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non‑targeted urine metabolomics 
and associations with prevalent 
and incident type 2 diabetes
Samira Salihovic1,2, Corey D. Broeckling3, Andrea Ganna4,5,6, Jessica E. Prenni7, 
Johan Sundström8,9, Christian Berne2, Lars Lind8, Erik Ingelsson2,10,11, Tove Fall2, 
Johan Ärnlöv12,13 & Christoph Nowak  13*

Better risk prediction and new molecular targets are key priorities in type 2 diabetes (T2D) research. 
Little is known about the role of the urine metabolome in predicting the risk of T2D. We aimed to 
use non-targeted urine metabolomics to discover biomarkers and improve risk prediction for T2D. 
Urine samples from two community cohorts of 1,424 adults were analyzed by ultra-performance 
liquid chromatography/mass spectrometry (UPLC-MS). In a discovery/replication design, three 
out of 62 annotated metabolites were associated with prevalent T2D, notably lower urine levels of 
3-hydroxyundecanoyl-carnitine. In participants without diabetes at baseline, LASSO regression in the 
training set selected six metabolites that improved prediction of T2D beyond established risk factors 
risk over up to 12 years’ follow-up in the test sample, from C-statistic 0.866 to 0.892. Our results in one 
of the largest non-targeted urinary metabolomics study to date demonstrate the role of the urine 
metabolome in identifying at-risk persons for T2D and suggest urine 3-hydroxyundecanoyl-carnitine 
as a biomarker candidate.

Type 2 diabetes mellitus (T2D) is a metabolic disease characterized by raised fasting glucose levels due to insulin 
resistance and impaired insulin production. It is a leading cause of cardiovascular disease, blindness and kidney 
 failure1. The 2017 global estimate of 425 million persons with diabetes is projected to increase by 48% to 629 
million by  20452. A continuing challenge is the identification of persons at high risk of T2D, particularly in the 
absence of established risk factors such as obesity and poor  diet3,4. This need is underscored by a 2017 survey 
by the charity Diabetes UK, where a top research priority for persons affected by T2D was to "identify people at 
high risk of type 2 diabetes and help to prevent the condition from developing"5. Another challenge has been the 
identification of currently unknown molecular mechanisms of T2D that could act as novel treatment  targets6.

Non-targeted (or untargeted) metabolomics describes the assessment of small molecules (< 1,500 Daltons in 
molecular weight) in biological specimens and comprises a broad range of peptides, carbohydrates, lipids and 
nucleic acids. Non-targeted methods such as ultra-performance liquid chromatography coupled to quadrupole-
time-of-flight mass spectrometry (UPLC-QTOFMS) capture all metabolite signals detectable by the method at 
hand without a priori selection. In an electrospray ionization source (ESI), effluents from the liquid chromatog-
raphy system are nebulized at atmospheric pressure and ionization occurs through the application of a strong 
electric field on the surface of the effluent droplets as they elute from the nebulizer. The size of the charged 
droplets diminishes as the formed molecular ions and molecular adducts travel towards the mass spectrometer 
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for analysis, collision induced dissociation, and mass detection. The accurate mass, mass spectra, and reten-
tion time of each molecular ion is matched to metabolites by comparison to internal and external standards 
or public  databases7–9. Serum and plasma metabolomics have been used to discover biomarkers and improve 
risk prediction for insulin resistance and  T2D10–13. Far less attention has been paid to the urinary metabolome. 
A genome-wide association study showed about a two-thirds overlap between urinary and plasma metabolite 
loci in the  genome14,15. One study in ~ 3,900 healthy persons found correlations between five-year change in 
glycated hemoglobin levels and baseline levels of urinary metabolites such a betaine and  trimethylamine16. A 
cross-sectional study reported 94 metabolites in plasma, urine or saliva samples that differed between persons 
with and without  T2D17. We are unaware of any published study that uses large-scale non-targeted urinary 
metabolomics for biomarker discovery or risk prediction of incident T2D.

Here, we use non-targeted UPLC-MS urinary metabolomics in two community-based cohorts of > 1,400 
Swedish adults to discover metabolites associated with prevalent T2D and to assess whether urinary metabo-
lomics improves risk prediction of incident T2D beyond an established clinical risk score.

Results
We included 789 participants of the PIVUS study  (108 prevalent cases of T2D) and 635 participants of 
the ULSAM study (89 cases of prevalent T2D). Figure 1 shows the study flow, and baseline characteristics are 
displayed in Table 1. 

In the discovery sample PIVUS, 7 out of 62 preliminarily annotated metabolites measured in both cohorts 
were associated with prevalent T2D after adjustment for sex, age and urinary creatinine at a false discovery rate 
(FDR) < 0.05: 3-methyxanthine (odds ratio, OR, per standard deviation increase and 95% confidence interval, CI, 
0.70 [0.59, 0.84], P = 7.93 × 10−5), 2-hepteneoglycine (OR, 0.70, 95% CI [0.58, 0.84], P = 1.31 × 10−4), nonanoylcar-
nitne (OR, 0.71, 95% CI [0.57, 0.88], P = 1.44 × 10−3), L-tyrosine (OR, 1.36, 95% CI [1.12, 1.66], P = 2.05 × 10−3), 
irinotecan metabolite NPC (OR, 0.76, 95% CI [0.63, 0.91], P = 3.53 × 10−3), 3-hydroxyundecanoyl-carnitine (OR, 
0.78 95% CI [0.65, 0.93], P = 4.71 × 10−3) and vildaglipitin (OR, 0.79, 95% CI [0.67, 0.93], P = 5.47 × 10−3) (Table 2).

Two of these preliminarily annotated metabolites were associated with prevalent T2D in the replication sam-
ple ULSAM at the nominal significance level: 3-hydroxyundecanoyl-carnitine (OR, 0.61, 95% CI [0.47, 0.79], 
P = 1.56 × 10−4) and nonanoylcarnitine (OR, 0.71, 95% CI [0.56, 0.89], P = 3.11 × 10−3). In-depth manual annota-
tion (Supplementary Text and Supplementary Figures 1–10) confirmed the annotation of 3-hydroxyundecanoyl-
carnitine. The second compound was annotated as the sodium adduct of nonanoylcarnitine (Supplementary 
Figures 8–13). Figure 2 shows the associations of the two replicated metabolite features in the combined cohorts 
with and without additional adjustment for T2D risk factors in the Framingham Offspring Study (FOS) diabetes 
model.

To assess associations with incident T2D, we combined both cohorts after excluding prevalent cases of T2D 
at baseline (n = 1,227) and randomly split the sample into a two-thirds training (n = 818) and one-third test set 
(n = 409). Over a maximum of 12 years′ follow-up (mean 6.32 ± 3.1 years), there were 36 and 10 incident cases 
of T2D in the training and test sets, respectively. LASSO regression in the training set that forced cohort, age, 
sex, urinary creatinine and the FOS variables into the model selected six out of the 62 metabolites as the optimal 
parsimonious model to predict risk of T2D  (C5H14S, indoleacrylic acid, sotalol, tranexamic acid, trans-ferulic 
acid, (3a,5b,7a,12a)-24-[(carboxymethyl)amino]-1,12-dihydroxy-24-oxocholan-3-yl-b-D-glucopyranosiduronic 
acid). In the holdout test set, the baseline model C statistic was 0.866 (95% CI, 0. 786–0.946, Nagelkerke’s 

Figure 1.  Study design.
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pseudo-R2 0.271), and the baseline-plus-metabolite model C was 0.892 (95% CI, 0.812–0.972, pseudo-R2 0.354; 
change in model fit likelihood ratio test, P = 0.276). Hosmer–Lemeshow test in the test sample did not reject the 
null hypothesis of good fit (baseline model P = 0.398, baseline-plus-metabolite model P = 0.257). In contrast, 
calibration plots of observed and predicted risk indicated that while the baseline model was well calibrated, the 
baseline-plus-metabolites model showed signs of underestimation of risk (Fig. 3). This discrepancy may be due 
to the small number of cases—particularly in the test set—which resulted in low statistical power of the formal 
calibration test and does not allow reliable conclusions about the merits of the model.

Discussion
In 1,424 Swedish adults enrolled in two community-based cohorts, we discovered associations between prevalent 
T2D and lower urinary levels of 3-hydroxyundecanoyl-carnitine and the sodiated adduct of nonanoyl-carnitine 
(Supplementary Text). We also found indications for improved risk prediction for incident T2D over an aver-
age 6-year follow-up period after adding six urinary metabolites to an established diabetes risk score that did 
not, however, reach statistical significance. The small number of cases demands cautious interpretation of the 
prediction results for incident T2D.

Association  between  urinary  3-hydroxyundecanoyl-carnitine  level  and  T2D.  3-hydroxyun-
decanoyl carnitine  (C18H35NO5, HMDB0061637) belongs to the group of acylcarnitines, which are essential 
organic compounds composed of a fatty acid with a carboxylic acid attached to carnitine by an ester bond that 
are essential intermediates in fatty acid metabolism. This odd-numbered C11-carnitine occurs with relatively 
low abundance in the circulation and tissues when compared to even-chain acylcarnitines. The principal origin 
of odd-numbered medium-chain acylcarnitines remains elusive; odd-chain acylcarnitines originate both, from 
branched-chain amino acid catabolism, and to a lesser extent the peroxisomal processes of fatty acid alpha 
 oxidation18. Despite the low abundance of odd-numbered acylcarnitines in biological matrices, the use of mass 
spectrometric methods has prompted the detection of C11-carnitine and other odd-numbered acylcarnitines 
in animal and human  plasma19–21,  urine20,22, as well as liver and  kidney23,24. However, the distribution of odd-
numbered acylcarnitines and other acylcarnitines between tissues, plasma, and renal excretion remains poorly 
 understood25.

Whilst levels of various acylcarnitines in the  circulation18,19 and  urine20 have been associated with increased 
risk of T2D and insulin  resistance21, there is a dearth of evidence linking specifically the odd-numbered medium-
chain C11-carnitine to diabetes. In a comprehensive analysis including > 110 acylcarnitines in plasma and urine 
of leptin-deficient (db/db) mice, an accumulation of plasma medium- and long-chain acylcarnitines was accom-
panied by a decrease in urinary odd-numbered (C7, C9, and C11) medium-chain acylcarnitine  levels20. None of 
the other seven acylcarnitines (variants of C5, C6, C8 and C10-carnitine) among the 62 automatically annotated 
metabolites in our study were statistically significantly associated with prevalent T2D (Supplementary Text).

Our study is the first in human participants to report an association between lower levels of urinary C11-car-
nitine and prevalent T2D. Lack of power to detect associations with other carnitine metabolites cannot be 
excluded, as our sample size was limited. Annotation certainty of this metabolite in our sample at Metabolomics 
Standards Initiative (MSI) confidence level 2 is comparatively good (Supplementary Text and Supplementary 
Figures 1–3), although our inability synthesize authentic standards for external validation of the annotation 
leaves some uncertainty.

Table 1.  Participant characteristics.

PIVUS ULSAM

Number of persons with/without 
prevalent T2D 108/681 89/546

Women, n (%) 404 (51.1%) 0 (0%)

Age, years 75.3 (0.2) 77.5 (0.8)

BMI, kg/m2 26.8 (4.4) 26.3 (3.4)

Fasting glucose, mmol/l 5.8 (1.6) 5.9 (1.4)

Systolic BP, mmHg 148 (22) 151 (10)

Diastolic BP, mmHg 88 (11) 81 (10)

Total cholesterol, mmol/l 5.4 (1.1) 5.4 (1.0)

Triglycerides, mmol/l 1.4 (0.7) 1.4 (0.7)

LDL cholesterol, mmol/l 3.4 (1.0) 3.5 (0.9)

HDL cholesterol, mmol/l 1.5 (0.5) 1.3 (0.3)

Current smoker, n (%) 48 (6%) 47 (7.4%)

Family history diabetes, n (%) 136 (17.2%) 83 (13.1%)

Antihypertensive medication, n (%) 358 (45.4%) 258 (40.6%)

Lipid medication, n (%) 210 (26.7%) 115 (18.1)
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Discovery (PIVUS, n = 789) Replication (ULSAM, n = 635)

Metabolite (preliminary annotation with RamClust) OR (95% CI) P value OR (95% CI) P value

3-Methylxanthine 0.70 (0.59–0.84) 7.93 × 10−5 3-Methylxanthine 0.84 (0.68–1.05) 0.125

2-Hepteneoylglycine 0.70 (0.58–0.84) 1.31 × 10−4 2-Hepteneoylglycine 1.06 (0.82–1.36) 0.681

Nonanoylcarnitine 0.71 (0.57–0.88) 1.44 × 10−3 Nonanoylcarnitine 0.71 (0.56–0.89) 3.11 × 10−3

L-Tyrosine 1.36 (1.12–1.66) 2.05 × 10−3 L-Tyrosine 1.04 (0.81–1.32) 0.769

NPC (irinotecan metabolite) 0.76 (0.63–0.91) 3.53 × 10−3 NPC (irinocetan metabolite) 0.85 (0.68–1.06) 0.154

3-hydroxyundecanoyl-carnitine 0.78 (0.65–0.93) 4.71 × 10−3 3-hydroxyundecanoyl-carnitine (C-580) 0.61 (0.47–0.79) 1.56 × 10−4

Vildagliptin 0.79 (0.67–0.93) 5.47 × 10−3 Vildagliptin 0.93 (0.73–1.19) 0.572

Methysergide 0.77 (0.64–0.94) 9.49 × 10−3 – – –

Pilocarpine 0.78 (0.65–0.95) 0.012 – – –

2-Methoxyestradiol 0.79 (0.66–0.95) 0.012 – – –

Phthalic anhydride 1.26 (1.04–1.53) 0.016 – – –

(3a,5b,7a,12a)-24-[(carboxymethyl)amino]-1,12-dihydroxy-24-oxo-
cholan-3-yl-b-D-Glucopyranosiduronic acid 1.24 (1.01–1.52) 0.044 – – –

Methylcysteine 0.85 (0.72–1.00) 0.047 – – –

L-Urobilin 1.22 (1.00–1.50) 0.053 – – –

Dihyroxy-1H-Indole-glucuronide 1.24 (0.99–1.55) 0.06 – – –

Sotalol 0.79 (0.62–1.02) 0.067 – – –

N-Stearoyl-phenylalanine 1.20 (0.98–1.46) 0.073 – – –

Glutarylcarnitine 0.85 (0.70–1.02) 0.078 – – –

3-hydroxydecanoyl-carnitine (C-580) 0.85 (0.71–1.02) 0.087 – – –

2-Octenoylcarnitine 0.87 (0.73–1.02) 0.089 – – –

Dynorphin-A 1.21 (0.97–1.50) 0.089 – – –

trans-Ferulic acid 1.19 (0.97–1.45) 0.091 – – –

3-hydroxy-2-methyl-2-sulfooxy-methyl-propanoic acid 0.84 (0.68–1.03) 0.091 – – –

C4H8O2S4 0.85 (0.71–1.03) 0.093 – – –

Glutaconylcarnitine 1.20 (0.96–1.50) 0.102 – – –

Proline-betaine 0.85 (0.70–1.04) 0.117 – – –

Codeine-6-glucuronide 0.80 (0.60–1.06) 0.119 – – –

C5H14S 1.18 (0.96–1.47) 0.123 – – –

4-Hepteneoylglycine 0.85 (0.69–1.05) 0.124 – – –

Hydralazine-pyruvate-hydrazone 0.88 (0.72–1.07) 0.193 – – –

Estrone 0.89 (0.75–1.06) 0.194 – – –

L-Proline 1.14 (0.93–1.40) 0.2 – – –

Cortexolone 0.89 (0.74–1.07) 0.207 – – –

Prednicarbate 1.14 (0.92–1.41) 0.238 – – –

Pantothenic acid 1.13 (0.92–1.38) 0.245 – – –

5-3-4-Dihydroxyphenyl-gamma-valerolactone-3-O-methyl-4-O-
glucuronide 0.91 (0.74–1.11) 0.352 – – –

Androstenedione 0.92 (0.76–1.12) 0.399 – – –

gamma-Glutamylphenylalanine 1.09 (0.89–1.34) 0.407 – – –

Chenodeoxycholic acid-glycine conjugate 1.09 (0.88–1.34) 0.43 – – –

N-acetyltryptophan 1.08 (0.88–1.34) 0.45 – – –

C4NO3P 0.92 (0.74–1.14) 0.454 – – –

2-Hexenoylcarnitine 0.93 (0.76–1.14) 0.495 – – –

Glucosamine 1.07 (0.87–1.33) 0.51 – – –

gamma-Glutamylvaline 1.06 (0.86–1.31) 0.563 – – –

Pyroglutamic acid 0.95 (0.79–1.14) 0.581 – – –

Dihydroferulic acid-4-O-glucuronide 1.06 (0.87–1.29) 0.584 – – –

Nabilone 1.05 (0.86–1.29) 0.619 – – –

Acetaminophen glucuronide 0.96 (0.79–1.17) 0.662 – – –

Ajmaline 1.04 (0.85–1.28) 0.671 – – –

7-hydroxygranisetron 1.04 (0.84–1.29) 0.699 – – –

Indoleacrylic acid 1.0 4 (0.85–1.28) 0.714 – – –

Paramethadione 0.97 (0.79–1.18) 0.747 – – –

5-Hydroxy-6-methoxyindole-glucuronide 1.03 (0.84–1.26) 0.757 – – –

Tyrosinamide 0.97 (0.79–1.19) 0.772 – – –

Continued
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Discovery (PIVUS, n = 789) Replication (ULSAM, n = 635)

Metabolite (preliminary annotation with RamClust) OR (95% CI) P value OR (95% CI) P value

Zolmitriptan 0.98 (0.80–1.20) 0.855 – – –

6b-hydroxybudesonide 1.01 (0.82–1.25) 0.893 – – –

Atenolol acid 0.99 (0.81–1.22) 0.919 – – –

Tranexamic acid 0.99 (0.81–1.21) 0.936 – – –

L-Glutamine 0.99 (0.81–1.22) 0.945 – – –

Hesperetin 1.00 (0.82–1.23) 0.985 – – –

L-Octanoylcarnitine 1.00 (0.81–1.24) 0.999 – – –

11-Hydroxyprogesterone-11-glucuronide 1.00 (0.81–1.24) 0.999 – – –

Table 2.  Associations between urinary metabolite levels and prevalent T2D in the discovery and replication 
samples in logistic regression adjusted for age, sex (for PIVUS only) and urinary creatinine per standard 
deviation unit increase in metabolite level. Metabolites associated at a false discovery rate of 5% in the 
discovery sample PIVUS were tested in ULSAM. The names reflect the initial, automated data-driven 
annotation as explained in the Methods section. The shown P values are unadjusted.

Figure 2.  Associations of the replicated urinary metabolites and prevalent T2D in the combined sample 
(n = 1,424). Results from logistic regression adjusted for age, sex, cohort and urinary creatinine (red color) 
and with additional adjustment for BMI, HDL-cholesterol, triglycerides, systolic and diastolic blood pressure, 
hypertension and family history of diabetes (blue color). Error bars denote 95% CI around odds ratios per 
standard deviation increase in urinary metabolite level.

Figure 3.  Calibration plots in the baseline FOS model (left panel) and the baseline-plus-metabolites model 
(right panel) in the test sample (n = 409).
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Associations between another urinary  carnitine metabolite and T2D.  Lower urinary levels of 
C-571 were associated with prevalent T2D both before and after additional adjustment for established T2D risk 
markers (Fig. 2). This metabolite was initially computationally annotated as N-jasmonoylisoleucine, but review 
of the spectral data strongly suggests this signal as the sodiated adduct of nonanoyl-carnitine with the associa-
tion signal possibly due to a statistical artifact (Supplementary Text, Supplementary Figures 10–15). The precur-
sor molecular ion (M + H) of nonanoyl-carnitine compound was not associated with any of the outcomes in our 
study and the signal for the sodiated adduct of nonanoylcarnitine could, in our opinion, be a statistical artefact. 
We are therefore unable to further explore the possible biology behind this association but provide detailed 
information on the annotation in the Supplementary Text and Supplementary Figures.

Strengths and Limitations.  We report the first epidemiological study of non-targeted urinary metabo-
lomics to assess the risk of prevalent and incident T2D in two independent community-based cohorts. Strict 
statistical controls for multiple testing, a discovery/replication design, over 10 years of follow-up in the ULSAM 
cohort, and the unbiased non-targeted metabolomics method are strengths of our study. Limitations include the 
limited power for incident T2D analysis and annotation uncertainties. The ULSAM cohort included only men, 
whilst the PIVUS cohort had a balanced sex ratio (all analyses were adjusted for sex). Our study used deep-
frozen urine samples collected several years before the UPLC-MS technology became available, necessitating 
analysis of spot urine samples in PIVUS and 24-h urine collections in ULSAM. Analyses were adjusted for type 
of sample collection and difference in urine concentration (using creatinine levels as a proxy), but the different 
sampling methods may have impacted the results. In the absence of external validation and reanalysis of the 
samples (that were used up in the analysis), our annotation of metabolites remains unconfirmed. Future studies 
should strive for more controlled settings with regards to the collection of urine samples.

Conclusion.  In our metabolomics study in over 1,400 adults, lower urinary levels of 3-hydroundecanoyl-
carnitine were associated with prevalent T2D. We were unable to assign molecular identities to another T2D-
associated signal, but provide extensive discussion of the mass spectral characteristics and possible identities. 
We report our complete results despite remaining annotation uncertainties as a pioneering effort to study non-
targeted urinary metabolomics and T2D without a priori selection of potential metabolites or biomarkers of 
interest, and as our explanations of the analytical pipeline makes an innovative and informative contribution 
to the field of human metabolism research. The field of non-targeted metabolomics is young and the growing 
availability of comparison structures in molecular databases will improve the identification of metabolites in the 
future.

Methods
Participants.  Uppsala Longitudinal Study of Adult Men (ULSAM). Between 1970–1973, ULSAM enrolled 
2,322 (81.7%) of all 2,841 men born between 1920–1924 who were residents of Uppsala county,  Sweden26. Regu-
lar biomedical assessments have been carried out ever since as detailed here (https ://www.pubca re.uu.se/ulsam 
/). The current study used data and a 24-h urine collection at age 77 years. Participants were followed up until 
assessment at 93 years of age or death according to the Swedish Death register. Urine metabolomics data from 
635 individuals out of 839 that attended assessment were available (missing individuals are due to missing urine 
samples or insufficient sample quality as metabolomics was carried out in the 2010s on biobank samples ob-
tained at assessment age 77 years in the early 1990ies).

Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS). In 2001, the PIVUS study (https ://
www.medsc i.uu.se/pivus /) enrolled 50% (n = 1,016) of a random sample of Uppsala community residents aged 
70 years with the aim of comparing different measures of arterial  compliance27. The current study is based on 
the assessment at age 75 years where spot urine sample were collected and participants were followed until re-
assessment at 80 years of age or death. We included urine metabolomics data from 789 participants who had 
deep-frozen urine samples of sufficient quality available at the point of analysis in the 2010s.

Non-targeted metabolomics.  Non-targeted metabolomics profiling of urine samples was carried out 
by ultra-performance liquid chromatography (UPLC) on a Waters Acquity UPLC system coupled to a Waters 
Xevo G2-Time-Of-Flight-Mass Spectrometry (TOFMS) platform at Colorado State University (Fort Collins, 
CO, USA). Data acquisition in the positive electrospray ion mode with a mass-to-charge ratio (m/z) range of 
50–1,200 at 5 Hz was alternately performed at collision energies of 6 V and 15–30 V without discrimination 
or pre-selection. Cohorts were analyzed independently in multiple batches. Every set of 20 authentic samples 
was analyzed in triplicates interspersed with procedural blanks and control samples. There were 3,352 injection 
samples in ULSAM and 3,158 samples in PIVUS. Following data processing in XCMS28, there were 4,406 features 
in ULSAM and 3,615 features in PIVUS (including the control samples). LOESS curve normalization to correct 
for shift in intensity over time and probabilistic quotient normalization (PQN) to normalize samples based on 
dilution factors obtained from the median intensity across samples were carried out. XCMS parameters used for 
peak detection were nSlaves = 200, method = centWave, ppm = 25, peakwidth = c(2:25), snthresh = 11, mzCenter-
Fun = wMean, integrate = 2, mzdiff = 0.01, prefilter = c(1,100). Peak alignment by retention time was carried out 
with the obiwarp method. Quality control included manual inspection of plots of total ion counts per sample 
and plots of peak number by retention time. Peaks were grouped with the parameters bw = 2, minfrac = 0.10, 
max = 1,000, mzwid = 0.01, sleep = 0.0001. Features with correlations across triplicate injections below 0.2 were 
removed; the triplicate peaks of features passing quality control were averaged. The final number of features was 
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4,084 in ULSAM and 3,178 in PIVUS. RAMClustR (version 1.0.4)29 was used to cluster features into spectra, 
interpretMSSpectrum30 was used to infer the molecular ion, and MS-Finder31 was used to annotate metabolites. 
Only annotated, quality-controlled metabolite features measured in both PIVUS and ULSAM were included in 
this study. Because this data-driven non-manual annotation can be liable to statistical artefacts, we refer to it as 
"preliminary/initial annotation" in the text. For all outcome-associated features, we went back to the original 
UPLC-MS data and carried out manual in-depth review to verify or refute the preliminary annotation. We 
present these validation steps for the main results of this study in the Supplementary Text and Supplementary 
Figures.

Outcome definition.  In ULSAM, diabetes was defined as fasting plasma glucose ≥ 7  mmol/L, glycated 
hemoglobin HbA1c ≥ 6.5% (48 mmol/mol), use of anti-diabetic medication according to the Swedish Prescribed 
Drug Register ATC code A10, and/or diagnosis of T2D according to the National Patient Register. In PIVUS, 
diabetes was defined as fasting plasma glucose concentration ≥ 7 mmol/L, use of anti-diabetic medication, and/
or diagnosis of T2D according to validated hospital records (whole blood glucose values were transformed to 
plasma concentrations by adding 11%). HbA1c measurements were not available in PIVUS. More information 
on the cohorts and assessments are available here https ://www.pubca re.uu.se/ulsam / (ULSAM), and here https 
://www.medsc i.uu.se/pivus / (PIVUS).s

Statistical analysis.  For association analyses with T2D, we included all 62 preliminarily annotated metab-
olites present in both cohorts and excluded all features that could not be annotated or were present in only one 
of the cohorts.  Log2-transformed metabolite signals were adjusted by ANOVA-type normalization within each 
injection run for winter season (an indicator variable for sampling during November to March) and storage time 
between sampling and UPLC-MS analysis, followed by averaging across injections.

We divided the association analysis into two parts (Fig. 1): In part 1, we used logistic regression adjusted for 
age, sex and urinary creatinine (measured with a colorimetric assay IL Test Creatinine 181672–00 on a Monarch 
2000 centrifugal analyzer [Instrumentation Laboratories, Lexington, MA, USA] in ULSAM; and with a modi-
fied Jaffe reaction on an Architext Ci8200 analyzer [Reagent 3L81, Abbot, Abbot Park, IL, USA] in PIVUS) to 
test associations between each urinary metabolite (scaled to standard deviation units) and prevalent T2D at 
baseline. Urinary creatinine was included as a covariate because it was strongly associated with the dominant 
principle components in principle component analysis (implemented as part of the XCMS normalization steps), 
and to control for between-sample variation in urine concentration and sampling method (24 h versus spot 
collection). Metabolites associated at a false discovery rate (FDR) < 0.05 in the discovery sample PIVUS were 
tested in the replication sample ULSAM. In part 2, we used LASSO L1-regularised logistic regression to select 
urinary metabolites that together improved risk prediction for incident T2D when added to the risk factors in 
the Framingham Offspring Study (FOS) diabetes risk  score32. We combined both cohorts, excluded all cases of 
prevalent T2D at baseline and randomly split the dataset into a 2/3 training and 1/3 holdout test set. The train-
ing dataset was used to develop the LASSO model by tenfold bootstrapped internal cross-validation and the 
test set was used only once to evaluate performance of the selected model with regard to risk discrimination (C 
statistic), calibration (plots of observed against predicted risk), goodness-of-fit (Hosmer–Lemeshow test) and 
explained variance (Nagelkerke’s pseudo-R2). To develop the model in the training set, we forced cohort status 
and the FOS variables (age, sex, parental history of diabetes, body mass index, blood pressure, fasting glucose, 
HDL-cholesterol, triglycerides), into the model and allowed free shrinkage on all 6 urinary metabolite regression 
coefficients. Analyses were carried out in R version 3.3.3.

Study  approval.  All participants provided written informed consent. The study was approved by the 
Regional Ethical Review Board of Uppsala University (Dnr. 251/90; 97/329; 2/605 and 2007/338 for ULSAM; 
Dnr. 00,419; 2005/M-079 and 2011/045 for PIVUS) and has been carried out in accordance with the principles 
of the Declaration of Helsinki as revised in 2008. Data handling since May 2018 has been in accordance with the 
EU protection regulation 2016/679 ("GDPR").

Data and resource availability.  Individual level data from ULSAM and PIVUS are not deposited in the 
public domain, as existing ethical permits and Swedish/EU data protection regulations do not allow this. Full 
datasets are made available to researchers who meet the criteria for confidential data access as stipulated by 
participant informed consent and institutional review board/ethics committee permission at Uppsala University 
(Uppsala, Sweden). Data access in ULSAM is granted through the Interdisciplinary Collaboration Team on Upp-
sala Longitudinal Studies (ICTUS; https ://www2.pubca re.uu.se/ULSAM /res/propo sal.htm; contact: vilmantas.
giedraitis@pubcare.uu.se). Data from the PIVUS study can be applied for at the PIVUS steering committee 
(https ://www.medsc i.uu.se/pivus /; contact: lars.lind@medsci.uu.se).

De-identified raw mass spectrometry data (without phenotype or other identifying information) and the anal-
ysis code can be obtained without prior ethical or legal approval from the main author (christoph.nowak@ki.se).

Data availability
The authors report that, for approved reasons, some access restrictions apply to the data in this study. Individual 
level data from ULSAM and PIVUS are not deposited in the public domain, as existing ethical permits do not 
allow this. Full datasets are made available to researchers who meet the criteria for confidential data access 
as stipulated by participant informed consent and institutional review board/ethics committee permission at 
Uppsala University (Uppsala, Sweden). Data access in ULSAM is granted through the Interdisciplinary Col-
laboration Team on Uppsala Longitudinal Studies (ICTUS; https ://www2.pubca re.uu.se/ULSAM /res/propo sal.

https://www.pubcare.uu.se/ulsam/
https://www.medsci.uu.se/pivus/
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htm; contact: vilmantas.giedraitis@pubcare.uu.se). Data from the PIVUS study are available from the PIVUS 
steering committee (https ://www.medsc i.uu.se/pivus /; contact: lars.lind@medsci.uu.se). De-identified raw mass 
spectrometry data (without phenotype or other identifying information) can be obtained without prior approval 
from the main author (christoph.nowak@ki.se), as can all analysis code in R.
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