) is observed and the serological test

is negative, the individual i could be either a symptomatic case or a non-case. If was infected during the outbreak
and was symptomatic, the set of candidate infection times are T = {t

S

i
�(lmax+smax), . . . , tSi �(lmin+smin)} =

{t
0
i
, ..., t

00
i
}. Thus the probability that individual i was infected and manifested symptoms at tS

i
but antibodies

were not detectable at Tc is given by x = x1/(x1 + x2), where
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x1 =
t
00
iP

t
E
i =t

0
i

t
E
i +lmaxP

t
I
i=t

E
i +lmin

⌘(1�R(Tc � t
E

i
))u(tS

i
|t
I

i
)g(tI

i
|t
E

i
)Zi(tEi |H

0
it
E
i �1

) and x2 = (1�  )
TcQ
u=1

ei(u|Hiu�1).

A random variable X ⇠ Bin(1, x) is first drawn. If X = 1, tE
i
is drawn from T with the following conditional

probability:

P (tEi = t|H
0
it, ✓) =

NQ
j=1

j2Hi,j 6=i

Lj(✓;H0
iTc

, t){
t+lmaxP

t
I
i=t+lmin

⌘(1�R(Tc � t))u(tS
i
|t
I

i
)g(tI

i
|t)Zi(t|H0

it�1
)}

t
00
iP

t
E
i =t

0
i

NQ
j=1

j2Hi,j 6=i

Lj(✓;H0
iTc

, t
E

i
){

t
E
i +lmaxP

t
I
i=t

E
i +lmin

⌘(1�R(Tc � t
E

i
))u(tS

i
|t
I

i
)g(tI

i
|t
E

i
)Zi(tEi |H

0
it
E
i �1

)}

.

(3.7)
If X = 0, then, the individual was not infected during the outbreak and t

E

i
> Tc.

(iv) When yi = (mi = 0, tS
i
= Tc + 1, ai = 0), i.e, when the symptoms are not observed and the serological test

is negative, the individual i could be either an asymptomatic case or a non-case. If i was infected during the
outbreak and was asymptomatic, the set of candidate infection times are T = 1, 2, . . . , Tc. Thus the probabil-
ity that individual i was infected, but was neither symptomatic nor antibodies for infection were detected at

Tc is given by x = x1/(x1+x2), where x1 =
TcP

t
E
i =1

(1�⌘)(1�R(Tc�t
E

i
))Zi(tEi |H

0
it
E
i �1

) and x2 =  

TcQ
u=1

ei(u|Hiu�1).

A random variable X ⇠ Bin(1, x) is first drawn. If X = 1, tE
i
is drawn from T with the following conditional

probability:

P (tEi = t|H
0
it, ✓) =

NQ
j=1

j2Hi

Lj(✓;H0
iTc

, t)(1� ⌘)(1�R(Tc� t))Zi(t|H0
it�1

)

TcP

t
E
i =0

NQ
j=1

j2Hi

Lj(✓;H0
iTc

, t
E

i
)(1� ⌘)(1�R(Tc � t

E

i
))Zi(tEi |H

0
it
E
i �1

)

. (3.8)

If X = 0, then, the individual was not infected during the outbreak and t
E

i
> Tc.

3.4.2 Metropolis-Hastings sampler for updating transmission parameters

Parameters (✓ = (c, q)) are sampled using a random-walk Metropolis-Hastings algorithm. The proposed value
✓
0 is accepted with probability A(·) such that

A(✓0, ✓) = min

(
1,

P✓(✓0)L(✓0;HTc)k(✓|✓
0)

P✓(✓)L(✓;HTc)k(✓
0|✓)

)
(3.9)

where k(·) is the proposal distribution, P✓(·) is the prior distribution for ✓ and L(✓;HTc) is the complete-data
likelihood for the population which is the discrete-time version of (2.15). The generated history based on

complete-data for the population is HTc =
NS
i=1

HiTc .

3.4.3 Prior distributions

In the Bayesian inference framework, a prior density P✓(✓) must be specified for the transmission parameters
✓ = (c, q) and will be included in the Metropolis-Hastings sampler as indicated in equation (3.9). As c and q are
probabilities, their marginal prior densities can be specified in the form of beta distributions. For inference from
an observed outbreak data, informative priors can be specified through providing values for hyperparameters
of suitable beta distributions for c and q.
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Note that the beta distributions for marginal prior densities of the transmission parameters are only a suggestion
as they do not o↵er any advantage with respect to the functional form of the complete-data likelihood for the
population in discrete-time (see Section 3.4.5). Other distributions can also be used, especially in conjunction
with any transformation when sampling ✓ (such as the logit transformation for sampling probability parameters
in O’Neill et al., 2000).

3.4.4 Additional remarks

Updating infection times involves changing, removing and adding infection times. For the combinations of ob-
served data (i) and (ii) in Table 3.1, the corresponding sampling schemes to update infection times in Section
3.4.1 will result only in change of infection times in consecutive MCMC samples. However, for the combina-
tions of observed data (iii) and (iv), updating an infection time may result in adding or removing an infection
time (an non-case becoming an infected individual or vice-versa) in consecutive MCMC samples. These moves
results in a trans-dimensional MCMC. However, in the discrete-time model, the state-space is finite allowing a
Gibbs update through direct sampling from the full conditional distribution.

When ⌘ =  = 1, the infection status of all individuals are fully known from the observed data, which results
in fixed dimensionality of the MCMC procedure. In this case, devising a household-wise update scheme for
infection times is straightforword. A blocked Gibbs update can be constructed similar to (3.3) by jointly sam-
pling the infection times for all household members. For the J household members belonging to an household
Hk, the conditional probability infection times tE

j
, j 2 Hk is

P ({tEj , j 2 Hk}|{yj , j 2 Hk}, ✓) =

JQ
j=1

Lj(✓;HjTc)

P

t
E
1 2T1

. . .
P

t
E
J 2TJ

JQ
j=1

Lj(✓;HjTc)

. (3.10)

However, it should be noted that the expressions for larger household sizes are more cumbersome and compu-
tationally less e�cient as compared to updating individual infection times.

3.4.5 Sampling from the joint posterior in the continuous-time model

Gibbs sampler for updating parameters
When the model is specified in continuous time, the parameters ✓ = (µ,�) can be sampled using a Gibbs
sampler. This is because the parameters govern Poisson processes and can be provided with suitable gamma
priors. Such conditional densities can be directly sampled from the appropriate gamma density by exploiting
the Poisson-gamma conjugacy (O’Neill & Roberts, 1999, Streftaris & Gibson, 2004).

Metropolis-Hastings sampler for updating infection times
In discrete-time model the probabilities for sampling from candidate infection times are well-defined. In
continuous-time model the integral in the denominator which is the normalising constant would be tedious
to compute exactly. Thus a M-H sampler can be constructed for drawing infection times from the unnor-
malised density.

As pointed out in Section 3.4.4, updating infection times involves changing, removing and adding infection
times resulting in a trans-dimensional MCMC. Thus, in the continuous-time model, Jacobians associated with
trans-dimensional moves must be incorporated into the computation of M-H ratio (Forrester et al., 2007, O’Neill
& Roberts, 1999). These computations are more tedious and therefore the dicrete-time model is better suited
towards computational e�ciency.
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3.5 Computation

3.5.1 Numerical implementation

The following pseudocode is provided to implement the DA-MCMC procedure for an observed (or simulated)
dataset using a computing program such as R. In order to implement (handle memory storage and computing
time) e�ciently, one can write the demanding parts of code in a language such as C++.

Table 3.2: Pseudocode for sampling from the joint posterior using DA-MCMC

Sampling from the joint posterior

Initialise ✓
(1) = (q(1), c(1));

Initialise {t
E(1)

i
, i = 1, . . . , N}

for m in 2 to M (the number of MCMC samples)

for i in 1 to N

sample t
E(m)

i
⇠ P (TE(m)

i
|✓

(m�1)
, tE(mi)

�i
,mi, t

S

i
, ai)

where tE(mi)

�i
= {t

E(m)

1
, . . . , t

E(m)

i�1
, t

E(m�1)

i+1
, . . . , t

E(m�1)

N
, }

end

sample ✓0 ⇠ k(✓0|✓(m�1)) from the proposal

accept ✓0 with probability A(✓0, ✓(m�1)) = min

(
1, P✓(✓

0
)L(✓

0
;·)k(✓(m�1)|✓0)

P✓(✓
(m�1))L(✓(m�1);·)k(✓0|✓(m�1))

)
and {✓

(m)
 ✓

0
}

otherwise {✓
(m)
 ✓

(m�1)
}

end

Compute the marginal posterior estimates ✓̂(y) = E[✓|y] using {✓
(m)

,m = 1, . . . ,M}.

3.5.2 Estimating the transmission parameters

Having obtained the joint posterior samples {(✓(m)
, z(m)),m = 1, . . . ,M}, the required point and interval es-

timates ✓̂ and h(✓̂) for the parameter ✓ can be directly computed. For a unimodal marginal posterior of the
parameters P (✓|y), the maximum a posteriori MAP(✓) = arg max✓P (✓|y) can be computed. Similarly, the
credible intervals h(✓̂) such as the percentile interval or the highest posterior density (HPD) interval can be
computed using the posterior samples.

The procedures described up to this point are su�cient for estimating the transmission parameters ✓ = (c, q)
when the parameters governing the observation model and the sojourn time distributions are known (see Section
3.1). When any of these quantities are unavailable and are required to be jointly estimated with the transmis-
sion parameters, additional procedures need to be developed (see Sections 5.3 to 5.5 for further discussion).
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Chapter 4

Model Comparison

“We balance probabilities and choose the most likely. It is the scientific use of the imagination.”

- Sir Arthur Conan Doyle (Sherlock Holmes in The Hound of Baskervilles)

Chapter 3 presents methods for Bayesian estimation of the transmission parameters through sampling from
the joint posterior of the parameters and missing data. However, to answer the question “is there person-to-
person transmission?” from some observed outbreak data using the model of Section 2.5.1 may require more
formal methods of hypothesis testing. In this chapter, this problem of hypothesis testing is cast as a Bayesian
model comparison problem and appropriate computational methods are developed. These methods utilise the
sampling algorithms from Section 3.4.

The null hypothesis is the absence of person-to-person transmission i.e., that an infected individual cannot
infect others. This corresponds to a null model where the transmission hazard (�) of a susceptible individual
from an infectious household member is zero or the avoidance probability (q) is one. The alternative hypothesis
is the presence of person-to-person transmission and corresponds to a full model where the transmission hazard
(�) of a susceptible individual from an infectious household member is positive or the avoidance probability (q)
is less than one. It is to be noted that the parameter for person-to-person transmission lies in the boundary of
the parameter space for the null hypothesis.

4.1 Model comparison for partially observed stochastic epidemic models

Three approaches to compare stochastic epidemic models with partially observed data have been used in the
Bayesian setting: information criteria, Bayes factors and methods based on the posterior predictive distribution
(Alharthi et al, 2018). This section presents, in general, some procedures for the first two approaches.

Very often in settings like the issue dealt with in this thesis, the missing data z include unobserved infection
times and events. In some cases, the number of infections may not be exactly known based on the observed
data (Table 3.1 provides six case status from four combinations of observed data). When the parameter space
is augmented to include the missing data as in DA-MCMC, the unknown number of infections imply that the
number of parameters is not well-defined.

Model comparison methods need to account for the number of parameters whether information criteria (which
include concepts of model fit and complexity) is used or model comparison is directly based on the posterior
probability such as Bayes factors.

4.1.1 Model comparison using information criteria

In general, for competing parametric models P (y|✓), model selection using information criteria are based on
deviance D(✓) = �2 logP (y|✓) + 2 log h(y). Here h(y) is a function of data alone (a standardising term) that
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can be set as h(y) = 1 for the purpose of model comparison (Celeux et al., 2006).

Information based criteria provide information loss on using a certain model P (y|✓) with reference to an ideal
(or a theoretically true) model. The measure is directly based on deviance along with a penalty for the number
of parameters in the model. Thus both model fit and model complexity are addressed.

Akaike information criteria (AIC) is given by �2 logP (y|✓̂) + 2k = D(✓̂) + 2k where k is the number of pa-
rameters in the model and ✓̂ is a posterior point estimate, for example, ✓̂ = MAP(✓). The di↵erence in AIC
quantifies the relative information loss between the compared models. When the number of parameters is
not exactly known, as in the case where the number of infections is not exactly known when the epidemic is
partially observed, AIC cannot be used.

Deviance information criteria (DIC) overcomes the problem of unknown number of parameters by calcu-
lating an e↵ective number of parameters (pD). Following Spiegelhalter et al. (2002) and Celeux et al.
(2006), the e↵ective number of parameters is defined as the di↵erence between the posterior mean deviance
(D(✓) = E✓[�2 logP (y|✓)|y]) and the deviance at the posterior mean (D(✓̂)) i.e., pD = D(✓) �D(✓̂). Here, ✓̂
is the posterior mean (E[✓|y]), but other estimates such as MAP or posterior median can also be used in practise.

Then in a similar vein to AIC, the DIC can then be given as a measure of fit and complexity using the deviance
at posterior mean and e↵ective number of parameters as follows:

DIC = D(✓̂) + 2pD = 2D(✓)�D(✓̂). (4.1)

DIC in the presence of missing data is presented in Section 4.2.

4.1.2 Bayes factors

Bayes factors (BF) have been used in epidemic modelling for model comparison (Cauchemez et al., 2004, Knock
& O’Neill, 2014, Alharthi et al, 2018). For K competing models {Mk, k = 1, . . . ,K} with associated param-
eters ✓k, computing the marginal likelihood p(y|Mk) =

R
p(✓k)p(y|✓k)d✓k is crucial for calculating BF. This

computation is further complicated by partially observed data.

The most common method to calculate Bayes factors is by using the reversible jump MCMC (RJ-MCMC)
approach (Alharthi et al., 2018). When computing the required marginal likelihoods, RJ-MCMC explores the
union of parameter spaces defined by the K competing models (Gibson et al., 2018). However, as pointed out
in Section 3.4, RJ-MCMC approach is already required for partially observed data with unknown number of
infections even for a single model. Adding a layer of models will increase the number of trans-dimensional
moves across competing models and may render such computation infeasible (Gibson et al., 2018). Alharthi
et al. (2018) provide a power posterior approach to BF computation in the SIR model setting with partial
observation.

4.2 DIC for partially observed stochastic epidemic models

This section considers some general aspects of DIC for missing data models with refernce to epidemic modelling.
Multiple implementations of DIC for missing data exist based on observed and complete-data likelihood forms
(Celeux et al., 2006). In epidemic modelling with partial observations, DIC based on complete-data likelihood
is generally used because the observed data likelihood is not available in closed form (Gibson et al., 2018).
This is due to multiple integrals being involved in the observed data likelihood thereby rendering it analytically
intractable. Furthermore, the choice depends on where the focus of inference is placed and how the missing
data are treated.

Three implementations of DIC for complete-data likelihood (DIC4, DIC5 and DIC6) are presented in Celeux
et al. (2006), two of which (DIC4 and DIC6) have been applied towards MCMC-based inference in epidemic
modelling (Gibson et al., 2018). On computing DIC using the expression 2D(✓) � D(✓̂), the posterior mean
deviance D(✓) = �2E✓,z[log(P (y, z|✓)|y)] is identical in all threee implementations. But the deviance at the
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posterior mean D(✓̂) is interpreted based on the focus of inference, i.e., how the missing data z are treated.

While in DIC5, the missing data z are treated as additional parameters, in DIC4 and DIC6 they are treated
as nuisance quantities. Thus they are marginalised by taking expectations of the log likelihood with respect
to z in the calculation of D(✓̂). Table 4.1 presents the computations involved in D(✓̂) for DIC4, DIC5 and DIC6 .

In DIC4, the deviance at the posterior mean is calculated as D(✓̂) = �2Ez[log(P (y, z|E✓[✓|y, z])|y)]. Here the
posterior expectation E✓[✓|y, z] is a complete data estimator and is computed for each value of z (Celeux et al.,
2006). The information provided by z towards ✓ is utilised through the use of a complete-data estimator here.

In DIC6, D(✓̂) = �2Ez[log(P (y, z|✓̂(y))|y, ✓̂(y))] where ✓̂(y) is based on the marginal MAP estimator, thus
ignoring the additional information provided by z (Gibson et al., 2018). Thus the missing data z is not the
main focus of inference in DIC6 (Alharthi et al., 2018). The computation of DIC6 for the application in this
thesis is provided in detail in Section 4.3.

In DIC5, the deviance at the posterior mean is calculated as D(✓̂) = �2 logP (y, ẑ(y)|✓̂(y)). Here the posterior
estimates

�
✓̂(y), ẑ(y)

�
are directly plugged-in from the joint estimator (Celeux et al., 2006).

Table 4.1: The deviance information criteria (DIC) based on complete data likelihood: implementation of the
deviance at posterior mean based on focus of inference and their computations

DIC Estimator of posterior mean D(✓̂): Deviance at posterior mean Calculation of D(✓̂)

DIC4 ✓̂ = E✓[✓|y, z]
complete data estimator

�2Ez[log(P (y, z|E✓[✓|y, z])|y)] Samples of z are used from the joint posterior
{z(m) ⇠ P (z|✓,y),m = 1, . . . ,M}. For each
sampled value z(m), the complete-data
estimates E✓[✓|y, z(m)] are computed either
exactly (if available) or by drawing further
samples for {✓(l) ⇠ P (✓|z(m),y), l = 1, . . . , L}
towards the calculation of D(✓̂). [1]

DIC6 ✓̂ = E✓[✓|y]
marginal estimator

�2Ez[log(P (y, z|✓̂(y))|y, ✓̂(y))] Using the marginal estimate ✓̂ from the joint
posterior, samples for z ⇠ P (z|y, ✓̂) are
drawn towards the calculation of D(✓̂). [1, 2]

DIC5

�
✓̂(y), ẑ(y)

�

joint estimator
�2 logP (y, ẑ(y)|✓̂(y)) The joint estimates

�
✓̂(y), ẑ(y)

�
from the joint

posterior samples are plugged-in and no further
computations are required towards the
calculation of D(✓̂). [1]

[1] - Celeux et al. (2006), [2] - Alharthi et al. (2018)

4.3 Model comparison for the household transmission parameter

This section presents the implementation of model comparison using DIC6 for the application in this thesis.

4.3.1 Hypotheses and models

The two models are based on the hypotheses H0 : q = 1 vs. H1 : q < 1. In the continuous-time model, these
hypotheses are equivalent to H0 : � = 0 vs. H1 : � > 0.

The model for infection P (z|✓) pertaining to the null model is defined in discrete-time as

P (tEi |✓) =

(
Zi(tEi |·) = (1� c(tE

i
|⌧

1))
Qt

E
i �1

u=1
c(u|⌧1) if i is infected,

Q(Tc) =
Q

Tc
u=1

c(u|⌧1) if i is not infected.
(4.2)
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and in continuous time as

P (tEi |✓) =

8
>>><

>>>:

Zi(tEi |·) = µ(tE
i
|⌧

1) exp

⇢
�

t
E
iR

u=0

µ(u|⌧1)du

�
if i is infected,

Q(Tc) = exp

⇢
�

TcR

u=0

µ(u|⌧1)tE
i
du

�
if i is not infected.

(4.3)

The null models are of the complete-data likelihood form P (z,y|✓) = P (y|z)P (z|✓), where P (z|✓) is defined as
in (4.2) or (4.3) and P (y|z) pertains to the observation model (see equation (3.1) for a short hand notation and
also equations (2.10) and (A.8) for the complete-data likelihood corresponding to the full model in continuous
time and in discrete time, respectively).

4.3.2 Implementing DIC6

For the application in this thesis, due to the non-availability of observed data likelihood in closed form, DIC
based on the complete data likelihood P (z,y|✓) is used for model comparison. Furthermore, as the focus of
inference is only on the transmission parameters ✓ = (c, q) and not on the missing data z, DIC6 is considered
most appropriate here. It is also easier to compute than DIC4 as discussed earlier. Based on Celeux et al.
(2006), DIC6 is computed as follows:

DIC6 = 2D(✓)�D(✓̂) = �4E✓,z[log(P (y, z|✓)|y)] + 2Ez[log(P (y, z|✓̂(y))|y, ✓̂(y))]. (4.4)

The expectation in the first term, E✓,z[log(P (y, z|✓)|y)] is obtained directly from the DA-MCMC algorithm

presented in Section 3.4. Additionally, ✓̂(y) = E✓|y(✓|y) is evaluated using the same DA-MCMC run (Celeux
et al., 2006, Alharthi et al., 2018).

The expectation in the second term Ez[log(P (y, z|✓̂(y))|y, ✓̂(y))] is computed by sampling z from P (z|y, ✓) by
setting ✓ = ✓̂(y). The following describes the computation of this expectation.

Note that for small household sizes and in case of fully symptomatic infections (where the number of candidate
infection times is small) the required expectation can be computed analytically. For an household Hk with J

members we have

E
z|y,✓̂[log(PHk(y, z|✓̂))] =

Z
log

⇥
PHk(y, z|✓̂)

⇤
PHk(z|y, ✓̂)dz =

X

t
E
1 2T1

. . .

X

t
E
J 2TJ

log

"
JY

j=1

Lj(✓̂;HjTc)

#
PHk(z|y, ✓̂),

(4.5)
where PHk(z|y, ✓̂) = P (z = {t

E

j
, j 2 Hk}|{yj , j 2 Hk}, ✓̂) is calculated using equation (3.10). The expectation

for the population of K households is given by

Ez[log(P (y, z|✓̂(y))|y, ✓̂(y))] =
KX

k=1

E
z|y,✓̂[log(PHk(y, z|✓̂))]. (4.6)

For large household sizes and/or in the presence of asymptomatic infections such analytical integration is
tedious to compute. In such cases the required expectation is computed empirically as a Monte Carlo integral.
The Gibbs sampling procedure for the data-augmentation step which draws z from P (z|y, ✓̂) can be re-used.
The required expectation is computed as

Ez[log(P (y, z|✓̂(y))|y, ✓̂(y))] =

Z
log

⇥
P (y, z|✓̂)

⇤
P (z|y, ✓̂)dz. (4.7)

Using the DA-MCMC implementation from Section 3.4.1, z(g) is drawn from P (z|y, ✓̂), where z(g) = {t
E

i
, i =

1, . . . , N}
(g) are sample draws of infection times for all individuals in the population. Then a simulation

consistent estimate of Ez[log(P (y, z|✓̂(y))|y, ✓̂(y))] is given by
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Ez[log(P (y, z|✓̂(y))|y, ✓̂(y))] =
1

M 0

M
0X

g=1

log
⇥
P (y, z(g)|✓̂)

⇤
, (4.8)

where M
0 is the number of samples used for computing the required expectation.

4.4 Computation

This section presents the computational aspects in calculating DIC6 and a pseudocode is provided for calculating
all the necessary components. The algorithm to compute DIC6 is illustrated in Figure 4.1. Some directions are
provided to compute the quantity for the corresponding full and null models and on their interpretation.

4.4.1 Numerical Implementation

The following pseudocode is provided to compute DIC6 for an observed (or simulated) dataset using a com-
puting program such as R. In order to implement e�ciently (handle memory storage and computing time), one
can write the demanding parts of code in a language such as C++.

Table 4.2: Pseudocode for computing DIC6

Sampling from the joint posterior

Initialise ✓
(1) = (q(1), c(1));

Initialise {t
E(1)

i
, i = 1, . . . , N}

for m in 2 to M (the number of MCMC samples)

for i in 1 to N

sample t
E(m)

i
⇠ P (TE(m)

i
|✓

(m�1)
, tE(mi)

�i
,mi, t

S

i
, ai)

where tE(mi)

�i
= {t

E(m)

1
, . . . , t

E(m)

i�1
, t

E(m�1)

i+1
, . . . , t

E(m�1)

N
, }

end

sample ✓0 ⇠ k(✓0|✓(m�1)) from the proposal

accept ✓0 with probability A(✓0, ✓(m�1)) = min

(
1, P✓(✓

0
)L(✓

0
;·)k(✓(m�1)|✓0)

P✓(✓
(m�1))L(✓(m�1);·)k(✓0|✓(m�1))

)
and {✓

(m)
 ✓

0
}

otherwise {✓
(m)
 ✓

(m�1)
}

end

Compute ✓̂(y) = E[✓|y] using {✓
(m)

,m = 1, . . . ,M}.

Computing DIC6

Compute D(✓) = �2E✓,z|y[logP (y, z|✓)] using {(✓(m)
, tE(m)),m = 1, . . . ,M}.

Initialise {t
E(1)

i
, i = 1, . . . , N |✓̂}

for g in 2 to M’ (the number of MC samples)

for i in 1 to N

sample t
E(g)

i
⇠ P (TE(g)

i
|✓̂, tE(gi)

�i
,mi, t

S

i
, ai)

where tE(gi)

�i
= {t

E(g)

1
, . . . , t

E(g)

i�1
, t

E(g�1)

i+1
, . . . , t

E(g�1)

N
, }

end

end

Compute E
z|y,✓̂[log(P (y, z|✓̂))] as 1

M 0
P

M
0

g=1
log

⇥
P (y, z(g)|✓̂)

⇤
using the

samples {z(g) =
�
(tE(g)

i
|y, ✓̂), i = 1, . . . , N

�
, g = 1, . . . ,M 0

}.

Calculute D(✓̂) = �2E
z|y,✓̂[log(P (y, z|✓̂))] and DIC6 = 2D(✓)�D(✓̂).
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4.4.2 DIC6 for models corresponding to the hypotheses

To compute DIC6 for the null and full models (with corresponding hypotheses H0 : q = 1 vs. H1 : q < 1) their
respective likelihoods are used. The likelihood for the null model is speficied in Section 4.3.1. The likelihood for
the full model in discrete time is specified in equation (A.8) of appendix A. In the model comparison setting,
a model with lower DIC is preferred (Knock & O’Neill, 2014, Alharthi et al., 2018).

Figure 4.1: Schematic representation of the MCMC algorithms to compute DIC6. The figure
overall presents the flow of information for computing DIC6 in the present setting. The dashed box represents
the scheme of data-augmented MCMC sampling.

34



Chapter 5

Simulations and Results

“It is a capital mistake to theorise before you have all the evidence. It biases the judgement.”

- Sir Arthur Conan Doyle (Sherlock Holmes in A Study in Scarlet)

Simulations o↵er useful insights into outbreak characteristics and model properties. They are also a useful
tool for evaluating inference procedures. In Section 5.1 simulated outbreak datasets are used to understand
household final size distribution patterns. In Sections 5.2 simulations are used to generate data from a set of
scenarios, primarily involving three settings of observed symptoms (based on the sensitivity and specificity)
among others. The inference procedures presented in Chapters 3 and 4 are applied to these data in order to
evaluate their performance. Sections 5.3 to 5.5 present some aspects of the model and results related to scaling,
approximations and identifiability.

For the results presented using simulations in Sections 5.1 and 5.2, the outbreak datasets are simulated using a
discrete-time version of the model of Section 2.5.1 (see Appendix A). In the discrete-time setting, the transmis-
sion parameters c and q are per day probabilities for escaping infection from the environment and an infectious
household member, respectively.

5.1 Outbreak final size patterns in households using simulations

Outbreak datasets were simulated to study how the outbreak final size patterns in households are influenced
by varying values of the two transmission parameters c and q (see Section 1.2.2 for a description of outbreak
final size in households). A total of 500 households with sizes 1, 2 and 3 were used with proportions 0.2, 0.4
and 0.4, respectively. The environment was allowed to be infectious for 60 days (⌧1 = 60). The sojourn times
were bounded by (lmin, lmax) = (4, 10), (smin, smax) = (3, 6) and (nmin, nmax) = (2, 4).

Infections were perfectly observed with fully sensitive and fully specific symptoms. Figure 5.1 presents the final
size distributions by household size for a combination of values for c and q, with c ranging between 0.96 and
0.99 and q ranging between 0.90 and 0.99. The proportions presented are averaged from 10 simulations for
each combination of values for c and q.

Interpretation of Figure 5.1
The figure presents final size distributions as twelve blocks (four rows and three columns): each row has a fixed
value of c and each column has a fixed household size. Each block displays the final size distribution as stacked
proportions for a fixed household size and a fixed value of c. Within each block, the value of q varies with the
x-axis.

The final size distribution for households of size k gives the probabilities that some j = 0, 1, . . . , k of k household
members have been infected at the end of outbreak. A final size of 0 indicates that the household remained
uninfected throughout the outbreak.
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Figure 5.1: Final size distributions by household size for a combination of values for c and q.
The figures display the distribution (stacked proportions) of final sizes for a fixed household size and a fixed
value of c. The proportions vary over increasing values of q on the x-axis. The rows represent fixed values of
c ranging between 0.96 and 0.99. The columnns represent fixed household sizes of 1, 2 and 3. The time ⌧1

when the environment stops to be infectious is fixed to 60 days. The proportions presented are averaged from
10 simulations for each setting.

In all the blocks, the proportion of households with final sizes of 0 is constant for all values of q. This is consis-
tent with our model formulation: an household gets infected only from the environment and its corresponding
probability is governed by c (see Section 5.3 for further discussion).

Increasing the value of c (within each column) increases the proportion of households with final size 0. For
values of c less than 0.96 a negligible proportion of non-infected households (households with final size 0) were
obtained in the simulations.

The e↵ect of q pertains to households of size > 1, as it allows infections to occur based on contacts between
infectious and susceptible individuals within the household. For a fixed value of c, increasing value of q a↵ects
the distribution of final sizes � 1, in particular, decreasing the proportion of larger final sizes. However, the
proportion of households with final size 0 (non-infected households) remains the same.

Finally, the e↵ect of q can be seen with reference to c. For lower values of c, the probability that household
members are infected from the environment is higher and thus leads to higher probabilities of larger final sizes
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(as can be seen from first two rows). However, for higher values of c, the probability that household members
are infected from the environment is lower, allowing the e↵ect of q to be seen more distinctly. Here, the pro-
portion of larger final sizes decrease with increasing value of q (as can be seen from last two rows).

These combinations of values also provide insights about which values of c and q would allow the person-to-
person transmission to be clearly distinguished and therefore inferred. This is also reflected in the choice of c
and q used in simulation towards evaluating the inference procedures in Section 5.2.

5.2 Results: Inference and model comparison using simulated data

This section presents the results for the evaluation of performance of inference procedures developed for this
application, in particular, the DA-MCMC method for estimation of the transmission parameters and the model
comparison procedure using DIC6 presented in Sections 3.4 and 4.3, respectively. This performance evaluation
is done using simulated outbreak datasets from a set of simulation scenarios and are described as follows.

Outbreak time points and household size distributions in the population
The environment was allowed to be infectious for 60 days (⌧1 = 60). Tc is the last observed symptom time after
which there are no new symptomatic infections (as described in Section 2.5.1). The day of collecting serological
samples (Ts) was set to a week after the outbreak was complete (Tc +7). A total of 400 households containing
only households of size 2 were used. Alternatively, a total of 500 households with sizes 1, 2 and 3 were drawn
with proportions 0.2, 0.4 and 0.4, respectively.

Natural history of infection and observation model
The sojourn times were bounded by (lmin, lmax) = (4, 10), (smin, smax) = (3, 6) and (nmin, nmax) = (2, 4). The
threshold for start of antibody waning (tw) was set larger than ⌧

1 and the rate of decrease per day in the
detectability of antibodies (↵) was set to 0.15.

Three settings were defined based on the sensitivity and specificity of observed symptoms: 1. perfectly observed
symptoms (⌘ = 1, = 1), 2. non-sensitive but fully specific symptoms (⌘ < 1, = 1) and 3. non-sensitive and
non-specific symptoms (⌘ < 1, < 1).

Transmission parameters for inference procedures
Two parameter sets were selected for the transmission parameter (c): 0.97 and 0.99. These values also display
distinct final size patterns as can be seen in Figure 5.1. Values of c < 0.95 were not used as an unrealistically
negligible proportion of households would remain uninfected. For the full model, which refers to presence of
person-to-person transmission, the transmission parameter (q) is set to 0.95. As the null model refers to the
absence of person-to-person transmission, it does not contain q and thus q was set to 1. Uniform priors were
used for the transmission parameters c and q.

Computations for inference procedures
One dataset was simulated for each of the 24 combinations defined by the following: 3 settings based on
sensitivity and specificity of observed symptoms, 2 models defined by the hypothesis of person-to-person trans-
mission, 2 values for c and 2 distributions of household sizes (see Table 5.1). For each dataset the inference
was performed under both the full and the null models.

The inference procedure of Section 3.4 and the model comparison procedure of section 4.3 were applied on
the simulated datasets. In the analysis, the time when the environment becomes infectious (T 0) was set to
the one used in simulation (⌧0). The MCMC inference and DIC6 computations were performed using the
following set-up: the number of MCMC samples were fixed to 10,000 for all settings with a burn-in of 1,000
samples. The number of samples for computing the deviance at posterior mean was also fixed to 10,000. The
95% credible intervals, in particular, the highest posterior density (HPD) intervals are also reported from the
posterior samples of the transmission parameters.
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Table 5.1: Table of variables that define twenty four combinations of simulation scenarios used towards
evaluating the performance of parameter estimation and model comparison procedures

Variables defining simulation scenarios Notation Values

Models and their corresponding hypotheses full model (H1) q < 1
null model (H0) q = 1

Household size distribution (2) 400 households of size 2 each
(1,2,3) 500 households of sizes 1, 2 and 3 with

proportions 0.2, 0.4 and 0.4, respectively

Transmission parameters c 0.97
c 0.99
q 0.95

Sensitivity and specificity of symptoms setting 1 (⌘ = 1, = 1)
setting 2 (⌘ < 1, = 1)
setting 3 (⌘ < 1, < 1)

All computations were performed within the R 3.6.0 environment. The computationally intensive parts of
the code such as likelihood computation and Gibbs sampler routines were written in C++ and were called from
within R using the Rcpp library routines. HPD intervals were obtained using the coda library routines. All
computations were run on a personal computer. The running times for the three setting were approximately:
20 hours (setting 1 - table 5.2), 65 hours (setting 2 - table 5.3) and 75 hours (setting 3 - table 5.4).
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5.2.1 Inference and model comparison using simulated data from setting 1: Perfectly
observed symptoms

This section presents the results for the setting with perfectly observed symptoms (⌘ = 1 and  = 1). Table 5.2
presents the marginal posterior estimates of the transmission parameters in terms of means and 95% highest
posterior density (HPD) intervals. The first four datasets (1-4) were simulated under the full model (H1 : q < 1)
and the next four datasets (5-8) were simulated under the null model (H0 : q = 1). The four datasets di↵er
in household size distribution and transmission parameter values (q and c). Each dataset was fitted with both
the full and the null models (two rows each); the posterior estimates of the model parameters, the deviance
information criteria (DIC6) and the e↵ective number of parameters (pD6) are presented.

The posterior estimates of the transmission parameters (q and c) correspond to the respective values used in
simulation when inferences are made under the correct model except in dataset 2. In datasets 1-4, the value of
q is consistently estimated well below 1 and the 95% HPD interval contains the value of q used in simulation
(except in dataset 2). In datasets 5-8 the value of q is consistently estimated close to 1 and the upper limit of
the 95% HPD interval is 1 (except in dataset 5). The values of c are estimated consistently about the respective
values used in simulation under both the full model (datasets 1-4) and the null model (datasets 5-8).

For datasets simulated under the full model, the DIC6 values for the full model are smaller than the DIC6

values for the null model, except for dataset 2. For datasets simulated under the null model, the DIC6 values
are similar for both the full and the null models. The e↵ective numbers of parameters (pD6) are all positive
and consistently higher for the full model than than the null model.
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Table 5.2: Parameter estimates and DIC6 in the setting 1 with perfect observation of symptoms (⌘ = 1,  = 1). Datasets were simulated under the full
and the null models (denoted by H1 and H0) with two household size distributions and transmission parameter settings. The posterior means and 95%
highest posterior density (HPD) intervals are presented for the transmission parameters along with the deviance information criteria (DIC6) and e↵ective
number of parameters (pD6) as part of inference under each hypothesis.

Datasets Simulation settings Inference under Parameter estimate (95% HPD Interval) DIC

HH size (q, c) Hypothesis q c DIC6 pD6

Simulated under H1 : q < 1

1 (2) (0.95, 0.97) H1 0.949 (0.933, 0.964) 0.974 (0.971, 0.976) 9645.86 2.32

1 (2) (0.95, 0.97) H0 - (-, -) 0.970 (0.968, 0.972) 9728.46 1.81

2 (1,2,3) (0.95, 0.97) H1 0.966 (0.957, 0.974) 0.972 (0.970, 0.974) 13678.01 2.32

2 (1,2,3) (0.95, 0.97) H0 - (-, -) 0.968 (0.966, 0.970) 13664.62 0.68

3 (2) (0.95, 0.99) H1 0.939 (0.925, 0.953) 0.993 (0.992, 0.994) 6257.13 1.93

3 (2) (0.95, 0.99) H0 - (-, -) 0.991 (0.990, 0.992) 6479.11 1.08

4 (1,2,3) (0.95, 0.99) H1 0.953 (0.945, 0.961) 0.992 (0.991, 0.993) 9955.72 2.89

4 (1,2,3) (0.95, 0.99) H0 - (-, -) 0.989 (0.988, 0.990) 10102.69 1.27

Simulated under H0 : q = 1

5 (2) (1, 0.97) H1 0.992 (0.982, 0.999) 0.975 (0.973, 0.977) 9283.81 1.52

5 (2) (1, 0.97) H0 - (-, -) 0.974 (0.972, 0.976) 9285.33 1.12

6 (1,2,3) (1, 0.97) H1 0.996 (0.990, 1.000) 0.974 (0.972, 0.976) 12831.62 2.33

6 (1,2,3) (1, 0.97) H0 - (-, -) 0.973 (0.972, 0.975) 12827.70 1.05

7 (2) (1, 0.99) H1 0.998 (0.993, 1.000) 0.993 (0.992, 0.993) 5487.19 1.19

7 (2) (1, 0.99) H0 - (-, -) 0.992 (0.992, 0.993) 5485.42 0.99

8 (1,2,3) (1, 0.99) H1 0.998 (0.994, 1.000) 0.992 (0.991, 0.993) 7840.18 1.97

8 (1,2,3) (1, 0.99) H0 - (-, -) 0.992 (0.991, 0.993) 7835.84 0.26
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Figure 5.2 displays the posterior samples of transmission parameters for data generated from the full model
(H1 : q < 1). The density of q under the full model are well below the value 1 and are symmetric for all four
datasets. The density of c under the full model have their ranges and peaks greater than their corresponding
ones under the null model.

Figure 5.2: Posterior plots of the transmission parameters for datasets generated from the full
model (H1 : q < 1) in setting 1. The posterior samples are displayed using trace and density plots. The
plots correspond to datasets 1 to 4 of Table 5.2. Each row represents a dataset: the first 4 plots in each row are
posterior summaries from the full model (H1 : q < 1) and the last 2 plots in each row are posterior summaries
from the null model (H0 : q = 1).

Figure 5.3 displays the posterior samples of transmission parameters for data generated from the null model
(H0 : q = 1). The density of q under the full model are close to the value 1 with their peaks occuring above
0.99 and are skewed for all four datasets. The density of c, on the other hand, are peaked at similar values for
posterior samples under both the full and the null models.
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Figure 5.3: Posterior plots of the transmission parameters for datasets generated from the null
model (H0 : q = 1) in setting 1. The posterior samples are displayed using trace and density plots. The
plots correspond to datasets 5 to 8 of Table 5.2. Each row represents a dataset: the first 4 plots in each row are
posterior summaries from the full model (H1 : q < 1) and the last 2 plots in each row are posterior summaries
from the null model (H0 : q = 1).
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5.2.2 Inference and model comparison using simulated data from setting 2: Imperfectly
observed symptoms (non-sensitive)

This section presents the results for the setting 2 i.e., under a situation in which the symptoms are not fully
sensitive (⌘ < 1) but are fully specific ( = 1). Table 5.3 presents the marginal posterior estimates of the
transmission parameters in terms of means and 95% highest posterior density (HPD) intervals. The first four
datasets (1-4) were simulated under the full model (H1 : q < 1) and the next four datasets (5-8) were simulated
under the null model (H0 : q = 1). The four datasets di↵er in household size distribution and transmission
parameter values (q and c). Each dataset was fitted with both the full and the null models (two rows each);
the posterior estimates of the model parameters, the deviance information criteria (DIC6) and the e↵ective
number of parameters (pD6) are presented.

In datasets 1-4, the value of q is consistently estimated well below 1 although the 95% HPD interval contains
the value of q used in simulation in only one of the four datasets. In datasets 5-8 the value of q is consistently
estimated close to 1 and the upper limit of the 95% HPD intervals are 1 for all four datasets. The values of c
are estimated consistently about the respective values used in simulation under both the full model (datasets
1-4) and the null model (datasets 5-8).

For datasets simulated under the full model, the DIC6 values for the full model are smaller than the DIC6

values for the null model, except for dataset 2. For datasets simulated under the null model, the DIC6 values
are similar for both the full and the null models. Albeit, the e↵ective numbers of parameters (pD6) are negative
for datasets 1 and 2, and in general, the (pD6) values are not higher for the full models than their corresponding
null models. This makes the interpetation of DIC di�cult. This problem is documented for DIC6 (Celeux et
al., 2006).
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Table 5.3: Parameter estimates and DIC6 in the setting 2 with imperfect observation of symptoms (⌘<1,  = 1). Datasets were simulated under the full
and the null models (denoted by H1 and H0) with two household size distributions and transmission parameter settings. The posterior means and 95%
highest posterior density (HPD) intervals are presented for the transmission parameters along with the deviance information criteria (DIC6) and e↵ective
number of parameters (pD6) as part of inference under each hypothesis.

Datasets Simulation settings Inference under Parameter estimate (95% HPD Interval) DIC

HH size (q, c) Hypothesis q c DIC6 pD6

Simulated under H1 : q < 1

1 (2) (0.95, 0.97) H1 0.911 (0.883, 0.936) 0.967 (0.963, 0.971) 10159.05 -2.39

1 (2) (0.95, 0.97) H0 - (-, -) 0.959 (0.954, 0.964) 10298.65 -2.66

2 (1,2,3) (0.95, 0.97) H1 0.974 (0.964, 0.985) 0.961 (0.957, 0.964) 14210.21 -0.47

2 (1,2,3) (0.95, 0.97) H0 - (-, -) 0.957 (0.953, 0.961) 14188.58 -1.44

3 (2) (0.95, 0.99) H1 0.944 (0.929, 0.958) 0.993 (0.992, 0.994) 6415.23 2.59

3 (2) (0.95, 0.99) H0 - (-, -) 0.991 (0.990, 0.992) 6628.15 2.15

4 (1,2,3) (0.95, 0.99) H1 0.979 (0.972, 0.985) 0.991 (0.990, 0.992) 9681.51 0.64

4 (1,2,3) (0.95, 0.99) H0 - (-, -) 0.990 (0.989, 0.991) 9734.09 1.31

Simulated under H0 : q = 1

5 (2) (1, 0.97) H1 0.993 (0.982, 1.000) 0.973 (0.971, 0.975) 9354.52 1.02

5 (2) (1, 0.97) H0 - (-, -) 0.973 (0.970, 0.975) 9360.57 2.61

6 (1,2,3) (1, 0.97) H1 0.997 (0.991, 1.000) 0.972 (0.970, 0.974) 12934.95 1.19

6 (1,2,3) (1, 0.97) H0 - (-, -) 0.972 (0.969, 0.974) 12934.62 0.76

7 (2) (1, 0.99) H1 0.997 (0.992, 1.000) 0.993 (0.992, 0.993) 5467.93 0.95

7 (2) (1, 0.99) H0 - (-, -) 0.992 (0.992, 0.993) 5469.44 1.37

8 (1,2,3) (1, 0.99) H1 0.998 (0.995, 1.000) 0.992 (0.991, 0.993) 7887.62 1.55

8 (1,2,3) (1, 0.99) H0 - (-, -) 0.992 (0.991, 0.993) 7885.50 0.24
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Figure 5.4 displays the posterior samples of transmission parameters for data generated from the full model
(H1 : q < 1). The density of q under the full model are well below the value 1 and are symmetric for all four
datasets. The density of c under the full model have their ranges and peaks greater than their corresponding
ones under the null model.

Figure 5.4: Posterior plots of transmission parameters for datasets generated from the full
model (H1 : q < 1) in setting 2. The posterior samples are displayed using trace and density plots. The
plots correspond to datasets 1 to 4 of Table 5.3. Each row represents a dataset: the first 4 plots in each row are
posterior summaries from the full model (H1 : q < 1) and the last 2 plots in each row are posterior summaries
from the null model (H0 : q = 1).

Figure 5.5 displays the posterior samples of transmission parameters for data generated from the null model
(H0 : q = 1). The density of q under the full model are close to the value 1 with their peaks occuring above
0.995 and are skewed for all four datasets. The density of c, on the other hand, are peaked at similar values
for posterior samples under both the full and the null models.
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Figure 5.5: Posterior plots of the transmission parameters for datasets generated from the null
model (H0 : q = 1) in setting 2. The posterior samples are displayed using trace and density plots. The
plots correspond to datasets 5 to 8 of Table 5.3. Each row represents a dataset: the first 4 plots in each row are
posterior summaries from the full model (H1 : q < 1) and the last 2 plots in each row are posterior summaries
from the null model (H0 : q = 1).
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5.2.3 Inference and model comparison using simulated data from setting 3: Imperfectly
observed symptoms (neither fully sensitive nor specific)

This section presents the results for the setting 3 i.e., under a situation in which the symptoms are neither
fully sensitive nor fully specific (⌘ < 1 and  < 1). Table 5.4 presents the marginal posterior estimates of the
transmission parameters in terms of means and 95% highest posterior density (HPD) intervals. The first four
datasets (1-4) were simulated under the full model (H1 : q < 1) and the next four datasets (5-8) were simulated
under the null model (H0 : q = 1). The four datasets di↵er in household size distribution and transmission
parameter values (q and c). Each dataset was fitted with both the full and the null models (two rows each);
the posterior estimates of the model parameters, the deviance information criteria (DIC6) and the e↵ective
number of parameters (pD6) are presented.

In datasets 1-4, the value of q is consistently estimated well below 1 although the 95% HPD interval contains
the value of q used in simulation in only two of the four datasets. In datasets 5-8 the value of q is consistently
estimated close to 1 and the upper limit of the 95% HPD intervals are 1 for all four datasets. The values of c
are estimated consistently about the respective values used in simulation under the null model (datasets 5-8).
Under the full model (datasets 1-4), the posterior estimates of c are consistent with values used in simulation
when data are simulated with c = 0.99 but not so when simulated with c = 0.97.

For datasets simulated under the full model, the DIC6 values for full model are less than the DIC6 values for
null model in all four datasets. For datasets simulated under the null model, the DIC6 values are similar for
both the full and the null models. The e↵ective number of parameters (pD6) are positive except for one null
model computation in a dataset simulated under the full model. The (pD6) values are also consistently higher
for the full model than than the null model except for one dataset.
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Table 5.4: Parameter estimates and DIC6 in the setting 3 with imperfect observation of symptoms (⌘<1,  <1). Datasets were simulated under the full
and the null models (denoted by H1 and H0) with two household size distributions and transmission parameter settings. The posterior means and 95%
highest posterior density (HPD) intervals are presented for the transmission parameters along with the deviance information criteria (DIC6) and e↵ective
number of parameters (pD6) as part of inference under each hypothesis.

Datasets Simulation settings Inference under Parameter estimate (95% HPD Interval) DIC

HH size (q, c) Hypothesis q c DIC6 pD6

Simulated under H1 : q < 1

1 (2) (0.95, 0.97) H1 0.963 (0.950, 0.975) 0.994 (0.993, 0.994) 6617.35 2.80

1 (2) (0.95, 0.97) H0 - (-, -) 0.992 (0.992, 0.993) 6736.63 1.34

2 (1,2,3) (0.95, 0.97) H1 0.986 (0.979, 0.992) 0.996 (0.995, 0.996) 7477.07 2.00

2 (1,2,3) (0.95, 0.97) H0 - (-, -) 0.995 (0.995, 0.996) 7510.00 0.84

3 (2) (0.95, 0.99) H1 0.952 (0.938, 0.965) 0.995 (0.994, 0.996) 5538.45 2.40

3 (2) (0.95, 0.99) H0 - (-, -) 0.994 (0.993, 0.994) 5722.25 1.25

4 (1,2,3) (0.95, 0.99) H1 0.981 (0.974, 0.988) 0.993 (0.993, 0.994) 8543.95 1.62

4 (1,2,3) (0.95, 0.99) H0 - (-, -) 0.992 (0.992, 0.993) 8599.01 -0.21

Simulated under H0 : q = 1

5 (2) (1, 0.97) H1 0.992 (0.981, 0.999) 0.977 (0.974, 0.979) 9105.29 1.37

5 (2) (1, 0.97) H0 - (-, -) 0.976 (0.974, 0.978) 9113.71 1.85

6 (1,2,3) (1, 0.97) H1 0.996 (0.990, 1.000) 0.975 (0.973, 0.977) 12686.68 1.33

6 (1,2,3) (1, 0.97) H0 - (-, -) 0.975 (0.973, 0.976) 12687.83 0.37

7 (2) (1, 0.99) H1 0.998 (0.993, 1.000) 0.993 (0.992, 0.994) 5382.06 1.69

7 (2) (1, 0.99) H0 - (-, -) 0.993 (0.992, 0.994) 5380.12 0.91

8 (1,2,3) (1, 0.99) H1 0.998 (0.994, 1.000) 0.992 (0.992, 0.993) 7812.30 0.79

8 (1,2,3) (1, 0.99) H0 - (-, -) 0.992 (0.992, 0.993) 7812.28 0.54
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Figure 5.6 displays the posterior samples of transmission parameters for data generated from the full model
(H1 : q < 1). The density of q under the full model are well below the value 1 and are symmetric for all four
datasets. The density of c under the full model have their ranges and peaks greater than their corresponding
ones under the null model.

Figure 5.6: Posterior plots of transmission parameters for datasets generated from the full
model (H1 : q < 1) in setting 3. The posterior samples are displayed using trace and density plots. The
plots correspond to datasets 1 to 4 of Table 5.4. Each row represents a dataset: the first 4 plots in each row are
posterior summaries from the full model (H1 : q < 1) and the last 2 plots in each row are posterior summaries
from the null model (H0 : q = 1).

Figure 5.7 displays the posterior samples of transmission parameters for data generated from the null model
(H0 : q = 1). The density of q under the full model are close to the value 1 with their peaks occuring above
0.995 and are skewed for all four datasets. The density of c, on the other hand, are peaked at similar values
for posterior samples under both the full and the null models.
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Figure 5.7: Posterior plots of transmission parameters for datasets generated from the null
model (H0 : q = 1) in setting 3. The posterior samples are displayed using trace and density plots. The
plots correspond to datasets 5 to 8 of Table 5.4. Each row represents a dataset: the first 4 plots in each row are
posterior summaries from the full model (H1 : q < 1) and the last 2 plots in each row are posterior summaries
from the null model (H0 : q = 1).
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5.2.4 Summary of results on inference procedures using simulated data

Based on outbreak datasets simulated under a combination of scenarios (see Table 5.1), the results for the
posterior estimates of the transmission parameters and DIC6 are provided in Tables 5.2, 5.3 and 5.4. The
performance of the inference procedures, namely, parameter estimation using data-augmented MCMC and the
model comparison using DIC6, are presented in this section with respect to the provided results.

Performance under di↵erent observation settings
Setting 1

In setting 1, where perfectly observed symptoms (⌘ = 1 and  = 1) are assumed, the posterior estimates of
the transmission parameters (q and c) correspond to the respective values used in simulation when inferences
are made under the correct model.

For datasets simulated under the full model, the DIC6 values for the full model are smaller than the DIC6

values for the null model, except for one dataset. For datasets simulated under the null model, the DIC6 values
are similar for both the full and the null models.

Setting 2

In setting 2, where imperfectly observed symptoms (⌘ < 1 and  = 1) are assumed, i.e. under the situation of
non-sensitve but fully specific symptoms, the posterior estimates of the transmission parameter q lie well below
the value 1, although not completely consistent with values used in the simulation for datasets simulated under
the full model. However, for datasets simulated under the null model, they are completely consistent with
the values used in the simulation and always include the value 1 in their 95% HPD intervals. The posterior
estimates of c correspond to the respective values used in the simulation for datasets simulated under both the
full and the null models.

For datasets simulated under the full model, the DIC6 values for the full model are smaller than the DIC6

values for the null model, except for one dataset. For datasets simulated under the null model, the DIC6 values
are similar for both the full and the null models. For datasets simulated under the full model, when the value
of c = 0.97 in the simulation, the e↵ective number of parameters associated with DIC6 values are negative.
Negative values for the e↵ective number of parameters for DIC6 has been documented in Celeux et al. (2006).

Setting 3

In setting 3, where imperfectly observed symptoms (⌘ < 1 and  = 1) are assumed, i.e. under the situation of
non-sensitve and non-specific symptoms, for datasets simulated under the full model, the posterior estimates
of the transmission parameter q lie well below the value 1, although not completely consistent with the values
used in the simulation. The corresponding estimates for c are consistent with values used in simulation when
data are simulated with c = 0.99 but not so when simulated with c = 0.97. For datasets simulated under the
null model, the posterior estimates of the transmission parameters (q and c) correspond to the respective values
used in the simulation.

For datasets simulated under the full model, the DIC6 values for the full model are smaller than the DIC6

values for the null model, except for one dataset. For datasets simulated under the null model, the DIC6 values
are similar for both the full and the null models.

Performance under di↵erent values of c for a fixed q

For simulation under the full model, in the setting of perfectly observed symptoms (⌘ = 1,  = 1), the posterior
estimates of the transmission parameters were consistently estimated in the neighbourhood of values used in the
simulation in both simulation scenarios (q, c) = (0.95, 0.97) and (q, c) = (0.95, 0.99). However, in the settings
of imperfectly observed symptoms (⌘ < 1,  = 1 and ⌘ < 1,  < 1), the posterior estimates of the transmission
parameters were closer to the values used in the simulation for the simulation scenario of (q, c) = (0.95, 0.99)
than for the simulation scenario of (q, c) = (0.95, 0.97).

For simulation under the null model (q = 1), the posterior estimates of the transmission parameters are con-
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sistently lie in the neighbourhood of values used in the simulation in both scenarios c = 0.97 and c = 0.99.

For simulations under both the full and the null models and in both scenarios c = 0.97 and c = 0.99, the DIC6

values consistently indicated towards the correct model, i.e. the DIC6 values are consistently smaller for the
full model than the null model when the datasets are simulated under the full model in all settings and the
DIC6 values are consistently similar under both the full and the null models when the datasets are simulated
under the null model in all the three settings.

Performance under the two models that generate the datasets
For datasets simulated under the full model, the posterior estimates of the transmission parameter q lie well
below the value 1 and consistent to some extent with values used in simulation in all the three settings. The
posterior estimates of c correspond to the respective values used in simulation in all the three settings. The
DIC6 values for the full model are almost consistently smaller than the DIC6 values for the null model in all
the three settings.

For datasets simulated under the null model, the parameter estimates of q is consistently estimated in the
neighbourhood of 1, with the 95% HPD intervals containing 1 and the posterior estimates of c consistently lie
in the neighbourhood of the value used in simulation in all the three settings. The DIC6 values are consistently
similar under both the full and the null models in all the three settings.

Performance under di↵erent household size distribution
The performance of parameter estimation and DIC6 are not di↵erent between the two chosen household size
distributions, i.e. households of size of 2 and households of sizes 1, 2 and 3.

Overall performance of estimation of the transmission parameters
Overall, for datasets simulated under the null model (datasets 5-8), the posterior estimates of the transmission
parameters (q, c) are consistently estimated in the neighbourhood of the values used in simulation in all the
three settings. For datasets simulated under the full model (datasets 1-4), the posterior estimates of the trans-
mission parameters (q, c) are consistently estimated in the neighbourhood of the values used in simulation in
setting 1 (perfectly observed symptoms) and consistent to some extent with the values used in simulation in
settings 2 and 3 (imperfectly observed symptoms).

Overall performance of DIC6

Overall, the DIC6 values are consistently smaller for the full model than the null model when the datasets
are simulated under the full model (datasets 1-4) under all three observation settings. The DIC6 values are
consistently similar for both the full and the null models when the datasets are simulated under the null model
(datasets 5-8) under all three observation settings. The DIC6 values consistently indicated towards the correct
model in almost all scenarios and is deemed robust with respect to the simulation scenarios used.
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5.3 Analysis of final size of outbreak and its implications for presenting
results based on simulated data

This section presents some approximations of the model of Section 2.5.1 for the following reasons: (i) to aid
understanding of the epidemic behaviour in relation to certain model parameters and (ii) to identify any pa-
rameter redundance in the presentation of results in order to make them generalisable without being tied to
any particular set of input values for the parameters. Note that the model here correponds to continuous time
and the following parameterisation only holds as an approximation to illustrate some scaling issues and is not
referred elsewhere in this thesis.

As described in Section 2.3, µ and � are the hazards of a still susceptible individual being infected from the
environment and an infectious household member, respectively. Let ⇡c = e

�µ⌧
1
be the probability that a still

susceptible individual escapes infection from the environment during the outbreak when none of the household
members are infectious. Let ⇡h = e

��TI be the probability that a still susceptible individual escapes infection
from an infected household member whose (fixed) infectious duration is TI .

Let k = 1, 2, . . . ,K, be the possible household sizes. Let mk, k = 1, 2, . . . ,K, be the number of households of
size k in the population. The household-size distribution in the population is then given as

pk =
mkP
K

k=1
mk

, k = 1, 2, . . . ,K. (5.1)

(i) Proportion of households infected by household size

Let a be the number of household members infected from the environment in a household of size k. In fact, in
our model, the only way an household becomes infected is from the environment. Then a|k,⇡c ⇠ Bin(k, 1�⇡c)
and the probability that an household of size k is ever infected during the outbreak, (i.e., a � 1) is exactly
given by

Pk(a � 1) = 1� Pk(a = 0) = 1� ⇡kc . (5.2)

This is the probability that a household of size k is infected during an oubreak. Figure 5.1 displays the pro-
portion Pk(a = 0) = ⇡

k
c being almost constant for a fixed value of c irrespective of the value of q (although the

graph is generated from a discrete-time model wherein this probability would be Pk(a = 0) = c
k⌧

1
).

(ii) Final size of outbreak by household size

Let j be the final size in a household with k susceptible members at the start of the outbreak (i.e., j of k
members are infected over the outbreak). When the household gets infected during the outbreak, both the
environment and the infectious household members contribute to the final size within the household. Based on
Longini & Koopman (1982) and O’Neill et al. (2000) the probability that a household of size k has final size j

is given by

Pk(j|⇡c,⇡h) =

✓
k

j

◆
Pj(j)(⇡c⇡

j

h
)k�j

. (5.3)

Here (⇡c⇡
j

h
)k�j refers to the probability that some k� j uninfected individuals escape infection from the envi-

ronment and each of the j infected household members. The term Pj(j) refers to the probability that some j

individuals are infected, implicitly denoting all pathways of acquiring the infection. Although the expression
is provided for SIR models, it also holds for SEIR models.

Computing Pj(j) is a non-trivial task. For infections that only spread by direct contact, all infections from
the community can be considered as initial infections in the household (i.e., they occur only to introduce the
infection to the household). In such cases Pj(j) can be obtained in more than one ways. Longini & Koopman

(1982) provide a recursive formula Pj(j) = 1�
P

j�1

i=0
Pj(i) in such setting. O’Neill et al. (2000) provide closed

form approximations using Gontcharo↵ polynomials under di↵erent assumptions for heterogeneity in infectivity.
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Ball & Lyne (2002, 2006) and Shaw (2016) also provide a more general recursive formulation for Pk,a(j|�(k)),
where a is the number of initial infections from the community and �(k) is a household-size-dependent within-
household transmission rate.

The above formulations for Pj(j), however, consider a single epidemic chain occurring within the household
and account for all infections from the environment at the beginning of the epidemic chain. These formulations
do not account for multiple epidemic chains within the household resulting from re-initiation of infections from
the community (which is the case of the application in this thesis). A more tedious method is to explicitly
model Pj(j) using all possible epidemic chains within the household as random variables. However, with final
size data and the order of occurrence of infection events being unknown, integrating over all possible chains
may not be analytically or numerically feasible. Data augmentation procedures can be used for inference in
these settings (O’Neill, 2009, Knock & O’Neill, 2014).

(iii) Final size of outbreak in a population of households

The expected total number of individuals infected during the outbreak in the population of households is given
by

w
0 =

KX

k=1

mk

kX

j=1

jPk(j|⇡c,⇡h). (5.4)

For a population of size N =
P

K

k=1
kmk we then have w = w

0
/N as the expected proportion of individuals

infected during the outbreak in the population of households.

(iv) Implications for outbreak simulation

When there is no direct transmission, i.e. ⇡h = 1, all infections are due to the environment. Hence a lower
bound (w0

l
) for the final size (w0) can be obtained as

w
0
l
=

KX

k=1

mk

kX

j=1

j

✓
k

j

◆
(1� ⇡c)

j(⇡c)
k�j

. (5.5)

Arguing similarly, when individuals are highly infectious, the probability of avoiding infection from an infectious
household member decreases (⇡h ! 0). For a household of size k, on becoming infected with probability (1�⇡kc )
(see equation (5.2)), all k members of the household will be infected. Hence an upper bound (w0

u) for the final
size (w0) can be obtained as

w
0
u =

KX

k=1

mkk(1� ⇡
k

c ). (5.6)

On using the limits of direct transmission parameter (0 < ⇡h  1) the final size is seen to be bounded by
w

0
l
 w

0
 w

0
u where the upper and lower bounds are governed by ⇡c = e

�µ⌧
1
. Thus µ and ⌧1 jointly contribute

to the final size of the outbreak through the cumulative risk 1� ⇡c.

When multiple parameters jointly define simulation settings, the analysis such as above enable to identify
smaller parameter groups. Fixing some parameters within the groups and scaling others with respect to the
fixed parameter leads to simulation settings defined by smaller number of parameters. This allows e�cient
generalisation of the simulation settings.

From a simulation viewpoint, with respect to the role of infection from the environmnent, the parameterisation
is one-dimensional in that µ and ⇡c have a one-to-one correspondence for a fixed ⌧

1. Thus, as long as ⇡c is
constant, i.e., µ⌧1 is constant, the probability model for infection from the environment is the same, irrespective
of the individual values of µ and ⌧1. Therefore results from simulation settings can be generalised by varying
µ for fixed ⌧1.

In practise, however, ⌧1 is fixed (or approximated) in the observed data and is conditioned upon in the es-
timation of µ. As shown in the case of µ and ⇡c, one can similarly argue that � and ⇡h have a one-to-one
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correspondence for a fixed duration of infectiousness TI .

5.4 Outbreak time points and their approximations

This section discusses the outbreak time points defined for the model used in this application (see Section 2.1
and Figure 2.1) and how they are approximated in the inference procedures presented in Section 5.2. Other
ways of handling them are also discussed with reference to relevant literature.

Unobserved outbreak time points and their approximation

The time point ⌧0 when the environment becomes infectious was assumed to be known when analysing the
simulated data in Section 5.2. In practise this time point is not observed. For an observed outbreak, some time
point T

0
 min(tS

i
) � (lmin + smin), defined based on min(tS

i
), the earliest symptom time in the population,

can be used as an approximation. In this application, T 0 was set to the one used in simulation (⌧0) (see, for
example, Yang et al. (2007a) for a method to analyse outbreak data when ⌧0 is known and Yang et al. (2007b)
for application of the method to avian influenza A (H5N1) when ⌧0 is known).

The estimability of c (or equivalently µ) depends on T
0 as transmission events are intrinsically conditioned up

on this time point. The case-ascertained follow-up design in section 2.5.3 is an exception as the time period
from ⌧

0 to t
0 (the earliest possible infection time of the index case in the household) does not contribute to the

conditional likelihood.

In the context of Bayesian inference the unknown ⌧0 can also be jointly sampled along with the parameters of
interest. This requires specification of a model P (⌧0|z,y, ✓) and defining a prior distribution for ⌧0. O’Neill &
Roberts, 1999 jointly estimate the infection time of the index case in the population (a time-point with similar
implications as ⌧0) in the general stochastic epidemic model setting.

For the models of Sections 2.5.1 and 2.5.3 (completed outbreak), the time of the end of outbreak ⌧N is approx-
imated by Tc. This seems to be a reasonable approximation for the end of outbreak as no new symptomatic
infections are observed beyond Tc, especially when ⌘ ⇡ 1.

Similarly, ⌧1, the time when the environment stops being infectious, is not observed. An approximate value
T
1 can be provided given Tc is observed (for example, T 1 = Tc is used in this application). On a related note,

in the simulation scenarios, ⌧1 was chosen to be smaller than tw, the threshold for start of antibody waning
since time of infection. This was based on preliminary examinations wherein the posterior estimates of the
transmission parameters were poor when ⌧1 > tw for imperfectly observed symptoms.

5.5 Parameter redundance, identifiability and misclassification

The inference procedures in chapters 3 and 4 assume that the sojourn time distributions g(·), u(·) and v(·) and
the observation model (parameters characterising the symptom data (⌘, ) and the model for serology (↵, tw))
are fully known. In addition, the outbreak timelines are approximated by other observed timelines. Only the
transmission model parameters (µ,�) are estimated.

Identifiability
Estimation of parameters from such complex models is a non-trivial task and some questions are in order
when inferring the model parameters from data. Are there redundant parameterisations in the model which
would lead to non-unique solutions, i.e. is the model identifiable? Analysis undertaken in the previous section
describes the relationship among µ, ⌧1 and the outbreak final size. This explains why the unknown ⌧1 should
be fixed by design and approximated using T

1 instead of being estimated.
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Similar arguments could also be laid out for � and the sojourn time distributions. Yang et al. (2009) report in
an SIR model with a similar observation setting that distributions of incubation and infectious periods cannot
be jointly estimated in addition to model parameters associated with transmission.

When ⌘ = 1 and  = 1 the observational model is completely deterministic. The likelihood then corresponds
to equation (2.11) which is identifiable. On the other hand, when ⌘ < 1 but unknown, it is already complicated
due to joint identifiability of (µ,�, ⌘). Estimating these parameters depend not only on the proportion of
households with final size � 2, but also on the serological data.

In general, if the study is designed to estimate the e↵ects of covariates, vaccine or antiviral treatment e↵ects,
additional care and design considerations are required to ensure the identifiability of model parameters from
the observed data.

Misclassification
In this application, the complete data model was utilised by introducing latent infection times (tE

i
). Inference

methods using data augmentation procedures to account for latent variables can have misclassification errors

in augmented data when there is dependence among model parameters. For example, when symptoms are im-
perfectly observed, the infection times are sampled from a mixture. Dependence among c, q and t

E

i
may a↵ect

the sampled infection times. Implementing blocking strategies for updating of latent data and transmission
parameters may reduce misclassification, albeit, with additional e↵ort due to developing the required sampling
algorithms and the associated computational complexity.
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Chapter 6

Discussion and Conclusion

“How often have I said to you that when you have excluded the

impossible, whatever remains, however improbable, must be the truth?”

- Sir Arthur Conan Doyle (Sherlock Holmes in Sign of Four)

6.1 Discussion of Results

6.1.1 What was the problem?

The main aim of this thesis was to address the following question: “Can person-to-person transmission be
inferred using partially observed data from an outbreak in a population of households?”. Hepatitis A virus
infection was used to motivate the state-space of the model due to its complex natural history of infection.
As is common in such outbreaks, the partial observation of infection process is due to unobserved infection
times, presence of asymptomatic infections and not fully sensitive serological test results. We assumed that the
observations include symptom onset times and serological test results at the end of outbreak. It was further
assumed that the observed data corresponds to a completed outbreak in the entire population of households
(full cohort).

6.1.2 What has been done?

Model specification
The state-space of the model consisted of five states: susceptible, exposed, infectious, symptomatic and recov-
ered. The specification of the transmission model accounted for infection from outside the household due to
the environment and from within the household due to infectious household members. Two model parame-
ters governed the two sources of infection. The specification of the observation model accounted for observing
serological test results at the end of outbreak, proportion of symptomatic cases and their symptom onset times.

Furthermore, two models corresponding to two hypotheses for person-to-person transmission were considered:
the full model (with both sources of infection - environment and infectious household members) and the null
model (with environment as the only source of infection).

Simulation of outbreak datasets
Outbreak datasets were simulated based on the specified models for 24 combinations (2 models corresponding to
the 2 hypotheses, 3 settings based on sensitivity and specificity of symptoms, 2 sets of transmission parameter
values and 2 household size distributions in the population). After simulation of the outbreak datasets, only
information pertaining to that of partially observed outbreaks were further in statistical inference. Bayesian
inference procedures were performed on each of the 24 datasets under both the full and the null models.
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Parameter estimation and model comparison
The unknown infection times were considered as latent variables and were included in the complete-data likeli-
hood representation. Under the Bayesian inference framework, posterior estimates of the two model parameters
that govern the transmission process were obtained using Markov chain Monte Carlo (MCMC) sampling for all
the simulated datasets. The unknown infection times were also jointly sampled as part of the data-augmentation
procedure.

In addition to estimating the two transmission parameters, the two fitted models (the full and the null models)
were compared using a version of the deviance information criteria (DIC) for each dataset from the 24 combina-
tions. This version of DIC, namely DIC6, is based on missing data model that uses the complete-data likelihood
respresentation as well as having the required focus of inference (focus on the transmission parameters and not
on missing data).

6.1.3 What were the findings and their implications?

Findings
The marginal posterior estimates of the two transmission parameters were presented as mean and 95% highest
posterior density (HPD) intervals (Tables 5.2 to 5.4). The marginal posterior estimates were quite consistent
with the underlying model that generated the datasets, in that, for the datasets simulated under the null
model, the model parameter for person-to-person transmission included the null value (q = 1) in the 95%
HPD intervals in each of the 4 datasets in all 3 settings. And for the datasets simulated under the full model,
the upper limits of the 95% HPD intervals for the model parameter for person-to-person transmission were
consistently below 1.

The DIC6 values for datasets simulated under the null model were similar for both the null and the full mod-
els for all 4 datasets in each setting. This was due to the marginal posterior of q estimated correctly in the
neighbourhood of one under the null model. With similar marginal posterior estimates under both models, the
DIC6 values were similar as expected.

For datasets simulated under the full model, more often, the DIC6 values for the full model were lower than the
DIC6 values for the null model. This occurred in 3 out of 4 datasets in settings 1 and 2 (i.e. perfectly observed
symptoms and non-sensitive but fully specific symptoms) and in all 4 datasets in setting 3 (non-sensitive and
non-specific symptoms).

Implications from the findings
Results from both marginal posterior estimates of the two transmission parameters and the corresponding DIC6

values indicate towards the correct model that was used for simulating a dataset. Especially, for the datasets
simulated under the null model, the results are highly consistent. The performance of parameter estimation
and DIC6 are not di↵erent between the two chosen household size distributions (households of size of 2 and
households of sizes 1, 2 and 3). It seems plausible that these procedures would perform similarly with other
household size distributions, including those with larger household sizes than considered here.

For the datasets simulated under the full model, the results are consistent for the tansmission parameter values
(q, c) = (0.95, 0.99) in all three settings. However, for the tansmission parameter values (q, c) = (0.95, 0.97),
the results are less consistent in all three settings. The reason for this behaviour can be seen from Figure
5.1 and its interpretation in Section 5.1, i.e. the e↵ect of q is more pronounced and easily distinguished for
higher values of c such as 0.99 than a lower value 0.97. This is because, for higher values of c, the environment
merely introduces the infection to the household and the within-household transmission is propogated through
the e↵ect of q. However, for lower values of c, the environment continues to contribute to the household final
size significantly even after the initial infections within the household. Further analytical and simulation-based
studies would be required to look at the e↵ect of q per se and the ratio (q/c). It should be noted, however,
that model comparison results using DIC6 were not very di↵erent between the scenarios of c = 0.97 and c = 0.99.

The observation setting governed by sensitivity and specificity of symptoms (⌘, ) plays a key role in contribut-
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ing to the complexity of partial observation of outbreaks. This can be seen in the performance of estimation of
the two transmission parameters: the results were more consistent with values used in simulation in the per-
fectly observed setting (⌘ = 1, = 1) than in the imperfectly observed settings (⌘ < 1, = 1 and ⌘ < 1, < 1).
However, the performance of model comparison using DIC6 was consistent across all the three observation set-
tings.

For the purpose of model comparison, which is the primary aim of the application in this thesis, DIC6 consis-
tently indicates towards the correct model in almost all scenarios and is deemed robust with respect to the sim-
ulation scenarios used. Additionally, the estimation of the transmission parameters through data augmented-
MCMC procedures, which is reasonably consistent across all simulation scenarios, provides methods to sample
from the joint posterior distribution. Together, they o↵er methods to analyse partially observed outbreaks in
households for infections that closely follow the natural history used in this application and observation settings
that fall within the context of the presented simulation scenarios.

6.2 Design aspects

6.2.1 Study designs for epidemics in households

As households form important observation units in the study of infectious diseases, understanding the associ-
ated study designs is crucial to inform methods to collect data. The observation design primarily considered in
this thesis is the completed outbreak in a full cohort which is a more general set-up. The model and inference
procedures in this set-up can be further extended to any modifications in the study design.

Chapter 2 on modelling outbreak discusses some adaptations of the full cohort design. The case-ascertained
follow-up design are ubiquitous in the epidemic modelling literature as data from such designs are plentiful.
Research concerning the design aspects of such epidemic data from households are few (as outlined in Section
1.2) and need further exposition to fully understand the implications of this design.

Other design adaptations such as data from an ongoing outbreak are also important, especially when the
pathogen poses a potential for pandemic (like the case of influenza from zoonotic origins) or large scale epi-
zootics (such as foot-and-mouth diease outbreaks in the UK). Here, the need for inference on the transsmission
parameters in real-time is key for infection management and control.

It should be noted, however, that outbreak in progress and case-ascertained follow-up designs are only possible
under the assumptions that symptoms are sensitive and specific. The completed outbreak in whole population
is a more general case with respect to observation of symptoms.

6.2.2 Data observed from the outbreak

The current application assumes that observed data would include symptom times and serological test result
(based on IgM antibodies that wane over time) at a specific outbreak time point Ts. Chapter 2 provides a
model for serology also based on IgG antibodies, although not used in this application. The model can be
extended to include laboratory test data and other time-varying covariates collected over the duration of out-
break. Simulations can be performed in studying the optimal observation time points for these variables that
maximise information towards more accurate inference.

The current application assumes that the observation model and the natural history of infection are known.
While this might be reasonable to assume for endemic or well studied pathogens such as hepatitis A virus,
for a novel pathogen, this can be a challenging assumption. When these quantities are unknown, justifiable
assumptions on those quantities along with appropriate sensitivity analyses for the assumptions can be used.
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6.3 Potential extensions to data and modelling

The data described in this application can be extended to include other features. Here we consider two such
extensions: inclusion of prior immunity or vaccination and availability pathogen sequence data from individuals
infected during the outbreak.

6.3.1 Immunity and Vaccination

For some applications, it is possible that a certain proportion of the population is already immune before the
outbreak onset, especially in populations where the disease is endemic. If the immune status is not observed
for the individuals before the outbreak onset, the proportion of immunes is unknown and should be estimated.

Parameters for time-dependent vaccination can be included as covariates as briefly discussed in Section 2.3
(following equation (2.4)). In either case, whether it is to account for prior immunity or vaccination, additional
precaution must be taken in terms of observation design and model formulation to ensure that the associated
parameters are identfiable along with the transmission parameters.

6.3.2 Pathogen sequence data

Many recent outbreak datasets include pathogen genetic sequence data from infected individuals along with
event times, symptoms and laboratory test results data. When such data are available, the model can in-
clude components that account for pathogen evolution between infected individuals (for example, a metric to
compare between pathogen genetic sequences for any two individuals). This would increase the accuracy in
inferring transmission parameters. Additionally, the underlying transmission tree describing the sequence of
transmission events can be inferred (Morelli et al., 2012, Klinkenberg et al., 2017).

6.3.3 Structures within and between households

The models presented in Chapter 2 assumed homogeneity of susceptibility and infectivity. When more detailed
covariates are available to stratify individuals (for example, based on age, comorbidity, contact patterns or
immunity), the present model can be extended to a multitype model.

One of the crucial assumptions in models of Chapter 2 is that of households being independent, i.e., no trans-
mission between households. Endo et al. (2019) describes this as a pseudo-likelihood assumption wherein
interaction among households is neglected. It should be noted that more information about contacts between
households and the neighbourhood structure are required to account for between household transmission. Addi-
tional information is also required to discern infections due to between household and community transmission.

Yang et al. (2007a) and Yang et al. (2007b) use models with three parameters with respect to transmission
from the community, from those within the household or close contacts and from those outside the household or
casual contacts. This requires more specific data such as residential location (neighbourhood and household) to
estimate the parameters (Yang et al., 2007b). However, it should be noted that the natural history of infection
and observation setting in the cited studies are simpler than the ones used in the application presented in this
thesis.

6.4 Some aspects of Bayesian inference

6.4.1 Prior and posterior predictive distributions

The performance of methods developed in this thesis were tested using simulated outbreak data. The uniform
distribution was used as the priors for the two transmission parameters c and q. As pointed out in Section
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3.4.4, the transmission parameters in the continuous time model can use gamma priors in view of conjugacy
towards sampling from the posterior density.

6.4.2 Model comparison

Bayesian model comparison for partially observed stochastic epidemic models has been a growing focus of
research in recent years (Gibson et al., 2018). In this thesis, we used deviance information criteria (DIC) based
on a complete-data model representation for choosing between the full (q < 1) and the null (q = 1) models.
A key drawback that is still unaddressed in DIC in general is the possibility of obtaining negative e↵ective
numbers of parameters.

Other methods such as Bayes factors (BF) and procedures based on posterior predictive distributions have also
been used for model comparison. When compared to such methods, DIC has been considered less Bayesian
(Gibson et al., 2018) as its interpretation is not based on posterior probability directly. DIC is considered as a
measure of fit and complexity.

As pointed out in Section 4.1.2, computing BF for partially observed stochastic epidemic models is not straight-
forward as di�culties arise in implementing the required RJ-MCMC procudures. Computing BF using other
approaches such as the one in Alharthi et al. (2018) should be developed and evaluated against DIC for its
performance on model choice.

6.5 Conclusions

The presented stochastic modelling framework in Chapter 2 is useful for modelling outbreak data from first
principles based on an epidemiologically meaningful parameterisation. The outbreak data model can be adapted
to other study designs and observed variables besides the settings presented in Chapter 2. Such models yield
well to probabilistic inference methods towards estimation of model parameters and model comparison.

The data augmented Markov chain Monte Carlo procedures for sampling from the posterior distribution pre-
sented in Chapter 3 are useful in the presence of latent variables in the model. The procedures presented in
Chapter 4 are useful in computing DIC (i.e., DIC6) under complete-data representation with focus only on
the unknown model parameters, but can be extended to other focus of inference (i.e., DIC4 or DIC5). Both
the parameter estimation and model comparison procedures can be modified based on complete, observed or
conditional data model representations as described in Chapters 3 and 4.

From the results using simulated outbreak datasets, the Bayesian estimation procedures from Chapter 3 provide
estimates of transmission parameters that are quite consistent with values used in the simulation. The DIC6

presented in Chapter 4 consistently indicates towards the correct model in almost all simulation scenarios and
is robust across all the presented simulation scenarios.

The model and inference procedures are useful in inferring the presence of person-to-person transmission from
outbreak data in households. The model and inference procedures are flexible and can be modified as necessary
to the appropriate study design and focus of inference.
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Appendix A

Discrete-time transmission model and
complete-data likelihood

In discrete-time, the model is specified in the time unit of days (see Section 2.6 for details). The model formu-
lation follows that of Rampey et al. (1992).

Discrete-time transmission model (for Section 2.3)

The probability that an individual i is not infectious on a given day is denoted asWi(t|Fit�1). LetWm=1

i
(t|Fit�1)

be the probability that an individual i with symptomatic infection is not infectious on day t, given the history
Fit:

W
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(A.1)

Let Wm=0

i
(t|Fit�1) be the probability that an individual i with asymptomatic infection is not infectious on day

t, given the history Fit:
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(A.2)

where F (t|⌧) =
tP

u=⌧

f(u|⌧). Obviously, the probability of an individual i not being infectious before being

infected is given by Wi(t|Fit�1) = 1.

Let q be the probability that a still susceptible individual escapes infection from a single infectious person
within his/her household on a single day. The probability that a still susceptible individual i escapes infection
from individual j on day t is given as

qij(t|Fit�1,Fjt�1) = W
m

j (t|Fjt�1) + [1�W
m

j (t|Fjt�1)]q. (A.3)

Let c be the probability that a still susceptible individual escapes infection from the environment on a single
day. This probability c is constant as long as the environment is infectious. If the environment is infectious up
to ⌧1, we define the infectiousness of the environment at any time t as

c(t|⌧1) = 1{t>⌧1} + [1{t⌧1}]c. (A.4)

It is assumed that a susceptible individual escapes infection from all sources independently. The probability
that a still susceptible individual i escapes infection from all infective sources on day t is ei(t|Hit�1) and is
expressed as

ei(t|Hit�1) = c(t|⌧1)
Y

j2Hi,

j 6=i

qij(t|Fit�1,Fjt�1). (A.5)
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The probability that an individual is infected on day t is given by

Zi(t|Hit�1) =
t�1Y

u=⌧0

ei(u|Hiu�1){1� ei(t|Hit�1)}. (A.6)

The probability that an individual is not infected during the outbreak up to some time t is given by

Qi(t|Hit�1) =
tY

u=⌧0

ei(u|Hiu�1). (A.7)

Discrete-time complete-data likelihood (for Section 2.5.1)

The parameters of interest are ✓ = (c, q). Given the history HiTc of all household members of individual i up
to day Tc for the complete data Ci, the likelihood contribution from an individual i, Li(✓;HiTc) is,

=

8
>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>:
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(A.8)
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