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ABSTRACT: Interactions at the solid−body fluid interfaces play a
vital role in bone tissue formation at the implant surface. In this
study, fully atomistic molecular dynamics (MD) simulations were
performed to investigate interactions between the physiological
components of body fluids (Ca2+, HPO4

2−, H2PO4
−, Na+, Cl−, and

H2O) and functionalized parylene C surface. In comparison to the
native parylene C (−Cl surface groups), the introduction of −OH,
−CHO, and −COOH surface groups significantly enhances the
interactions between body fluid ions and the polymeric surface. The experimentally observed formation of calcium phosphate
nanocrystals is discussed in terms of MD simulations of the calcium phosphate clustering. Surface functional groups promote the
clustering of calcium and phosphate ions in the following order: −OH > −CHO > −Cl (parent parylene C) ≈ −COO−. This
promoting role of surface functional groups is explained as stimulating the number of Ca2+ and HPO4

2− surface contacts as well as
ion chemisorption. The molecular mechanism of calcium phosphate cluster formation at the functionalized parylene C surface is
proposed.
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■ INTRODUCTION

Polymers have been widely used for the last 3 decades in
medical applications, such as coated transducers, neural
prosthesis, catheters, and parts of orthopedic implants.1−5 A
polymer vividly explored in this context and meeting
sophisticated criteria for biomaterials is parylene C (poly-
(chloro-para-xylene)). Applied as a metal implant coating,
parylene C provides a variety of benefits, such as corrosion
protection and stability in body fluid environment.6,7 It was
shown that parylene C can be applied in biomedical devices as
a versatile coating serving as a multifunctional anticorrosive,8

biocompatible,9 and anti-infection/therapeutic layer.10−12

Notably, these functions are achievable on all classes of
biomaterials, that is, ceramics,13 metallic,6 and polymeric.14

When a biomaterial is placed in the human body, it first
interacts with a biological fluid consisting of water enriched
with ions, sugars, and proteins. Upon such exposure, the
oriented adsorption of molecules creates a conditioned surface
that is responsible for the subsequent cell−surface inter-
actions.15 One of the strategies to improve surface biocompat-
ibility, in this context, is an incorporation of the functional
groups of various chemical nature at the biomaterial surface,
such as −OH, −COOH, −NH2, and −F.10,16,17 The functional
groups can support adhesion of proteins responsible for cell
attachment and formation of focal adhesion sites (oxygen-
containing groups),10,18 prevent coagulation (nitrogen-con-
taining groups covalently immobilize heparin),16 or add a

surface antibacterial activity (fluorine-containing groups).19

Because of a plethora of existing possibilities, there are three
questions that need to be addressed in order to obtain the
biomaterial tailored for the desired site in the body: (a) what is
the required function? (b) Should functional groups be
introduced? If yes, which one? (c) What will be the most
effective surface coverage?
For the biocompatibility of the adherent cells, such as

osteoblasts, the parylene C surface can be successfully
transformed from hydrophobic to hydrophilic using oxygen
plasma treatment.20 This modification results in the
introduction of oxygen-containing functional groups (−OH,
−CHO, −COOH) and change in surface nanotopogra-
phy.10,20,21 Such surface functional groups, in particular,
−OH and −COOH, have been described to be crucial for
initial steps of osteogenesis, which induces wound healing and
consequently osseointegration.22−24

The clinical success of orthopedic implant coating relies on
the quick and efficient formation of the bone tissue at an
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implanted surface. Calcium phosphate minerals are the main
components of bone, constituting ∼50% of the mass of a
normal adult bone. Initially amorphous, calcium phosphate
matures through several consecutive intermediate stages to
form crystalline hydroxyapatite.25 Therefore, the calcium
phosphate formation is considered as a descriptor of the
successful implant osseointegration and an established
experimental tool used for functional correlation for in vitro
studies.26 Based on experimental results, biomineralization is
described by two sequential processes, including nucleation
and crystal growth, during which the initial nucleation site
must reach a critical size, enabling crystal growth and
mineralization. Thus, it is extremely important to ensure
specific surface properties required for the nucleation of
calcium phosphate formation, which is considered as an initial
step in the bone tissue formation.27 Providing an osteo-friendly
environment for mesenchymal stem cells28 is essential for, in
particular, cell adhesion, differentiation, and the eventual tissue
formation at the interface.15 Therefore, solid−water interfaces
play a vital role in biomedicine, providing a natural playground
for most biochemical reactions and physiological processes.15

This is the reason why the functionalization of surfaces, with
the aim of optimizing the implant−tissue interface, is vital. It
should be mentioned that in the literature the classic
nucleation model has been extended using the results of
cryo-transmission electron microscopy, several in situ analysis
techniques, and ab initio calculations pointing out the
importance of the prenucleation complexes ([Ca(HPO4)3]

4−)
and postnucleation clusters of [Ca2(HPO4)3]

2−, which
precipitate as amorphous calcium phosphate.29,30 It seems
that molecular dynamics (MD) simulations involving a large
number of molecules can give a more comprehensive realistic
picture of the biomineralization. Indeed, several approaches
have been proposed,31−35 but the obtained results do not
provide the univocal description of calcium phosphate
formation at the biomaterial surfaces.
Calcium phosphate growth on polymeric surfaces is a

challenge, mostly because of the hydrophobicity of such
surfaces. This results in low calcium phosphate nucleation rates
and, if eventually formed, poorly adhered crystals.36 The
importance of the surface functionalization of orthopedic
implants with calcium phosphate, prior to implantation, is
based on partial solubilization of calcium phosphate in body
fluids. This phenomenon increases locally at the bone−implant
interface, where high ion concentrations induce protein
adsorption and consecutive cell adhesion and proliferation.37

Although numerous experimental studies were performed, in
order to evaluate calcium phosphate nucleation on biomaterial
surfaces made of ceramics38 and polymers,39 only a few of
them combined the experiments with theoretical modeling
such as MD simulations.40,41 Recent advances in both surface
engineering of biomaterials and MD simulations have
generated a wealth of knowledge about the factors influencing
the biocompatibility.31,42−46 The constant development of
high-performance computing and the increasing power of
supercomputers made MD the predestined method for the
evaluation of the initial stages of novel biomaterials design.
Furthermore, MD is often the only method, which gives an
atomistic insight into the mechanisms of material biocompat-
ibility.
In our previous study of the water−parylene C interface,47

MD simulations gave insights into the impact of the oxygen
plasma treatment on the parylene C biocompatibility. It was

estimated that substitution of 50−60% native −Cl groups with
−OH groups, with plasma treatment, leads to increased
wettability and biocompatibility of the parylene C surface.
Although there are studies on parylene osseointegration
potential,10,48 neither the native material nor oxygen-plasma-
modified parylene has ever been investigated toward
osseointegration potential at the molecular level description.
Assessing the biocompatibility of designed materials has

usually focused on applying in vitro methodologies to establish
the risk for adverse impact on the host. Surely, such methods
present a largely simplified view of the complex in vivo
conditions; nevertheless, they provide insight into potential
tissue and cellular responses. The typical in vitro biocompat-
ibility tests include the evaluation of material cytotoxicity, cell
attachment, and cell response to substrate chemistry and
topography. However, none of the applied methods gives
feedback on molecular interactions at the interface. For this
reason, MD simulations can be applied as a useful tool in
understanding the processes at the biointerface.
The aim of this study is to gain an in-depth atomistic insight

into the experimentally observed formation of calcium
phosphate at the functionalized parylene C−body fluid
interface. We employ the MD simulations to reveal the role
of surface functional groups (−OH, −CHO, −COO−) formed
during the oxygen plasma treatment in the nucleation process
of calcium phosphate formation. Such an approach, to our best
knowledge, is used for the first time and provides general
guidelines for the optimal functionalization of implant coating
surfaces, which can be easily extended for other polymeric
materials.

■ MATERIALS AND METHODS
Atomistic MD Simulations. Atomistic MD simulations were

performed to investigate early stages of hydroxyapatite formation on
the modified and unmodified surfaces of parylene C. Four different
functional groups, corresponding to different ways of surface
modification, were considered here, namely, chloride (−Cl), hydroxyl
(−OH), aldehyde (−CHO), and carboxyl (−COO−) groups. The
simulation box, of size 11.622 nm (the x-direction) × 12.720 nm (the
y-direction) × 5 nm (the z-direction), contained two model surfaces
interacting with a water slab composed of 2000 water molecules
(corresponding to the water density ≈ 1 g/cm3). Each system was
first energy-minimized using the steepest descent algorithm and then
equilibrated in the NVT ensemble until both the potential energy of
the system and the pressure stabilized. Finally, the production run of
200 ns was performed. All the analyses were performed on the last
100 ns of the production run. Further details of the model are
published elsewhere.47 Artificial body fluid ions (H2PO4

−, HPO4
2−,

Na+, Ca2+, Cl−) were added to the water slab in the following
quantities: 16 Ca2+, 16 H2PO4

−, 8 HPO4
2−, 56 Na+, and 56 Cl−

corresponding to the solution with 20 mmol/L of CaHPO4, 20
mmol/L of Ca(H2PO4)2, and 150 mmol/L of NaCl. Ion
concentrations are the same as in the Dulbecco’s phosphate-buffered
saline (DPBS; Lonza) used in the experiments. Force-field parameters
for the modified and unmodified parylene C surface were taken from
ref 47. The TIP3P model was used for water.49 The electronic
continuum correction (ECC) has been applied to all ions as described
in refs 50 and 51. In such ECC force fields, the electronic polarization
is taken into account in a mean-field way through scaling the total
charge of the ions by a factor of 0.75. This correction has been shown
to improve ion pairing properties of salt solutions and the interaction
of ions with biomolecules.52 The scaled force-field parameters for
sodium, calcium, and chloride were previously published and
tested.53−55 In the case of phosphate ions used here, we introduced
ECC by scaling the atomic charges obtained from the general Amber
force field.56 The calculated free energies of calcium−phosphate
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interactions (see Figure S5, Supporting Information) are in agreement
with both experimental and recently reported force-field results.42,57

No ECC was applied for −COO− surface groups as it was shown to
only partially reproduce experimental data.58 The ion force-field
parameters are given in the Supporting Information. The force field of
the parylene surface model is given in ref 47.
The atomistic MD simulations were carried out in an NVT

ensemble using GROMACS 5.1.x software.59 The temperature was
kept at 310 K using a v-rescale thermostat60 with a temperature
coupling constant of 0.5 ps. Functional groups, carbon surface atoms,
and water with ions were coupled to three separate thermostats. Long-
range electrostatic interactions beyond a nonbonded interaction cutoff
of 1.0 nm were treated by the particle mesh Ewald scheme61 with a
Fourier spacing of 0.12 nm. A long-range dispersion correction to the
energy and pressure was added. The LINCS algorithm62 was used to
constrain all covalent bonds, allowing a time step of 2 fs. For water,
the SETTLE method63 was applied. Periodic boundary conditions
were applied in all dimensions.
Sample Preparation. Oxygen Plasma Functionalization. To

modify the parylene C surface, oxygen plasma treatment was carried
out using a Diener electronic Femto plasma system (Diener
Electronic GmbH, Nagold, Germany) at 50 W and an oxygen partial
pressure of 0.2 mbar. The time of exposure to oxygen plasma was 8
min, which is the optimal modification in terms of biocompatibility,
according to our previous studies.9,10

Hydroxyapatite Deposition. Unmodified parylene C and oxygen-
plasma-modified parylene C were incubated for 24, 48, and 72 h in
PBS (Lonza) at 37 °C with gentle shaking. After each time interval,
the buffer was removed, and samples were air-dried and used for
characterization. All of the samples were prepared in triplicates.
Sample Characterization. Scanning Electron Microscopy.

Images of parylene C surfaces and formed hydroxyapatite crystallites
were taken using a Hitachi S-4700 scanning electron microscope. All
of the samples were coated with Au prior to the observations.
X-ray Photoelectron Spectroscopy. The surface composition of

oxygen-plasma-modified parylene C was checked using X-ray
photoelectron spectroscopy (XPS) in an ultrahigh vacuum system,
equipped with an SES R4000 (Gammadata Scienta) analyzer. The
monochromatic Al Kα source (1486.6 eV) operated at 350 W was
applied. The spectra were obtained at a takeoff angle of 90°. The
vacuum in the spectrometer chambers was better than 5 × 10−9 mbar.
The acquired XPS spectra were recorded using Casa-XPS 2.3.15
software. All spectra were calibrated using the adventitious C 1s peak
with a fixed value of 285 eV. Surface concentrations of parylene C
components were determined by the integration of narrow scan C 1s
and O 1s maxima.
Laser Desorption/Ionization Mass Spectrometry. The surface

analysis of unmodified and oxygen-plasma-treated parylene C was
performed on a Bruker Ultraflex time-of-flight (TOF) mass
spectrometer with a SCOUT-MTP ion source (Bruker Daltonics,
Bremen, Germany) in reflector mode and equipped with a 337 nm
nitrogen laser. The acceleration voltage was 25 kV, and the reflector
voltage was 26.3 kV. Each surface was placed on a modified stainless
steel LDI plate. The spectrum obtained for each sample is an
accumulation of 1000 shots. The mass-to-charge (m/z) ratio range
was set to scan from 60 to 2000 m/z.
X-ray Diffraction. The X-ray diffraction (XRD) patterns of

parylene C foils were recorded using a Rigaku MiniFlex diffractometer
with Cu Kα radiation at 10 mA and 10 kV, a 2θ step scan of 0.02, and
a counting time of 1 s per step. The diffraction measurements were
performed in the characteristic region of 2θ = 3−40°, and the
crystallite size was estimated from Sherrer’s formula.
X-ray Fluorescence Spectrometry. For elemental X-ray

fluorescence (XRF) analysis, an ARL Quant’X spectrometer,
calibrated with the dedicated series of metal standards, was used.
The X-rays of 4−50 kV (1 kV step), with the beam size of 8 mm
generated with the Rh anode, were used. The detector used was a 3.5
mm Si(Li) drifted crystal with a Peltier cooling (−88 °C).

■ RESULTS AND DISCUSSION
The biocompatible oxygen-plasma-modified parylene C, one of
the most recently explored polymeric coatings, was used in the
experimental studies. This material is well characterized in
terms of physicochemical surface properties9,20 and interaction
with biological moieties.10,21,47 The samples, used in this study,
were obtained using oxygen plasma parameters optimized in
our previous studies, that is, t = 8 min, p = 0.2 mbar, and P =
50 W.9,10 The basic characterization of the treated samples is
summarized in Figure 1. After the plasma treatment, the

parylene C surface becomes rough in the nanoscale, with
nanocorrugations in the range of 60−200 nm (Figure 1A), and
hydrophilic (Figure 1B), with a water contact angle θW of 0.1°
and the corresponding surface free energy (SFE) of 72.9 mJ/
m2 with 48.6 and 24.3 mJ/m2 polar (γs

p) and dispersive (γs
d)

components, respectively.47 The chemical nature of the
introduced functional groups was identified with the surface-
sensitive techniques, XPS and LDI-TOF-MS, as summarized in
Figure 1C,D.20,64,65 In general, the oxygen plasma treatment
results in multitype groups formed at the polymeric surface, as
can be inferred from the XPS C 1s spectra (Figure 1C) with
marked characteristic binding energies. The C 1s peak shape
indicates the successful insertion of oxygen because, except
284.9 eV maximum, which corresponds to C−C/CC bonds,
two additional maxima are present at 286.1 and 289.4 eV,
which correspond to C−O and CO groups, respectively.20

The results were complemented with the LDI-TOF-MS
technique (Figure 1D). Each line in the 800−1000 m/z spectra
represents a polymeric chain fragment, which was ionized and
desorbed from the oxygen-plasma-modified parylene C surface.
Signals at 853.030 and 869.061 m/z indicate six monomer
units of parylene C (chemical formula C48H44Cl6) with Na+

and K+ adducts, respectively, while signal at 943.223 m/z
corresponds to six monomer units with chain ends of −OH
and −COOH groups (chemical formula C50H46Cl6O3) and K+

adduct.

Figure 1. Oxygen-plasma-modified parylene C surface: (A) SEM
morphology, (B) polar and dispersive components of the SFE
determined from the contact angle measurements, (C) C 1s XPS
profile deconvoluted in characteristic binding energies for C−O and
CO groups at 286.1 and 289.4 eV, respectively, and (D) LDI-TOF
mass spectrum with marked peaks for six parylene C repeating units
alone (853.030 and 869.061 m/z) and with the attached −OH and
−COOH chain ends (943.223 m/z).
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The introduction of oxygen to the surface of polymeric
materials has tremendous practical implications for the
biological performance.15 The oxygen-plasma-modified par-
ylene C proved to be biocompatible and effectively limits the
microbial biofilm formation.10 The main application of
parylene C is an anticorrosive conformal coating of the
orthopedic metal implants. Hence, the investigation of the
body fluid−implant interface, implicating the bone−implant
integration, is an inseparable aspect of the coating biocompat-
ibility. One of the straightforward descriptors of in vitro
osseointegration potential is based on the calcium phosphate
(CaP) formation on the implant surface. Here, the calcium
phosphate formation was evaluated using the DPBS buffer
commonly employed in biological experiments for its
osmolarity and ion concentration matching those of the
human body fluids.
Upon exposure to DPBS, the crystallites of calcium

phosphate are formed on the surfaces of parylene C after 24
h of incubation. The representative results are summarized in
Figure 2, where scanning electron microscopy (SEM) images

(Figure 2A) of the calcium phosphate crystallites on
unmodified and oxygen-plasma-modified parylene C are
presented. The formed calcium phosphate moieties signifi-
cantly differ in morphology. On unmodified parylene C, there
are few, large crystallites 1−3 μm in diameter, in contrast with
the oxygen-plasma-modified samples, where a bigger number
of crystallites, with significantly smaller sizes 200−500 nm, can
be observed. The results of SEM observations are visualized in

the size distribution histograms (Figure 2B) that clearly
illustrate the effect of parylene C modification on the formed
crystals. While on unmodified parylene C, the crystallites are
polydisperse and in the wide range of sizes (0−2.4 μm);
crystallites formed on the oxygen-plasma-modified parylene C
are in a significantly narrower range of sizes (0−0.7 μm), with
the majority being between 200 and 400 nm. As can be
inferred from XRD patterns (Figure 2C), both types of
samples support the growth of calcium phosphate crystallites.
On both diffractograms, two types of maxima are present: one
at 2θ = 13.4° characteristic for the crystalline part of parylene
C and the other at 2θ = 31.4° diagnostic for calcium phosphate
(P63/m space groups), which correspond to the hexagonal
hydroxyapatite structure (Ca10(PO4)6(OH)2 with the Ca/P
ratio of 1.67).66 The XRD results are in line with SEM
observations, as the diffraction maximum (211)67 is less
pronounced and slightly broader for the calcium phosphate
crystallites formed at oxygen-plasma-modified parylene C.
In order to estimate the crystallite sizes and compare them

to those observed in SEM (Figure 2), the XRD data were used
(Figure 3A), while the chemical compositions of the formed
crystallites were confirmed with XRF measurements (Figure
3B). The changes were recorded for 7 days in order to
investigate the growth kinetics of the calcium phosphate on the
parylene C surfaces. As summarized in Figure 3, the oxygen-
plasma modification of parylene C has a strong effect on
calcium phosphate formation. Native parylene C samples
support the growth of calcium phosphate and allow the rapid
formation of large crystallites, while oxygen plasma mod-
ification significantly diminishes the process; nevertheless, it
ensures constant crystallite growth over the course of
incubation time. Although the general trend is the same,
there is a large difference in the crystallite sizes observed in
SEM and estimated from XRD. The likely explanation is the
crystalline−amorphous nature of the formed calcium phos-
phate and invisibility of the amorphous component to the X-
rays. The amorphousness of the formed calcium phosphate is
important from the biological point of view because it is known
that at the beginning of the bone mineralization, the initially
amorphous, mineral particles are transformed into a crystalline
mineral, which eventually turns into hydroxyapatite.68,69

The investigated surfaces show different kinetics of calcium
phosphate crystal growth, which has important implications,
when biocompatibility is concerned. Large crystals of calcium
phosphate are less stable at the native surface, and after 14 days
of mineralization studies (data not shown), the overgrown
calcium phosphate crystallites fall off the parylene C surface. In
contrast, the oxygen-plasma-modified parylene surface, exhibit-
ing the nanotopography, promotes the anchorage of the
smaller crystallites within the nanocorrugations. Moreover, the
systematic growth of calcium phosphate crystals over the
course of time (Figure 3) is desired in the context of the bone-
implant integration process, which usually takes place over
weeks.
As described in the Introduction section, the chemical

nature and surface coverage of the oxygen-containing groups
may lead to specific biological responses, particularly in the
context of osseointegration. Therefore, understanding the
interactions between ions present in the body fluid (Ca2+,
HxPO4

Δ−), leading to the formation of calcium phosphate
precipitates, is of key importance for designing novel
biomaterial surfaces. Specifically, the polar surface functional
groups may play the role of sites, where the crystallization

Figure 2. (A) SEM images of calcium phosphate crystallites formed
after 72 h of incubation with DPBS on the unmodified and oxygen-
plasma-modified parylene C surfaces, (B) histograms quantifying the
differences in size distribution of the crystallites, and (C) XRD
patterns with characteristic diffraction peaks for the crystalline part of
parylene C 2θ = 13.4° and calcium phosphate 2θ = 31.4°.
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process initiates.70 To optimize the implant−tissue interface,
the understanding of the calcium phosphate nucleation process
at the molecular level is necessary and can be provided by MD
simulations.
Models of unmodified and oxygen-plasma-modified parylene

C surfaces were constructed as in our previous study.47 These
models were successfully used for assessing water−surface
interactions, and the obtained results were in good agreement
with experiments. As visualized in Figure 4A, the unmodified

parylene C surface contains native −Cl groups, whereas the
oxygen plasma modification is mimicked by exchanging them
for oxygen-containing groups, such as −OH, −CHO, and
−COO−. The rationale for these substitutions is based on the
surface characterization via XPS and LDI-TOF-MS (Figure 1).
In this study, the model is extended by the introduction of the
ions present in DPBS (H2PO4

−, HPO4
2−, Na+, Ca2+, Cl−) to

the aqueous phase in the simulation box. This extension allows
us to model the interactions between parylene surfaces and the
artificial body fluid. The overview of the simulated system is
shown in Figure 4B, where a representative snapshot of the

OH-functionalized parylene C surface in contact with water
molecules and artificial body fluid ions is presented.
In Figure 4C, individual fragments of decorated parylene

surfaces, showing the interaction of various surface groups with
water molecules, are presented in atomistic resolution.
Qualitative differences in wetting properties emerging from
the chemical character of the surface moieties are visualized in
terms of isovalues of water density, represented as gray
shadowing. A more in-depth insight into the water− and ion−
surface interactions may be obtained from the mass density
profile analysis (Figure 5). The profiles quantify the
concentration of several important moieties as a function of
the distance from the surface averaged over simulated surface
area and time. In particular, HPO4

2− and H2PO4
− (red and

gray curves) adsorb relatively well on oxygen-plasma-modified
parylene C, in contrast to the native parylene C. The reason for
that is an overall hydrophobic character of its native surface, as
indicated by the water density profiles (Owater, light blue
curve), with the first water peak being the smallest among all
considered surfaces. However, the hydrophilicity alone is not a
good indicator of surface−phosphate affinity, as shown by the
−COO−-decorated surface for which a weak binding of
HPO4

2− and H2PO4
− occurs; this is caused by the competitive

binding of Na+. Importantly, Ca2+ (pink curve) and HPO4
2−

(red curve) are almost completely depleted near the
unmodified parylene C surface. In contrast, the Ca2+ and
HPO4

2− binding takes place in all of the hydrophilized versions
of parylene C, which is further corroborated by the analysis of
the contacts per surface (see the Supporting Information,
Figure S2).
The number density profiles clearly indicate that there is

colocalization of phosphate and calcium ions, as their
corresponding density profiles significantly overlap. To
quantify the effect of colocalization, we calculated the number
of ion−ion contacts for all considered surfaces; the data are
presented in Figure 6. The number of contacts has been
calculated using the standard GROMACS tool (gmx mindist).
A contact was recorded when the distance between the center
of mass of any two ions was equal to or within 1.0 nm. Ca2+−
HPO4

2− pairs dominate in most of the systems, with the
exception of the surface covered by −COO−, where a
competitive binding of Ca2+ with surface carboxyl groups
occurs (data not shown). Notably, both Ca2+−H2PO4

− and
H2PO4

−−HPO4
2− contacts, which are important for calcium

phosphate formation, are enhanced at the surface covered by
−OH groups.

Figure 3. (A) Changes in calcium phosphate crystallites size and (B) calcium content on the surfaces of unmodified and oxygen-plasma-modified
parylene C as a function of incubation time in the artificial body fluids (DPBS).

Figure 4. (A) Scheme of modification of the parylene C surface via
oxygen plasma treatment, (B) model of the parylene C surface
decorated with −OH groups used in MD simulations (the whole
simulation box is shown in the Supporting Information, Figure S1),
and (C) representative fragments of decorated parylene C surfaces
showing interaction of various surface groups with water molecules.
Gray shadowing based on isovalues of water density illustrates the
hydrophilic properties of the parylene C surfaces.
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The number density profiles and the number of surface
contacts presented in Figures 5 and 6, respectively, provide the
information averaged in the surface plane. In order to get
laterally resolved information and to identify different binding
motifs and nucleation of calcium phosphate, the simulation
snapshots were visually analyzed; representative snapshots are
presented in Figure 7. Further, to pinpoint individual steps
leading to nucleation and to elucidate the nucleation
mechanism, ion−surface and ion−ion contacts were analyzed
in time along the simulated trajectories as a function of
simulation time (the data are presented in Figures S3 and S4).
As shown in Figure 7, for the oxygen-plasma −OH-modified

parylene C surface, most of H2PO4
− ions initially adsorb at the

surface accompanied by Ca2+ and some HPO4
2− ions. The

adsorbed ions are mobile and laterally diffuse at the parylene

surface. Majority of HPO4
2− ions initially predominantly stay

above the surface in the water phase (Figure 7A).
Subsequently, individual ions adsorb at the surface and form
Ca2+-mediated clusters with H2PO4

2− (Figure 7B). The

Figure 5. Number density profile comparison between unmodified parylene C (with parent −Cl groups) and oxygen-plasma-modified parylene C
(−OH, −CHO, −COO−). For all of the oxygen-containing groups, the presented surface coverage is 50%. Profiles of water oxygen and surface
groups were scaled down for presentation purposes.

Figure 6. Relative number of ion−ion contacts for the considered
unmodified and modified parylene C surfaces calculated from MD
simulations for the equilibrated system. Error bars correspond to
standard deviation.

Figure 7. Nucleation model of the calcium phosphate crystal at the
oxygen-plasma −OH-modified parylene C surface. Characteristic
snapshots taken along a single atomistic MD simulation represent the
subsequent stages of the nucleation process (A−E) (detailed
description in the text).
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adsorbed surface clusters grow, mostly, by capturing the
surface diffusing HPO4

2−, H2PO4
−, and Ca2+ (Figure 7C). The

clusters further grow by capturing ions from both the surface
and aqueous phase (Figure 7D). At this stage, the small surface
clusters are to some extent dynamic, undergoing structural
rearrangements; they consist of coclustered HPO4

2−, H2PO4
−,

and Ca2+ ions (Figure 7E). We hypothesize that these
coclustered structures are early-stage calcium phosphate
nucleation centers. Regarding lateral mobility of adsorbed
species, a rigorous analysis of the diffusion coefficients was not
possible because of a low concentration of ions and hence a
limited diffusion statistic. It can be roughly estimated that the
adsorbed species diffuse on the length scale of about 10 nm
over the 200 ns long trajectories.
In the case of the −CHO-modified parylene C surface, the

processes occurring at the surface are the same but somewhat
faster. In particular, the steady increase of Ca2+−HPO4

2−

contacts (Supporting Information, Figure S4C) is due to the
formation of these ion pairs in water, which only subsequently
slowly adsorb at the surface. In the case of the surface covered
by −COO−, the surface is practically polluted by Ca2+ ions.
HPO4

2− adsorbs first but without forming Ca2+−HPO4
2−

clusters. The subsequently adsorbed H2PO4
− is mostly laterally

immobilized, often clustered with Ca2+, but not with HPO4
2−.

Hence, calcium phosphate nucleation centers do not form. Of
note, the surface covered by −COO− groups should be treated
only as a qualitative model of a strongly polar and hydrophilic
surface.
HPO4

2− does not adsorb at the unmodified parylene C
surface. The Ca2+−HPO4

2− and H2PO4
−−HPO4

2− contacts,
visible in Figure S4D, are due to ion pairs in water. This shows
that the unmodified parylene C surface does not promote the
calcium phosphate formation on the timescale considered in
MD.
The obtained results clearly explain the necessity of parylene

C functionalization in order to obtain the biocompatible
surface for bone−tissue contact. The preferred type of oxygen-
containing groups is −OH, responsible for the calcium
phosphate nucleation, as confirmed by MD simulations
(Ca2+−H2PO4

− cluster formation). The superiority of surface
hydroxyl groups, as adsorption centers for calcium phosphate,
might be related to their high dipole moments and small size,
which results in strong surface−ion interactions without
sterical hindrance.
It should be noted that the exact mechanism and initial

stages of hydroxyapatite nucleation in bulk water solutions are
still debated and were recently intensively studied by detailed
molecular simulations.31−35 In particular, the formation of
initial Ca2+−(HPO4

2−)n clusters, probably kinetically trapped,
was reported, and their role is being studied. It was also
observed that the same charge phosphate ions could form
clusters mediated by cations. Our work focuses on the very
onset of hydroxyapatite clustering at the decorated surfaces.
Only small clusters are studied here because of a limited
concentration of the species mimicking the human body fluids.
Still, in relation to the studies in bulk solutions, our simulations
confirm that Ca2+−HPO4

2− interactions are crucial for the
formation of clusters at the surface. Overall, it can be
concluded that by changing the delicate balance between
interactions involving all present ions, the surface can alter the
clustering mechanisms involving calcium and phosphate ions.
In this study, we took a synergetic approach by

complementing experimental results with MD simulations.

This allowed us to investigate the parylene C-simulated body
fluid interactions at both molecular and microscopic scales.
Such methodology is indispensable for a detailed description of
the calcium phosphate formation onset and the effect of
oxygen-containing surface functional groups. As a result, we
were able to identify the contribution of the formed groups to
the overall biocompatibility increase of the oxygen-plasma-
modified parylene C, as well as premises for surface
functionalization. As reported before, the presence of the
−OH groups at the surface is crucial for wettability47 and
biocompatibility10 of parylene C. Here, for the first time, the
role of surface functional groups for the nucleation process of
calcium phosphate on parylene C is reported and described at
the atomistic level with the use of MD simulations. Such a
combined experimental and theoretical approach, presented in
this work, paves the way for rational design and functionaliza-
tion of polymeric biomaterials toward effective osseointegra-
tion.

■ CONCLUSIONS
In this paper, we address the role of functional groups on the
surface of parylene C in calcium phosphate formation as the
descriptor of the polymeric coating−bone tissue compatibility.
The functional groups were introduced via oxygen plasma
treatment, and their chemical nature was characterized by XPS
and LDI-TOF. The experiments revealed the dramatic
difference in calcium phosphate crystallite formation upon
contact with the simulated body fluid (DPBS). At the
unmodified parylene C surface, after 7 days of incubation,
the crystallites were larger and unstable, whereas at the plasma-
modified surface, the desired, more uniform coverage of
smaller crystallites <0.7 μm was observed. To understand the
effect of functionalization and elucidate the role of functional
groups in the calcium phosphate nucleation mechanism, we
applied atomistic MD simulations. The simulation results
revealed differences in the osseointegration potential of the
surface functional groups: −OH > −CHO > −Cl (parent
parylene C) ≈ −COO−. The superiority of the −OH groups
was identified as the most effective sites for calcium phosphate
nucleation. The advantage of the combined experimental and
theoretical approach is pointed out as effective for biointerface
design and fabrication.
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*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsami.9b20877.

Whole simulation box, comparison of number of
contacts per surface unit for Ca2+ and HPO4

2− ions,
ion−surface contacts per surface unit as a function of
simulation time, ion−ion contacts per surface unit as a
function of simulation time, free energy profiles showing
the potential of mean force between phosphate and
calcium ions, and force-field parameters for ions used in
this work (PDF)
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