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Abstract
Aims We aimed to investigate associations between pre-pregnancy obesity, gestational diabetes (GDM), offspring body 
composition, and left ventricular diastolic and systolic function in early childhood.
Methods This is an observational study, including 201 mother–child pairs originating from the Finnish Gestational Diabetes 
Prevention Study (RADIEL; 96 with GDM, 128 with pre-pregnancy obesity) with follow-up from gestation to 6-year post-
partum. Follow-up included dyads anthropometrics, body composition, blood pressure, and child left ventricular function 
with comprehensive echocardiography (conventional and strain imaging).
Results Offspring left ventricular diastolic and systolic function was not associated with gestational glucose concentra-
tions, GDM, or pregravida obesity. Child body fat percentage correlated with maternal pre-pregnancy BMI in the setting of 
maternal obesity (r = 0.23, P = 0.009). After adjusting for child lean body mass, age, sex, systolic BP, resting HR, maternal 
lean body mass, pre-gestational BMI, and GDM status, child left atrial volume increased by 0.3 ml (95% CI 0.1, 0.5) for 
each 1% increase in child body fat percentage.
Conclusions No evidence of foetal cardiac programming related to GDM or maternal pre-pregnancy obesity was observed 
in early childhood. Maternal pre-pregnancy obesity is associated with early weight gain. Child adiposity in early childhood 
is independently associated with increased left atrial volume, but its implications for long-term left ventricle diastolic func-
tion and cardiovascular health remain unknown.

Keywords Developmental biology · Gestational diabetes mellitus · Obesity · Child · Cardiovascular disease · Ventricular 
function

Introduction

Maternal hyperglycaemia affects foetal development and 
results in increased newborn morbidity, including macroso-
mia, left ventricle (LV) hypertrophy, and diastolic dysfunc-
tion even in optimally treated pregnancies [1–3]. Mater-
nal obesity and gestational diabetes mellitus (GDM) are 

associated with an early offspring weight gain and predict 
increased adiposity and unfavourable cardiometabolic risk 
profiles later in life [4, 5]. Long-term cardiovascular health 
has a multifactorial background, and an independent effect 
of an altered intrauterine development has been hypothe-
sized. Biological mechanisms remain the matter of ongoing 
research, and foetal programming related to maternal obesity 
and GDM has been frequently suggested [6].

Ventricular hypertrophy is known to disturb myocar-
dial relaxation, but LV diastolic dysfunction in the setting 
of GDM has been observed even in normal ventricles [7]. 
GDM-related LV diastolic dysfunction is usually benign 
and transient in the clinical setting with typical remis-
sion in early infancy. Apart from foetal development, LV 
myocardial relaxation can be affected by child growth and 
health behaviours, including the obesity-related functional 
decline observed in adolescents [8]. Whether unfavourable 
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intrauterine cardiovascular development attributed to mater-
nal obesity and GDM could manifest as myocardial dysfunc-
tion later in life is largely unknown. The lack of evidence 
limits our ability to predict offspring long-term cardiovas-
cular risk with respect to prenatal history.

In our previous work, we have found that maternal pre-
gravida obesity, but not GDM was associated with offspring 
early vascular structure changes, but neither had the effect 
on child LV mass in early childhood [9, 10]. In this study, 
we aim to investigate associations between maternal pre-
pregnancy obesity, GDM, offspring body composition, and 
LV diastolic and systolic function.

Material and methods

The Supplementary Material for this article includes details 
of body composition and echocardiographic assessment 
(Online Resource 1).

Study design

This longitudinal observational follow-up study included 
201 mother–child pairs originating from the population of 
Finnish Gestational Diabetes Prevention Study (RADIEL; 
N = 728 women). We aimed for a 50% prevalence of GDM 
in our subcohort. Follow-up assessment at 6.1 years (± 0.5) 
postpartum was accomplished between June 2015 and 
May 2017 and included child echocardiography, child and 
maternal anthropometrics, body composition, blood pres-
sure (BP), blood glucose and lipids, vascular ultrasound, 
and tonometry. The first evaluation was designed in 5–6-year 
postpartum to ensure child cooperation without sedation. 
The Ethics Board of Helsinki University Hospital approved 
the study. Informed written consent was obtained from all 
of the mothers.

RADIEL is a randomized controlled multicentre inter-
ventional trial in women with increased risk of GDM (his-
tory of GDM or pre-pregnancy body mass index (BMI) 
exceeding 30 kg/m2) [11]. Women planning a pregnancy 
or in the first half of gestation were randomized into the 
intervention (counselling on diet and physical activity) or a 
control (standard care) arm. Maternal gestational data were 
collected prospectively. GDM was diagnosed in reference 
to concurrent guidelines (at least one pathological glucose 
value in a 75 g two-hour oral glucose tolerance test during 
gestation—fasting ≥ 5.3 mmol/l, one-hour ≥ 10.0 mmol/l, 
two-hour ≥ 8.6 mmol/l) [12]. If glucose values repeatedly 
exceeded 5.5 mmol/l before breakfast or 7.8 mmol/l one hour 
after a meal, metformin or insulin treatment was started. In 
our subcohort, child characteristics and studied outcomes 
did not differ with respect to the intervention (N = 97, 48%) 

and we opted not to analyse this further due to the potential 
selection bias.

Anthropometrics

Follow-up height and weight were measured with electronic 
devices (Seca GmbH & Co. KG, Germany) to the nearest 
0.1 cm and 0.1 kg. Child BMI Z-scores were generated in 
reference to the recent Finnish population dataset [13]. Body 
surface area was calculated with Haycock formula. Mater-
nal pre-pregnancy BMI was based on measured or declared 
weight and measured height.

Body composition

Child lean body mass was measured by bioelectrical imped-
ance (InBody 720, InBody Bldg, Korea) and calculated with 
the previously validated formula (based on age, sex, height, 
weight, and BMI Z-score) [14], with strong correlation 
(r = 0.951). Cardiovascular follow-up was separated from a 
bioelectrical impedance visit by a median of 1.0 years (range 
0.05–2.32). To avoid the bias, we rely on equation predicting 
body composition, generated from body size data during 
imaging. Body fat percentage was calculated as (weight–lean 
body mass)/weight. Lean body mass measured with InBody 
720 was reported for mothers.

BP and samples

Resting BP was measured in the sitting position from the 
right arm with adequate cuffs with oscillometry (Omron 
M6W, Omron Healthcare Europe B.V., The Netherlands). 
Mean systolic and diastolic BPs were calculated from the 
two lowest measurements (out of a minimum three). Child 
BPs Z-scores were calculated in reference to the guidelines 
[15]. Plasma glucose was assessed with enzymatic assays 
and glycated haemoglobin  A1c  (HbA1c) with immunoturbi-
dimetric analyser (Roche Diagnostics, Switzerland).

Echocardiography

Comprehensive child echocardiography was performed by 
one experienced paediatric cardiologist (TS) and analysed 
by one experienced observer (LL) blinded to maternal and 
child characteristics. Images were obtained and measure-
ments performed according to guidelines [16, 17]. LV dias-
tolic function was assessed integrating left atrial volume, 
Doppler, Tissue Doppler, and strain imaging (Fig. 1). LV 
systolic function was evaluated with conventional and strain 
imaging. The results were normalized for body surface area 
and converted to Z-scores using recent high-quality paedi-
atric data obtained with the same echocardiography pro-
tocol, matched for child race and age [18–20]. Intra- and 
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interobserver coefficients of variation for left atrial volume 
were similar, 8% and 10%, respectively. LV mass was cal-
culated with the Devereux formula [21] and converted to 
Z-score [22]. We have previously published on associations 
between GDM and maternal/child adiposity and child LV 
mass [10], and in this manuscript, we focused on LV mass 
relations with LV diastolic function.

Heart rate (HR)

Heart rate was measured at rest with electrocardiography 
and calculated as the mean of three heart cycles.

Data analysis

Data are presented as mean ± SD, median (interquartile 
range) or as a count (percentage). All continuous variables 
were assessed for normal distribution based on histograms 
and normal Q-Q plots.

We analysed participants with reference to prenatal GDM 
exposure (GDM-positive vs GDM-negative). To account for 
the severity of GDM, we conducted further analyses based 
on GDM treatment (GDM-diet—treated only with diet, 
GDM-medicated—treated with metformin or insulin). The 
cohort was further divided into subgroups to analyse the 
separate influence of GDM, maternal pre-pregnancy obe-
sity, and child overweight/obesity (ISO-BMI ≥ 25 kg/m2; 
age and sex-specific BMI values corresponding with adult 
BMI ≥ 25 kg/m2 [13]). Three mothers with missing informa-
tion on GDM were excluded from analyses.

GDM-positive and GDM-negative groups were compared 
with the independent t test or Mann–Whitney U test if not 
normally distributed. Subgroups stratified for GDM severity 
(GDM-negative, GDM-diet, and GDM-medicated), or strati-
fied for maternal pre-pregnancy obesity, child overweight/
obesity, and GDM exposure were analysed with One-Way 
ANOVA with post hoc Tukey’s HSD, or with Kruskal–Wal-
lis test, with post hoc pairwise comparison adjusted with 
Bonferroni, if not normally distributed. Two-tailed P 
value ≤ 0.05 was set as significant.

ANCOVA model with Bonferroni correction was used to 
assess the total effect of GDM status (GDM-negative, GDM-
diet, and GDM-medicated) on child LV diastolic function 
with adjustment for child HR (for parameters statistically 
significantly associated with child HR), using two-tailed P 
value ≤ 0.05 as significant.

The associations between child LV function and par-
ticipants characteristics were explored using Pearson’s 
correlation coefficient. Due to the risk of type I error, we 
applied the conservative significance threshold (P ≤ 0.01) 
and focused on patterns instead of single associations. Mul-
tivariable linear regression modelling was used to assess 
the effect of child body fat percentage on left atrial volume, 

Fig. 1  Assessment of left ventricular diastolic function: a Left atrial 
volume calculation with biplane area-length method (apical four-
chamber view at ventricular end-systole showing left atrial major-
axis length and left atrial planimetered area). b Pulmonary venous 
systolic-to-diastolic peak velocity ratio (S/D), pulmonary venous A 
wave reversal (Ar) amplitude and duration with Doppler. c Mitral lat-
eral peak early and late diastolic, and systolic tissue velocities (E′, A′, 
S′) with Tissue Doppler Imaging.
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adjusting for child lean body mass, age, sex, systolic BP, 
HR, maternal lean body mass, maternal pre-gestational BMI, 
and GDM status (negative = 0, positive = 1). Multicollinear-
ity was assessed with the Variance Inflation Factor (VIF), 
with the maximum value of 3.

Statistical analysis was performed with SPSS, IBM, ver-
sion 25.

Results

Participant characteristics

The summary of background characteristics including gesta-
tional glycaemia and percentage of neonatal hypoglycaemia 
is presented in Table 1. Maternal pre-pregnancy BMI was 
increased (mean ± SD; 30.7 ± 5.6 kg/m2), 128 women had 
pre-pregnancy obesity, and 96 were diagnosed with GDM in 
the indexed pregnancy (including 36 on metformin or insu-
lin): 61 in first trimester, 32 in second trimester, and three in 
third trimester. Child BMI Z-score, systolic and diastolic BP 
Z-scores were elevated as compared with a healthy Finnish 
population (Table 1). Child body fat percentage increased 
by 0.3% (95% CI; 0.1, 0.5) and child BMI Z-score by 0.06 
(95% CI 0.01, 0.11) per 1 kg/m2 increase in pre-pregnancy 
BMI, but only in the setting of maternal pre-gestational obe-
sity (P = 0.02 and P = 0.009, respectively). Offspring BMI 
Z-score was not associated with the difference in maternal 
pre-pregnancy and follow-up BMI (P = 0.32). Offspring 
anthropometrics, body composition, BP, and LV mass were 
not related to GDM exposure, but children following GDM 
pregnancies had lower resting HR (Table 2). Detailed child 
and maternal background associations have been presented 
in our previous work [9, 10].

LV diastolic function

Offspring LV diastolic function with respect to GDM status 
is presented in Table 2 and Supplemental Table S2 (Online 
Resource 1). There were no significant differences between 
the groups. No differences were present after adjustment 
for HR in ANCOVA models or in the subanalysis stratified 
by sex (data not presented). E wave and A wave Z-scores 
were significantly different from the reference population, 
but no discrepancies were present between study groups. 
We observed abnormal values of conventional left ventri-
cle diastolic function parameters (left atrial volume index 
Z-score ≥ 2, mitral inflow E/A Z-score ≤ -2, mitral septal or 
lateral E/E′ Z-score ≥ 2, pulmonary veins flow Ar-A duration 
difference ≥ 30 ms) in 19 children (9.5%), with no statisti-
cally significant differences with respect to GDM exposure 

(Online Resource 1)). The overlap of categories (2) was 
noticed only in one case.

Associations between child LV diastolic function and 
maternal pre-pregnancy BMI and gestational glycaemia 
were weak and incoherent, without any trends (Online 
Resource 1, Supplemental Table S4). The gestational stage 
at onset of GDM (first vs second trimester), the magnitude 
of maternal pre-pregnancy adiposity (normal vs overweight 
vs obese) or adjustment of pre-pregnancy BMI for first- to 
third-trimester weight gain displayed no effect on child LV 
diastolic function (data not shown).

We further analysed the separate influence of maternal 
pre-pregnancy obesity, GDM exposure, and child over-
weight/obesity on child LV diastolic function (Online 
Resource 1). In these analyses, we observed a trend toward 
higher values of child left atrial volume index Z-score in 
children with ISO-BMI ≥ 25 kg/m2 but it did not reach sta-
tistical significance.

Longitudinal early diastolic strain rate was inversely 
correlated with child lean body mass and BMI Z-score 
(r = -0.306, P < 0.0001 and r = -0.239, P = 0.002, respec-
tively). Pulmonary venous S/D ratio and A′lat Z-score 
weakly correlated with child body fat percentage (r = 0.188; 
P = 0.008 and r = 0.209; P = 0.007, respectively, Online 
Resource 1). Both parameters were concurrently associated 
with left atrial volume index and its Z-score.

Child LV mass Z-score correlated with septal E/E′ Z-score 
and inversely with septal E′ Z-score (r = 0.246, P = 0.001 and 
r = -0.235, P = 0.001, respectively, Online Resource 1).

Child left atrial size correlated with child and maternal 
body size and composition, which displayed significant mul-
ticollinearity (Online Resource 1, Supplemental Fig. S2a 
and Fig. S2b, Supplemental Table S1). After adjusting for 
child lean body mass, age, sex, systolic BP, resting HR, and 
maternal lean body mass, pre-gestational BMI, and GDM 
status, child left atrial volume increased by 0.3 (0.1, 0.5) ml 
for each 1% of child body fat (Table 3). Child sex did not 
moderate the effect of lean body mass or body fat percentage 
on left atrial volume.

LV systolic function

Analysis regarding LV systolic function and GDM status is 
presented in Table 4. Child LV basal circumferential systolic 
function assessed with strain echocardiography was mini-
mally decreased in children following GDM (peak strain 
Z-score, P = 0.016), with no further decrease in more severe 
GDM forms. No differences were observed with respect to 
circumferential function assessed with conventional echo-
cardiography or longitudinal systolic function. Maternal 
pre-pregnancy BMI and gestational glucose levels were not 
associated with child LV systolic function (Online Resource 
1). The gestational stage at onset of GDM (first vs second 
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Table 1  Maternal and child characteristics stratified for gestational diabetes status [data are presented as mean (± SD) or as n (%)]

BMI body mass index, HbA1C glycated haemoglobin, HOMA-IR homeostasis model assessment of insulin resistance [fasting insulin (μU/
ml) × fasting glucose (mmol/L)/22.5], BP blood pressure;
*P ≤ 0.05, and **P ≤ 0.001 between diet and medicated GDM (ANOVA with post hoc Tukey’s HSD);
a P ≤ 0.0001 compared with the reference population
Significant results are bolded (P ≤ 0.05)

Variable All GDM-negative GDM-positive P value 
GDM + vs 
− All Diet Medicated

N = 201 N = 102 N = 96 N = 60 N = 36

Mother at gestation
 Age (first trimester) 

[y]
33.5 ± 4.5 33.2 ± 4.7 33.9 ± 4.2 33.5 ± 4.3 34.6 ± 3.9 0.26

 Pre-gestational BMI 
[kg/m2]

30.7 ± 5.6 31.1 ± 5.4 30.2 ± 5.9 29.4 ± 5.6 31.5 ± 6.3 0.26

 Pre-gestational 
BMI ≥ 25 kg/m2

34 (17%) 9 (8.9%) 24 (25%) 14 (24%) 10 (28%) 0.005

 Pre-gestational 
BMI ≥ 30 kg/m2

128 (64%) 74 (73%) 52 (55%) 31 (53%) 21 (58%) 0.008

 First- to third-trimes-
ter weight gain [kg]

6.7 ± 4.5 7.5 ± 4.5 6.0 ± 4.5 6.4 ± 4.4 5.2 ± 4.6 0.022

 First-trimester fasting 
glucose [mmol/L]

5.0 ± 0.4 4.9 ± 0.3 5.2 ± 0.4 5.1 ± 0.4 5.4 ± 0.5**  < 0.0001

 First-trimester  HbA1C 
[% (mmol/mol)]

5.3 ± 0.3 (34 ± 3.3) 5.2 ± 0.3 (33 ± 3.3) 5.4 ± 0.3 (36 ± 3.3) 5.4 ± 0.2 (36 ± 2.2) 5.5 ± 0.2 (37 ± 2.2)  < 0.0001

 First-trimester 
HOMA-IR

1.8 ± 1.2 1.7 ± 0.9 2.1 ± 1.5 1.9 ± 1.4 2.4 ± 1.6 0.03

 Second-trimester 
fasting glucose 
[mmol/L]

4.9 ± 0.5 4.7 ± 0.3 5.1 ± 0.5 5.1 ± 0.3 5.3 ± 0.6*  < 0.0001

 Second-trimester 
HOMA-IR

2.1 ± 1.3 1.8 ± 0.8 2.4 ± 1.7 2.1 ± 1.3 2.9 ± 2.1* 0.004

 Third-trimester 
fasting glucose 
[mmol/L]

4.8 ± 04 4.7 ± 0.3 5.0 ± 0.4 4.9 ± 0.4 5.0 ± 0.4  < 0.0001

 Third-trimester 
 HbA1C [% (mmol/
mol)]

5.5 ± 0.3 (37 ± 3.3) 5.4 ± 0.3 (36 ± 3.3) 5.6 ± 0.3 (38 ± 3.3) 5.6 ± 0.3 (38 ± 3.3) 5.6 ± 0.3 (38 ± 3.3) 0.0001

 Third-trimester 
HOMA-IR

2.7 ± 1.5 2.6 ± 1.3 2.8 ± 1.6 2.6 ± 1.7 3.1 ± 1.3 0.51

Neonate
 Birth weight Z-score 0.22 ± 0.98 0.17 ± 1.10 0.29 ± 0.83 0.29 ± 0.82 0.29 ± 0.87 0.41
 Hypoglycaemia 21 (10%) 3 (2.9%) 18 (19%) 10 (17%) 8 (22%) 0.0003

Child at follow-up
 Boys 111 (55%) 58 (57%) 51 (53%) 31 (52%) 20 (56%) 0.67
 Age [y] 6.09 ± 0.49 6.04 ± 0.47 6.11 ± 0.48 6.21 ± 0.51 5.95 ± 0.39 0.30
 Weight [kg] 23.8 ± 4.1 23.6 ± 4.3 23.9 ± 3.9 23.9 ± 3.9 23.9 ± 3.9 0.64
 Height [cm] 119.1 ± 6.6 118.9 ± 6.9 119.3 ± 6.3 120.3 ± 5.9 117.7 ± 6.6 0.65
 BMI Z-score 0.45 ± 0.93a 0.41 ± 1.01 0.5 ± 0.84 0.35 ± 0.77 0.76 ± 0.9 0.50
 Lean body mass [kg] 16.5 ± 2.4 16.5 ± 2.5 16.6 ± 2.3 16.8 ± 2.3 16.3 ± 2.2 0.62
 Fat mass [kg] 7.2 ± 2.0 7.2 ± 2.1 7.3 ± 1.9 7.1 ± 1.9 7.6 ± 2.0 0.71
 Body fat [%] 30.0 ± 4.0 30.0 ± 4.1 30.2 ± 3.8 29.4 ± 3.5 31.3 ± 4.2 0.74
 Systolic BP Z-score 0.39 ± 0.59a 0.35 ± 0.61 0.43 ± 0.57 0.41 ± 0.55 0.48 ± 0.60 0.31
 Diastolic BP Z-score 0.59 ± 0.52a 0.58 ± 0.49 0.61 ± 0.56 0.56 ± 0.53 0.68 ± 0.60 0.74
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trimester), the magnitude of maternal pre-pregnancy adi-
posity (normal vs overweight vs obese), or adjustment of 
pre-pregnancy BMI for first- to third-trimester weight gain 

displayed no effect on child LV systolic function (data not 
shown). We found no associations between LV systolic func-
tion and child adiposity or glycaemia (Online Resource 1).

Table 2  Child heart rate, left ventricle mass, and diastolic function stratified for gestational diabetes status [data are presented as mean ± SD or 
median (IQR)]

E/A mitral inflow early-to-late diastolic flow ratio, S/D pulmonary venous systolic-to-diastolic flow ratio, Ar pulmonary venous atrial reversal 
peak velocity, A mitral inflow late diastolic peak velocity, E/E′ mitral inflow early peak velocity-to-early diastolic tissue velocity ratio, TDI tissue 
Doppler imaging
a Body surface area <  = 1  m2 exponentiated to 1.48; body surface area > 1  m2 exponentiated 1.08(18)
b P ≤ 0.0001 compared with the reference population
Significant results are bolded (P ≤ 0.05)

Variable All GDM-negative GDM-positive P value 
GDM + vs 
− All Diet Medicated

N = 201 N = 102 N = 96 N = 60 N = 36

Resting heart rate [bpm] 81.4 ± 8.9 83.0 ± 9.5 79.7 ± 8.0 78.5 ± 7.4 81.8 ± 8.7 0.009
Left ventricle mass Z-score 0.78 ± 0.68 0.76 ± 0.66 0.82 ± 0.70 0.82 ± 0.74 0.82 ± 0.63 0.52
Left atrial volume index (ml/m1.48 or ml/m1.08) a 28.47 ± 5.72 28.5 ± 5.82 28.27 ± 5.63 28.45 ± 5.13 27.98 ± 6.44 0.78
Left atrial volume index Z-score − 0.42 ± 1.09b − 0.39 ± 1.12 − 0.48 ± 1.06 − 0.48 ± 0.99 − 0.48 ± 1.19 0.55
E wave [cm/s] 95.5 ± 14.6 95.4 ± 14.8 95.6 ± 14.4 93.0 ± 13.5 99.8 ± 15.1 0.93
E wave Z-score − 0.89 ± 1.05b − 0.90 ± 1.07 − 0.88 ± 1.03 − 1.06 ± 0.97 − 0.58 ± 1.08 0.86
A wave [cm/s] 44.3 ± 11.7 45.1 ± 12.4 43.1 ± 11.0 40.9 ± 9.2 46.7 ± 12.7 0.24
A wave Z-score − 0.76 ± 1.19b − 0.7 ± 1.21 − 0.85 ± 1.18 − 1.02 ± 1.0 − 0.56 ± 1.39 0.38
E/A 2.16 (0.91) 2.11 (0.80) 2.24 (1.0) 2.30 (0.83) 2.02 (1.16) 0.35
E/A Z-score 0.20 ± 1.16 0.14 ± 1.18 0.30 ± 1.13 0.41 ± 0.97 0.23 ± 1.33 0.35
S/D 0.81 (0.23) 0.81 (0.23) 0.82 (0.21) 0.83 (0.24) 0.81 (0.17) 0.89
Ar—A duration difference [ms] − 21.6 ± 26.6 − 18.3 ± 25.8 − 24.9 ± 27.4 − 25.7 ± 28.2 − 23.6 ± 26.4 0.10
A rev [m/s] 24.5 ± 6.2 25.1 ± 6.4 23.9 ± 6.1 23.0 ± 4.9 25.3 ± 7.4 0.21
Lateral E/E′ 4.71 (1.40) 4.65 (1.31) 4.71 (1.61) 4.59 (1.40) 5.10 (1.78) 0.81
Lateral E/E′ Z-score − 1.05 (1.32)b − 1.05 (1.30) − 1.05 (1.44) − 1.23 (1.23) − 0.74 (1.60) 0.91
Septal E/E′ 6.68 ± 1.19 6.62 ± 1.21 6.75 ± 1.19 6.66 ± 1.10 6.89 ± 1.31 0.48
Septal E/E′ Z-score − 0.63 ± 0.93b − 0.68 ± 0.96 − 0.56 ± 0.93 − 0.62 ± 0.86 − 0.47 ± 1.03 0.4
Isovolumetric relaxation time TDI [ms] 45.9 ± 8.2 46.7 ± 8.2 45.2 ± 8.2 46.4 ± 8.6 43.3 ± 7.2 0.23
Circumferential early diastolic strain rate [1/s] 2.47 ± 0.47 2.48 ± 0.45 2.44 ± 0.47 2.45 ± 0.48 2.44 ± 0.45 0.56
Longitudinal early diastolic strain rate [1/s] 2.65 ± 0.39 2.67 ± 0.36 2.62 ± 0.42 2.62 ± 0.39 2.62 ± 0.46 0.40

Table 3  Multivariable linear 
regression model of child 
left atrial volume (adjusted 
R2 = 0.331; P value < 0.001)

CI Confidence Interval, BMI body mass index
Significant results are bolded (P ≤ 0.05)

Variables Beta (95% CI) Standardized beta P value

Constant 26.196 (9.574, 42.819) – 0.002
Child body fat [%] 0.298 (0.079, 0.517) 0.218 0.008
Child lean body mass [kg] 1.233 (0.779, 1.686) 0.550  < 0.001
Child systolic BP [mmHg] − 0.139 (− 0.241, − 0.038) − 0.178 0.007
Child heart rate [1/minute] − 0.092 (− 0.164, − 0.020) − 0.167 0.012
Child age [y] − 1.368 (− 3.222, 0.486) − 0.123 0.15
Child sex [Boy = 0, Girl = 1] − 0.886 (− 2.640, 0.867) − 0.080 0.32
Maternal pre-pregnancy BMI [kg/m2] − 0.064 (− 0.207, 0.079) − 0.066 0.377
Maternal lean body mass [kg] 0.004 (− 0.127, 0.135) 0.005 0.957
Gestational diabetes [No = 0, Yes = 1] − 0.180 (− 1.492, 1.132) − 0.016 0.787
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No significant associations were found in the analysis 
of maternal obesity, GDM exposure, and child overweight/
obesity on child LV systolic function (Online Resource 1).

Discussion

This study provides new insights into the field of prena-
tal conditioning of offspring cardiovascular health. We 
observed no effect of gestational hyperglycaemia or GDM on 
child LV diastolic or systolic function at 6 years of age. Our 
results extend current knowledge, as the longest prospec-
tive follow-up reported so far is limited to a relatively small 
cohort of 3-year-old children (29 following GDM) with no 
data available on LV systolic function [23].

Child left atrial volume is strongly related to body size, 
but can enlarge in the setting of LV diastolic dysfunction. 
The present study results are consistent with this but show 
a small independent association between left atrial volume 
and adiposity. The increase in left atrial volume attributed 
to child adiposity was clinically silent, and its long-term 
consequences for left ventricle diastolic function remain at 
present unknown. However, our findings may indicate a need 
for longitudinal evaluation due to possible progression. We 
also demonstrated associations between child adiposity and 
A′lat and pulmonary venous S/D ratio, which we speculate 
to be secondary to the increased left atrial volume. Our study 
extends the knowledge of early cardiac adaptation in the 
setting of mild overweight in children, as previous research 
focused largely on clinical obesity [24, 25].

Our study shows an association between child adiposity 
and maternal pre-pregnancy obesity. Taking into considera-
tion the associations between child adiposity and left atrial 
volume, the prevention of early weight gain in the offspring 
of mothers with obesity should be further evaluated as a 
strategy to reduce long-term cardiovascular risks. The effect 
of maternal pregravida obesity on child body composition 
could be attributed to common diet behaviours, but we 
observed no association between offspring adiposity and 
maternal BMI change from pre-pregnancy to follow-up. We 
conclude that maternal pregravida obesity, but not GDM 
could play a role in the transgenerational conditioning of 
offspring cardiovascular health.

We observed a negative correlation between child LV 
mass Z-score and septal but not lateral myocardial relaxa-
tion in the normally structured hearts of the present study. 
Although no overt septal hypertrophy was found, we hypoth-
esize that milder septal thickening could potentially nega-
tively influence myocardial relaxation.

Despite normal LV diastolic function in the majority of 
participants (based on clinical judgement), we report sig-
nificantly lower mitral inflow peak velocities (E and A-wave 
Z-scores), but no differences between study groups. E/A 
ratio Z-score was close to the population mean. Similar 
results were previously reported with the same normaliza-
tion method in a population of children at three years of 
age [23]. Taking into consideration that Z-score references 
were not validated in an external population, the observed 
discrepancies could reflect the selection bias in the original 
study [18]. Similarly, decreased values of left atrial volume 
index Z-score were consistent between study subgroups. 

Table 4  Child left ventricle systolic function stratified for gestational diabetes status [data are presented as mean ± SD or as median (IQR)]

a P ≤ 0.0001 compared with the reference population
Significant results are bolded (P ≤ 0.05)

Variable All GDM-negative GDM-positive P value 
GDM + vs − 

All Diet Medicated

N = 201 N = 102 N = 96 N = 60 N = 36

Fractional shortening [%] 35.7 ± 3.2 35.8 ± 3.2 35.4 ± 3.2 34.9 ± 3.2 36.3 ± 2.9 0.40
Ejection fraction [%] 63.6 ± 3.8 63.6 ± 3.4 63.5 ± 4.0 62.9 ± 4.0 64.4 ± 4.0 0.90
Lateral S′ [cm/s] 10.2 ± 1.9 10.2 ± 1.8 10.3 ± 1.9 10.2 ± 1.8 10.4 ± 1.8 0.66
Lateral S′ Z-score 0.20 ± 1.04 0.17 ± 1.01 0.22 ± 1.09 0.29 ± 1.01 0.11 ± 1.22 0.77
Septal S′ [cm/s] 7.7 ± 0.8 7.8 ± 0.8 7.7 ± 0.9 7.7 ± 1.0 7.6 ± 0.7 0.40
Septal S′ Z-score − 0.53 (1.25) − 0.53 (1.25) − 0.53 (1.21) − 0.52 (1.22) − 1.0 (1.23) 0.36
Longitudinal peak systolic strain [%] − 21.7 ± 2.1 − 21.9 ± 2.0 − 21.4 ± 2.2 − 21.1 ± 2.2 − 21.9 ± 2.2 0.13
Longitudinal peak systolic strain Z-score 0.72 ± 1.24a 0.85 ± 1.19 0.57 ± 1.28 0.41 ± 1.27 0.85 ± 1.26 0.13
Longitudinal systolic strain rate [1/s] − 1.32 ± 0.21 − 1.33 ± 0.15 − 1.32 ± 0.15 − 1.30 ± 0.16 − 1.35 ± 0.14 0.73
Basal circumferential peak systolic strain [%] − 22.5 ± 2.2 − 22.8 ± 2.2 − 22.1 ± 2.2 − 22.0 ± 2.2 − 22.2 ± 1.9 0.016
Basal circumferential peak systolic strain Z-score 1.35 ± 1.23a 1.53 ± 1.23 1.11 ± 1.16 1.07 ± 1.23 1.16 ± 1.07 0.015
Basal circumferential systolic strain rate [1/s] − 1.42 ± 0.16 − 1.44 ± 0.17 − 1.39 ± 0.14 − 1.37 ± 0.13 − 1.41 ± 0.15 0.010
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This could be explained as the effect of adiposity related 
over-indexing, because children with body size exceeding 
the 95th percentile were excluded from the reference popu-
lation [20].

The echocardiographic assessment of LV diastolic func-
tion in children is challenging due to the lack of a standard-
ized and validated approach (available recommendations 
have not uniformly covered and agreed upon diastolic dys-
function grading in the paediatric population [26, 27]), but 
echocardiographic assessments integrating Doppler, Tissue 
Doppler, and left atrial volume are commonly used in the 
clinical setting [28, 29]. Thus, we decided to abandon any 
subjective grading and by nature controversial definition 
of child LV diastolic dysfunction and include a more com-
prehensive analysis with echocardiographic variables com-
monly used in the clinical and research practice.

We observed minimally reduced systolic circumferen-
tial LV deformation characteristics in children following 
GDM (no further decline was noted in more severe GDM 
forms), but gestational glycaemia, maternal pre-pregnancy 
obesity, and child adiposity were not associated with LV 
systolic function (including speckle tracking and conven-
tional parameters). These observed associations should be 
interpreted cautiously as type I error cannot be excluded.

The cardiovascular development has a multifacto-
rial background, including genetic factors, the intrau-
terine milieu, and the postnatal environment. The pre-
cise distinction between these factors is challenging, but 
highly homogenous study groups, with except for GDM, 
allowed us to conclude on foetal programming related to 
GDM exposure. The differences in gestational glycae-
mia between study subgroups were mild and could pre-
sumably be attributed to the treatment, but foetal steal 
phenomenon could play a role [30]. This increases the 
generalizability of our findings, as mild, well-controlled 
GDM is the most prevalent form in developed countries. 
However, our results may not apply to more severe forms 
of GDM or pre-gestational diabetes. The lack of a formal 
control group (women without increased risk of GDM) 
is the shortcoming, but the present cohort nevertheless 
included a subgroup of women without obesity and GDM 
in the indexed pregnancy (N = 27), which should be con-
sidered as normal references with regard to exposure. The 
study sample size of 200 dyads was assumed to be large 
enough to find clinically relevant differences between 
GDM groups and allow the longitudinal assessment of 
the cohort beyond 6 years. A priori defining of significant 
differences with regard to the comprehensive assessment 
of LV function was challenging, but the post hoc analy-
sis provided a power of 0.8 to detect a difference of 0.5 
SD between groups at an α-level of 0.01. Importantly, our 
results are confined to early childhood and further growth, 
including additional weight gain or the appearance of other 

cardiometabolic risk factors, could influence the findings 
later on. We were unable to control for lifestyle factors 
(e.g. diet, physical activity) and fathers’ characteristics. 
Another limitation is the lack of cardiovascular data from 
the neonatal period, which precludes longitudinal analysis 
at this point, but we aim to reevaluate this cohort later on.

Conclusions

No plausible evidence of foetal cardiovascular programming 
on cardiac function attributed to GDM was found in early 
childhood. Although child left atrial volume was determined 
mainly by child lean body mass, we found a small inde-
pendent association with adiposity as well in our offspring 
population with early weight gain. Maternal pre-gestational 
obesity seems to be reflected in the child’s body composi-
tion, implicitly increasing long-term cardiovascular risks.
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