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Abstract

Natural products obtained from species of the genus Abuta (Menispermaceae) are known

as ethnobotanicals that are attracting increasing attention due to a wide range of their phar-

macological properties. In this study, the alkaloids stepharine and 5-N-methylmaytenine

were first isolated from branches of Abuta panurensis Eichler, an endemic species from the

Amazonian rainforest. Structure of the compounds was elucidated by a combination of 1D

and 2D NMR spectroscopic and MS and HRMS spectrometric techniques. Interaction of the

above-mentioned alkaloids with acetylcholinesterase enzyme and interleukins IL-6 and IL-8

was investigated in silico by molecular docking. The molecules under investigation were

able to bind effectively with the active sites of the AChE enzyme, IL-6, and IL-8 showing

affinity towards the proteins. Along with the theoretical study, acetylcholinesterase enzyme

inhibition, cytotoxic, and immunomodulatory activity of the compounds were assessed by in

vitro assays. The data obtained in silico corroborate the results of AChE enzyme inhibition,

the IC50 values of 61.24μM for stepharine and 19.55μM for 5-N-methylmaytenine were

found. The compounds showed cytotoxic activity against two tumor cell lines (K562 and

U937) with IC50 values ranging from 11.77 μM to 28.48 μM. The in vitro assays revealed

that both alkaloids were non-toxic to Vero and human PBMC cells. As for the immunomodu-

latory activity, both compounds inhibited the production of IL-6 at similar levels. Stepharine

inhibited considerably the production of IL-8 in comparison to 5-N-methylmaytenine, which

showed a dose dependent action (inhibitory at the IC50 dose, and stimulatory at the twofold

IC50 one). Such a behavior may possibly be explained by different binding modes of

the alkaloids to the interleukin structural fragments. Occurrence of the polyamine alkaloid
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5-N-methylmaytenine was reported for the first time for the Menispermaceae family, as well

as the presence of stepharine in A. panurensis.

Introduction

Menispermaceae family has a wide geographic distribution, mainly in tropical and subtropical

regions of the world; its name is related to a crescent moon shape of the seeds [1, 2]. The genus

Abuta is native to tropical Central and South America, where it is represented by more than 30

species. Some of them have been used by indigenous people to prepare curare, alkaloid-con-

taining arrow and dart head poisons that paralyze the prey [1, 3].

As a result, the Menispermaceae family have been in a focus of rising interest to study sev-

eral classes of secondary plant metabolites, including alkaloids; which are rather abundant

constituents [4–11]. Several classes of alkaloids were isolated from Abuta, those include: iso-

quinoline [12, 13], benzylisoquinoline [12, 14], benzyltetraisoquinoline [15], bisbenzyltetraiso-

quinoline [15–17], aporphine [18], and proaporphine [12, 15] derivatives; as well as other less

frequent ones such as tropolone-isoquinoline, azafluoranthene, and benzazepine alkaloids [19,

20]. Those alkaloids reveal a wide range of pharmacological activities including muscle relax-

ant [1], antiplasmodial [14], inhibitory for acetylcholinesterase (AChE) and butyrylacetylcholi-

nesterase enzymes [17, 21, 22], cytotoxic [19, 23, 24], and immunomodulatory [25].

A stepharine is one of the most representative proaporphine alkaloids in Menispermaceae

family; it was first identified in the genus Stephania [26]. Proaporphine alkaloids are princi-

pally known for their potential to inhibit reversibly the acetylcholinesterase enzyme [27, 28].

Effectiveness and anti-AChE potential of the stepharine sulfate salt (stephaglabine) was

reported for the treatment of traumatic and postoperative injuries of the peripheral nervous

system and confirmed by a clinical study [29]. However, a pharmaceutical potential of stephar-

ine is much wider according to the literature reports [30, 31]. It showed a cytotoxic activity

against two human lung cancer cell lines [32], as well as a weak antifungal potential and DNA-

damaging activity [30]. Therefore, both isolation of stepharine from plants cell cultures and

several synthetic procedures were developed to satisfy a growing need for the medicinal use of

the compound [31, 33].

Polyamine alkaloids (the derivatives of putrescine, spermidine, spermine, and cadaverine)

are metabolites that occur widely in angiosperm plants [34–37], but are practically absent in

sterile ones [35, 37–42]. Those compounds may also be isolated from other natural sources

[43], particularly from fungi [44–48]. The polyamine alkaloids are not common for the Menis-

permaceae family, they were reported only for a Cissampelos genus [37, 49]. Cinnamoyl deriva-

tives of polyamine alkaloids inhibit the AChE and α-glucosidase [38, 50, 51]. Alongside, they

also inhibited cancer cell growth [46, 48, 52] and revealed an antiviral activity [53]. In the

Amazon region, a polyamine alkaloid N,N’-di-E-cinnamoylspermidine or maytenine was iso-

lated fromMaytenus krukovii (Maytenus chuchuhuasha) trees (Celastraceae) [46, 54]. Several

studies have stimulated the development of synthetic approach to that class of polyamides [46,

55–58] including the maytenine synthesis [59].

In the present study, 5-N-methylmaytenine (1) and the stepharine (2) were isolated for the

first time from A. panurensis. This is also the first report on the occurrence of (1) in Menisper-

maceae family. Interactions of the alkaloids in question with acetylcholinesterase (AChE)

enzyme and cytokines IL-6 and IL-8 were investigated in silico by molecular docking. The
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potential of (1) and (2) as AChE inhibitors, antitumor and immunomodulatory agents was

demonstrated by in vitro studies.

Materials and methods

Chemicals

Reagents and HPLC-grade solvents were purchased from Tedia Company (Fairfield, OH,

USA) and Sigma-Aldrich and used as supplied. P.A. (Nuclear) grade solvents were purified by

standard procedures used in natural products chemistry. An ultrahigh-purity water was

obtained by Milli Q system (Millipore, Bedford, MA, USA).

Plant material

The authors declare that a specific permission from the National Institute of Amazonian

Research (INPA) was required to collect plant material. The authors got the permission No.

35/12 of 02.12.2017 and confirm that the study did not involve endangered or protected spe-

cies. A. panurensis plant material was collected at the Adolpho Ducke Forest Reserve, 26 km

along the AM-010 highway from the city of Manaus, the State of Amazonas, Brazil. The species

under investigation had been identified by the taxonomist L.S.Mergulhão. The voucher speci-

mens were deposited in the Herbarium of the National Institute of Amazonian Research

(INPA) under the voucher no 279373. The access to genetic heritage was registered at the

National System of Genetic Heritage and Associated Traditional Knowledge Management

(SisGen, Brazil) under the code number A9CC956.

The branches collected were dried at room temperature (ca. 20˚C) for 10 days. Subse-

quently, the vegetal material (1.4 kg of branches) was crushed in a knife mill and stored in a

refrigerator until use.

Extraction

Dried and crushed plant material was subjected to an acid-base extraction [60]. The crushed

branches (300g) were macerated with a 10% solution of NH4OH (2L) and CH2Cl2 (2L) at

room temperature (20˚C) for 72h, the material was stirred every 24 hours. The organic phase

(1.5L) was transferred to a separatory funnel with a 10% solution of acetic acid (2L) and stirred

manually. Then, the acidic aqueous phase was transferred to another vessel and the pH was

adjusted to 10 using NH4OH and extracted with CH2Cl2 (2 × 300mL). The CH2Cl2 phase was

separated, concentrated on a rotary evaporator under reduced pressure, and dried with anhy-

drous sodium sulfate, resulting in the alkaloid fraction (280mg).

LC-APCI-MS analysis

LC-APCI-MS analyzes were performed on an Acella chromatograph (Thermo Scientific); cou-

pled to a triple-quadrupole mass spectrometer model TSQ Quantum Acess1 (Thermo Scien-

tific), equipped with an Atmospheric Pressure Chemical Ionization (APCI) source, operated

in positive mode with monitoring in the range ofm/z 100–800. The mass spectrometer was

equipped with Surveyor LC Pump Plus, Surveyor Autosampler Plus, Rheodyne injection valve

(25μL), Luna C18 column (150 × 4.60mm, 5μm) (Phenomenex–Torrance, CA, USA), operat-

ing simultaneously with Surveyor PDA Plus diode array detector (DAD). The mobile phase

was composed of B (methanol) and A (formic acid 1% v/v in H2O) with a linear elution gradi-

ent: 0–20 min 20–80% B, 20–35 min 80% B, 35–45 min 20–80% B. The flow rate of the mobile

phase was 1 mL/min and the injection volume was 10μL. The DAD detector was set up for
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monitoring between 200-400nm. The spectra were processed using an Xcalibur software (ver-

sion 2.2).

Semi-preparative HPLC analysis

Isolation of the alkaloids was performed on a semi-preparative scale on a Shimadzu chromato-

graph composed of a CBM-20A communication module, SPD-20AV UV detector, DGU-

20A5 degasser, LC-6AD pump, 200 μL Rheodyne injection valve, and Luna C18 column (250

x 15.00mm, 5μm) (Phenomenex–Torrance, CA, USA) with a flow rate of 3 mL/min. The

mobile phase was composed of B (methanol) and A (formic acid 1% v/v in H2O), with a linear

elution gradient: 0–20 min 20–80% B, 20–35 min 80% B, 35–45 min 20–80% B. The UV detec-

tor was set to monitoring at 260nm and 280nm. Fractions containing 5-N-methylmaytenine

(11.2mg—1) and stepharine (22.1mg—2) were collected and analyzed by high-resolution mass

spectrometry (HRMS) and NMR spectroscopy.

High resolution mass spectrometry

HRMS analyses were performed on a Shimadzu chromatograph composed of a CBM-20A

communication module, a SPD-20AV UV detector, a LC-20AD pump, a SIL-20A HT auto-

sampler (200μL), a CTO-20A oven, and a Luna PFP column (150 x 2mm, 100A); coupled to a

Bruker microTOF-QII mass spectrometer, equipped with an Atmospheric Pressure Chemical

Ionization (APCI) source, operated in a positive mode. The instrument parameters were as fol-

lows: capillary voltage, 4500V; nebulizer pressure (N2), 4.0 bar; dry gas flow (N2), 8L/min; dry

heater temperature, 200˚C; with a monitoring in the range ofm/z 100–800 Da. The mobile

phase was composed of B (formic acid 0.1% v/v in methanol) and A (formic acid 0.1% v/v in

H2O) with a linear elution gradient as follows: 0–2 min 20–80% B; 2–42 min 100% B. The flow

rate of the mobile phase was set to 0.2 mL/min and the injection volume was 10μL. The UV

detector was set up for monitoring between 254nm and 330nm. The spectra were processed

using a Bruker Compass Data Analysis software (version 4.2).

1D and 2D NMR spectroscopy

NMR spectra were recorded on a Bruker Avance IIIHD spectrometer, 500.13 MHz for 1H and

125.0 MHz for 13C operated at a magnetic field strength of 11.7 Tesla, equipped with a 5 mm

direct detection PA BBO BBF HD-05-Z SP Intelligent probe incorporating Z-axis gradient

coil, capable of providing gradient amplitudes up to 50 G/cm. Shigemi’s 5.0 mm NMR tubes

were used. For structural elucidation, the samples of 5-N-methylmaytenine and stepharine

were solubilized in 600 μL of DMSO-d6 (δH 2.50, δC 39.9) and CD3OD (δH 3.34, δC 49.8),

respectively. The acquisition of 1H, 13C, DEPT 135, COSY, HSQC, and HMBC spectra was

performed using standard Bruker pulse sequences. The analysis based on 1H NMR data was

performed by solubilizing 10.0 mg of the 5-N-methylmaytenine in 550 μL of DMSO-d6 with

50 μL of TMS (0.5 mM, 98%, Tokyo Chemical Industry) and 15.0 mg of the stepharine in

550 μL of CD3OD with 50 μL of TMS (0.5 mM, 98%, Tokyo Chemical Industry) at 25 ˚C.

Acquisition of 5-N-methylmaytenine and stepharine spectra was performed using the zg30

pulse sequence with water signal suppression, data points of the 64 kB time domain, 10 kHz

spectral width, 1.00 second relaxation delay (D1), 3.27 second acquisition time (AQ), 32 scan

numbers with DS of 2, decomposition resolution of 0.31 Hz, a constant receiver gain at 161 (5-

N-methylmaytenine) and 181 (stepharine) with displacement frequency set at 2,425.23 Hz,

PLW1 of 20.3 W. The calibration pulse (P1 9.400 μs to 5-N-methylmaytenine and P1 10.300 μs

to stepharine) with PLW9 were of 7.183×10−5 W (5-N-methylmaytenine) and 8.6243×10−5 W

(stepharine). Data were processed using Bruker1 Topspin 4.0.6 software.
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Molecular docking calculations

Ligand structures preparation. Ligand structures were built manually and preliminary

optimized in a classic molecular mechanics software. In order to use equilibrium ligand struc-

tures, their geometry optimizations were conducted using a semi-empirical PM7 level [61]

within the MOPAC program [62]. Ligand structure files for docking were prepared using

AutoDock Tools [63, 64]. Default settings for the detection of rotatable bonds were used.

Protein files preparation. X-ray structures of the proteins under investigation (AChE,

PDB ID: 6H12; IL-6, PDB ID: 4NI7 and IL-8, PDB ID: 3IL8) were obtained from the RCSB

Protein Data Bank.Missing residues. Modeling of missing residues in the protein structures

was performed using Modeller web-service [65]. Obtained structures that do not possess seri-

ous structural issues were selected for docking studies. Clashes or contacts between the side

chains of the produced structures were resolved by minimization routine implemented in

UCSF Chimera [66].Water molecules are commonly found in the XRD structures of proteins

and can have substantial impact on the docking affinities. Selection of water molecules that

could be important in docking was performed according to the distance criterion. All water

molecules farther than 3.3 Å from the H-bond donors and acceptors in the protein structures

were removed. Protonation of the oxygen atoms in water molecules was made in UCSF Chi-

mera followed by minimization of the hydrogen positions.

Binding sites of the proteins were identified using Discovery Studio Visualizer [67]. Auto-

Dock Tools [63,64] were used for the preparation of Structure files for docking.

Docking runs. Docking studies were performed with AutoDock Vina program [68]. The

protein structures stayed rigid during the docking in all cases. Each run generated nine bind-

ing poses. Exhaustiveness parameter of 50 was used for the medium search space sizes, e.g.

for the binding pocket in AChE. In the case of larger search spaces (IL-6, IL-8) exhaustiveness

of 500 was used. Since the success of a docking run depends on a random seed, which is

defined at the beginning of the run and does not change during it; we have performed three

docking runs for each protein-ligand pair and search space. The best docking poses found

were similar between the runs in most cases, showing that the chosen parameters provided

exhaustive search of the conformational space.Missing residues. Selected protein structures

from Modeller service were used for the estimation of binding to the regions that were miss-

ing in the initial XRD structures. Search spaces that include the modeled parts of the protein

were chosen.Water molecules. It is known that inclusion of all water molecules in the dock-

ing run can lead to erroneous results [69]. Therefore, trial docking runs were performed with

an inclusion of one of the crystallization water molecules found in the XRD structures at a

time. The water molecules were fixed during the docking run. The search space either cov-

ered the defined binding site of the protein or was centered on the water molecule and had a

size of 20×20×20 Å.

Protein structure images were obtained using Discovery Studio Visualizer [67], PyMOL

[70], and UCSF Chimera [66]. Detailed docking parameters are collected in the S1 File.

Acetylcholinesterase inhibition assay

Acetylcholinesterase enzyme from an electric ray Tetronarce californica (Sigma-Aldrich, USA)

was used for the experiments. The in vitro AChE inhibition assay was performed in 96-well

microplates according to the methodology proposed by Ellman et al. [71] (1961) and Senol

et al. [72] (2015) with some modifications. The alkaloids were tested at concentrations of 2.8;

5.6; 11.2; 22.5; 45.0 and 90.0 μg/mL. Initially, 20 μL of each sample from the stock solution (1

mg/mL) were added and serial dilutions were performed. Then, 150 μL of a sodium phosphate

buffer pH = 8 (0.1 mM), 20 μL of 5,5´-dithio-bis(2- nitrobenzoic)acid (DTNB, 0.0025 M), and
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20 μL of the acetylcholinesterase enzyme (1 U/mL) were added subsequently to each well at 25

˚C and left for 15 minutes. The reaction was initiated by addition of 10 μL of acetylcholine

iodide (AChI) (0.1 M). Neostigmine (0.28–9.0 μg/mL) was used as a positive control.

A thiocholine formed by the enzymatic hydrolysis of the AChI, reacts with the DTNB giv-

ing rise to yellow 5-mercapto-2-nitrobenzoate anion. Concentration of the latter in each well

was measured as absorbance at 405 nm using a 96-well microplate reader spectrophotometer

(Biotek model ELX800). The transformation was monitored for 30 min at 5 min intervals.

Inhibition curve was plotted as the inhibition percent vs concentration. All assays were per-

formed in triplicate.

Cytotoxicity assay

The cytotoxicity of the alkaloids to different cell lines was evaluated by MTT (3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cell proliferation assay. The fol-

lowing cell lines were used for the evaluation: K562 (human chronic myelogenous leukemia,

ATCC1 CCL-243™), U937 (human histiocytic lymphoma, ATCC1 CRL-1593.2™), HL60

(human acute promyelocytic leukemia, ATCC1 CCL-240™), Vero (kidney epithelial cells

extracted from an African green monkey Chlorocebus sp., ATCC1 CCL-81™), and human

peripheral blood mononuclear cells (PBMC) from healthy blood donors. The cell lines K562,

HL60, and U937 were kindly donated by Prof. S.O. Saad (Hematology and Hemotherapy Cen-

ter at the National Institute of Blood Science and Technology of the University of Campinas,

Campinas, São Paulo, Brazil). The Vero cells were kindly donated by Prof. F.Naveca (Labora-

tory of Infectious Disease Ecology in the Amazon, L. and M.Deane Institute, FIOCRUZ,

Manaus, Amazonas, Brazil). The cells were cultured in 96-well plates. An amount of 2×104

cells was seeded into each well containing 0.2 mL of a RPMI medium supplemented with 10%

FBS, penicillin-streptomycin and fungizone, in an atmosphere of 5% CO2 at 37˚ C for 24

hours. After a formation of sub-confluent monolayer, the cells were treated with different con-

centrations of the alkaloids (12 . . . 100 μg/mL) and incubated again at the same conditions for

24, 48, and 72 hours. Sterile PBS and DMSO 100% were used as negative and positive controls,

respectively. Subsequently, the medium was removed from all wells and 10 μL of the MTT (5

mg/mL in sterile PBS) diluted in 100 μL of a DMEM medium (without phenol red to avoid

misinterpretation) was added into the wells and incubated for 4 hours at the same conditions

mentioned above. After that, the MTT was removed and 50 μL of the MTT lysis buffer were

added to each well. The plate was homogenized gently to dissolve the formazan crystals and

incubated for 10 minutes at 37 ˚C. Optical densities of the samples at wavelength of 570 nm

were measured using a microplate reader. The relative viability of the cells was estimated using

the following equation:

A570 of treated sample
A570 of untreated sample

� 100;

where A570 is the absorbance at 570nm. All assays were done in triplicate.

Immunological assay

To analyze the immunomodulatory potential, human peripheral blood mononuclear cells

(PBMCs) obtained from healthy blood donor candidates were cultured in RPMI-1640 medium

in a 96-well plate and incubated for 24h with 5-N-methylmaytenine (12.5 μM and 25 μM) or

stepharine (28.48 μM and 57.0 μM). After the incubation, the supernatants were collected for

cytokine assays. The supernatant of untreated PBMC cells was used as control. The concentra-

tions of IL-6 and IL-8 cytokines were evaluated by commercially available enzyme-linked
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immunosorbent assay (ELISA) kits (Boster, Pleasanton, CA, USA). The results were normal-

ized for protein levels contained in each sample and were expressed in pg/mg of total protein.

The assays were repeated in triplicate for each individual sample using untreated cells as nega-

tive control. This study was approved by the Committee for Ethics in Research on Human

Beings of the HEMOAM (approval number: 3.138.343).

Statistical analysis

Statistical analysis was performed with GraphPad Prism 7.01 software using Student’s t-test

and ANOVA. A probability value of less than 0.05 was chosen as a statistical significance

criterion. Throughout the text, the asterisks correspond to the following probability values:
� means p<0.01; �� means p< 0.001; and ��� means p<0.0001, when compared to the negative

control (untreated cells). The half maximum inhibitory concentration IC50 values were calcu-

lated using nonlinear regression.

Results

Spectral data

5-N-methylmaytenine (1) was isolated as a light yellow amorphous solid (11.2 mg). 1H NMR

(500 MHz, DMSO d6, TMS): δ 8.12 (t; 2H; J = 5.5 Hz, 1 and 10-NH), δ 7.56 (m, 2H, 5´-H and

5´´-H or 9´-H and 9´´-H), δ 7.54 (m, 2H, 9´-H and 9´´-H or 5´-H and 5´´-H), δ 7.55 (m, 2H,

6´-H, 6´´-H, 8´-H, 8´´-H), δ 7.40 (m, 2H, 7´-H and 7´´-H), δ 7.42 (m, 1H, 3´-H or 3´´-H), δ
7.38 (m, 1H, 3´´-H or 3´-H), δ 6.63 (d, 1H, 2.4 Hz, 2´-H or 2´´-H), δ 6.60 (d, 1H, 2.4 Hz, 2

´´-H or 2´-H), δ 3.20 (m, 2H, 2-H), δ 3.18 (m, 2H, 9-H), δ 2.35 (m, 2H, 4-H), δ 2.32 (m, 2H,

6-H), δ 2.16 (s, 3H, 5-NCH3), δ 1.61 (m, 2H, 3-H), δ 1.47 (m, 2H, 8-H), δ 1.45 (m, 2H, 7-H).
13C NMR (125 MHz, DMSO d6, TMS): δ 165.32; 165.27; 135.43; 127.98; 127.94, 129.39; 129.83;

138.85; 138.88; 122.79; 122.83; 55.26; 57.12; 42.09; 37.58; 39.07; 27.28; 24.53; 27.48 ppm. (S1

Table in S1 File). MS (APCI+)m/z 420 [M+H]+: 202, 188, and 131. HRMSm/z 420.2669 (calc.

for C26H34N3O2m/z 420.2646, Δm/z theor. = -5.6 ppm).

Stepharine (2) was isolated as a light brownish amorphous solid (22.1mg). 1H NMR (500

MHz, CD3OD, TMS): δ 7.01 (dd, 1H, 3 and 10Hz, 12-H), δ 7.16 (dd, 1H, 3 and 10Hz, 8-H), δ
6.89 (s, 1H, 3-H), δ 6.41(dd, 1H, 1.8 and 10Hz, 11-H), δ 6.29 (dd, 1H, 1.8 and 10Hz, 9-H), δ
4.72 (m, 1H, 6a-H), δ 3.82 (s, 3H, 2-OCH3), δ 3.70 (ddd, 1H, 1.5, 6.3 and 13Hz, 5-H), δ 3.61 (s,

3H, 1-OCH3), δ 2.52 (dd, 1H, 6.6 and 12 Hz, 7-H), δ 2.42 (dd, 1H, 10.5 and 12Hz, 7‘-H), δ 3.44

(ddd, 1H, 6.3, 11 and 13Hz, 5-H), δ 3,02 and δ 3,00 (m, 2H, 4-H), δ 1.95 (s, 1H, NH) ppm. 13C

NMR by HSQC (125 MHz, CD3OD, TMS): δ 153.63; 150.28; 112.15; 127.81; 126.74; 56.48;

55.37; 43.71; 59.95, 44.90; 43.71; 23.5 ppm. (S2 Table in S1 File). MS (APCI+)m/z 298 [M+H]+:

281, 266, 250, 235, 161. HRMSm/z 298.1461 (calc. for C18H20NO3m/z 298.1438, Δm/z theor. =

-7.9 ppm).

Binding with acetylcholinesterase of Tetronarce californica (TcAChE)

X-ray structure of the AChE from the electric ray T. californica was found in the RCSB Protein

Data Bank under 6H12 code [73]. The crystal structure retrieved from the Data Bank repre-

sents the AChE adduct with a functionalized urea ligand. In order to verify robustness of the

method, preliminary docking studies were conducted using the ligand structures obtained

from the experimental XRD data. The best affinity of the ligand without the inclusion of water

molecules reached -15.3 kcal/mol with a RMSD value of 4.03 Å compared to the ligand pose

found in the crystal structure. Relatively high RMSD value can be explained by substantial

internal mobility of the ligand molecule. Inclusion of 18 crystallization water molecules
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increased the affinity value to -14.0 kcal/mol with comparable RMSD. In the case of fully

hydrated pocket, many binding poses were found with similar affinity values, ranging from

-13 to -14 kcal/mol. Some of those conformations showed better RMSD values reaching 2.2 Å.

Screening of the water molecules failed to achieve interaction energies lower than those

obtained for the empty binding pocket. Therefore, water molecules do not seem to play a sub-

stantial role in the binding of the urea ligand. Still, there was a possibility that hydration could

be important for interactions with stepharine or 5-N-methylmaytenine. Therefore, it was con-

sidered for those ligands as well.

Two major binding sites were identified in the AChE structure–the main active site and the

region near the modeled C-terminal loop (Fig 1). Consequently, we have conducted docking

studies of these sites and a rear region that can possess smaller pockets (S32–S37 Figs in S1 File

and the accompanying information).

Neostigmine is known as an efficient AChE inhibitor that was used as positive control in

this study. According to the neostigmine docking results, the best affinity value was achieved

for the main cavity of the enzyme and reaches -7.6 kcal/mol. The binding energies for the

other sites were weaker by ca. 2 kcal/mol. Inclusion of water molecules did not produce any

pronounced effect on the affinities and changed them by ca. 0.5 kcal/mol (S31 Fig in S1 File

and the accompanying information).

5-N-methylmaytenine (1) preferably binds to the AChE active site with the affinity of -10.5

kcal/mol. Stepharine (2) fits well inside the AChE active site with the predicted binding affinity

of -10.3 kcal/mol. Affinities of both ligands to the other sites were weaker by 2 . . .4 kcal/mol.

Explicit inclusion of water molecules into the binding cavity had little effect on the binding

strengths (S31 Fig in S1 File and the accompanying information).

Binding with interleukin-6

X-ray structure of human interleukin-6 (PDB ID: 4NI7) was used for the docking studies [74].

The structure contains a co-crystallized nucleic acid moiety that was removed prior to dock-

ing. During the signaling event, the IL-6 associates with the IL-6 receptor (IL-6r) and forms a

complex. Then, the second receptor protein, viz. the gp130 glycoprotein, binds to the complex

giving rise to a dimer; and the signaling is initiated [74–76]. X-ray structure of the interleukin-

receptor complex (Fig 2B) was retrieved from the RCSB PDB (ID: 1P9M) [76].

According to the original paper [74], the IL-6 molecule possesses three binding sites, where

the interactions with the receptor proteins and the second IL-6 molecule occur (Fig 2A). IL-6

–IL-6r interaction takes place at the Site 1, whereas the IL-6 interacts with the gp130 at the

Sites 2 and 3. The IL-6 molecule does not have an apparent binding pocket. Four small binding

pockets at the Sites 1 and 2 and several smaller pockets at the upper rim of the protein were

identified. Since the pocket volume has never exceed 42 Å3, the entire protein surface was con-

sidered for the docking calculations.

The strongest affinity of -7.9 kcal/mol was found for 1, when the ligand interacted with two

helices and a modeled loop at the IL-6 upper rim. Several other binding modes employed an

interaction with a side surface of the two helices, including a π-stacking with both 5-N-methyl-

maytenine phenyl rings as well. Water molecules had also been screened for possible interac-

tions with the docked ligand, but no significant effect was found (p 45 of the S1 File).

Stepharine (2) binds to the IL-6 with the affinity of -6.9 kcal/mol at the same site as 5-N-

methylmaytenine. Again, water molecules did not provide any additional binding strength (p

45 of the S1 File).
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Interleukin-8

The crystal structure of the interleukin-8 was retrieved from the RCSB protein data bank (PDB

ID: 3IL8) [77]. It is known that IL-8 interaction with the appropriate receptors (CXCR1 and

CXCR2) involves two sites close to the N-terminus (Fig 3) [78–80]. The N-loop designated as

Site I includes the residues from Ser14 to Lys20. The Site II is comprised of Glu4-Leu5-Arg6

(‘‘ELR”) residue sequence. During the signaling event, the Site I interacts with the receptor N-

terminal residues while the Site II is involved in the interaction with the receptor extracellular

residues [78]. Two other important regions of the protein structure comprise lateral sides of

the α-helix and the β-strand involved in the IL-8 dimer formation.

Fig 1. Two major binding sites found for AChE. Other, smaller sites are not shown.

https://doi.org/10.1371/journal.pone.0239364.g001
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No binding sites were identified by the Discovery Studio routines. Both the IL-8 monomer

and dimer were employed in the docking studies. Due to a moderate size of the interleukin

molecule, the entire surface of the protein was included into the search space. 5-N-methylmay-

tenine (1) interacts with the IL-8 monomer and dimer with the affinities of -6.9 and -7.0 kcal/

mol, respectively. Stepharine (2) interacts with the monomeric and dimeric forms of the IL-8

Fig 2. Binding sites of the IL-6 according to [74] (A) and IL-6 receptor complex 1P9M (B). In Fig 2B, the IL-6 structures are beige, the gp130

is marked red, and the IL-6r is green.

https://doi.org/10.1371/journal.pone.0239364.g002

PLOS ONE Alkaloids of Abuta panurensis: In silico and in vitro study

PLOS ONE | https://doi.org/10.1371/journal.pone.0239364 September 29, 2020 10 / 28

https://doi.org/10.1371/journal.pone.0239364.g002
https://doi.org/10.1371/journal.pone.0239364


with the similar affinity of -5.9 kcal/mol. Screening of the water molecules did not improve the

binding strengths (S38 and S39 Figs in S1 File and accompanying information).

Acetylcholinesterase inhibition assay

The inhibitory activity of 5-N-methylmaytenine and stepharine towards the AChE enzyme

showed the inhibition percentage of 78.01 ± 0.09% and, 74.58 ± 0.03% respectively. The inhibi-

tion percentage of 93.04 ± 0.03% was found for neostigmine, the efficient short-term reversible

inhibitor of the AChE enzyme, used as a positive control. The compounds isolated from A.

panurensis revealed promising IC50 values of 19.55μM for 5-N-methylmaytenine and 61.24μM

for stepharine, the IC50 of 3.72μM was observed for neostigmine (Table 1).

Cytotoxicity assay

The compounds were screened for anticancer activity against three cancerous cell lines K562

(human chronic myelogenous leukemia), U937 (human histiocytic lymphoma), and HL60

(human acute promyelocytic leukemia). The compounds demonstrated a good

Fig 3. Binding sites of the IL-8 monomer according to [78–80] (A) and IL-8 dimer structure (B).

https://doi.org/10.1371/journal.pone.0239364.g003

Table 1. Cytotoxic and AChE inhibitory activity of (1) and (2).

Compounds IC50 (μM)

Cell lines AChE

K562 U937 HL60

5-N-methylmaytenine 12.5 11.77 >100 19.55

Stepharine 28.48 19.97 >100 61.24

Neostigmine (positive control, AChE) n/a n/a n/a 3.72

n/a–not applicable

https://doi.org/10.1371/journal.pone.0239364.t001
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antiproliferative activity against the former two cell lines investigated. None of the compounds

showed cytotoxicity against normal cells of the Vero line and human PBMC. The results for

each compound are summarized in the Table 1.

Immunological assay

The levels of cytokines IL-6 and IL-8 were assessed by ELISA in the supernatant of human

PBMC cells treated with 5-N-methylmaytenine and stepharine. Our results demonstrated that

both 5-N-methylmaytenine and stepharine inhibited the IL-6 production in human PBMC

after 24 hours treatment in levels statistically significant (p = 0.0001), when compared to the

untreated PBMC. However, only stepharine induced significant (p = 0.01) decrease in the IL-8

levels, when compared to the control. It is interesting to note that the IL-8 levels became up-

regulated in comparison to the control, when the concentration of 5-N-methylmaytenine was

doubled to 2×IC50 (Table 1). The results suggest that both 1 and 2 induce the anti-inflamma-

tory modulation, but the effect on the IL-8 expression is dose-dependent in the former case.

Discussion

Spectral data interpretation

Structural formulas of the alkaloids with numbering of atoms are shown in the Fig 4. The MS

and NMR spectra of both alkaloids are found in the S1 File.

Molecular formula of the compound (1) was determined by HRMS in the positive mode as

C26H34N3O2. The 1H NMR data revealed (Fig 4) the presence of two dehydroxylated cinnamic

acid moieties characterized by signals of unsubstituted aromatic rings at δH 7.40 (m, H-7´and

H-7´´) and δH 7.54–7.56 (m, H-5´; H-5´´; H-6´; H-6´´; H-8´; H-8´´; H-9´; H-9´´), as well as

the signals of methylene protons at δH 7.38 (m, H-3´´ or H-3´), δH 7.42 (m, H-3´or H-3´´), δH

6.60 (d, H-2´or H-2´´), and δH 6.63 (d, H-2´´ or H-2´). The presence of an amide group in the

structure was confirmed by the signal at δH 8.12 (-NH). Signals of proton resonances in the ali-

phatic region (δH 1.45–3.20) were also elucidated (S3 and S4 Figs in S1 File).

The presence of two cinnamamide moieties in the structure was confirmed by the HMBC

experiment (Fig 4). The signals at δH 7.38 (m, H-3´´ or H-3´) and δH 7.42 (m, H-3´or H-3´´)

show J3 couplings to the quaternary carbon signals at δC 165.27 (C-1´or C-1´´) and δC 165.32

(C-1´´ or C-1´) indicate a presence of two carbonyls in the structure (S9 and S10 Figs in S1

File). Additionally, the HMBC spectra also showed correlations of the -NH group (δH 8.12)

with the above mentioned carbonyl signals (δC 165.27 and δC 165.32) that confirm the pres-

ence of two cinnamamide moieties.

In the aliphatic region of the 13C NMR spectra (S5 and S8 Figs in S1 File), the presence of a

methyl (δC 42.09) and seven methylene carbons (δC 24–55) was confirmed by DEPT-135 (S13

and S14 Figs in S1 File). The methyl group (δC 42.09) directly linked to the nitrogen in the ali-

phatic chain can be confirmed in the HMBC with the long-distance proton couplings between

the δH 2.16 (s, NCH3) and the methylene carbons at δC 55.26 (C-4) and δC 57.12 (C-6).

Seven well-defined signals of methylene carbons were found in the aliphatic region of the
13C NMR spectrum. The corresponding 1H-13C correlations were confirmed in the HSQC

spectrum (S11 and S12 Figs in S1 File), where isochrony of two hydrogen atoms was demon-

strated by the correlation of the proton resonance at δH 1.47 with two different carbon signals

at δC 24.53 and δC 27.48. Furthermore, the proposed structure was confirmed by the following
1H-1H correlations in the COSY spectrum (Fig 4): δH 2.32 with δH 1.45; δH 2.35 with δH 1.61;

δH 3.18 with δH 1.47, and δH 3.20 with δH 1.61 (S15 and S16 Figs in S1 File).

The MS/MS spectrum of the compound (1) is in agreement with the above NMR data. The

ionm/z 420 showed sequential losses of 218 Da (m/z 202), 14 Da (m/z 188), and 57 Da (m/z
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131) (S1 Fig in S1 File), typical for the fragmentation pattern of cinnamic acid amides [46, 59].

Therefore, the compound (1) was identified as 5-N-methylmaytenine, i.e. 1,10-di-E-cinnama-

mide of 5-N-methylspermidine.

The compound (2) appeared as a light brownish amorphous solid. The molecular formula

was determined by HRMS in positive mode as C18H20NO3. The MS/MS spectrum of them/z
298 ion showed sequential losses of 17 Da (m/z 281) and 15 Da (m/z 266), and a loss of 31 Da

(m/z 281! 250) (S17 Fig in S1 File); which are consistent with aporphine alkaloids containing

adjacent methoxyls in the ring A and the non-substituted ring D [60, 81] (Fig 4).

The 1H NMR spectrum is in agreement with the MS data. It exhibited signals typical for

proaporphine alkaloids at δH 2.52 (dd; 6.6 and 12 Hz; H-7 or H-7´), δH 2.42 (dd; 10.5 and 12

Hz; H-7´or H-7), δH 3.02 (m; H-4), δH 3.44 (ddd; 6.3, 11, and 13 Hz; H-5 or H-5´) e δH 3.70

(ddd; 1.5, 6.3, and 13 Hz; H-5´or H-5). The following signals were observed in the range of

aromatic proton resonances: δH 6.89 (s, H-3) corresponding to an orto-substituted ring A; δH

7.16 (dd; 3 and 10 Hz; H-8), δH 6.29 (d; 1.8 and 10 Hz; H-9), δH 6.41 (dd; 1.8 and 10 Hz; H-

11), and δH 7.01 (dd; 3 and 10 Hz; H-12) characteristic of the unsubstituted ring D; and two

signals δH 3.61 (s, 3H) and δH 3.82 (s, 3H) of the methoxy-substituents in the ring A (Fig 4 and

S19-S21 Figs in S1 File).

Fig 4. 5-N-methylmaytenine (1) and stepharine (2). Principal couplings are shown with arrows: HMBC–blue, COSY–red.

https://doi.org/10.1371/journal.pone.0239364.g004
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The proaporphine alkaloid structure was proposed based on the HMBC experiments (Fig

4). The signals at δH 7.16 (dd; 3 and 10 Hz; H-8) and δH 7.01 (dd; 3 and 10 Hz; H-12) showed a

J3-coupling to the carbon at δC 186.6 (C-10). The proaporphine skeleton was also established

following long-distance 1H-13C couplings of the signals at δH 6.89 (s, H-3) and those of the

methoxyls at δH 3.61 (s, 3H) and δH 3.82 (s, 3H) with the carbons at δC 144.6 (C-1) and δC

154.7 (C-2), thus confirming the existence of two substitutions in the A ring (S24 and S25 Figs

in S1 File). Therefore, the compound (2) was elucidated as being the proaporphine alkaloid

stepharine.

The compounds were identified by a comparison of the obtained spectral results with data

reported in the literature [46, 59, 82]. The alkaloid (1) was identified as 5-N-methylmaytenine,

this is the first report on isolation of this compound from a natural product, as well as the first

occurrence of the alkaloid in the Menispermaceae family [59].

The proaporphine alkaloid stepharine (2) was also described by us for the first time in A.

panurensis. Previously, its presence was reported in Stephania genus [83–89], as well as in

some Abuta species [4, 15].

Acetylcholinesterase inhibition

The docking study provided a very useful tool in the interpretation of the AChE inhibitory

activity results, indicating that molecules under investigation were able to bind effectively to

the TcAChE enzyme active site.

The neostigmine (used as a positive control in the assay) forms π-stacking interactions with

the aromatic rings of amino acids from the so-called anionic subsite of the enzyme corre-

sponding to the choline-binding pocket (Trp84 and Phe330). The stronger one is formed with

the phenyl ring of Trp84 (3.66 Å). The stacking distance to Phe330 is 4.31 Å implying a weaker

interaction. There exist two attractive Coulomb interactions as well. The first one is between

the positively charged quaternary ammonium nitrogen and a carboxylic group of the Glu199.

The second interaction is formed between the same charged nitrogen atom and a phenyl ring

of the Trp84, at a distance of approximately 4.4 Å, typical for tetraalkylammonia–π interac-

tions [90] (Fig 5).

Because the active site pocket of the acetylcholinesterase forms a deep and narrow gorge,

formed of aromatic residues by 40% [91], the hydrophobic interactions play a major role in

binding of the compounds under investigation to the AChE (Figs 5 and 6). Docking data indi-

cate that (1) is a plausible ligand for the AChE, which can adopt a variety of binding poses due

to its conformational flexibility. One of the cinnamic acid phenyls is sandwiched between two

aromatic residues of the enzyme Trp84 and Phe330 at the distance of 3.6Å. . .3.9Å that is

slightly above a typical value for a parallel displaced π-stacking. Interactions with peripheral

subsites Tyr121 and Gly117 were also observed. Stepharine (2) fits well inside the AChE pocket

with the predicted binding affinity of -10.3 kcal/mol. This energy corresponds to substantial

interaction between the ligand and the enzyme. (Fig 6). π-Stacking is again the major protein-

ligand interaction for this compound (3.66 Å with Trp84 pyrrole and 4.09 Å with Phe330 phe-

nyl rings). Both alkaloids have their binding poses at the lipophilic anionic subsite (Trp84 and

Phe330) of the TcAChE (Fig 6), where they are able to interact with the enzyme pocket [91,

92].

Overall, all three compounds studied (1, 2, and neostigmine) have phenyl rings as the most

important structural features that lead to similar interactions guiding their affinity towards the

AChE. The preferential interaction of the neostigmine quaternary nitrogen with the π elec-

trons of the aromatic rings at the binding site of the enzyme indicates greater affinity of that

subsite towards easily polarizable ammonium ligands. [93]. The alkaloids in question have no
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such moieties, which can be a reason for higher IC50 values of the 1 and 2, than that of

neostigmine.

Peripheral anionic binding site of the enzyme is also associated with the AChE-mediated

abnormal β-amyloid protein aggregation in Alzheimer’s disease patients [94, 95]. It is interest-

ing to note that owing to a conformational flexibility of the molecule, 5-N-methylmaytenine

interacts simultaneously with both the anionic and the peripheral subsites of the enzyme.

Therefore, (1) may well be capable to have greater pharmacological potential [94], when com-

pared to stepharine that interacts with the anionic active subsite only.

Currently, natural products constitute one of the main sources of the AChE inhibitors, used

as active compounds to treat damages to central and peripheral nervous system, as well as to

alleviate symptoms of neurodegenerative diseases [28, 96, 97]. Bisbenzylisoquinoline and pro-

toberberine alkaloids exhibit a moderate AChE enzyme inhibition potential with IC50 values

in the range of 34.66μM to 78.22μM [17] and 36.6μM to 141.8μM [98], respectively. Whereas

aporphine and proaporphine alkaloids demonstrate better AChE inhibitory activity with the

Fig 5. Neostigmine interactions with the AChE binding pocket.

https://doi.org/10.1371/journal.pone.0239364.g005
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IC50 values ranging from 2.98μM to 20.4μM and this effect is often related to different substitu-

ents in their structure [27]. Polyamine alkaloids such as putrescine, spermidine, spermine,

cadaverine, and their derivatives are present ubiquitously in all living cells; they have a variety

of functions inside the cell, including the cell growth and regeneration [99]. For the central

nervous system in particular, studies show that polyamines act on receptors related to neuro-

degenerative processes [100, 101]. For example, the spermidine decreases significantly the

AChE activity, oxidative stress and neuroinflammation in a cerebral hippocampus [102].

Our study of two alkaloids first obtained from A. panurensis revealed that both compounds

are promising AChE enzyme inhibitors. The capability of 5-N-methylmaytenine to interact

simultaneously with several subsites in the enzyme structure may provide an important guide-

line in the search for new active compounds for treatment of neurological disorders [103].

Cytotoxicity assay

Effectiveness of 5-N-methylmaytenine (Fig 7) and stepharine (Fig 8) in different concentra-

tions were evaluated against U937 and K562 tumor cell lines. The U937 cells were more sus-

ceptible to the stepharine anticancer action. Interestingly, the stepharine demonstrated higher

cytotoxic activity against the K562 strain only in the first 24 hours of treatment. This result

suggest that K562 cell line is more resistant to the stepharine treatment than U937. Both com-

pounds showed practically no toxicity to non-cancerous cells (Vero and human PBMC, Fig 9).

Although stepharine showed greater stability of action in the course of the assay, the 5-N-
methylmaytenine demonstrated higher efficiency, according to the IC50 values.

The results obtained corroborate well with the literature reports that isoquinoline alkaloids

of different backbones, such as berberine and aporphine ones containing an oxo-substituent

in their structure, particularly oxoisoaporphines, demonstrate moderate to strong potential for

cytotoxic activity against several tumor cell lines, including those used in the present work [96,

104–107].

Fig 6. Binding poses (A, B) of the alkaloids inside the AChE pocket and their binding modes (C, D). 5-N-

methylmaytenine (A, C) and stepharine (B, D).

https://doi.org/10.1371/journal.pone.0239364.g006
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Immunomodulatory assay

The anti-inflammatory properties of acetylcholinesterase inhibitors are mediated by a cholin-

ergic system present in the immune cells [108, 109]. For instance, macrophages and T cells

express α7 homopentameric nAChR receptor that can down-regulate the production of

inflammatory cytokines (TNF-α and IL-1β) and NF-κB-dependent transcription, when stimu-

lated [110]. The latter pathway regulation may be involved in the pathogenesis of many

chronic diseases such as asthma, rheumatoid arthritis, atherosclerosis, and even though the

Alzheimer’s disease [111–113]. In this study, we did not assess the potential of stepharine and

5-N-methylmaytenine in regulating the NF-κB immune pathway. However, our findings dem-

onstrate that the cholinergic anti-inflammatory pathway could reduce the production of IL-6

and IL-8 owing to the AChE inhibitor treatment, which can protect against the damage pro-

voked by inflammation in different types of inflammatory diseases.

According to the molecular docking studies, both alkaloids bind to the interleukins with

quite similar affinity in the range of -8 . . .-6 kcal/mol.

Binding to the IL-6. In the case of IL-6, 5-N-methylmaytenine binds to the upper rim of

the protein (Fig 10), giving rise to hydrogen bonds with carboxylic groups of Glu36 (modeled

loop, 2.20 Å) and Asp145 (1.94 Å). A weak cation-π interaction with Arg89 guanidine moiety

and favorable hydrophobic interactions between the phenyl ring of 1 and carbon chains of

Leu42 and Lys39 were also formed.

Fig 7. Cytotoxic activity of 5-N-methylmaytenine respective IC50 values.

https://doi.org/10.1371/journal.pone.0239364.g007
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Similarly, stepharine (2) binds to the top region of the IL-6 interacting with Met146 of the

α-helix (π-sulfur interaction at 3.65 Å) and with Glu36 of the modeled loop (weak anion-π
interaction with the carboxyl group).

Both alkaloids interact with the Site 3 of the IL-6 (Fig 2) indicating that they are able to dis-

rupt IL-6 –gp130 complex formation and thus hinder the signaling. Results of the immunolog-

ical assay are in agreement with the above statement (Fig 11).

Binding to IL-8. According to the docking results, both alkaloids bind into a shallow

pocket between a Thr12 –Pro19 loop and a β-sheet region Ile40 –Cys50 (Fig 12), which are

close to the receptor-binding Site I (Fig 3); implying inhibitory action of both 1 and 2. 5-N-

methylmaytenine forms an aromatic interaction with the Phe21 phenyl ring and two π-charge

interactions with the Arg47 guanidine moiety of and the Asp45 carboxyl group. Stepharine

binds to the protein pocket in a similar way by π-π stacking interaction with Phe21, but acts as

a hydrogen-bond acceptor for the -NH proton of Arg47 (Fig 12). This fact may suggest a

slightly stronger inhibition of IL-8 production by stepharine. In the case of 5-N-methylmayte-

nine, the induction of the IL-8 level downregulation seems to happen in a dose-dependent

manner (Fig 11).

It was shown that some interleukins, including the IL-8, can exist both as dimers and

monomers in solution [78]. The dimerization occurs at higher IL-8 concentrations and is

highly sensitive to solution conditions such as pH and ionic strength [114, 115]. In general,

affinity to the receptors and activity of the dimers are much lower than those of the monomers

Fig 8. Cytotoxic activity of stepharine and respective IC50 values.

https://doi.org/10.1371/journal.pone.0239364.g008
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[114, 116]. We conducted docking studies of 5-N-methylmaytenine and stepharine to the IL-8

dimer (Fig 13).

Affinities of the 1 and 2 to the dimer are similar to those of the monomeric protein: -7.0

kcal/mol for 1 and -5.9 kcal/mol for 2. Inclusion of water molecules into the dimer structure

did not lead to improvement of binding affinities. It is interesting to note that binding posi-

tions of the two ligands became different. While stepharine binds to the dimer the same way as

it interacts with the monomer (Fig 12), the 5-N-methylmaytenine molecule is stretched

between α-helices and interacts with both monomer moieties. Most of the direct interactions

were found with one of the IL-8 units, viz., two hydrogen bonds with oxygen atoms of Asn71

and Glu70 (2.71 Å and 2.38 Å, respectively) and a weak anion-π interaction between the phe-

nyl ring of 1 and a carboxylic group of Glu63 (3.85 Å). Carbon chains of Lys54 and Leu66 of

another IL-8 molecule form hydrophobic interactions with the phenyl rings of 5-N-methyl-

maytenine. At lower concentrations, 1 is able to interact with the IL-8 dimers and possibly to

prevent their dissociation into more active monomer form. At higher concentrations, the

binding of 5-N-methylmaytenine to the IL-8 monomers and their activation may take place.

Mostly, IL-6 and IL-8 play a crucial role in the selective chemotaxis, degranulation, and

activation of neutrophils. High levels of those interleukins are associated with an immuno-

pathogenesis of many chronic inflammation diseases, such as cell injury in kidney inflamma-

tion, poor outcome of different neurological manifestations, and excessive infiltration of

neutrophils in airways of cystic fibrosis patients [117–119]. Thus, therapies targeting pro-

inflammatory cytokines, such as IL-6 and IL-8, have important clinical implications.

Fig 9. Cytotoxicity assessment of the alkaloids to Vero and human PBMC cells. Stepharine (A, C) and 5-N-methylmaytenine (B, D).

https://doi.org/10.1371/journal.pone.0239364.g009
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Conclusion

This is the first paper dealing with 5-N-methylmaytenine isolation from natural products and

the first report on the occurrence of both 5-N-methylmaytenine and stepharine alkaloids in

branches of the Amazonian plant Abuta panurensis. Inhibitory activity of both alkaloids

towards the AChE enzyme was evaluated by spectrophotometry and molecular docking study.

Fig 10. Binding poses (A) of the alkaloids at the IL-6 and their binding modes (B, C). 5-N-methylmaytenine (blue

A, B) and stepharine (green A, C).

https://doi.org/10.1371/journal.pone.0239364.g010

Fig 11. Immunomodulatory effect of 5-N-methylmaytenine and stepharine.

https://doi.org/10.1371/journal.pone.0239364.g011
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The compounds in question bind effectively to the enzyme active site and demonstrate prom-

ising inhibitory potential. Owing to the greater conformational flexibility of 5-N-methylmayte-

nine, it is capable to interact with both anionic and peripheral subsites, thus demonstrating

higher AChE inhibition potential, when compared to stepharine.

Both alkaloids were effective against K562 and U937 tumor cells, showing practically no

toxicity to normal cell lines Vero and human PBMC.

5-N-methylmaytenine and stepharine demonstrated immunomodulatory activity towards

IL-6 and IL-8 interleukins. In the former case, both alkaloids inhibited the IL-6 production at

very similar levels, which may probably be related to the formation of hydrogen bonds with

the protein binding sites. In the latter case, stepharine inhibited considerably the production

of IL-8 in comparison to 5-N-methylmaytenine that showed a dose dependent action (inhibi-

tory at the IC50 dose, and stimulatory at the twofold IC50 one). Such a behavior may possibly

Fig 12. Binding poses (A, B) of the alkaloids at the IL-8 and their binding modes (C, D). 5-N-methylmaytenine (A, C) and stepharine (B, D).

https://doi.org/10.1371/journal.pone.0239364.g012
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be explained by different binding modes of the alkaloids to the interleukin monomer and

dimer forms.

Our results suggest that 5-N-methylmaytenine and stepharine could be used as reversible

AChE inhibitors in the treatment of neurological disorder manifestations, as well as candidate

immunomodulatory agents in the inflammatory disease context. However, more research is

necessary to better investigate the complete pharmacological potential and toxicological profile

of these compounds.
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