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Neurons are polarized in structure with a cytoplasmic compartment extending
into dendrites and a long axon that terminates at the synapse. The high level
of compartmentalization imposes specific challenges for protein quality control in
neurons making them vulnerable to disturbances that may lead to neurological
dysfunctions including neuropsychiatric diseases. Synapse and dendrites undergo
structural modulations regulated by neuronal activity involve key proteins requiring strict
control of their turnover rates and degradation pathways. Recent advances in the
study of the unfolded protein response (UPR) and autophagy processes have brought
novel insights into the specific roles of these processes in neuronal physiology and
synaptic signaling. In this review, we highlight recent data and concepts about UPR
and autophagy in neuropsychiatric disorders and synaptic plasticity including a brief
outline of possible therapeutic approaches to influence UPR and autophagy signaling in
these diseases.
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INTRODUCTION

Neuropsychiatric disorders confine illnesses and symptoms that
are associated with brain abnormalities (Yudofsky and Hales,
1989). Patients with these disorders often have disturbances
in the regulation of their mood, emotions, social behavior,
and cognitive abilities such as memory, thought process,
inhibition, and attention. These symptoms reflect structural and
functional abnormalities that arise during the development or
due to neurological diseases such as neurodegenerative disorders,
stroke, and traumatic brain injury.

Major neurodevelopmental disorders encompass autism
spectrum disorders (ASD), Attention deficit hyperactivity
disorder (ADHD), Tics/Tourette’s syndrome (TS),
developmental coordination disorder, communication disorders,
specific learning disorders, and intellectual disability (IF;
Thapar et al., 2017). Furthermore, schizophrenia, rare genetic
syndromes, and congenital neural anomalies can be included in a
broader definition of neurodevelopmental disabilities (Rapoport
et al., 2005; Weinberger, 2017).

Neurodevelopmental disorders are most often heritable and
multifactorial, implying that both genes and non-heritable
factors contribute to the disorders (Doherty et al., 2018).
The overlap between different disorders and their constituent
symptoms is high (Gillberg, 2010). Also, neurodevelopmental
disorders are often comorbid with other psychiatric disorders
such as mood disorders and anxiety (Merikangas et al., 2015;
King, 2016). Psychiatric symptoms are also present in many
neurological disorders. For example, depression and anxiety
are common in different neurodegenerative disorders such
as Parkinson’s disorder (PD), Alzheimer’s disease (AD), and
Huntington’s disease (PD), as well as after stroke and traumatic
brain injury (Ayerbe et al., 2013; Arciniegas and Wortzel, 2014;
van Duijn et al., 2014; Zhao et al., 2016; Seppi et al., 2019; Sellers
et al., 2020).

At the cellular level, neurological disorders have been
associated with dysfunctional protein and intracellular organelle
homeostasis resulting in defective neuronal signaling and
synaptic events. Protein quality control constitutes proper
protein folding and modifications at the endoplasmic reticulum
(ER) after synthesis, as well as fine-tuned protein turnover and
degradation via the ubiquitin-proteasome system, and autophagy
machinery. Neurons exhibit a high degree of complexity and
regulate these processes locally in different sub-compartments.
In line with this, defects in the functioning of the ubiquitin-
proteasome system, ER signaling, and autophagy have been
linked to the pathology of neuropsychiatric disorders (Martínez
et al., 2018; Tomoda et al., 2019; Luza et al., 2020).

Currently, no curative medication is available for any of the
neuropsychiatric disorders. Thus, current treatment guidelines
recommend psychosocial interventions and if needed symptom
alleviating medication. Novel insights into mechanisms are
required to spur drug development. In the following sections,
we will briefly review the current knowledge about the
unfolded protein response (UPR) and autophagy in models
of neuropsychiatric diseases and the possibilities for drug
interventions and benefits for future treatments.

THE UNFOLDED PROTEIN RESPONSE

UPR is crucial for protein quality control in all cells and
has a protective function in coping with cell stress and
the accumulation of misfolded or mutant proteins in the
endoplasmic reticulum (ER). In neurons, UPR is essential
for the maintenance of neuronal adaptive capacity to the
varying growth and stress stimuli experienced over their
lifetime. UPR is involved in the pathophysiology resulting
from misfolded proteins like Tau, α-Synuclein, and Huntingtin
associated with neurodegenerative diseases (Hetz and Saxena,
2017; Lindholm et al., 2017). A growing body of evidence
has also indicated the importance of UPR in neuronal
signaling and in neuropsychiatric disorders characterized by
neurodevelopmental and synaptic deficits (Martínez et al.,
2018). Initiation of UPR results in a set of responses aimed
towards reducing the proteostasis burden on ER machinery
by halting protein translation and increasing the protein
folding capacity via transcriptional induction of chaperones and
components of ER machinery. In some cases, the proteostasis
burden on the ER exceeds the limit manageable and leads to
apoptotic signaling as observed in neurodegenerative and other
diseases (Lindholm et al., 2017). Three main transmembrane
receptors are present in the ER, inositol-requiring protein
1α (IRE1α), protein kinase RNA-like endoplasmic reticulum
kinase (PERK), and activating transcription factor 6 (ATF6)
that become activated during the UPR (see Figure 1). The
chaperone, Binding-immunoglobulin protein/78 kDa glucose-
regulated protein (BiP/Grp78) is normally associated with the
luminal parts of these proteins, keeping them in their inactive
state. Upon accumulation of mutant or misfolded proteins
in the ER lumen, BiP is released and the different receptors
are activated on a certain time scale (Lindholm et al., 2017;
Martínez et al., 2018). This culminates in the transcriptional
reprogramming of the cell to combat the ensuing ER stress
(Han and Kaufman, 2017). Also, the UPR plays a role in
neuronal signaling and synaptic neurotransmission. Most of the
therapeutic strategies developed against ER stress have focused
onmodulating the UPR signaling in neurodegenerative disorders
like HD, Parkinson’s disease (PD), and Amyotrophic Lateral
Sclerosis (ALS; Hetz and Saxena, 2017; Lindholm et al., 2017).
Recent studies have advanced our knowledge of the importance
of UPR in the pathophysiology associated with neuropsychiatric
disorders. The following provides a brief account on the
functioning of UPR signaling cascades and their involvement in
neuropsychiatric disorders.

UPR IN NEUROPSYCHIATRIC DISORDERS

Synaptic modulation requires a constant turnover of
specific proteins and vesicles involved in the regulation of
neurotransmission. The UPR via effects on protein synthesis
is indirectly involved in the regulation of synaptic architecture
and neuronal signaling. Mutations in the synaptic proteins,
neuroligin3, and contactin-associated protein-like 2 (CASPR2),
cause retention of these misfolded proteins in the ER that
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FIGURE 1 | Involvement of unfolded protein response (UPR) in neuropsychiatric disorders. UPR is a major pathway in protein quality control in cells including
neurons and is characterized by signaling cascades in the ER, mediated by the protein sensors, PERK, IRE1α, and activating transcription factor 6 (ATF6). Activation
of PERK by autophosphorylation leads to phosphorylation of eukaryotic initiation factor 2 α (eIF2α), reducing the synthesis of critical synaptic proteins in neurons that
affects memory processes and synaptic plasticity associated with intellectual disability, cognition, and addiction (Trinh et al., 2014; Placzek et al., 2016). PERK/eIF2α

has also been linked to the pathophysiology of autism spectrum disorder (ASD) and mutant Neuroligin3 induced UPR and to anxiety-like behavior and GABAergic
neuron damage in the amygdala (Ulbrich et al., 2016; Trobiani et al., 2018). IRE1α upon activation dimerizes and auto-phosphorylates which activates its kinase and
RNase domain. The RNase domain further performs the unconventional splicing of XBP1 mRNA, resulting in spliced XBP1 mRNA that translates into a potent
transcription factor, XBP1s (Uemura et al., 2009). XBP1 polymorphism in its promoter region has been associated with, Schizophrenia (SCZ), bipolar disorder (BD),
and depression (Kakiuchi et al., 2003; Watanabe et al., 2006; Grunebaum et al., 2009). XBP1s also upregulates brain-derived neurotrophic factor (BDNF) that is a
major factor involved in synaptic plasticity in health and disease. Activation of Protein kinase A (PKA) via cyclic AMP by different agents in the brain can in turn
influence IRE1α (Saito et al., 2018). Inhibition of IRE1α ameliorated the social behavior deficits, a commonly observed trait in some neuropsychiatric disorders (Crider
et al., 2018). Upon UPR induction, ATF6 is translocated to the Golgi apparatus for further processing by Site-1 and Site-2 proteases (S1P and S2P, respectively),
leading to the release of amino-terminal fragment ATF6f with transcription factor functions. The expression of a mutant CASPR2 associated with ASD was shown to
increase ATF6 (Falivelli et al., 2012; Canali et al., 2018). The precise role of ATF6 signaling in neuropsychiatric disorders warrants further investigations.

is associated with ASD (Ulbrich et al., 2016; Canali et al.,
2018). Induction of the UPR or its signaling cascades have
been linked to pathologies associated with neuropsychiatric
and cognitive deficits like memory consolidation defects;
ASD; schizophrenia; post-traumatic stress disorders; stress-
induced mental disorders; bipolar disorder; and impaired
social behavior (Grunebaum et al., 2009; Falivelli et al., 2012;
Di Prisco et al., 2014; Ulbrich et al., 2016; Wen et al., 2016;
Crider et al., 2017; Dong et al., 2018; Shen et al., 2019).

The precise mechanisms and molecules contributing to the
pathophysiology of these neuropsychiatric disorders are
incompletely understood.

PERK SIGNALING

Upon UPR induction, PERK undergoes oligomerization and
phosphorylation that in turn activates the eukaryotic initiation
factor 2α (eIF2α). Phosphorylated eIF2α inhibits the translation
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of proteins to reduce the protein load on the ER. On the
other hand, the translation of specific mRNAs like ATF4 with
an upstream open reading frame in their 5′ UTR is increased
(Cnop et al., 2017). ATF4 encodes a transcription factor
leading to an upregulation of genes like C/EBP Homologous
Protein (CHOP), Growth arrest and DNA damage-inducible
protein (GADD34), and ER protein folding chaperones, in
addition to those associated with metabolic regulation (Han
and Kaufman, 2017). GADD34 is a protein phosphatase
that dephosphorylates eIF2α, establishing a feedback loop in
UPR signaling, and restoring protein synthesis (Hetz and
Papa, 2018). Also, PERK can phosphorylate nuclear factor
erythroid 2-related factor 2 (Nrf2) to regulate oxidative stress
responses (Cullinan and Diehl, 2004).

PERK/eIF2α signaling plays an important role in regulating
neuronal protein synthesis and synaptic plasticity. Thus,
inhibiting PERK locally in the hippocampus, using the
compoundGSK2606414 improvedmemory in youngmice, while
ameliorating memory defects in aged mice (Sharma et al., 2018).
In neuronal PC12 cells, expressing the autism-linked mutant
R451C neuroligin3 PERK and other UPR signals were activated
(Ulbrich et al., 2016). In a mouse knock-in model for this mutant
neuroligin3, UPR was activated specifically in the cerebellum
with an increased excitatory current in Purkinje cells, that
was restored to normal levels upon PERK inhibition (Trobiani
et al., 2018). More studies are required to understand how the
mutant neuroligin3 induced UPR activation is related to ASD
associated synaptic pathologies. PERK has also been linked to
stress-induced anxiety, and reducing PERKwas found tomitigate
ER stress-induced GABAergic neuron damage in rat basolateral
amygdala (Wang S. et al., 2019).

Studies employing gene deleted, knock-out (KO) mice for
PERK have been particularly rewarding to reveal its role in
synaptic plasticity and functions. Hippocampus late long-term
potentiation (L-LTP), inhibited by rapamycin acting on the
mammalian target of rapamycin complex 1 (mTORC1), was
reversed in the PERK KO mice. Mechanistically, the PERK
KO mice displayed no alterations in mTORC1 signaling but
showed reduced phosphorylation of eukaryotic elongation factor
2 (eEF2) with increased protein translation (Zimmermann et al.,
2018). These results point to the role of PERK in mTORC1-
independent L-LTP via its effects on eEF2-mediated translation.

In another study, the deletion of PERK in the mouse
forebrain resulted in decreased p-eIF2α and ATF4 levels
accompanied by impairments related to information processing
and behavior flexibility in these mice. The levels of PERK
and ATF4 were also reduced in the frontal cortex in
postmortem samples from schizophrenic patients (Trinh et al.,
2012). Together these results indicate a role for PERK
in cognitive functions and behavioral responses. In the
forebrain specific PERK KO mice, the metabotropic glutamate
receptor-dependent long-term depression (LTD) was specifically
enhanced, suggesting involvement of PERK in this form of
synaptic plasticity (Trinh et al., 2014). The role of PERK-eIF2α
signaling in synaptic functions might be context-dependent
and involve eIF2α, as well as other factors. In midbrain
dopamine neurons, eIF2α-mediated translational control can

regulate cocaine-induced LTP in a model of drug addiction
(Placzek et al., 2016).

Mice lacking the Cav1.2 subunit of L-type Ca2+ channel
(CACNAC1C) in the forebrain exhibited social behavior deficits
and a higher excitatory/inhibitory (E/I) ratio, a characteristic of
patients with schizophrenia and ASD. Detailed analysis showed
a decrease in protein synthesis, mTORC1-dependent translation
factors, and an associated increase in p-eIF2α levels. Treatment
of the mice with the integrated stress response inhibitor (ISRIB)
inhibiting p-eIF2α, normalized protein synthesis, the E/I ratio,
and reversed the social deficits (Kabir et al., 2017). Together these
results indicate that PERK/eIF2α-mediated protein translational
control regulates synaptic plasticity and is associated with
pathologies accompanying neuropsychiatric disorders.

IRE1α SIGNALING

The activation of IRE1α can occur via two models, either by the
dissociation of BiP upon the accumulation of misfolded proteins
in the ER lumen (Amin-Wetzel et al., 2019) or by binding
of misfolded proteins to the luminal part of IRE1α (Martínez
et al., 2018). Upon activation, monomeric IRE1α dimerizes
resulting in autophosphorylation of its kinase domain. This
phosphorylation changes the protein conformation, activating
the endoribonuclease domain (RNase domain) of IRE1α located
on the cytoplasmic side of the ER membrane. This results in the
unconventional splicing with the removal of 26 nucleotides in the
unspliced X-box binding protein 1 mRNA (XBP1u) producing a
novel mRNA species that encodes a transcription factor, spliced
X-box binding protein 1 (XBP1s; Uemura et al., 2009). XBP1s
is a potent transcription factor, which upon translocation to the
nucleus binds to promoter regions containing ER stress response
elements (ERSE). XBP1s drives the transcription of its mRNA,
forming a positive feedback loop. In eukaryotes, XBP1u mRNA
can still be translated into a protein with less stability that is
rapidly degraded by the ubiquitin-proteasome system (Navon
et al., 2010). Our recent work showed that proteasome inhibition,
stabilizing the protein, resulted in the formation of XBP1u
aggresome like induced structures in neuronal cells (Srinivasan
et al., 2020). The role of these XBP1u structures in neuronal
IRE1α signaling remains to be explored.

The importance of IRE1α/XBP1 in neuropsychiatric disorders
was revealed by the identification of a single nucleotide
polymorphism (SNP) in the promoter region of the XBP1 gene
(116C→G substitution) in patients afflicted by bipolar disorder.
Molecular details showed that the polymorphism reduced
the tunicamycin-induced XBP1 expression in lymphoblastoid
cells derived from bipolar patients, compared with controls
(Kakiuchi et al., 2003). The association of XBP1 polymorphism
to schizophrenia was also observed in the Japanese population,
but the results were not confirmed by another study (Watanabe
et al., 2006). Also, XBP1 polymorphism was linked to the clinical
course of major depressive episodes and elevated morning
plasma cortisol in a subgroup of patients (Grunebaum et al.,
2009). Together these studies show a correlation between
IRE1α/XBP1 signaling and certain mood disorders that warrant
further investigations.
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Mechanistic studies have shown that IRE1α/XBP1 signaling
is linked to the action of the brain-derived neurotrophic factor
(BDNF) that regulates synaptic plasticity and neuronal survival.
BDNF increased XBP1 splicing in primary neuronal cultures,
while the loss of XBP1 disrupted the BDNF induced neurite
outgrowth (Hayashi et al., 2007). Also, BDNFmediated increases
in GABAergic markers, including somatostatin, neuropeptide
Y, and calbindin were reduced in XBP1 deficient neurons,
suggesting a role of XBP1 in inhibitory neurotransmission
(Hayashi et al., 2008). Mice lacking XBP1 showed memory
deficits, and a reduced expression of memory associated genes
and these were restored upon expression of XBP1s. Amongst
the genes, BDNF was identified as a key transcriptional target
of XBP1s (Martínez et al., 2016). Neuronal activity induced
by glutamate increases IRE1α/XBP1 signaling in dendrites
with an enhanced BDNF transcription, whilst the addition of
recombinant BDNF treatment upregulated IRE1α/XBP1 (Saito
et al., 2018). Protein Kinase A (PKA) was shown to be an
important mediator in this process. This is of importance
and indicates that several factors and agents acting via cyclic
adenosine monophosphate (cAMP) and PKA in the brain
might have a similar effect on IRE1α/XBP1 and requires
further studies.

Social behavior is altered in several psychiatric and mood
disorders and reflects changes in brain connectivity between
the prefrontal cortex (PFC) and hippocampus. Tunicamycin
treatment was found to activate IRE1α/XBP1 signaling in the
PFC, whilst silencing of IRE1α ameliorated the social behavior
deficits in mice. Furthermore, the administration of the Estrogen
receptor β (ERβ) agonist, ERB-041 improved social behavior,
attenuated the increase in functional connectivity between PFC
and hippocampus, whilst reducing phosphorylation of IRE1α
(Crider et al., 2018). Further studies are warranted to expand our
understanding of the role of IRE1α/XBP1 in synaptic plasticity
and its defects observed in neuropsychiatric disorders.

ATF6 SIGNALING

Normally, ATF6 is associated with BiP keeping it in the ER
compartment. Upon activation of UPR, ATF6 is translocated
to the Golgi apparatus to undergo processing by the Site-1 and
Site-2 proteases (S1P and S2P), releasing an N-terminal fragment
(ATF6f; Lindholm et al., 2017; Martínez et al., 2018). ATF6f
is then translocated to the nucleus to perform transcription
factor functions regulating XBP1s and ER-associated degradation
(ERAD) components. ATF6f can also form heterodimers with
XBP1s to regulate an expanded repertoire of genes mediating
crosstalk between the two branches of UPR signaling (Shoulders
et al., 2013).

The potential role of ATF6 in neuropsychiatric disorders
is only emerging (Wen et al., 2016; Crider et al., 2017).
Mutations in CASPR2 associated with the occurrence of ASD
causes axonal growth defects in mouse-derived primary cortical
neurons (Canali et al., 2018). The mutant protein is retained
in the ER after synthesis and initiates the UPR. ATF6 signaling
was increased in cells transiently expressing mutant CASPR2
(Falivelli et al., 2012). Further studies are warranted to decipher

the involvement of ATF6-mediated UPR signaling in synaptic
defects and associated neuropsychiatric disorders.

TARGETING THE UPR IN
NEUROPSYCHIATRIC DISORDERS

As shown in Figure 1, UPR and its components have
been implicated in the pathology associated with different
neuropsychiatric disorders. There is still a large gap in translating
the identified pathological mechanisms into therapies. Despite
this, some drug candidates have been shown to modulate
the UPR signaling, and thereby, raising the possibility to
develop novel therapeutic strategies in neuropsychiatric
disorders (Table 1).

Valproate and lithium are mood-stabilizing drugs employed
for the treatment of bipolar disorders. As discussed above,
lymphoblastoid cells derived from patients with bipolar diseases
show reduced ER stress-induced XBP1 expression, which was
restored by treatment with Valproate (Kakiuchi et al., 2003).
Valproate also enhanced expression of the Wolfram syndrome
protein (WFS1) in neuroblastoma N2A cells and reduced its
interaction with the 94 kDa glucose-regulated protein (GRP94;
Kakiuchi et al., 2009). Wolfram syndrome is associated with
mental disorders as well as metabolic disturbances, and WFS1 is
a component of the UPR regulating calcium homeostasis
(Fonseca et al., 2005). GPR94 is an ER chaperone regulating
the transport and processing of secreted proteins and in
the regulation of ERAD that may associate with bipolar
disease (Kakiuchi et al., 2009).

Lithium has been used as a mood stabilizer in bipolar
disorders for a long time (Machado-Vieira, 2018). Lithium
has multiple effects on cell signaling including, regulating
intracellular calcium and cAMP levels, activation of PKA, and
Protein Kinase C (PKC; Malhi et al., 2013; Limanaqi et al., 2019).
In primary neuronal cultures, lithium increases the expression
of the ER proteins, Grp78, Grp94, and Calreticulin (Shao et al.,
2006) suggesting that bipolar disorders may involve changes in
ER stress responses (Limanaqi et al., 2019). More credence to
this view comes from findings that the mRNA encoding BiP was
significantly increased, whilst total XBP1 (XBP1s + XBP1u) and
XBP1u mRNAs were decreased in peripheral blood of patients
with the bipolar disease compared with controls (Bengesser
et al., 2018). This may support the view that the UPR is
impaired in bipolar disorders indicating an important target for
drug intervention.

The sigma-1 receptor (S1R) is localized to the mitochondria-
associated ER membrane (MAM) compartment. S1R plays a
vital role in neuronal physiology by regulating inositol 1, 4,
5-trisphosphate receptor (IP3R) involved in calcium homeostasis
of ER and mitochondria. Owing to its wide range of protein
interactions, S1R affects neuronal excitability, synaptic plasticity,
and ER stress signaling (Ryskamp et al., 2019). The selective
serotonin reuptake inhibitor, fluvoxamine was found to increase
expression of S1R that mitigated cell demise induced by ER
stress in neuroblastoma cells (Omi et al., 2014). Haloperidol, an
antipsychotic drug blocking postsynaptic dopamine D2 receptors
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TABLE 1 | Drugs targeting the unfolded protein response (UPR).

Drug Model Outcomes Reference

Valproate Lymphoblastoid cells from patients with
Bipolar disease.

Tunicamycin-induced activation of
XBP1 reduced.

Kakiuchi et al. (2003)

Valproate Mouse neuroblastoma N2A cells. Increases in XBP1 mediated WFS1 expression,
reduced WFS1-Grp94 interaction.

Kakiuchi et al. (2009)

Valproate Primary neuronal cultures. Increases in ER proteins, Grp78, Grp94 and
Calreticulin. No cell death.

Shao et al. (2006)

Lithium
Fluvoxamine HEK 293 and mouse neuroblastoma

N2A cells.
ATF4-mediated increase in Sigma-1 receptor
(S1R). Reduced ER stress and cell death.

Omi et al. (2014)

Haloperidol Neuroblastoma-glioma NG-108 cells. Binding to S1R and regulation of IP3R Ca2+

signaling.
Kubickova et al. (2018)

Olanzapine SH-SY5Y human neuroblastoma cells
Rat in vivo model.

Increases in PERK/eIF2α signaling in vitro and in
rat hypothalamus.

He et al. (2019)

Trazodone hydrochloride HEK 293 and mouse neuroblastoma
N2A cells.

Inhibition of Tunicamycin-induced ATF4,
independent of eIF2α.

Ii Timberlake and Dwivedi
(2019)

Ketamine Rat in vivo model. mTOR-dependent increases in CHOP, IRE1α

and PERK.
Abelaira et al. (2017)

Estrogen receptor β (ERβ)
agonist, ERB- 041

Mouse in vivo model. Amelioration of tunicamycin induced behavior
deficits and IRE1α phosphorylation.

Crider et al. (2018)

in the brain, binds with S1R and regulates IP3R signaling in
neuroblastoma-glioma NG-108 cells (Kubickova et al., 2018).
Taken together, S1R is a promising target to consider in
neuropsychiatric disorders including schizophrenia, depression,
methamphetamine, and cocaine addiction (Kourrich et al., 2012,
2013; Wang et al., 2016; Sambo et al., 2018; Soriani and Kourrich,
2019; Yang et al., 2019).

Regarding other drugs, it was shown that the antipsychotic
compound, Olanzapine enhanced PERK/eIF2α signaling in
the hypothalamus of rats that was linked to increased body
weight. Treatment with the ER stress inhibitor, 4-phenylbutyrate
(4-PBA) attenuated the effects brought about by Olanzapine
(He et al., 2019). Trazodone hydrochloride is a serotonin
reuptake inhibitor and an antidepressant medicine, reduced
activating transcription factor 4 (ATF4) levels in cells treated
with tunicamycin to induce ER stress (Ii Timberlake and
Dwivedi, 2019). Also, ketamine, an NMDA receptor antagonist,
increased the ER signaling proteins, IRE1α, PERK, and CHOP,
in certain brain regions in male rats. Notably, these increases
were related to the Mammalian target of rapamycin (mTOR)
activation (see below) and abrogated by rapamycin indicating
that the anti-depressant action of ketamine may involve
UPR signaling (Abelaira et al., 2017). Further studies,
using cell cultures and animal models, are useful to reveal
drugs influencing UPR signaling in the brain and in
neuropsychiatric disorders.

AUTOPHAGY AND NEURONAL ACTIVITY

Autophagy is an evolutionarily conserved mechanism and
is mediated via a complex network of over 30 proteins
that are conserved across species. Post-mitotic neurons
become highly dependent on autophagy for reducing their
cytosolic load by clearing its components like misfolded
proteins and dysfunctional organelles (Bar-Yosef et al.,
2019). Recently, specific aspects of autophagy in different

neuronal compartments have been thoroughly covered
(Hill and Colon-Ramos, 2020), and we will mainly
focus on the potential role of autophagy processes in
neuropsychiatric disorders.

Autophagy is critical in maintaining neuronal functions by
clearing cytoplasmic components and organelles including
misfolded proteins, promoting turnover of gamma-
aminobutyric acid (GABA) and α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA) receptors important for
plasticity, recycling presynaptic proteins and synaptic vesicles,
and regulating dendritic morphology and synaptic pruning
in development and disease (Liang, 2019; Hill and Colon-
Ramos, 2020). A failure in any of these processes may impair
neuronal functions and cause neurodegenerative disorders
(Bar-Yosef et al., 2019). Given this, several studies have focused
on the therapeutic potentials of modulating autophagy in
these disorders.

Synaptic autophagy is vital for the regulation of pre- and
postsynaptic protein turnover and signal transmission. Proteins
like Bassoon, EndophilinA (EndoA), and Synaptojanin-1
(Synj1) involved in synaptic transmission influence also
autophagy in the presynaptic compartment. Bassoon present
in the synaptic active zone can bind to the autophagy protein,
autophagy-related 5 (ATG5) and reduce autophagy whereas,
EndoA and Synj1, which both play a role in endocytosis, also
induces synaptic autophagy and formation of autophagosomes
(Okerlund et al., 2017; Liang, 2019; Tomoda et al., 2019;
Hill and Colon-Ramos, 2020). Furthermore, several proteins
in the postsynaptic compartment including postsynaptic
density protein 95 (PSD-95), and SH3 and multiple ankyrin
repeat domains 3 (SHANK-3) are targets for autophagy
degradation (Nikoletopoulou et al., 2017). These findings
support the view that there is an interplay between synaptic
activity and autophagy in fine-tuning neurotransmission
by modulating synaptic proteins (Nikoletopoulou and
Tavernarakis, 2018).
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In neurons, BDNF regulates synaptic plasticity by reducing
autophagy flux in an mTOR dependent manner (Nikoletopoulou
et al., 2017). BDNF binds preferentially to its high-affinity
receptor Tropomyosin receptor kinase B (TrkB) that is
retrogradely transported in autophagosomes together with
BDNF to influence neuron-specific functions in the soma
(Kononenko et al., 2017). BDNF like other neurotrophins can
also interact with the p75 neurotrophin receptor (p75NTR).
Nerve growth factor (NGF) was shown to regulate autophagy in
cerebellar Purkinje cells in cultures via p75NTR (Florez-McClure
et al., 2004). The precise role of p75NTR and the effects of
different neurotrophins in regulating neuronal autophagy in vivo
warrant further studies.

Recent studies performed in mice showed that autophagy
is important for memory formation in the hippocampus.
Autophagy activity was reduced during aging, whilst stimulation
of autophagy by injection of the autophagy regulator Beclin-1
into the hippocampus, or using specific systemic factors
reversed age-dependent memory deficits (Glatigny et al.,
2019). The molecular mechanisms underlying these effects will
require further studies. The accumulated results so far point
towards a context-dependent role for autophagy in regulating
synaptic plasticity and neuronal functions. Although a baseline
level of autophagy is required for maintenance of synapse,
excessive autophagy could be detrimental by depleting synaptic
proteins. Together with other findings, these studies show that
autophagy and its regulation play an important role in activity-
dependent synaptic functions and in memory formation in
the brain.

AUTOPHAGY AND NEUROPSYCHIATRIC
DISORDERS

Accumulating evidence also indicates that autophagy can play
a role in neuropsychiatric disorders like major depressive
disorders, ASD, and impaired cognition (Tang et al., 2014;
Jia and Le, 2015; Bar-Yosef et al., 2019; Glatigny et al., 2019;
Tomoda et al., 2019). Some of the mechanisms involved have
been depicted in Figure 2.

mTOR is known to negatively regulate autophagy in
non-neuronal as well as in neuronal cells in a complex
and context-dependent manner. mTOR contributes to
neurophysiological changes observed in models of ASD and
fragile X syndrome (FXS). Tuberous Sclerosis Complex 2 (Tsc2)
deficient mice exhibited enhanced mTOR activity resulting in
reduced autophagy, impaired synaptic pruning, and an excessive
dendritic spine formation (Tang et al., 2014). Autophagy flux
is compromised in the hippocampus of the FXS mouse model
and enhancing autophagy counteracted synaptic and cognitive
impairment in these mice (Yan et al., 2018). The tripartite motif
protein 32 (TRIM32) has emerged as a regulator of mTOR
via proteasome degradation of G protein signaling protein 10
(RGS10). Gene deficient mice for TRIM32 showed increased
autophagy and autism-like behavior with the involvement of
GABAergic interneurons, whilst restoring autophagy to normal
levels counteracts these effects (Zhu et al., 2019). Autophagy is
further linked to GABAergic signaling via the GABAA receptor-

associated protein (GABARAP), a member of the autophagy-
related protein 8 (ATG8) family of proteins required for
autophagosome maturation (Weidberg et al., 2010; Schaaf et al.,
2016). GABARAP affects the trafficking and surface localization
of GABAA receptor to the plasma membrane and these events
were impaired in autophagy-deficient adult brain lacking the
autophagy-related protein 7 (ATG7) gene (Hui et al., 2019).

The serine/threonine protein kinases, Unc-51 like autophagy
activating kinase (Ulk1/2) are parts of a molecular complex
regulating autophagy downstream of mTOR (Walker and
Ktistakis, 2019). Rare variants of Ulk1 is associated with
schizophrenia (Al Eissa et al., 2018), whilst Ulk2 heterozygous
mice show behavioral defects associated with a reduced surface
expression of GABAA receptors in pyramidal neurons of the
PFC (Sumitomo et al., 2018). In these mice, the autophagy
adaptor protein, sequestosome-1 (SQSTM1/p62) was increased,
and downregulation of p62 restored the behavior defects and
GABARAP mediated localization of the GABAA receptors.
Taken together these data show that mTOR plays a role
in developing and adult brain to influence autophagy and
GABAergic signaling linked to neuropsychiatric disorders (Hui
and Tanaka, 2019).

In addition to neurons, alterations in other brain cells
such as microglia and astrocytes are also crucial for synaptic
functions and plasticity (Vainchtein and Molofsky, 2020). Mice
with microglia specific ATG7 deficiency displayed impaired
autophagy, defective synaptic pruning, and ASD like behavior
defects. Co-cultures of primary neurons with microglia derived
from ATG7 deficient mice showed a negative impact on the
formation of synapses (Kim et al., 2017). More generally, deficits
observed in schizophrenia have been linked to an increased
synaptic elimination by microglia (Mallya et al., 2019). Human
microglia-like cells derived from schizophrenia patients show
an increase in synapse phagocytosis compared to controls
(Sellgren et al., 2019). Genetic studies have shown a variant
in the complement component 4 (C4) locus associated with
schizophrenia (Sekar et al., 2016), and expression of the human
C4 gene in mice PFC neurons impaired the development of
dendritic spines and affected neuronal connectivity and behavior
(Comer et al., 2020). The potential roles of autophagy in the
synaptic deficits and neuron-microglia interactions in models of
schizophrenia warrant further studies.

TARGETING AUTOPHAGY IN
NEUROPSYCHIATRIC DISORDERS

Current strategies to tackle neuropsychiatric disorders by
influencing autophagy have mainly centered around mTOR and
the use of the inhibitor, rapamycin (Qin et al., 2016; Zhang et al.,
2017; Kotajima-Murakami et al., 2019). However, promising
data has also been obtained in different models by the use of
anti-depressants and antipsychotic drugs (Gulbins et al., 2018;
Shu et al., 2019; Lundberg et al., 2020), specific compounds
like sphingomyelin synthases inhibitor—tricyclodecan-9-yl-
xanthogenate (D609; Gulbins et al., 2018), NAP (Merenlender-
Wagner et al., 2014; Sragovich et al., 2017), folinic acid (Frye
et al., 2018), Resveratrol (Wang N. et al., 2019), and the drug,
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FIGURE 2 | Aberrant autophagy processes in neuropsychiatric disorders. Mammalian target of rapamycin (mTOR) is a vital checkpoint in autophagy regulation.
Hyperactive mTOR associated autophagy inhibition in Tuberous Sclerosis Complex 2 (Tsc2) and fragile X mental retardation protein (FMRP) deficient models result in
ASD and Fragile X syndrome (FXS) pathologies, respectively (Tang et al., 2014; Yan et al., 2018). On the other hand, loss of TRIM32 leads to hypoactive mTOR and
increased autophagy leading to ASD like pathology and loss of GABAergic interneurons (Zhu et al., 2019). Ulk2 deficiency causes autophagy inhibition and
behavioral defects in rodents. Furthermore, hyperactive mTOR and Ulk2 deficiency mediated autophagy defects disrupt the gamma-aminobutyric acid (GABA) Type
A Receptor-Associated Protein (GABARAP) mediated trafficking of GABAA receptors to the plasma membrane (dashed line arrow; Sumitomo et al., 2018; Hui et al.,
2019). An autophagy adapter protein, p62 sequesters GABARAP, and GABAA receptors when autophagy is compromised. Also, communication between neurons
and microglia is pivotal in maintaining healthy synapses. Microglia specific loss of autophagy results in ASD like behavioral deficits and reduced synaptic pruning
whilst, microglia-mediated increase in synaptic pruning might be associated with the pathology of schizophrenia (SCZ; Sellgren et al., 2019). Direct involvement of
microglia autophagy and synapse pruning in SCZ requires further studies.

propofol in combination with electroconvulsive therapy (Li et al.,
2016). Drug candidates modulating autophagy are outlined in
Table 2.

Anti-depressants, amitriptyline, and fluoxetine treatment in
mice models of major depressive disorder-induced autophagy
secondary to the accumulation of ceramide in the ER (Gulbins

et al., 2018). Fluoxetine increased autophagic responses, and the
clearance of damaged mitochondria in mice model of depression
and astrocyte cultures (Shu et al., 2019). Fluoxetine specifically
reduced depressive behavior and increased levels of autophagy
proteins and BDNF in a model of postpartum depression in mice
(Tan et al., 2018). The antipsychotic drug, clozapine ameliorated
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TABLE 2 | Drugs targeting autophagy.

Drug Models Outcome Reference

Amitriptyline
Fluoxetine

Mouse model for depression. Rat
pheochromocytoma PC-12 cells.

Increased autophagy regulated by
sphingomyelin-ceramide.

Gulbins et al. (2018)

Sphingomyelin synthases
inhibitor—D609
Fluoxetine Postpartum depression model in mice. Increased autophagy and BDNF in

specific regions of hippocampus.
Tan et al. (2018)

Clozapine Ketamine induced neuronal stem cell culture
model.

Activation of autophagy and reduced
apoptosis.

Lundberg et al. (2020)

Clozapine Map6+/− mouse model. Reduced hyperactivity and no effect on
cognition.

Merenlender-Wagner et al.
(2014)

NAP Map6+/− mouse model. SH-SY5Y human
neuroblastoma cells.

Combination treatment with Clozapine,
reduced hyperactivity and improved
cognition. Restoration of Beclin-1.
Amelioration of Clozapine induced cell
toxicity.

Clozapine
Haloperidol

Primary neuronal cultures. Inhibition of autophagosome fusion with
lysosomes.

Park et al. (2012)

Olanzapine SH-SY5Y human neuroblastoma cells. Mitochondrial damage, Oxidative stress
and organelle autophagy.

Vucicevic et al. (2014)

Clomipramine Primary neuronal cultures, Mouse models,
C. elegans.

Inhibition of autophagy. Cavaliere et al. (2019)

Propofol Rat model for depression. Inhibition of autophagy induced by
electroconvulsive shock Improvement
of learning and memory.

Li et al. (2016)

Rapamycin Valproic acid rat model of autism. Improved behavior, induction of BDNF
and Bcl2 expression in the
hippocampus.

Zhang et al. (2017)

Rapamycin Valproic acid rat model of autism. Inhibition of mTOR, increased
autophagy and improved behavior.

Qin et al. (2016)

autophagy defects, and apoptosis induced by ketamine in
neuronal stem cell cultures (Lundberg et al., 2020). Clozapine
also promotes neurogenesis in vivo but the relative contributions
of cell proliferation, cell survival, and autophagy regulation in the
action of this drug remain to be established.

Activity-dependent neuroprotector homeobox protein
(ADNP) is a microtubule-associated protein linked to neurite
outgrowth and autophagy. Post-mortem brain samples
from patients with schizophrenia showed a reduction in
the ADNP mRNA (Merenlender-Wagner et al., 2015). NAP
(NAPVSIPQ) is a peptide derivative of ADNP (Sragovich
et al., 2017). Administration of NAP to Microtubule Associated
Protein 6 (Map6) gene-deficient mice, increased Beclin-1
expression, and improved the clinical outcome in combination
with clozapine (Merenlender-Wagner et al., 2014). Previous
findings further suggest that clozapine and haloperidol inhibit
the fusion of autophagosomes with lysosomes in primary
neuronal cultures (Park et al., 2012). The antidepressant
Clomipramine inhibited autophagy in models of primary
cortical cultures and in vivo mice (Cavaliere et al., 2019).
Olanzapine increased mitochondrial autophagy in human
neuroblastoma cells as a response to mitochondrial damage and
the drug showed increased toxicity upon inhibiting autophagy
(Vucicevic et al., 2014).

Taken together these findings show that common
anti-psychotics and antidepressants target autophagy in models
of neuropsychiatric diseases, but the mechanisms may vary and
will require further studies.

CONCLUSIONS AND PERSPECTIVES

Autophagy and the UPR are two key signaling processes
in neuronal physiology whose dysfunctions can underlie the
development and manifestation of neuropsychiatric disorders.
Recent advancements have shown the importance of protein and
organelle quality control and intact synaptic protein turnover in
neuronal health. The precise mechanisms, however, by which
UPR and autophagy signaling contribute to neurological diseases
are still to be explored.

Drugs utilized in clinical therapies, like the anti-depressants
and mood stabilizers, have been shown to influence
protein handling in neurons in different models. However,
the effects of their long-term use need to be studied
more carefully, as the drugs might have context and
cell-dependent effects that could make their usage a double-
edged sword. Along with this, it is still unclear whether
the observed responses to the drugs are a part of an
adaptive UPR or chronic ER stress resulting in decreased
cell viability.

Additional studies with different drugs using cell cultures
and animal models of neuropsychiatric disorders are required
to assess their mode of action on autophagy and UPR, both in
a short time window and more chronic condition. Moreover,
the drugs should be studied both on neurons and non-neuronal
cells to account for possible cell-specific effects that could be
of benefit in treatments. These strategies would further aid
in translating the identified mechanisms to viable therapeutic
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strategies that could be clinically helpful for patients afflicted by
neuropsychiatric disorders.
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