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Abstract

Fetal alcohol spectrum disorders (FASD) are a consequence of prenatal alcohol expo-

sure (PAE). The etiology of the complex FASD phenotype with growth deficit, birth

defects, and neurodevelopmental impairments is under extensive research. Both

genetic and environmental factors contribute to the wide phenotype: chromosomal

rearrangements, risk and protective alleles, environmental-induced epigenetic alter-

ations as well as gene-environment interactions are all involved. Understanding the

molecular mechanisms of PAE can provide tools for prevention or intervention of the

alcohol-induced developmental disorders in the future. By revealing the alcohol-

induced genetic and epigenetic alterations which associate with the variable FASD

phenotypes, it is possible to identify biomarkers for the disorder. This would enable

early diagnoses and personalized support for development of the affected child.

1 | INTRODUCTION

Prenatal alcohol exposure (PAE) is a leading cause of preventable

mental disability and birth defects in the Western world. PAE can pro-

duce fetal alcohol spectrum disorders (FASD), which is an umbrella

term for all alcohol-related neurodevelopmental disorders and birth

defects. This continuum of disabilities consists of growth deficits,

physical abnormalities, neurocognitive and behavioral deficits, and

increased vulnerability to mental health problems and other com-

orbidities.1-3 There are four diagnostics categories within FASD. The

most severe category is fetal alcohol syndrome (FAS) with diagnosed

pre- and post-natal growth retardation—especially in the head—as

well as characteristic facial dysmorphology, and central nervous sys-

tem alterations. In addition to FAS, there is partial fetal alcohol syn-

drome, alcohol-related neuronal disorders, and alcohol-related birth

defects.4 There are several factors contributing to the complex pheno-

type of the alcohol-induced disorders, such as genetic susceptibility,

drinking pattern, timing of drinking, amount of alcohol as well as

maternal metabolism and tolerance for alcohol5-8 (Figure 1). The esti-

mated prevalence of FASD ranges from 3% to 5% in Europe and

North America to over 10% in South Africa,9 but owing to the

complex, highly variable phenotype, and lack of proper diagnostic

tools, FASD is severely underdiagnosed. In a recent study among first-

graders in the United States, 222 children were diagnosed with FASD

and only two of them had previous diagnosis.10

Currently, the assignment of an FASD diagnosis is a demanding

medical diagnostic process and requires a multidisciplinary team of

experts in pediatrician, clinical genetics, clinical dysmorphology and

neuropsychology with complementary experience, qualifications, and

skills.4 Owing to the challenges in current diagnostics, a solid diagnos-

tic method is needed to separate the categories from each other as

well as to understand the wide variety of subphenotypes. Also, the

severity of defects in each category should be determined: it is

already known that FASD individuals without the full criteria of FAS

can be severely impaired in brain function.11 Furthermore, a method

to discern similar phenotypes like attention deficit hyperactivity disor-

der and autistic spectrum disorders from FASD is needed.

The complexity and broadness of the PAE-induced phenotypes

can be perceived by analyzing comorbidities in individuals with FASD

diagnosis. They are at risk of multiple comorbidities, like conduct dis-

order, receptive and expressive language disorders, and abnormal

results of function studies of peripheral nervous system, and special
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senses.3 For example, the pooled prevalence of hearing loss (for both

conductive and sensorineural), psychological disorders, and chronic

serous otitis media are 126, 97, and 77 times higher, respectively,

among individuals with FAS compared to general population.

According to a recent study, 428 comorbid conditions are co-

occurring in individuals with FASD, spanning across 18 of 22 chapters

of the International Classification of Diseases (ICD-10).3

2 | THE GENETIC BACKGROUND OF FASD

Alcohol is a teratogen that rearranges chromosomes and kills cells.

The toxic effect of alcohol is partly caused by its oxidation product

acetaldehyde, which is highly reactive toward DNA, consequently

damaging chromosomes and mutating stem cells.12,13 Owing to this, it

is not surprising that in recent studies 9% to 14% of children diag-

nosed with FASD had chromosomal deletions or duplications that

could explain at least part of the features.14-16 In addition to chromo-

somal rearrangements, twin studies have suggested that genetic

factors—susceptibility or resistance alleles—could affect the alcohol-

induced phenotype. Monozygotic twins with identical genomes have

been observed to be 100% concordant for diagnosis, while dizygotic

twins who share only 50% of their DNA, were only 64% concor-

dant.17 Also, a recent research where both twins and siblings were

studied supported that conclusion: The prevalence of pairwise discor-

dance in FASD diagnosis increased from 0% in monozygotic twin pairs

to 44% in dizygotic twin pairs and continued to 59% in full-sibling

pairs and 78% in half-sibling pairs.18 It is known that the genetic relat-

edness between these four groups decreases from 100% to 50% to

50% to 25%, respectively, and this strongly supports the role of a

genetic component in the etiology of alcohol-induced developmental

disorders. However, it is essential to separate chromosomal

rearrangements from risk or protective alleles: Instead of suggested

risk alleles, an 18q12.3-q21.1 microdeletion was detected in an

affected twin in a prenatally alcohol-exposed dizygotic twin pair with

discordant FAS phenotype.19 This microdeletion resides in a known

18q deletion syndrome region, which has been associated with

growth restriction, developmental delay or intellectual deficiency, and

abnormal facial features in previous studies,20-22 and thus it likely

explains the phenotypic discordancy between the twins.

The most interesting candidate genes in the etiology of FASD are

involved in alcohol metabolism: alcohol dehydrogenase (ADH) con-

verts alcohol to acetaldehyde and aldehyde dehydrogenase subse-

quently converts acetaldehyde to less harmful acetate. The human

What's already known about this topic?

• Several factors contribute to the complex phenotype of

fetal alcohol spectrum disorders

What does this study add?

• Current knowledge about genetics and epigenetics in the

etiology of FASD

• A potential method for early diagnosis or even preven-

tion of FASD

F IGURE 1 Several genetic and
environmental factors during
developmental periods are
contributing to the complex FASD
phenotype
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FASD studies have focused on three ADH loci and their alleles.

According to these previous studies, maternal alleles that are associated

with efficient metabolism of alcohol are underrepresented in FASD

individuals.23-25 However, the association between ADH alleles and

FASD seems to be more complex: Some of the ADH alleles have been

associated to alcohol addiction in previous studies,26 which means that

mothers with a certain genotype could consume more alcohol.

3 | EPIGENETIC EFFECTS OF PRENATAL
ALCOHOL EXPOSURE

There is an increasing amount of evidence supporting that PAE could

affect the regulation of gene expression without DNA base pair

changes. Effects of PAE have been detected in epigenome, which is a

regulator of the genome and is needed for the normal development of

a multicellular organism. Epigenetic marks include DNA methylation

and histone modifications, which regulate gene expression prior to

transcription through their effects on chromatin structure. Also, non-

coding RNAs, such as microRNAs that inhibit the translation of mes-

senger RNAs into proteins, are a part of the epigenetic regulation.

Epigenetic variation induced in utero is a strong candidate mediator of

environmental effects and indeed, increasing amount of associations

between adverse gestational exposures and permanent changes in

offspring's DNA methylation profiles have been observed.27

3.1 | A candidate gene study: PAE-associated
alterations in IGF2/H19 locus

Several cell, animal, and human studies have revealed associations

between PAE and alterations in DNA methylation, histone modifica-

tions, and microRNAs.28 Many studies have focused on specific loci in

the genome, often on Insulin-like growth factor 2 (IGF2)/H19, which is

known to be crucial for embryonic and placental growth. This locus is

imprinted and the genes are expressed through epigenetic mecha-

nisms in parent-of-origin manner: IGF2, a major driver of growth, is

expressed from the paternal allele29 and noncoding, negative growth

controller H19 from the maternal allele.30 The locus is regulated by

allele-specific DNA methylation at the H19 imprinting control region

(H19 ICR), which contains seven binding sites for methylation-sensitive

zinc-finger proteins, CCCTC-binding factors (CTCFs). These binding

factors organize chromatin contacts and have a critical role in the

establishment and maintenance of imprinting.31

Both decreased and increased DNA methylation levels at the H19

ICR have been associated with PAE in previous mouse and human

studies.32-34 We recently introduced a genetic factor, which associated

with genotype-specific effects of PAE on placental DNA methylation,

gene expression, and phenotype of alcohol-exposed newborns.35

A polymorphism rs10732516 at the H19 ICR, in the binding site of the

CTCF regulatory protein, associates with genotype-specific changes in

DNA methylation in a parental-origin manner. Interestingly, we

observed similar genotype-specific decreased methylation levels in

in vitro fertilized placentas,36 suggesting genotype-specific sensitivity

for environmental effects in this locus.

Functional studies will reveal potential genotype-specific-

environmental-induced alterations in the binding of CTCF protein, but

the genotype-specific phenomenon itself is not novel: It is already

known that individual genotypes at specific methylation quantitative

trait loci can result in different DNA methylation patterns across

extended genomic regions.37 The underlying mechanism can be asso-

ciated directly with genetic polymorphism or with a genotype-

environment interaction. Gene-environment interaction should be

considered in methylation studies: A strong environmental factor,

such as smoking, can have effects on DNA methylation alone, but the

genotypic effects in addition to the exposure can provide more infor-

mation of the variation in DNA methylation profiles.38

3.2 | Genome-wide DNA methylation analyses

Epigenome-wide association studies (EWAS) have provided a more

inclusive comprehension of PAE-induced alterations in the methylome,

and long-lasting changes, both decreased and increased methylation

levels, have been observed in mouse studies.33,39 Only a few EWAS for

human cohorts have been performed so far and although the altered

DNA methylation levels associate with several genes presumably

involved in FASD—such as imprinted and neurodevelopmental genes—

the results are inconsistent. A meta-analysis of six cohorts (1147

exposed and 1928 unexposed newborns) did not reveal significant

effects of light-to-moderate maternal alcohol consumption on DNA

methylation in cord blood.40 A signature of 658 FASD-associated dif-

ferentially methylated CpG sites in buccal epithelial cells have been

found in a study with 110 FASD and 96 control children34 but only

161 CpG sites of these 658 were replicated in a study of 24 FASD and

24 control children's buccal cell samples.41 Also, associations between

FASD—even between one of the subphenotypes—and altered DNA

methylation levels in blood samples have been discovered in a study

with 39 children with FASD diagnosis and 64 controls, as well as in a

replication study with 7 FASD and 28 control children.42 However, the

observed methylation changes were mainly inconsistent with the previ-

ous studies and any solid biomarkers for FASD have not yet been

revealed.

The inconsistency of the EWAS studies could be explained by

several limitations: only low-to-moderate alcohol exposure, cellular

heterogeneity, different age of the affected individuals, variability in

timing and amount of exposures, limitations of the methods, or differ-

ences in genetic background, socioeconomic status and culture.

A strong environmental factor, such as maternal smoking, can be a

confounding factor in the analysis. Often women who drink also

smoke, and the separate effects of these two harmful factors or their

interactions are still unclear. Interestingly, prenatal exposure to mater-

nal smoking is associated with a larger magnitude of alterations com-

pared to PAE and with systematically replicated changes in DNA

methylation, including xenobiotic-related pathways,43-45 unlike in the

PAE EWAS studies. Furthermore, all the previous EWAS studies for
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PAE have been performed by microarrays, in which 450 000 selected

CpG sites for DNA methylation groups were analyzed (450 K microar-

ray Illumina). This is only approximately 1.6% of all the CpG sites in

the human genome and thus majority of the methylation information

is missing from the results.

3.3 | Epigenetic effects of early prenatal alcohol
exposure

Recent studies have shown that the beginning of pregnancy appears

to be particularly vulnerable to the effects of environmental factors

and disruption of these processes can have long-term effects on

development.46-48 This is a dynamic period of cell divisions, DNA rep-

lication, and epigenetic reprogramming.49 The reprogramming is fun-

damental for normal development: It removes epigenetic marks and

returns totipotency for the first cells of the new individual. In the end

of this early programming the cell-specific epigenetic profiles for ade-

quate gene function will be formed again. We have shown for the first

time that alcohol could affect adult phenotype by altering the

epigenotype of the early mouse embryo. Early PAE is capable of

changing the DNA methylation level at the epigenetically sensitive

Agouti viable yellow (Avy) allele and consequently the coat color of

alcohol-exposed offspring.50 Avy is a dominant mutation of the Agouti

locus in mouse, caused by the insertion of a retrotransposon.

Retrotransposons are transposable elements, “jumping genes,” which

by affecting gene regulation can contribute to development and dis-

ease.51,52 Interestingly, the offspring phenotype in this mouse model

was reminiscent of human FASD with craniofacial dysmorphology,

postnatal growth restriction,50 and structural53 as well as functional54

changes in central nervous system.

Instead of killing the cells, maternal alcohol consumption could

alter the establishment of epigenetic marks in the epigenetic program-

ming period of early embryo, change the gene regulation and conse-

quently bring forth the wide FASD phenotype. Several stem cell and

mouse embryo studies have revealed associations between early alco-

hol exposure and alterations in DNA methylation39,55,56 and histone

modifications.57 Although causal molecular mechanisms of early

alcohol-induced epigenetic alterations and adult phenotype have not

yet been revealed, this will be possible due to the development of

cost-effective sequencing methods. Instead of small fraction of

selected CpG sites on arrays, they will enable comprehensive and sys-

tematic examination of the whole epigenome including repetitive ele-

ments. Owing to the significant role of TEs in normal development as

well as disorders, also their potential role in alcohol-induced develop-

mental disorders should be explored in future studies.

Although early PAE-induced molecular changes can be relatively

subtle and will not terminate the development, they can be significant

for the development of brain. If they occur very early in the develop-

ment prior to the differentiation of the three germ layers, they would

be expected to be present in all tissue types. In our previous mouse

study, early PAE was associated with similar changes in gene expres-

sion in ectodermal hippocampus and main olfactory epithelium as well

as mesodermal bone marrow of infant mice, which supports our

hypothesis of early epigenetic origin of alcohol-induced disorders.53

The changes in gene regulation may have already taken place in

embryonic stem cells—in hematopoietic stem cells as well as in stem

cells of central and peripheral nervous system. These changes can be

replicated to daughter cells along cell divisions, and can be seen in the

different tissue types of an adult organism. This could prove signifi-

cant for the challenging work of diagnosing alcohol-related damage.

4 | MOLECULAR MECHANISMS OF
PAE-INDUCED EPIGENETIC ALTERATIONS

4.1 | Alcohol's effects on metionine cycle

Although the significance of prenatal environment in adult phenotype

seems to be indisputable, the molecular mechanisms underlying these

associations or causality of the observed alterations are poorly under-

stood. Alcohol consumption causes oxidative stress, which in addition to

chromosomal abnormalities also provoke enzymatic malfunction. The

reduced activity of DNA methyltransferase 1, the enzyme which is essen-

tial for maintaining of DNA methylation profiles, has been associated

with decreased global methylation level in embryos exposed to alco-

hol.58 Furthermore, it has been observed that alcohol exposure in liver

inhibits the enzymatic activity in methionine cycle.59 This one-carbon

pathway, which is found in all tissues, links folate, methyl group trans-

fers and homocysteine metabolism, and is essential for global DNA and

histone methylation levels (Figure 2). Methionine adenosyltransferase

enzyme converts methionine to S-adenosylmethionine, which is a

methyl donor substrate for methyltransferase-catalyzed reactions. In

addition to methyl groups, also S-adenosylhomocysteine is formed,

which is hydrolyzed to homocysteine. Homocysteine is remethylated

back to methionine by methionine synthase enzyme (MS) using dietary

folate or by betaine-homocysteine methyltransferase reaction using

choline's precursor betaine.60 Vitamins B6 and B12 are important cofac-

tors in the cycle: B12 in the remethylation of homocysteine to methio-

nine and B6 in the removal of homocysteine by transsulfuration

pathway.

Alcohol consumption decreases the amount of folate

(B9 vitamin)61-63 and according to a recent study, folic acid transport

F IGURE 2 The methionine cycle [Colour figure can be viewed at
wileyonlinelibrary.com]
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to the human fetus is decreased in pregnancies with chronic alcohol

exposure.64 Also, the absorption of B6 and B12 vitamins has been

associated with chronic alcohol consumption, but the results have not

always been consistent.65 Together the previous studies support the

hypothesis that alcohol exposure could affect the methionine cycle

and consequently methylation level of the epigenome in the cells of a

developing embryo.

Interestingly, based on animal studies, PAE-induced epigenetic

changes and adverse effects on the phenotype could be returned by

methyl donors.66-69 Despite of a small sample size—35 alcohol-

exposed and 35 alcohol- and choline-exposed newborns—the results

of a preliminary human clinical trial about maternal choline supple-

mentation from mid-pregnancy are encouraging: Considerable catch-

up growth in weight and head circumference as well as better visual

recognition memory were detected in infants born to choline-treated

alcoholic mothers compared to a placebo group.70 However, owing to

the unknown molecular mechanisms of choline supplements, it is not

clear whether the supplementation specifically targets alcohol-related

impairment or improves development in all infants.

4.2 | Alcohol's effect on histone acetylation

Alcohol metabolism in the liver is a source of acetate in the body.71

Interestingly, a recent mouse study reported a direct link between

alcohol consumption and changes in histone acetylation in the brain

(Figure 3).72 Acetyl groups from alcohol were rapidly incorporated into

histone acetylation in the hippocampus and prefrontal cortex by

acetyl-CoA synthase 2 (ACSS2) dependent way, which consequently

altered transcription of the genes. Behavioral tests also suggested that

this activation of memory- and learning-related genes associates with

an addictive phenotype. The observed alcohol-related associative

learning was abolished in ACSS2-knockout mice, demonstrating that

ACSS2 is required for the phenotype. In addition to the adult mice,

these dynamic histone acetylation changes were detected also in fetal

brain affected by maternal alcohol consumption.72 The effects of

alcohol-induced histone acetylation on brain development and the

role of acetylation in the molecular mechanisms of FASD should be

explored in future studies.

5 | BIOMARKERS FOR FASD

Owing to the challenges in diagnostics of FASD, particularly with the

subphenotypes in the spectrum, there is an urgent need for solid bio-

markers. At the moment early intervention is crucial for a positive out-

come in the affected child. By revealing the molecular alterations and

their associations with the phenotypes, it is possible to elucidate early

biomarkers for FASD. Early, widespread PAE-induced epigenetic alter-

ations could enable FASD diagnosis from a blood sample or simply

buccal cells from the inside of a newborn's cheek. It has been shown

by blood42 and buccal cell samples,34,41 that children with FASD could

have unique DNA methylation defects. Both buccal cells from mouth

epithelium and brain tissue are of ectodermal origin and therefore, in

theory, early epigenetic alterations in brain development could also be

seen in the buccal cells. Those changes might be used as biomarkers

for alcohol-induced neuronal disorders in the future. This hypothesis

is supported by a recent rat study, where correlation in alcohol-

associated DNA methylation alterations between peripheral tissue and

hypothalamus was observed.73 However, despite of the recently

observed high correlation for DNA methylation of CpG sites in human

buccal and brain tissue across 21 individuals (r = 0.85, P < 2.2 × 10−16),

for site-specific DNA methylation within one individual it has been

reported rather low: only 17.4% of all CpG sites were correlated at a

nominal level of significance (P < .05).74

6 | FUTURE STUDIES

Although FASD research has been mainly focused on the gestational

period and maternal environmental factors during the pregnancy, also

the impact of preconceptional—specifically paternal environment

before fertilization—has been recognized. Paternal alcohol consump-

tion can decrease the methylation level in human sperm75 and pater-

nal alcohol exposure has been associated with offspring's restricted

growth, congenital anomalies and cognitive impairment in animal

studies.76-79 The mechanism how paternal environmental exposures

can affect the offspring's development is not yet known, but it seems

that micro RNAs could explain how the alcohol-induced effects can

be transferred to the next generation.80,81

By revealing the solid molecular biomarkers for FASD, it is also

possible to understand both mitotic and meiotic epigenetic inheritance

of PAE. Owing to the several confounding factors like genetic hetero-

geneity and diverse environmental exposures, transgenerational inheri-

tance of environmental-induced epigenetic alterations are challenging

to explore in human. Also, the length of human generation hampers the

studies: Maternal transmission of transgenerational epigenetic alter-

ation needs to be observed at least in three affected generations due

to the primordial germ cells inside the both, mother and fetus—

otherwise changes could be caused by direct environmental effects.

Interestingly, there are already some rat and mouse studies, which sup-

port the transgenerational inheritance of alcohol-induced epigenetic

alterations.82,83 In the future, solid biomarkers could enable to track

inherited PAE-induced alterations also in human.

F IGURE 3 Alcohol is metabolized into acetate in the liver, which

increases the acetate level in blood. The acetate is activated by
acetyl-coA synthetase 2 (ACSS2) in both adult and fetal mouse brain.
Histone acetyltransferases use the activated acetate to acetylate
histone proteins. Histone acetylation alters the expression of learning-
and memory-related genes and facilitates alcohol-related associative
learning in adult mice72 [Colour figure can be viewed at
wileyonlinelibrary.com]
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Despite the dispersed information gathered so far, any clear cau-

sality between a molecular mechanism of PAE and its consequences

on offspring's phenotype has not been identified. In attempts to

understand the mechanisms and causality, it will be pivotal to clarify

the role of genetic (eg, chromosomal rearrangements, risk alleles) and

environmental factors (eg, alcohol and smoking exposure, nutrition) in

the FASD phenotype, and to explore their interactions. Furthermore,

the effects of alcohol on different developmental periods should be

examined. This all is possible by systematic research with modern

methods and adequate models. Also, invaluable human cohorts with

biological samples and developmental information will be needed. In

future studies, by understanding the mechanism and consequences of

molecular alterations caused by PAE, it is possible to clarify the phe-

notypic categories and also their relation to comorbidities. This would

also provide tools for diagnosis and prognostic markers, and even

establish methods to prevent or intervene in the alcohol-induced

developmental disorders.
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