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Abstract We define a non-linear autoregressive time series model based on
the generalized hyperbolic distribution in an attempt to model time series
with non-Gaussian features such as skewness and heavy tails. We show that
the resulting process has a simple condition for stationarity and it is also
ergodic. An empirical example with a forecasting experiment is presented to
illustrate the features of the proposed model.
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1 Introduction

The generalized hyperbolic distribution is a normal mean-variance mixture distribution intro-
duced by Barndorff-Nielsen (1977) and further studied by, for example, Blæsild (1981). It has
versatile control over the shape of its density function through its parameters and is, there-
fore, an attractive choice for an error distribution of an autoregressive time series model when
modelling the distribution of the data is of interest.

In this paper a univariate autoregressive process based on the generalized hyperbolic dis-
tribution is proposed. Previously, the generalized hyperbolic distribution has been used for
applications in economics and finance by McNeil et al. (2005), Prause (1999), Hu (2005) and
others. Besides being used in its general form, the generalized hyperbolic distribution has many
well-known special cases such as the normal inverse Gaussian (NIG) distribution which was
introduced by Barndorff-Nielsen (1997) who used it for applications in turbulence and finance.
Other special and limiting cases include distributions such as the Student’s t distribution and
the hyperbolic distribution.

The generalized hyperbolic distribution could be used as the conditional distribution of a
conventional autoregressive (AR) process by defining the distribution of the independent and
identically distributed errors as a generalized hyperbolic distribution instead of a Gaussian
distribution. This approach would, however, only affect the shape of the conditional density
function of the process and is thus not considered in this paper.

Instead, we use the same approach as Meitz et al. (2018) in the case of a mixture au-
toregression based on the (symmetric) Student’s t-distribution. Following their approach we
define a process we call the generalized hyperbolic autoregressive (GHAR) process by employing
the properties of the multivariate generalized hyperbolic distribution in conjunction with basic
Markov chain theory. A distinctive property of the GHAR process is that its error terms are
not independent but a conditionally heteroscedastic martingale difference sequence.

For many non-linear and non-Gaussian processes the stationarity conditions and the possible
stationary distributions are troublesome if not impossible to derive without imposing excessive
restrictions on the parameters of the process (see, e.g., Teräsvirta et al. 2010). For the GHAR
process this is not the case because its stationarity is a straightforward consequence of the
properties of the multivariate generalized hyperbolic distribution and the stationarity condition
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of an auxiliary AR process used to define the GHAR process. Therefore, the GHAR process
has a simple explicit condition for stationarity and, moreover, for a pth order GHAR process
the stationary distributions up to dimension p + 1 follow multivariate generalized hyperbolic
distributions and are fully known.

This paper is organized as follows. The multivariate generalized hyperbolic distribution is
discussed briefly in Section 2 along with suitable parameter restrictions to avoid any identifia-
bility issues. The density function of the univariate generalized hyperbolic distribution is also
plotted with selected values of the parameters to illustrate the role of different parameters.

In Section 3.1 we define the GHAR process by using the theory of Markov chains and discuss
its stationarity and ergodicity. The connection between the GHAR process and conventional
linear AR processes is highlighted in Section 3.2 by expressing the GHAR process in the form of
an equation which involves the conditional expectation and a martingale difference error term.
Here we also provide more details of the properties of the GHAR process. In Section 3.3 we
discuss the maximum likelihood (ML) estimation of the GHAR process and show that the ML
estimator is strongly consistent.

An empirical example on a particle matter measurement data is presented in Section 4.
The results show that the GHAR process performs well in comparison to the DAR model of
Ling (2007) and the Gaussian AR process in terms of both in-sample fit and out-of-sample
forecasting performance. Finally, conclusions are provided in Section 5, and proofs and other
technical material are presented in appendices.

2 Multivariate generalized hyperbolic distribution

The density function of the generalized hyperbolic distribution has a general representation
without any parameter restrictions and it is given, for example, in McNeil et al. (2005, p. 78).
In the general representation there is, however, an identification problem which can be addressed
by imposing suitable parameter restrictions. Identification can be achieved in several ways and,
for example, McNeil et al. (2005, p. 79) restrict the determinant of the dispersion matrix to one.

Rather than restricting the dispersion matrix, which for our purposes will be defined using
covariance matrices of a Gaussian AR process, the restrictions used by Browne & McNicholas
(2015) are adopted. Thus, the restricted density function of the d dimensional generalized
hyperbolic distribution we employ has the expression

ghd(y;λ, δ, µ,Γ, γ) = c
Kλ− d

2

(√
(δ + (y − µ)′Γ−1(y − µ)) (δ + γ′Γ−1γ)

)
eγ
′Γ−1(y−µ)(√

(δ + (y − µ)′Γ−1(y − µ)) (δ + γ′Γ−1γ)
) d

2
−λ

, (1)

where y ∈ Rd and Kλ denotes the (modified) Bessel function (of the third kind) with order λ
and

c =
(δ + γ′Γ−1γ)

d
2
−λ

(2π)
d
2

√
det(Γ)Kλ (δ)

.

The parameters µ and γ are real vectors of dimension d, λ is real, δ > 0 and Γ is a positive
definite (d×d) dimensional matrix. Clearly, the density function is univariate if d = 1 is selected,
in which case we use the notation Γ = σ2.

For a detailed discussion of the Bessel functions and their properties, see, for example, Watson
(1944). The function Kλ is hereafter referred to as the Bessel function as there is no risk of
confusion.

The expected value of a random variable y following the d dimensional generalized hyperbolic
distribution is (see, e.g., McNeil et al. 2005, p. 77)

E(y) = µ+
Kλ+1 (δ)

Kλ (δ)
γ (2)
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and its covariance matrix is

Cov(y) =

(
Kλ+2 (δ)

Kλ (δ)
−
(
Kλ+1 (δ)

Kλ (δ)

)2
)
γγ′ +

Kλ+1 (δ)

Kλ (δ)
Γ. (3)

The one dimensional density function gh1 is plotted in Appendix A.7.1 to demonstrate how
different parameter values affect the shape of the distribution. In addition to controlling the
variance, the parameter σ2 along with λ and δ affect the kurtosis and the heaviness of the tails.
Also, changing the value of σ2 has no obvious effect on the mode of the distribution whereas
changing the value of λ and δ has. Setting γ = 0 leads to a symmetric distribution while non-
zero values of γ produce a skewed distribution. The parameter µ only shifts the density to left
or right.

3 The GHAR process

3.1 Definition of the GHAR process

In this section we construct an autoregressive process of order p ≥ 1 which has a generalized
hyperbolic distribution as its conditional distribution. We show that a condition similar to
that in a conventional Gaussian AR(p) process guarantees the stationarity of the process and
that stationary distributions of consecutive observations up to dimension p+ 1 are multivariate
generalized hyperbolic distributions. Throughout the rest of this paper we use the following
simplified notations: yt = (yt, . . . , yt−p+1) and y+

t = (yt,yt−1) = (yt, yt−p). Note that the
dimension of both yt and y+

t depend on the chosen order p even though it is not explicitly
expressed in the notation.

It is not immediately obvious that an autoregressive process with properties discussed above
exists. However, suppose that {yt}, t ≥ 1 is such a process. Then the (p dimensional) random
vector yt, for example, must follow a generalized hyperbolic distribution and by stationarity its
covariance matrix, given by equation (3), is a Toeplitz matrix. This implies that, in the definition
of the GHAR process below, restrictions have to be imposed on the parameters of the generalized
hyperbolic distribution for the properties stated above to hold. Parameter restrictions related
to the covariance matrix Γ of yt in equation (3) will be formulated using an auxiliary linear
AR(p) process denoted by {zt}.

Thus, let {zt} be a conventional (zero mean) stationary linear AR(p) process so that, for
each t, the random variables zt have the representation

zt =

p∑
i=1

φizt−i + ηt, (4)

where {ηt} is a sequence of independent zero mean Gaussian random variables with finite
variance σ2 > 0. As indicated above, we also assume that the autoregressive coefficients φi,
i = 1, . . . , p, satisfy the stationarity condition

1− φ1z − . . .− φpzp 6= 0, |z| ≤ 1, z ∈ C. (5)

Related to the process {zt} we define the vectors zt−1 = (zt−1, zt−2, . . . , zt−p) and z+
t =

(zt, zt−1) and denote the covariance matrices of z+
t and zt−1 as Γp+1 and Γp respectively. Because

{zt} is a stationary AR(p) process both Γp+1 and Γp are Toeplitz matrices and depend only on
the variance parameter σ2 and the coefficient vector φ = (φ1, . . . , φp) (see, e.g., Lütkepohl, 2006,
p. 28–29). Thus, the parameter vector (φ, σ2) of the AR(p) process will be used, along with
other parameters, to construct the GHAR process.

Choosing d = 1 in (1) we introduce the conditional density function

gh1(yt; λ̃, δ̃t, µ̃t, σ̃
2
t , γ̃t) = gh1(yt; θ̃t) (6)
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where the components of the time-varying parameter vector θ̃t = (λ̃, δ̃t, µ̃t, σ̃
2
t , γ̃t) depend on the

vector yt−1 as well as time-invariant parameter vector θ = (φ, λ, δ, µ, σ2, γ). Here the parameters
φ and σ2 are as defined above so that the components of φ satisfy the stationarity condition (5),
and the remaining parameters satisfy λ, µ, γ ∈ R and δ > 0. The components of θ̃t are defined
as

� λ̃ = λ− p/2,

� δ̃t =
√(

δ + (yt−1 − µp)′Γ−1
p (yt−1 − µp)

) (
δ + γ ′pΓ

−1
p γp

)
,

� µ̃t = µ+ (yt−1 − µp)′φ,

� σ̃2
t =

δ̃t

δ + γ ′pΓ
−1
p γp

σ2,

� γ̃t =
δ̃t

δ + γ ′pΓ
−1
p γp

(
γ − φ′γp

)
.

The covariance matrix Γp used above is constructed by using parameters φ and σ2 as for the
auxiliary AR process {zt} and, letting 1p denote the p dimensional vector of ones, we have set
µp = µ1p and γp = γ1p.

Denoting by Ft−1 the sigma algebra generated by the set {yt−i, i ≥ 1}, t ≥ 1, the density
function can be viewed as the conditional density function of yt given Ft−1 or, more precisely,
given the vector yt−1. For any fixed value of yt−1, gh1(yt; θ̃t) is the density function of a
generalized hyperbolic distribution so that it defines a transition probability measure of a pth
order Markov chain on R, which is equivalent to viewing the process {yt} as a Markov chain on
Rp.

Definition 1. We define the GHAR process {yt}, t ≥ 1, as a pth order Markov chain on R
whose transition probability measure is determined by the density function (6) of a univariate
generalized hyperbolic distribution.

The motivation for the particular definition of the parameter vector θ̃t is that it implies
stationarity of the process {yt}. This is a straightforward consequence of choosing a p + 1 di-
mensional generalized hyperbolic distribution with parameter vector (λ, δ,µp+1,Γp+1,γp+1) for
(yt, . . . , yt−p) and then conditioning yt on (yt−1, . . . , yt−p) (here µp+1 and Γp+1 are p+ 1 dimen-
sional analogs of µp and Γp respectively). For more detailed derivation of the parameters, see
Appendix A.6. Now we can state the stationarity result anticipated in the preceding discussion.
The proof is given in Appendix A.1.

Theorem 1. Let {yt} be a GHAR process with parameter vector θ as defined after equation
(6) with φ satisfying the stationarity condition (5). Assume that the initial value y0 follows
the generalized hyperbolic distribution such that y0 ∼ ghp(λ, δ,µp,Γp+1,γp), with the parameters
defined above. Then, the process {yt} is (strictly) stationary.

Note that, if the skewness parameter γ equals zero the value of the time-varying parameter
γ̃t, defined above, is equal to zero as well. Then the marginal distributions and the conditional
distribution are both symmetric and the expressions for the time-varying parameters of the
conditional distribution (6) are simplified considerably.

If stationary initial values are assumed it is clear by stationarity that, for every t ≥ 1, we
have yt ∼ ghp(λ, δ,µp,Γp,γp) and, by equation (A2) in Appendix A.1.1, it holds for the random

vector y+
t = (yt,yt−1) that y+

t ∼ ghp+1(λ, δ,µp+1,Γp+1,γp+1). From Proposition 3.13 of McNeil
et al. (2005) it therefore follows that all 1 ≤ s ≤ p+ 1 dimensional marginal distributions of the
random vectors y+

t follow the ghs(λ, δ,µs,Γs,γs) distribution with Γs being equal to the (s× s)
dimensional upper-left corner of Γp+1. Moreover, as all components of µp+1 are equal, and the
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same applies to γp+1, their lower-dimensional counterparts have the representations µs = µ1s
and γs = γ1s.

On the other hand, if the initial value y0 does not follow the generalized hyperbolic distri-
bution, the process {y} is not stationary. However, even if {yt} is not stationary, we have the
following stability result proved in Appendix A.1.2.

Theorem 2. The Markov chain {yt} is ergodic.

This ergodicity in the sense of Meyn & Tweedie (2009, Chapter 13) means that, starting from
any fixed initial value y0, the n-step transition probability measure of the GHAR process tends
to its stationary distribution in total variation norm as n → ∞ (see the proof of Theorem 2).
As an implication of this, the usual asymptotic results, such as the strong law of large numbers,
apply.

From a practical point of view it is convenient that the stationary distribution of the GHAR
process is known. The family of generalized hyperbolic distributions contains many well known
special cases (see, e.g., McNeil et al. 2005, p. 80) and either the conditional distribution or the
stationary distribution can be set to some of these special cases by restricting the values of the
parameter λ. Some well known special cases with their stationary and conditional distributions
are presented in Table 1. Limiting cases (as limits of one or more parameters) include such
distributions as Student’s t distribution and the variance-gamma distribution.

Table 1: Different choices of λ and the conditional and marginal (stationary) distributions (see,
e.g., McNeil et al. 2005, p. 80)

λ λ̃ p-dimensional stationary Conditional
−1/2 −(p+ 1)/2 Normal inverse Gaussian Generalized hyperbolic

1 −(p− 2)/2 Hyperbolic Generalized hyperbolic
(p− 1)/2 −1/2 Generalized hyperbolic Normal inverse Gaussian
(p+ 2)/2 1 Generalized hyperbolic Hyperbolic

3.2 Autoregression

To demonstrate how the GHAR process, defined in the previous section, is related to conventional
AR processes we next show that the GHAR process also has a representation where, for each
t ≥ 1, the random variable yt is expressed as a function of the random vector yt−1 and a
martingale difference error term. To this end, we first introduce some notation.

Substituting the parameters of the conditional distribution of yt given in (6) for their coun-
terparts in equations (2) and (3) results in the following expressions for the conditional mean
and conditional variance of yt:

µt := E(yt|yt−1) = µ̃t +R1(yt−1)γ̃t (7)

and

σ2
t := Var(yt|yt−1) = R1(yt−1)σ̃2

t (θ) +
(
R2(yt−1)−

(
R1(yt−1)

)2)
γ̃2
t , (8)

where Rk(yt) = Kλ̃+k(δ̃t)/Kλ̃(δ̃t) is a ratio of two Bessel functions and other notations are as in
(6). As yt is a Markov chain we have E(yt|Ft−1) = E(yt|yt−1) and similarly for the conditional
variance. Note also that, although there is no general solution available, it is possible to calculate
the first p+ 1 autocorrelations using the covariance matrix Γp+1 and Equation (3).

With µt and σ2
t as defined above we now define the sequence {εt} of error terms as

εt :=
yt − µt
σt

, t ≥ 1, (9)
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which, by solving for yt, yields the representation

yt = µt + σtεt. (10)

The sequence {εt} is not independent but we show in Appendix A.3 that the sequence {εt, Ft−1}
is a well-defined martingale difference sequence with unit variance. Moreover, the conditional
distribution of εt given Ft−1 only depends on yt−1 and, by Proposition 3.13 of McNeil et al.
(2005), has the expression

εt|Ft−1 ∼ gh1

(
λ̃, δ̃t,

µ̃t − µt
σt

,
σ̃2
t

σ2
t

,
γ̃t
σt

)
, (11)

where the dependence of the parameters on yt−1 is obvious by the definition of θ̃t after the
equation (6).

The definitions of the terms on the right-hand side of (10) indicate that the GHAR process
can be viewed as a non-linear and conditionally heteroscedastic autoregression. In order to
illustrate this issue in more detail it appears convenient to first discuss the symmetric case
where the parameter γ is restricted to zero. In this special case the expressions of the conditional
mean µt and conditional variance σ2

t are considerably simplified because, as noted in the previous
section, then also γ̃t = 0 for every t ≥ 1.

Thus, suppose that γ = 0. Using the definition of µ̃t (see the equations following (6)) and
the notation φ0 = µ

(
1− φ′1p

)
we can write (10) as

yt = φ0 + φ′yt−1 + σtεt = φ0 +

p∑
j=1

φjyt−j + σtεt. (12)

This equation and the martingale difference property of εt together imply that the conditional
expectation of yt is a linear function of its p lags whereas the conditional variance, see (8), has
the expression

σ2
t = σ2R1(yt−1)

√
δ + (yt−1 − µp)′Γ−1

p (yt−1 − µp)
δ

. (13)

Thus, even in the symmetric case the conditional variance of yt is time-variant depending on p
lags of yt. Note also, that the magnitude of the factor R1(yt−1) on the right-hand side of (13)

can be controlled via the shape parameter λ̃ = λ−p/2. By the properties of the Bessel function,
R1(·) > 1 for all λ̃ > −1/2 and 0 < R1(·) < 1 for λ̃ < −1/2. Choosing λ̃ = −1/2, which makes
the conditional distribution normal inverse Gaussian (see Table 1), implies R1(·) = 1 so that the
non-linearity in the conditional variance simplifies to σ̃2

t (see the definition following (6) and,
for the properties of the Bessel function, see, e.g., Watson (1944)).

While in the symmetric case the conditional mean is constant when all components of φ are
set to zero, equation (13) shows that the conditional variance σ2

t cannot be made constant by
restricting parameters. Also, if we restrict the autoregressive coefficients to zero, the covariance
matrix Γp becomes the scalar matrix σ2Ip with Ip being a p × p identity matrix. This implies
that the error sequence {εt} and hence the process {yt} are, even in this case, conditionally
heteroscedastic. Thus, in the symmetric case, the conditional variance is the major difference
between a conventional linear AR process and GHAR process. For a linear AR process the
conditional variance is always a constant by definition, but the above discussion shows that for
the GHAR process it is always time-variant.

Now, consider the skewed case where the value of the parameter γ is non-zero. Then even
the conditional mean is non-linear and the skewness also has an effect on the non-linearity of
the conditional variance. Inserting the definition of µt (see the equations following (6)) into the
representation (10) yields

6This article is protected by copyright. All rights reserved.
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yt = µ̃t + σtεt +R1(yt−1)γ̃t

= φ0 +

p∑
j=1

φjyt−j + σtεt +R1(yt−1)

√(
δ + (yt−1 − µp)′Γ−1

p (yt−1 − µp)
)√(

δ + γ ′pΓ
−1
p γp

) (
γ − φ′γp

)
. (14)

Equation (14) shows that in the asymmetric case even the conditional expectation cannot be
made constant by means of parameter restrictions. In fact, if γ 6= 0, setting the components of
φ to zero may still result in very strong autocorrelation. To illustrate this fact, consider the case
p = 1 where φ1 = µ = 0 and γ > 0. For simplicity, suppose that the conditional distribution is
normal inverse Gaussian so that λ̃ = −1/2 and hence R1(yt) = 1. Then we also have µt = γ̃t
and the definition of γ̃t shows that γ̃t → |yt| as δ → 0. Hence, for any small enough δ we have
µt ≈ |yt| which implies that the process is strongly autocorrelated.

In the skewed case the expression of the conditional variance given in (8) is rather compli-
cated, and we only note that simplifications occur when the conditional distribution is normal
inverse Gaussian because then λ̃ = −1/2 and, in addition to R1(yt−1) = 1, an explicit expression
for R2(yt−1) is also available (see, for example, Watson (1944, p. 80, Eqs. (12) and (13))).

Different values of γ control the non-linearity of the conditional expectation, where small
absolute values of γ lead to almost linear conditional expectation. On the other hand, the
conditional expectation can even be made everywhere positive (or negative) by choosing γ to be
big (or small) enough, depending on the value of φ. See Figure 4 in Appendix A.7.2 where both
the conditional mean and conditional variance are plotted as a function of yt−1 with different
values of γ and φ1.

3.3 Likelihood function

Assuming that the observed data (y−p+1, . . . , y0, y1, . . . , yn) is generated by a GHAR process,
we next derive an expression for the log-likelihood function and show that the ML estimator
is strongly consistent. We define the parameter space Θ as a subset of the set of all vectors
(φ, λ, δ, µ, σ2, γ) ∈ Rp+5 where δ, σ2 > 0 and the vector φ satisfies the stationarity condition
(5). As the log-likelihood function is rather complicated, its analysis in detail is difficult and,
therefore, we choose to assume that the parameter space Θ is compact and the true parameter
value θ0 ∈ Θ. In practice, however, the parameter space needs to be searched widely for an
optimal solution.

Denote the likelihood function of the single observation yt by

Lt(θ) = gh1(yt; θ̃t),

where the parameter vector θ̃t is defined in equation (6) and the subsequent discussion. With
the assumption that the initial values satisfy y0 ∼ ghp(λ, δ, µ1p,Γp, γ1p), the exact likelihood
function can now be expressed as

L(θ) = ghp(y0;λ, δ, µ1p,Γp, γ1p)
n∏
t=1

Lt(θ),

where the effect of the initial values vanishes as the sample size n tends to infinity. Thus, if the
assumption of stationary initial values is questionable, conditioning on the initial values leads
to the conditional likelihood function

Lc(θ) =
n∏
t=1

Lt(θ). (15)

7This article is protected by copyright. All rights reserved.
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Applying the logarithm transformation on both sides we get the conditional log-likelihood func-
tion

`c(θ) =
n∑
t=1

log (Lt(θ)) :=
n∑
t=1

`t(θ). (16)

The log-likelihood function could be expressed just as the logarithm of the density function of
the generalized hyperbolic distribution with parameters being functions of yt−1. However, as
the resulting expressions are rather complicated, we write the conditional log-likelihood function
in another form, which is more suitable for our purposes.

First, we introduce the following shorthand notations: ξt−1,1 = δ+(yt−1−µp)′Γ−1
p (yt−1−µp),

ξt,2 = (yt − φ0 − φ′yt−1)/σ, ζ1 = δ + γ ′pΓ
−1
p γp and ζ2 =

(
γ − φ′γp

)
/σ. Using these notations

we show in Appendix A.2 that the conditional log-likelihood function of a single observation has
the expression

`t(θ) = −1

2
ln
(
2πσ2

)
+ ξt,2ζ2

− λ̃
(

ln
(√

ξt−1,1

)
− ln

(√
ζ1

))
−
(
λ̃− 1

2

)(
ln

(√
ζ1 + ζ2

2

)
− ln

(√
ξt−1,1 + ξ2

t,2

))
− ln

(
Kλ̃

(√
ξt−1,1ζ1

))
+ ln

(
Kλ̃− 1

2

(√
(ξt−1,1 + ξ2

t,2)(ζ1 + ζ2
2 )
))

. (17)

where λ̃ = λ− p/2. Now we can state the following result:

Theorem 3. Assume that the parameter space Θ is compact. Then, the (exact) ML estimator
θ̂ is strongly consistent.

The proof of Theorem 3 is based on the uniform strong law of large numbers applied to the
standardized version of the log-likelihood function (16) and the identifiability result of Browne
& McNicholas (2015) which implies that the expectation of the log-likelihood function has a
unique maximum in the point of the true parameter value θ0. The proof is given in Appendix
A.1.3. As noted above, the role of the initial values becomes negligible in large samples so that
the above statement holds for the conditional ML estimator as well.

Althought the asymptotic normality of the ML estimator seems very plausible, it is difficult
to prove due to the complexity of the likelihood function and therefore left for future research.

4 Empirical example

Next we fit the GHAR model to daily means of particle matter PM10 measurements in Helsinki
(Finland), Kallio, during 2013 and 2014. The original data was requested from HSY (Helsinki
Region Environmental Services Authority HSY, Air protection unit) and it consists of hourly
measurements of particle matter (µg/m3) during the years 2013 – 2015. This particular data set
is chosen for its evident non-Gaussian features which can be used to demonstrate the ability of
the GHAR model to take these features into account. Similar data has been previously modelled
using, for example, neural networks (see, e.g., Perez & Reyes (2006), Voukantsis et al. (2011)).

The measurements are aggregated to daily means (Figure 1) discarding missing values, and
therefore some days may consist of less than 24 observations. The last day of 2013 is missing all
measurements and is therefore left out of the data set. Hence, using the observations from the
first two years for parameter estimation leads to sample size n = 729. The last year of the data
is used in a forecasting experiment where we use the double AR (DAR) model of Ling (2007)
for comparison.

A pth order DAR(p) process yt is defined as

yt =

p∑
i=1

φiyt−i + ηt

√√√√ω +

p∑
i=1

αiy2
t−i,

8This article is protected by copyright. All rights reserved.
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where {ηt} is a sequence of independent standard Gaussian random variables. The DAR model
is conditionally heteroscedastic and, like the GHAR process, its conditional variance is a function
of preceding values of the process itself.

In addition, a linear Gaussian AR model is considered as a benchmark model even though
it is not considered to be an ideal choice for the data.

Figure 1: PM10 measurements in Kallio from January 2013 to December 2015 as daily means.

Estimation of the GHAR and DAR models is carried out using the genetic algorithm com-
bined with a gradient based method, an approach suggested by Dorsey & Mayer (1995). Matlab
2017b equipped with the optimization and parallel toolboxes is employed to compute the es-
timates for the GHAR model. The key idea in this two step estimation is that the genetic
algorithm finds reasonable starting points for a gradient based method which is then expected
to converge more efficiently to a point where the gradient of the log-likelihood is zero. Multiple
optimization rounds are carried out in order to ensure that the procedure performs well enough
to find a global maximum. Estimation and diagnostics of the DAR and AR models are carried
out using the R software (R Core Team 2017) and the stats package.

The model selection procedure for the GHAR model is as follows: First we estimate the
unrestricted GHAR model for all candidate values of p, for example 1 ≤ p ≤ 20. We select the
order p based on information criteria (AIC, HQC and BIC) and after the best fitting unrestricted
model is found, we restrict the shape parameter λ to some of the special cases given in Table 1
in an attempt to increase the reliability of the estimation. Restricting λ is not a necessary step
but it is expected to lead to an adequate and in, any case, a more parsimonious model.

Table 2: Estimation results for different GHAR models where the bolded zeros represent the
restricted parameters. The standard errors are given in parenthesis below the estimates. The
lowest values in the information criteria columns are bolded.

Model φ1 λ δ µ σ2 γ ˆ̀c AIC HQC BIC

GHAR(1)
λ=0

0.405
(0.07)

0 0.930
(0.23)

7.730
(0.64)

15.106
(1.48)

4.386
(0.80)

-2125.7 4256.4 4260.8 4284.4

GHAR(1)
γ=0

0.684
(0.03)

−0.655
(0.17)

0.631
(0.14)

11.015
(0.43)

32.285
(3.68)

0 -2159.8 4324.6 4329.1 4352.6

GHAR(1) 0.194
(0.10)

1.794
(0.24)

0.004
(0.12)

6.214
(0.37)

0.020
(0.59)

0.009
(0.26)

-2121.6 4249.2 4254.5 4282.7

AR(1) 0.64
(0.03)

13.8
(0.53)

26.47 -2228.8 4460.6 4477.4 4463.2

Note that, fitting a GHAR model of order p ≥ 2 with the pth autoregressive coefficient φp
restricted to zero does not correspond to fitting a GHAR model of order p− 1 (see discussion in
Section 3.2). This also means that choosing a model with a larger order may give a poorer fit
and, unlike with the Gaussian autoregressive model, reduce the maximum value of the likelihood
function.

The estimation results are given in Table 2 for both the linear Gaussian AR model and the
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GHAR model with order p = 1, suggested by the BIC (4441.1 for the DAR model) for both
models, and two different restricted GHAR models. For the DAR(p) model, the case p = 1
yielded the best results with estimates

yt = 0.66
(0.08)

yt−i + ηt

√
20.47
(2.71)

+ 0.14
(0.06)

y2
t−i.

The residual diagnostics for the DAR(1) model are presented in the Supplementary appendix.
The residuals refer to a non-Gaussian distribution implying that the skewness is taken inade-
quately into account. In addition, there is some minor autocorrelation left in the first few lags
of the residual series.

The GHAR model is also fitted with two different restrictions: Firstly, the shape parame-
ter λ is restricted to zero so that the one-dimensional conditional distributions of the GHAR
model follow the normal inverse Gaussian distribution (see Table 1 for the list of special cases).
Secondly, despite the evident skewness of the data, a symmetric GHAR model is estimated by
restricting the skewness parameter γ to zero.

The error sequence of the GHAR process is not independent and identically distributed
so that, instead of usual residual diagnostics, we employ quantile residuals and the related
tests developed by Kalliovirta (2012). The GHAR model restricted with λ = 0 performed
slightly better than the unrestricted model in terms of residual diagnostics, showing no signs
of misspecification (see Supplementary appendix), and hence we mainly focus on the restricted
GHAR model. As anticipated above, the linear AR model is not capable of filtering out the
conditional heteroscedasticity sufficiently (see Supplementary appendix).

In addition, the one-dimensional estimated marginal distributions of the DAR and GHAR
processes and the kernel density estimate of the observed data in Figure 2 suggest that the
GHAR model is able to model the estimated distribution more precisely than the DAR model,
mostly due to the skewness observed in the series.

Figure 2: Estimated marginal densities based on simulation for the GHAR and DAR models
and the kernel density estimate for the data.

Next we consider the out-of-sample forecasting performance of the GHAR, DAR and AR
models by comparing the accuracy of point forecasts and forecast intervals. We use the estimated
models to compute forecasts for the year 2015 with multiple forecast horizons. As forecasting
particle concentrations in air is considered, it seems desirable to make negative forecast errors
(i.e. forecast smaller than the observed value) more costly than positive ones. Therefore, we
choose to compare the point forecasts by using the linex loss function. Linex has been used
previously, for example, to compare forecasts of New Zealand stock market volatility by Yu
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Table 3: Forecast errors for the estimated GHAR and DAR models using the MSE and linex
loss functions divided by the corresponding forecast errors of the Gaussian AR model.

Loss Model Forecast horizon (days)
1 2 3 4 5 6 7 14 30

MSE GHAR 1.01 0.98 0.98 0.99 0.99 0.99 0.99 1.01 1.01
GHARλ=0 1.01 0.97 0.97 0.98 0.98 0.98 0.98 1.01 1.02
DAR 1.00 1.00 0.99 0.99 0.99 1.00 1.00 1.00 1.00

Linex GHAR 0.13 0.09 0.21 0.18 0.21 0.42 0.34 0.83 0.87
GHARλ=0 0.03 0.01 0.06 0.04 0.04 0.17 0.10 0.83 0.75
DAR 0.73 0.64 0.72 0.73 0.75 0.83 0.84 1.00 1.00

Table 4: Proportion of observations in the year 2015 below the α sample quantiles in 250000
simulations computed for every observation and at each of the forecast horizons.

Model α Forecast horizon (days)
1 2 3 4 5 6 7 14 30

0.950 0.951 0.964 0.959 0.964 0.961 0.961 0.964 0.966 0.964
GHAR(1) 0.975 0.970 0.975 0.981 0.986 0.981 0.978 0.978 0.983 0.982

0.990 0.986 0.989 0.997 0.994 0.997 0.997 0.992 0.991 0.991
0.995 0.992 0.997 0.997 0.997 0.997 0.997 0.997 0.991 0.997

0.950 0.951 0.967 0.967 0.967 0.964 0.964 0.969 0.972 0.970
GHAR(1)λ=0 0.975 0.973 0.978 0.981 0.989 0.989 0.989 0.989 0.989 0.988

0.990 0.989 0.994 1.000 0.997 1.000 0.997 1.000 0.994 0.997
0.995 0.992 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.997

0.950 0.946 0.958 0.952 0.949 0.943 0.946 0.946 0.946 0.946
DAR(1) 0.975 0.964 0.973 0.967 0.964 0.958 0.964 0.964 0.964 0.964

0.990 0.976 0.985 0.982 0.985 0.979 0.979 0.976 0.979 0.979
0.995 0.982 0.991 0.991 0.991 0.991 0.988 0.991 0.988 0.988

0.950 0.945 0.948 0.948 0.947 0.950 0.950 0.950 0.949 0.946
AR(1) 0.975 0.959 0.961 0.970 0.967 0.961 0.964 0.964 0.966 0.964

0.990 0.970 0.975 0.972 0.975 0.975 0.972 0.972 0.972 0.973
0.995 0.984 0.986 0.981 0.983 0.981 0.981 0.978 0.980 0.979

(2002). The linex loss at time t has the expression exp {a(yt − y∗t )} − a(yt − y∗t ) − 1, a 6= 0,
where y∗t is the forecasted value for time t (see, for example, Patton & Timmermann (2007)).
Choosing a > 0 leads to greater loss for positive forecast errors than for negative errors and thus
a = 1 is chosen.

We use estimates of the conditional expectation, computed by simulating 250000 series of
length 30 starting from each day, as point forecasts. All forecasts are computed using the same
simulation procedure to ensure comparability between the forecasts. The parameter estimates
are updated for each day using the optim function in R software (stats package), setting the
previous esimates as the starting point. The employed method is used for simplicity but (in
general) it does not result in optimal forecasts under the linex loss function (for linex optimal
point forecasts see, for example, Christoffersen & Diebold (1997) and Patton & Timmermann
(2007)). Simulating the generalized hyperbolic distribution is carried out by simulating values
from the generalized inverse Gaussian distribution and then from the normal distribution as
suggested by McNeil et al. (2005). The simulations are computed using the R software (R Core
Team 2017) and GIGrvg library (Leydold & Hormann 2017).

Results in Table 3 show that in the sense of mean squared error (MSE) loss, all the considered
models perform equally well with only minor differences. When comparing the forecasts under
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the asymmetric linex loss, we see that all forecast errors for the GHAR models are considerably
smaller than for the other models, especially the AR model, even for the one week and one
month ahead forecasts. This is likely due to the GHAR model being more capable of taking the
non-Gaussianity of the distribution into account.

We also consider forecasting the right tails to forecast probabilities that certain limits are
exceeded in the near future by comparing sample quantiles of the simulated series to the cor-
responding theoretical probabilities. Proportions of observations in the data that remain below
the α quantiles are shown in Table 4 (for more results, see Supplementary appendix).

The DAR and AR models seem to perform exceptionally well near the 0.95 quantile but
for smaller values of α the sample quantiles are significantly oversized and for α = 0.99 (and
above) the sample quantiles are undersized. The GHAR models, on the other hand, perform
more uniformly and their sample quantiles are relatively close to the theoretical quantiles even
for the longer forecast horizons and all α. Figure B4 in Supplementary appendix shows the 0.95
quantiles for January 2015 for the selected forecast horizons. As a reference, the figure also shows
the sample quantiles of the simulated AR process which settle to the corresponding quantiles of
its stationary distribution considerably faster than the sample quantiles of the GHAR processes
as the length of the forecast horizon grows.

5 Conclusions

In this paper we defined a non-linear non-Gaussian autoregressive model by utilizing the co-
variance structure of a Gaussian AR model in combination with the multivariate generalized
hyperbolic distribution. The resulting GHAR model has multiple interesting properties such as
an explicit stationarity condition and known low order stationary marginal distributions.

The GHAR model was fitted to a PM10 particle measurement data, consisting of daily
means of hourly measurements in Helsinki, Finland. Even though the data is notably skewed
and conditionally heteroscedastic the GHAR model was able to model the data, including the
shape of the density, reasonably well. Forecasting performance of the GHAR model was also
compared against the Gaussian AR model and the DAR model of Ling (2007) by using both
symmetric and asymmetric loss functions. The results obtained indicate that taking the non-
Gaussianity of the data into account leads to better forecasts when the goal is to forecast the
tails of the distribution or when there is a reason to treat positive and negative forecast errors
differently.
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A Appendix

A.1 Proofs

A.1.1 Proof of Theorem 1

To show that the GHAR process is stationary, denote y+
t = (yt,yt−1) = (yt, yt−p) and assume

that y0 follows a generalized hyperbolic distribution with density function ghp(y0;λ, δ,µp,Γp,γp),

where the parameters as well as the notation θ̃t to be used below are defined in Section 3.1.
It follows from the Yule-Walker equations that the covariance matrix Γp+1, defined after the
equation (5), can be partitioned as

Γp+1 =

[
σ2 + φ′Γpφ φ′Γp

Γpφ Γp

]
. (A1)

From the derivation of the conditional density function of the generalized hyperbolic distribution
in Appendix A.6 (see especially equation (A41)) and the definition of the conditional density
function gh1(yt; θ̃t) in (6) we can now conclude that

ghp(y0;λ, δ,µp,Γp,γp)gh1(y1; θ̃t) = ghp+1(y+
1 ;λ, δ,µp+1,Γp+1,γp+1), (A2)

where µp+1 = µ1p+1 and γp+1 = γ1p+1.
The stationarity of the process {zt} implies that Γp and Γp+1 are positive definite Toeplitz

matrices. Hence, for all t, Γp = Cov(zt) = Cov(zt−1) equals both the upper left corner and lower
right corner of Γp+1, the covariance matrix of z+

t . Marginalizing y−p+1 out of the distribution
of y+

1 and using the fact that all the components of µp+1 and γp+1 are equal we now find by
Proposition 3.13 of McNeil et al. (2005) that the random vectors y0 and y1 are identically
distributed.

As {yt}, t ≥ 1, is a Markov chain, the above ’first step stationarity’ implies stationarity of the
whole process, provided that the initial distribution is chosen to be y0 ∼ ghp(λ, δ, µ1p,Γp, γ1p)
(see, e.g., Meyn & Tweedie 2009, p. 230–231).

A.1.2 Proof of Theorem 2

We show that the process {yt} is ergodic in the sense that the n step transition probability
measure tends to the stationary distribution of the process. In Section 3.1 the GHAR process
was defined as a pth order Markov chain and it was noted that the process has a stationary
distribution, which we denote here by π. The argumentation below follows Kalliovirta et al.
(2015) and is based on Chapter 13 of Meyn & Tweedie (2009).

Let y ∈ Rp be an initial value. Denote the total variation norm (see, Meyn & Tweedie
2009, p. 315) as ‖ · ‖ and the q step transition probability measure from point y to a (Borel)
measurable set A ⊂ Rp as P q(A,y) = P (yq ∈ A|y0 = y). The stationary probability of the set
A is denoted as π(A). Now we show that the total variation norm of the difference Pn(·,y)−π(·)
tends to zero as n→∞ which implies that {yt} is ergodic.

By the definition of the GHAR process the conditional density function gh1(·; θ̃t) of yt given
yt−1 (see Section 3.1) is strictly positive on the whole real line. Therefore, the p step transition
probability

P p(A,y) =

∫
A

p∏
t=1

gh1(yt; θ̃t)dyp

is strictly positive for any Borel measurable set A ⊂ Rp with positive Lebesgue measure. Con-
sequently, the p step transition probability measure is absolutely continuous with respect to the
stationary probability measure π and, from any initial state y, the process {yt} can in p steps
reach any set with positive Lebesgue measure. This implies that the process {yt} is π-irreducible
and aperiodic (for definitions see, e.g., Meyn & Tweedie 2009, Chapters 4 and 5).
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Hence, it follows from Tierney (1994, Theorem 1) that, for π-almost all y ∈ Rp, the p
step transition probability tends to the stationary distribution in total variation norm, that is,
‖P pn(·,y)− π(·)‖ → 0, as n→∞. For the one step transition probability this implies that

lim inf
n→∞

‖Pn(·,y)− π(·)‖ = 0, (A3)

for π-almost all y ∈ Rp. As {yt} is π-irreducible it follows from Corollary 1 of Tierney (1994)
that (A3) is true for any initial state y ∈ Rp. As π(·) is the stationary distribution of yt, it
follows from Meyn & Tweedie (2009, Proposition 13.3.2) that ‖Pn(·,y)−π(·)‖ is non-increasing
which together with (A3) implies that

‖Pn(·,y)− π(·)‖ → 0

for all y ∈ Rp. Thus, the process {yt} is ergodic (see Meyn & Tweedie 2009, p. 313 - 316).

A.1.3 Proof of Theorem 3

For simplicity, we assume stationary initial values y0 which implies the stationarity of the process
{yt}.

The function θ 7→ `t(θ) is continuous (see Appendix A.5) and, as the parameter space is
compact, the log-likelihood function attains its maximum in Θ. Using similar argumentation
as in Appendix A.5, we see that the log-likelihood function is also a continuous function of
(yt,yt−1), t = 1, . . . , n, for every θ ∈ Θ and hence the ML estimator is measurable.

As noted in the text, the effect of the initial values on the the log-likelihood diminishes as
n grows so that it is sufficient here to consider only the conditional log-likelihood function and
its standardized version `

c
(θ) := n−1`c(θ). Due to stationarity it holds that E[`

c
(θ)] = E[`1(θ)].

We also note the following result, the proof of which is given in Appendix A.4.

Theorem 4. The expected value E(supθ∈Θ

{
|`t(θ; yt|yt−1)|

}
) of the conditional log-likelihood

function of the GHAR process for time t is finite.

Next we need to show that the log-likelihood obeys the uniform strong law of large num-
bers. Denote by X the set of continuous R valued functions, equipped with the norm ‖f‖ =
supθ∈Θ |f(θ)|. By compactness of Θ and Theorems 5.24 and 5.26 of Davidson (2002), it follows
that (X , ‖ · ‖) is a separable Banach space. Note that the log-likelihood functions `t of a single
observation are continuous functions of both the parameter θ and observations yt and thus also
belong in X .

We have assumed stationarity for {yt}, and therefore to show ergodicity it is sufficient to
use Markov ergodicity in the sense of (Stout 1974, p. 195) instead of the ergodicity stated in
Theorem 2. As {yt} is a stationary Markov chain with transition probability measure equivalent
to the Lebesgue measure it is Markov ergodic and Theorem 3.6.5 (i) of Stout (1974) shows that
every invariant set has either measure 0 or 1. Hence, the invariant sigma algebra is trivial and
thus it follows by continuity of the log-likelihood function and from, for example, Proposition
2.6 of Straumann & Mikosch (2006), that the process {`t(θ; yt)} is also stationary and ergodic.

Having established that the process {`t} is a stationary and ergodic process with values in
a separable Banach space, Theorem 4 enables us to use Theorem 6.5 of Ranga Rao (1962) and
conclude that

‖`c(θ)− E(`
c
(θ))‖ = sup

θ∈Θ

∣∣∣`c(θ)− E(`1(θ))
∣∣∣→ 0,

as n→∞.
In Appendix A.5 we show that the expected log-likelihood function has a unique maximum

at the true parameter value θ0. Now Theorem 3.1 of Pötscher & Prucha (1997) we find that the
ML estimator θ̂ is strongly consistent so that θ̂ → θ0 almost surely as n→∞.
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A.2 Derivation of the log-likelihood function

In this appendix we derive the expression of the (conditional) log-likelihood function given in
equation (17). The log-likelihood function is based on the conditional density function derived
in Appendix A.6 with d = p+ 1 and d2 = p. First, define ζ1 and ζ2 from the equation

δ̃t +
[
σ̃2
t

]−1
(γ̃t)

2 =
δ̃t

δ + γ ′pΓ
−1
p γp

(
δ + γ ′pΓ

−1
p γp +

(
γ − φ′γp

)2
σ2

)

=:
δ̃t
ζ1

(
ζ1 + ζ2

2

)
, (A4)

where the parameters are as defined in Section 3.1. Likewise, define ξt1,1 and ξt,2 from

δ̃t + (yt − µ̃t)′
[
σ̃2
t

]−1
(yt − µ̃t)

=
δ + γ ′pΓ

−1
p γp

δ̃t

(
δ + (yt−1 − µp)′Γ−1

p (yt−1 − µp) +
(yt − φ0 − φ′yt−1)2

σ2

)
=:

ζ1

δ̃t

(
ξt−1,1 + ξ2

t,2

)
(A5)

Using the definitions in (A4) and (A5) we can write(
δ̃t + (yt − µ̃t)′

[
σ̃2
t

]−1
(yt − µ̃t)

)(
δ̃t + γ̃′t

[
σ̃2
t

]−1
γ̃t

)
=
(
ξt−1,1 + ξ2

t,2

) (
ζ1 + ζ2

2

)
(A6)

and

exp
{
γ̃′t[σ̃

2
t (θ)]

−1(yt − µ̃t)
}

= exp {ξt,2ζ2} . (A7)

With the above notation the normalizing constant c1 of the conditional density function in
equation (A41) (see Appendix A.6) can be expressed as

c1 =

(√
ξt−1,1

ζ1

) p
2
−λ (

ζ1 + ζ2
2

) p+1
2
−λ

(2πσ2)
1
2Kλ− p

2

(√
ξt−1,1ζ1

) . (A8)

Using equations (A6) – (A8) and the conditional density function in (A41) the likelihood function
(15) can be written as

Lc(θ; y)

=

n∏
t=1

(√
ξt−1,1

ζ1

) p
2
−λ (√

ζ1 + ζ2
2

) p+1
2
−λ

(2πσ2)
1
2Kλ− p

2

(√
ξt−1,1ζ1

) Kλ− p+1
2

(√(
ξt−1,1 + ξ2

t,2

) (
ζ1 + ζ2

2

))
(√

ξt−1,1 + ξ2
t,2

) p+1
2
−λ

exp {ξt,2ζ2} .

Applying the logarithm function and rearranging terms we can express the conditional log-
likelihood function (for time t) as in equation (17). As in (16), the conditional log-likelihood
function `c can be expressed as a sum of the above log-likelihoods for time t.

A.3 Martingale property of the error sequence εt

In this Appendix we show that the sequence {εt,Ft−1} as defined in (9) is a martingale difference
sequence with conditional variance equal to one. First we show that the process {εt} has finite
unconditional second moments and then that it is uncorrelated with zero mean and unit variance.
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Let θ = (φ, δ, λ, µ, σ2, γ) be fixed, t ≥ 1 and the conditional parameter vector θ̃t as defined
in Section 3.1 (see the discussion after (6)). First we establish that σ2

t , defined in equation (8),
is bounded away from zero for all yt−1 ∈ Rp which implies that εt is well defined. We begin by
showing that the ratio

R1(δ̃t) = R1(yt−1) =
Kλ̃+1(δ̃t)

Kλ̃(δ̃t)
,

is a bounded function of yt−1 ∈ Rp (here we use a more explicit notation for the sake of clarity).

We only need to consider the cases λ̃ > −1/2 and λ̃ < −1/2 because if λ̃ = −1/2 we have
R1(yt) = 1 for any yt ∈ Rp.

Assuming first λ̃ > −1/2 it follows that Kλ̃+1(δ̃t) > Kλ̃(δ̃t) (Soni 1965) and therefore
R1(yt) ≥ 1 for any yt ∈ Rp. From Gaunt (2014, Lemma 2.2) we find that 1/R1(yt) is strictly
monotone increasing for λ̃ > −1/2 and, as δ̃t ≥ δ by the definition of δ̃t, we get the upper limit

1 ≤ R1(δ̃t) ≤
Kλ̃+1(δ)

Kλ̃(δ)
,

where the ratio on the right-hand side is clearly a finite constant.
On the other hand, assuming λ̃ < −1/2 and denoting ν = −λ̃ we have, as in the proof of

Corollary 2.3 of Gaunt (2014), the limit

lim
x→∞

R1(x) = lim
x→∞

Kν−1(x)

Kν(x)
= 1,

and using Lemma 2.2 of Gaunt (2014) we see that

1 ≥ R1(δ̃t) ≥
Kλ̃+1(δ)

Kλ̃(δ)
.

Hence, R1(δ̃t) is bounded and for every fixed θ there exist positive constants mθ and Mθ such
that

0 < mθ ≤ R1(δ̃t) ≤Mθ. (A9)

Also, as δ̃t ≥ δ we have

σ̃2
t =

δ̃t

δ + γ ′pΓ
−1
p γp

σ2 ≥ δ

δ + γ ′pΓ
−1
p γp

σ2 > 0,

which combined with (A9) implies that there exists a strictly positive constant Cθ such that

R1(δ̃t)σ̃
2
t ≥ Cθ (A10)

for all yt−1 ∈ Rp. Using the Lemma 2.2 of Ismail & Muldoon (1978) we find that

R2(δ̃t)−
(
R1(δ̃t)

)2
> 0,

which together with (A10) implies that

σ2
t = R1(δ̃t)σ̃

2
t +

(
R2(δ̃t)−

(
R1(δ̃t)

)2
)
γ̃2
t

is bounded away from zero. Combining the above results shows that the random variables
εt = (yt − µt) /σt, where µt is defined in (7), are well defined.
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Next we show that all moments of yt − µt are finite by showing that the absolute value of
yt − µt is dominated by a random variable that has all finite moments. If γ = 0 we have

yt − µt = a′y+
t − φ0,

where a = (1,−φ) (see equation (12)). By Proposition 3.13 of McNeil et al. (2005) yt−µt follows
a one dimensional generalized hyperbolic distribution, and therefore has all moments finite.

When γ 6= 0 the definition of µt yields

yt − µt = yt − µ̃t −R1(δ̃t)

√(
δ + (yt−1 − µp)′Γ−1

p (yt−1 − µp)
)√

δ + γ ′pΓ
−1
p γp

γ
(
1− φ′1p

)
. (A11)

Assuming γ > 0 and using equations (A9) and (A11) we find that there exists a finite constant
K such that

a′y+
t − φ0 +K +K

p∑
i=1

|yt−i − µ| ≤ yt − µt ≤ a′y+
t − φ0. (A12)

Likewise, assuming γ < 0 there exists a finite constant K such that

a′y+
t − φ0 ≤ yt − µt ≤ a′y+

t − φ0 −K +K

p∑
i=1

|yt−i − µ|. (A13)

From Proposition 3.13 of McNeil et al. (2005) we find, again, that both a′y+
t − φ0 −K and

all the (yt−i − µ)’s follow the one-dimensional generalized hyperbolic distribution. Therefore
both sides of (A12) and (A13) are integrable which shows that yt − µt is integrable. Further-
more, because the all moments of the generalized hyperbolic distribution are finite, (yt− µt)r is
integrable for every finite r > 0. The above discussion together with εt being well-defined shows
that all moments of εt are finite. Now, by definition, the sequence {εt} is uncorrelated and for
every t ≥ 1 it holds that E(εt) = 0 and Var(εt) = 1.

A.4 Finite supremum

We next show that E(supθ∈Θ

{
|`t(θ; yt|yt−1)|

}
) < ∞ by showing that each row of the log-

likelihood function (17) has an upper bound and a lower bound which do not depend on θ and
have finite expectations. We assume that the parameter vector θ is as defined in Section 3.1 and
the parameter space is compact. We begin with the last row of the log-likelihood function.

Last row of (17)

This section is split in two parts: First we show that the expectation of the last line has a finite
lower bound and then that it also has a finite upper bound.

Lower bound - As the parameter space is assumed compact we can define λmax, δmin ∈ R
such that |λ̃| + 1/2 ≤ λmax and 0 < δmin ≤ δ. Furthermore, the stationarity assumption (5)
implies that Γp is positive definite and therefore

ξt−1,1ζ1 =
(
δ + (yt−1 − µp)′Γ−1

p (yt−1 − µ)
) (
δ + γ ′pΓ

−1
p γp

)
≥ δ2 ≥ δ2

min.

Properties of the Bessel function imply that for every permissible value of λ there exists a finite
constant CK > 0 such that

Kλ̃(
√
ξt−1,1ζ1) ≤ Kλmax(δ2

min) ≤ CK . (A14)

Properties of the Bessel function and an application of Corollary 3.4 of Gaunt (2014) yield

Kλ̃− 1
2
(
√

(ξt−1,1 + ξ2
t,2)(ζ1 + ζ2

2 ))

Kλ̃(
√
ξt−1,1ζ1)

≥ C−1
K e

−
√

(ξt−1,1+ξ2t,2)(ζ1+ζ22 )
(√

(ξt−1,1 + ξ2
t,2)(ζ1 + ζ2

2 ) + 1
)−1

,
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where the inequality
√
x+ 1/2 ≤

√
x+ 1, for all x > 0, was also used. Applying the logarithm

transformation and the inequality ln (y + 1) ≤ y, y > −1 it follows that

ln

Kλ̃− 1
2
(
√

(ξt−1,1 + ξ2
t,2)(ζ1 + ζ2

2 ))

Kλ̃(
√
ξt−1,1ζ1)

 ≥ − ln(CK)− 2
√

(ξt−1,1 + ξ2
t,2)(ζ1 + ζ2

2 ). (A15)

To show that the last row has an integrable lower bound we need to show that supremum
of the second term of (A15) has a finite expectation.

Let ν1 ≥ ν2 ≥ · · · ≥ νp be the eigenvalues of the inverse of the covariance matrix Γp. Positive
definiteness of Γp implies that νi > 0 for every i = 1, . . . , p. In addition, it holds that (see, e.g.,
Anderson 1984, p. 590)

ζ1 = δ + γ ′pΓ
−1
p γp ≤ δ + ν1γ

′
pγp. (A16)

By continuity of the mapping θ 7→ Γp and compactness of the parameter space the values of
the covariance matrix Γp lie in a compact set so that the eigenvalues ν1, . . . , νp (as continuous
functions of θ) are bounded by constants ν and ν such that ν ≥ ν1 ≥ · · · ≥ νp ≥ ν. Furthermore,
all components of θ are bounded and the values of σ2 are bounded away from zero. Therefore,
ζ1 and ζ2 are bounded and there exists a finite constant Cζ such that

sup
θ∈Θ

{√
ζ1 + ζ2

2

}
≤ Cζ <∞. (A17)

Using the Loève’s cr-inequality (Loève 1955, p. 155) and the triangle inequality we find that

√
ξt−1,1 ≤

√
δ +
√
ν

p∑
i=1

|yt−i − µ| ≤
√
δ +
√
ν

p∑
i=1

|yt−i|+
√
νp|µ|. (A18)

Again, using the triangle inequality, we can write√
ξ2
t,2 ≤ σ

−1
(
|yt|+ |φ0|+ |φ′yt−1|

)
. (A19)

Positive definiteness of the covariance matrix Γp implies that ξt−1,1 > 0 and therefore combining
the inequalities (A18) and (A19) and applying Minkowski’s inequality we get

√
ξt−1,1 + ξ2

t,2 ≤
√
δ +
√
ν

p∑
i=1

|yt−i|+
√
νp|µ|+ σ−1

(
|yt|+ |φ0|+ |φ′yt−1|

)
. (A20)

Hence, there exists a finite constant Cξ such that

sup
θ∈Θ

{√
(ξt−1,1 + ξ2

t,2)
}
≤ Cξ

(
1 +

p∑
i=0

|yt−i|

)
, (A21)

and thus we get a lower bound

inf
θ∈Θ

ln

Kλ̃− 1
2
(
√

(ξt−1,1 + ξ2
t,2)(ζ1 + ζ2

2 ))

Kλ̃(
√
ξt−1,1ζ1)

 ≥ − ln(CK)− 2CζCξ

(
1 +

p∑
i=0

|yt−i|

)
. (A22)

The random variables yt−i follow the one-dimensional generalized hyperbolic distribution and
have therefore finite second moments which implies that the expectation of the lower bound
(A22) is finite.

Upper bound - Now we find an upper bound for the supremum of the last row of (17) and
show that it has finite expectation. We consider three cases: λ̃ < −1/2, |λ̃| ≤ 1/2 and λ̃ > 1/2.

20This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



Assume first that λ̃ > 1/2. Both ξ2
t,2 and ζ2

2 are non-negative so that√
ξt−1,1ζ1 ≤

√
(ξt−1,1 + ξ2

t,2)(ζ1 + ζ2
2 ) (A23)

and therefore it holds for any λ̃ that

Kλ̃− 1
2

(√
(ξt−1,1 + ξ2

t,2)(ζ1 + ζ2
2 )
)

Kλ̃

(√
ξt−1,1ζ1

) ≤ 1,

which together with the properties of the Bessel function yields an upper bound zero for the last
row of (17).

Assume now that |λ̃| ≤ 1/2. Using properties of the Bessel function and Theorem 1.2
of Laforgia & Natalini (2010) we get an upper bound

Kλ̃− 1
2
(
√

(ξt−1,1 + ξ2
t,2)(ζ1 + ζ2

2 ))

Kλ̃(
√
ξt−1,1ζ1)

≤ 2 + ξt−1,1ζ1√
ξt−1,1ζ1

. (A24)

Here we have used the fact that 1+ξt−1,1ζ1 > 1 by positive definiteness of the covariance matrix
Γp and

√
a < a, for all a > 1.

Assume now that λ̃ < −1/2 and denote ν = −λ. By Theorem 1.2 of Laforgia & Natalini
(2010) and assuming (without loss of generality) that λmax ≥ 1 we find an upper bound

Kν+ 1
2

(√
(ξt−1,1 + ξ2

t,2)(ζ1 + ζ2
2 )
)

Kν(
√
ξt−1,1ζ1)

≤
λmax +

√
λ2
max + ξt−1,1ζ1√
ξt−1,1ζ1

≤ 2λ2
max + ξt−1,1ζ1√

ξt−1,1ζ1

. (A25)

On the right-hand side of (A24), as λmax ≥ 1, we can substitute the first term of the numerator
by 2λ2

max so that the upper bound in (A25) applies also in the case |λ̃| ≤ 1/2.
Applying the logarithm function and supremum to both sides of (A25) we get

sup
θ∈Θ

ln

Kλ̃− 1
2
(
√

(ξt−1,1 + ξ2
t,2)(ζ1 + ζ2

2 ))

Kλ̃(
√
ξt−1,1ζ1)

 ≤ 2λ2
max + sup

θ∈Θ
{ξt−1,1ζ1} − ln (δmin) ,

where the inequality ln(x) < x − 1 < x for all x > 0 is also used. The first and the last terms
are finite constants so that for integrability it suffices to show that E(supθ∈Θ {ξt−1,1ζ1}) <∞.

Using the eigenvalues ν1, . . . , νp of the inverse of Γp as in (A16) and Loeve’s cr inequal-
ity (Loève 1955, p. 155) we find that

ξt−1,1 ≤ δ + ν(yt−1 − µp)′(yt−1 − µp) ≤ δ + 2νy′t−1yt−1 + 2pνµ2.

The term ζ1 is bounded by inequality (A16) so that, by the assumed compactness of the param-
eter space, there exists a finite constant Cξζ , such that

sup
θ∈Θ
{ξt−1,1ζ1} ≤ Cξζ

(
1 + y′t−1yt−1

)
.

Combining the above results we can conclude that there exists a finite positive constant C such
that the last row of (17) is bounded from above by C

(
1 + y′t−1yt−1

)
. The random vectors yt−1

follow the p dimensional generalized hyperbolic distribution so that their second moments are
finite, and therefore the last row of the log-likelihood function has an integrable supremum.

First row of (17)

Applying the triangle inequality to the absolute value of the term ξt,2ζ2 we find that, by the
compactness of the parameter space, there exists a finite constant C such that

sup
θ∈Θ

{∣∣∣∣−1

2
ln
(
2πσ2

)
+ ξt,2ζ2

∣∣∣∣} ≤ C
(

1 +

p∑
i=0

|yt−i|

)
. (A26)

Arguments already used above show that the right-hand side of (A26), and hence the first
row of (17), has finite expectation.
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Second row of (17)

Considering the second row, we know from (A18) that ξt−1,1 has an integrable upper bound.
Also, ln

(√
ξt−1,1

)
is bounded from below by the finite constant ln(

√
δmin). Again, using the

eigenvalues ν1 ≥ ν2 ≥ · · · ≥ νp of Γ−1
p as above, we find that ln

(√
ζ1

)
has constant upper and

lower bounds because√
δ + νγ ′pγp ≤

√
δ + γ ′pΓ

−1
p γp =

√
ζ1 ≤

√
δ + νγ ′pγp, (A27)

As the eigenvalues are bounded and bounded away from zero, both terms of the second row
have finite constant upper and lower bounds and are therefore integrable.

Third row of (17)

Inequality (A21) provides an upper bound for ln
(√

ξt−1,1 + ξ2
t,2

)
and finding a lower bound is

trivial because ξt−1,1 + ξ2
t,2 ≥ ξt−1,1 ≥ δ ≥ δmin. Also, using the same argumentations as above

we find that √
δmin ≤

√
δ ≤

√
ζ1 ≤

√
ζ1 + ζ2

2 ≤
√
ζ1 +

√
ζ2

2 (A28)

and using the same eigenvalue argumentation as in of the case (A27) we get√
ζ1 + ζ2

2 ≤
√
δ + νγ ′pγp +

(
γ − φ′γp

)2
/σ2. (A29)

Hence there exists finite constants CL and CU such that

CL

(
1 +

p∑
i=0

|yt−i|

)
≤ ln

(√
ζ1 + ζ2

2

)
− ln

(√
ξt−1,1 + ξ2

t,2

)
≤ CU , (A30)

where both the upper and lower bound are integrable by the argumentation already used above.

Conclusion

By combining the above parts of the proof we see that

E(sup
θ∈Θ

{
|`t(θ; yt|yt−1)|

}
) <∞,

as the expected values of supremums of each row of the log-likelihood (17) for time t has finite
upper and lower bounds.

A.5 Unique maximizer

We show that the expected log-likelihood of the GHAR model has a unique maximimum at the
true parameter value, denoted by θ0. Browne & McNicholas (2015) show that the generalized
hyperbolic distribution with parametrization as in Section 2 is identifiable in the sense that

ghd(·; θ) = ghd(·; θ0)

implies θ0 = θ.
For the autoregressive parametrization presented in Section 3.2 we have the conditional den-

sity gh1(yt|yt−1; θ) = gh1(y; θ̃t(θ)), where the vector θ̃t(θ) = (λ̃, δ̃t, µ̃t, σ̃
2
t , γ̃t) of time-dependent

parameters is defined in Section 3.1. The expected value for log-likelihood function on time t
has an integral form

Eθ0 (`t(θ)) =

∫
Rp+1

ghp+1(yt,yt−1; θ0) ln
(
gh1(yt; θ̃t(θ))

)
dyt dyt−1
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and therefore the difference Eθ0 (`t(θ))− Eθ0 (`t(θ0)) can be expressed as

Eθ0 (`t(θ))− Eθ0 (`t(θ0)) =

∫
Rp

ghp(yt−1; θ0)

∫
R
gh1(yt; θ̃t(θ0)) ln

(
gh1(yt; θ̃t(θ))

gh1(yt; θ̃t(θ0))

)
dyt dyt−1

= −
∫
Rp

ghp(yt−1; θ0)D(θ, θ0)dyt−1, (A31)

where D(θ, θ0) denotes the Kullback-Leibler divergence between the densities gh1(yt; θ̃t(θ)) and
gh1(yt; θ̃t(θ0)).

It is shown in Appendix A.6 that (yt,yt−1) follows the p+ 1 dimensional generalized hyper-
bolic distribution and therefore (yt,yt−1) has a strictly positive density on the whole Rp+1. Now
by (A31) we have E [`t(θ)] = E [`t(θ0)] if and only if

gh1

(
yt; θ̃t(θ0)

)
= gh1

(
yt; θ̃t(θ)

)
(A32)

for almost all yt ∈ R and any fixed yt−1 ∈ Rp. To show that the expectation of the log-
likelihood has a unique maximizer we therefore need show that (A32) implies θ0 = θ. Note that,
the identifiability of the generalized hyperbolic distribution implies that if gh1(yt; θ̃t(θ0)) =
gh1(yt; θ̃t(θ)) for almost all yt ∈ R then θ̃t(θ0) = θ̃t(θ) for any fixed yt−1 ∈ Rp.

Assume that (A32) holds. Then, using the notation φ0 = µ
(
1− φ′1p

)
, we first find that

µ̃t(θ0) = µ̃t ⇔ (φ0,0 − φ0) + (φ0 − φ)′ y = 0, (A33)

which implies that φ0 = φ and µ = µ0.
Consider now the equations σ̃2

t (θ0) = σ̃2
t and γ̃t(θ0) = γ̃t. Because φ0 = φ we have, using

the notation γp,0 = γ01p,

(γ0 − φ′0γ0,p) =
(
γ0 − φ′γ0,p

)
= γ0

(
1− φ′1p

)
,

where
(
1− φ′1p

)
6= 0 is guaranteed by the assumed stationarity. Solving the equations{

γ̃t = γ̃t(θ0)

σ̃2
t = σ̃2

t (θ0)
⇔

δ̃t
(
δ0 + γ ′0,pΓ

−1
0,pγ0,p

)
γ = δ̃t(θ0)

(
δ + γ ′pΓ

−1
p γp

)
γ0

δ̃t

(
δ0 + γ ′0,pΓ

−1
0,pγ0,p

)
σ2 = δ̃t(θ0)

(
δ + γ ′pΓ

−1
p γp

)
σ2

0,

for γ yields

γ = γ0
σ2

σ2
0

. (A34)

Consider next the equations δ̃t(θ0) = δ̃t and σ̃2
t (θ0) = σ̃2

t which imply that{
δ̃t = δ̃t(θ0)

σ̃2
t = σ̃2

t (θ0)
⇔
(
δ0 + γ ′0,pΓ

−1
0,pγ0,p

)
σ2 =

(
δ + γ ′pΓ

−1
p γp

)
σ2

0.

Because σ2Γ−1
p depends only on φ (see, e.g., Lütkepohl 2006) we obtain σ2Γ−1

p = σ2
0Γ−1

0,p. There-
fore, using (A34), we find that(

δ0 + γ ′0,pΓ
−1
0,pγ0,p

)
σ2 =

(
δ + γ ′pΓ

−1
p γp

)
σ2

0 ⇔ δ0σ
2 + γ

′
pΓ
−1
p γpσ

2
0 = δσ2

0 + γ
′
pΓ
−1
p γpσ

2
0,

where the right-hand side is equivalent to δ0σ
2 = δσ2

0. Thus, we have

δ + γ ′pΓ
−1
p γp =

σ2

σ2
0

(
δ0 + γ ′0,pΓ

−1
0,pγ0,p

)
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and

δ̃t(θ0) = δ̃t ⇔
√(

δ0 + (yt−1 − µ0)′Γ−1
0,p(yt−1 − µ0)

)
=

√
σ2

σ2
0

(
δ + (yt−1 − µ)′Γ−1

p (yt−1 − µ)
)
.

(A35)

It is already shown that µ0 = µ and hence we find that

δ0 + (yt−1 − µ0)′Γ−1
0,p(yt−1 − µ0) =

σ2

σ2
0

(
σ4

0

σ4
δ + (yt−1 − µ)′Γ−1

p (yt−1 − µ)

)
.

Substituting into (A35) yields

δ̃t(θ0) = δ̃t ⇔

√((
σ4

0

σ4
δ + (yt−1 − µ)′Γ−1

p (yt−1 − µ)

))
=
√(

δ + (yt−1 − µ)′Γ−1
p (yt−1 − µ)

)
(A36)

and hence we get that σ2
0 = σ2. Putting the above together with λ̃ = λ̃0 ⇒ λ = λ0 we have

established that E [`t(θ)] = E [`t(θ0)] implies θ = θ0.
Next we need to show that the expected log-likelihood function is continuous on Θ. As σ2 is

assumed to be bounded away from zero, by assuming the parameter space compact, all the terms
on the first three rows of (17) are continuous functions of θ ∈ Θ so we only need to consider the
terms with Bessel functions on the last row.

The Bessel function is differentiable with respect to the argument (see, e.g. Watson 1944)
and the order (see, e.g. Brychkov 2016) which are both continuous functions of θ and hence the
log-likelihood function (17) is continuous on the parameter space Θ. By Theorem 4 in Appendix
A.1.3 we show that the conditional log-likelihood function is bounded. Now, by continuity of
the log-likelihood function and the dominated convergence theorem together we see that the
expected log-likelihood function is continuous.

Thus, as E [`t(θ)] is continuous on the compact set Θ, it has a maximizer θ0 which was
shown above to be unique. Compactness of the parameter space together with continuity of the
log-likelihood function also imply that the maximum likelihood estimator θ̂ is measurable (see,
e.g., Pötscher & Prucha 1997, Lemma 3.4).

A.6 Conditional distribution of the multivariate generalized hyperbolic dis-
tribution

Next we derive the conditional density function of the generalized hyperbolic distribution re-
stricted as in (1). The conditional density has been previously derived by Blæsild (1981) who
used the restriction det(Γ) = 1 for identification.

Let the parameters θ = (λ, δ, µ, Γ, γ) be as defined in Section 2 and d = d1 + d2 ≥ 2,
d1, d2 ∈ N, be the dimension of the distribution. We introduce the following shorthand notations
to denote the parameters of the conditional distribution

λ̃ = λ− d2/2,

µ̃ = µ1 + (x2 − µ2)′Γ−1
22 Γ21,

δ̃ =
√(

δ + (x2 − µ2)′Γ−1
22 (x2 − µ2)

) (
δ + γ′2Γ−1

22 γ2

)
,

Γ̃ =

√
δ + (x2 − µ2)′Γ−1

22 (x2 − µ2)√
δ + γ′2Γ−1

22 γ2

(
Γ11 − Γ12Γ−1

22 Γ21

)
,

γ̃ =

√
δ + (x2 − µ2)′Γ−1

22 (x2 − µ2)√
δ + γ′2Γ−1

22 γ2

(
γ1 − Γ12Γ−1

22 γ2

)
.
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Partition the covariance matrix Γ to conformable blocks with dimensions d1 and d2 as

Γ =

[
Γ11 Γ12

Γ21 Γ22

]
. (A37)

Denote Γ1·2 = Γ11 − Γ12Γ−1
22 Γ21 so that the inverse matrix of Γ can be expressed as

Γ−1 =

[
Id1 0

−Γ−1
22 Γ21 Id2

] [
Γ−1

1·2 0

0 Γ−1
22

] [
Id1 −Γ12Γ−1

22

0 Id2

]
,

where Id is a d dimensional identity matrix. Partition also x and µ conformably to Γ as x =
(x1, x2) and µ = (µ1, µ2). Using this notation we can write

(x− µ)Γ−1(x− µ) = (x1 − µ̃)′Γ−1
1·2(x1 − µ̃) + (x2 − µ2)′Γ−1

22 (x2 − µ2)

where µ̃ = µ1 + (x2 − µ2)′Γ−1
22 Γ21. Also denoting γ1·2 = γ1 − Γ12Γ−1

22 γ2 we find the expression

γ′Γ−1γ = γ′1·2Γ−1
1·2γ1·2 + γ′2Γ−1

22 γ2.

Combining the above we get(
δ + (x− µ)Γ−1(x− µ)

) (
δ + γ′Γ−1γ

)
=
(
δ̃ + (x1 − µ̃)′Γ̃−1(x1 − µ̃)

)(
δ̃ + γ̃′Γ̃−1γ̃

)
. (A38)

The normalizing constant c in the density (1) has the expression

c = c1c2

Kλ̃

(
δ̃
)

δ̃
d2
2
−λ

, (A39)

where

c1 =

(
δ̃ + γ̃′Γ̃−1γ̃

) d1
2
−λ̃

(2π)
d1
2

√
det
(

Γ̃
)
Kλ̃

(
δ̃
) and c2 =

(
δ + γ′2Γ−1

22 γ2

) d2
2
−λ

(2π)
d2
2

√
det(Γ22)Kλ (δ)

.

The exponential function in the numerator of the density (1) can be written as

exp
(
γ′Γ−1(x− µ)

)
= exp

(
γ̃′Γ̃−1(x1 − µ̃)

)
exp

(
γ′2Γ−1

22 (x2 − µ2)
)
. (A40)

Using equations (A38), (A39) and (A40) the generalized hyperbolic density can be expressed as

ghd(x;λ, δ, µ,Γ, γ)

= c1

K
λ̃− d1

2

(√(
δ̃ + (x1 − µ̃)′Γ̃−1(x1 − µ̃)

)(
δ̃ + γ̃′Γ̃−1γ̃

))
(√(

δ̃ + (x1 − µ̃)′Γ̃−1(x1 − µ̃)
)(

δ̃ + γ̃′Γ̃−1γ̃
)) d1

2
−λ̃

exp
(
γ̃′Γ̃−1(x1 − µ̃)

)

× c2

K
λ− d2

2

(√(
δ + γ′2Γ−1

22 γ2

) (
δ + (x2 − µ2)′Γ−1

22 (x2 − µ2)
))

(√(
δ + γ′2Γ−1

22 γ2

) (
δ + (x2 − µ2)′Γ−1

22 (x2 − µ2)
)) d2

2
−λ

exp
(
γ′2Γ−1

22 (x2 − µ2)
)

= ghd1(x1; λ̃, δ̃, µ̃,Γt, γ̃)ghd2(x2;λ, δ, µ2,Γ22, γ2). (A41)

A.7 Additional figures

A.7.1 The generalized hyperbolic distribution
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Figure 3: The effect of different parameter values on the density function of the one dimensional
generalized hyperbolic distribution. On the left column the density is symmetric while for the
right column γ = 1 is chosen.
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A.7.2 Conditional expectation and variance

Figure 4: The conditional expectation µt (solid line) and conditional covariance σ2
t (dashed line)

with different values of γ and φ, and with δ = σ2 = 1 and λ = µ = 0.
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