
Criterion-based grading, agile goal setting, and  
course (un)completion strategies 

Petri Ihantola1, , Essi Isohanni2, Pietari Heino3, and Tommi Mikkonen4 

1,4 University of Helsinki, Helsinki, Finland 
2,3 Tampere University of Technology, Tampere, Finland 

1 petri.ihantola@helsinki.fi 

Abstract. When teaching large groups of students with heterogeneous backgrounds and 
different learning goals, it is essential to personalize the learning experience. In this 
chapter, we describe how we have implemented this in a university-wide introductory 
programming course. Each student sets a personal target grade, i.e., the grade they aim 
at, based on how deep an understanding of programming they need (depending on their 
major subject, etc.) and on how much effort they are willing to invest in the course. To 
enable such setup, course assignments are divided into different levels and the grading 
directs the students in choosing which assignments to work on to meet the goals they 
have set. Furthermore, the students can change their target grade during the course in an 
agile manner. 

Keywords:  Criterion-based grading; automated assessment; CS1; student strategies; agile goal setting 

1 Introduction 

The constructivist learning theories propose that a learner constructs their own compre-
hension of the subject through their prior knowledge (Illeris, 2002). These theories em-
phasize that learning is an individual process that reflects the back- ground of the 
learner. Therefore, it is essential to let the learner personalize the learning process by 
choosing learning materials according to personal preference. 

In self-directed learning – typical in adult education – the learner also takes the initia-
tive to formulate and pursue learning goals (Merriam, 2001). Unfortunately, this self-im-
posed setting of goals is often poorly supported. As Lister and Leaney (2003) state: 

 
“ In the traditional [...] approach to grading, all students in a CS1 class attempt 

the same programming tasks, and those attempts are graded “to a curve”. The 
danger is that such tasks are aimed at a hypothetical average student. Weaker stu-
dents can do little of these tasks, and learn little. Meanwhile, these tasks do not 
stretch the stronger students, so they too are denied an opportunity to learn.” 

 
In the same article, Lister and Leaney propose a criterion referenced grading scheme, 

where the students do different assignments, according to their abilities. Moreover, the 
assignments are designed to match the cognitive domains of Bloom’s taxonomy (Bloom 
et al., 1956), a classification of levels of intellectual behavior important in learning (Sed-
don, 1978). While the taxonomy consists of three hierarchical models – cognitive, affec-
tive and sensory domains – the cognitive part has been the primary focus of most tradi-
tional education. In particular, it has been commonly used as basis for structuring 
curriculum learning goals, assessments, and activities (Fuller et al., 2007). 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/339407145?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


In this chapter, we describe how we have implemented the criterion-referenced grad-
ing scheme in the context of a university-wide introductory programming course. In ad-
dition, we introduce an agile course concept: We explicitly ask each student to choose 
their learning goals, which define the assignments they should complete. In connection 
to agile software development, the analogy is to allow the team to decide which features 
to pick from the product backlog. Here, the students decide how much work they are 
willing to invest in learning a certain topic in the course, and pick assignments with cor-
responding complexity. The approach was designed to support both struggling (Ahadi, 
Lister, Haapala, & Vihavainen, 2015) and over performing (Carter et al., 2010, 2011) 
students by providing a personal, agile learning experience despite extremely large 
teaching groups. 

Struggling and over-performance are often related to a mismatch between prior skills 
and learning goals. We have divided all our programming assignments into four catego-
ries, with increasing complexity. The way this is done resembles grouping the levels of 
Bloom (Lister & Leaney, 2003; Johnson, Gaspar, Boyer, Bennett, & Armitage, 2012). 
However, as applying Bloom’s taxonomy consistently in Computer Science (CS) educa-
tion can be very challenging (John- son & Fuller, 2006; Thompson, Luxton-Reilly, 
Whalley, Hu, & Robbins, 2008), our approach is more practically oriented: Skills 
learned from the higher category assignments are prerequisites of a future course only if 
a student is planning to take programming as their major or minor. Moreover, assign-
ments from the lower categories may be too simple for students with prior knowledge. 
Thus, they are optional for students aiming at higher grades. 

Our main tool for organizing the course in an agile way is the grading rules of the 
course. In our setup, the final grade is based on solving automatically graded program-
ming assignments throughout the course. The approach is applicable also in other con-
texts, however. We describe the course to give an overall understanding and to reflect 
our results. In addition to explaining the details of how we have implemented agile into 
education, our main objective is to seek understanding regarding how students behave in 
the setup. 

The rest of the chapter is structured as follows. First, in Section 2, we introduce the 
agile course setting, which forms the background of this paper. Then, in Section 3, we 
describe the research questions related to students’ behavior and the related methodol-
ogy. Next, in Section 4, we introduce our results, and in Section 5, we provide an ex-
tended discussion regarding our main observations. Finally, in Section 6 we draw some 
conclusions.  

 
2 Agile Course Setting 

In order to describe how the agile goal setting has been implemented in our introductory 
programming course, we first describe why the course is needed in our university and 
who takes it (Section 2.1). Next, we define the teaching methods (Section 2.2), and the 
grading scheme enabling the individual learning paths (Section 2.3). Finally, the idea of 
the grading scheme is illustrated with examples of different learning goals (Section 2.4). 

2.1 Versatile Needs 
The overarching learning goal of the Introduction to Programming course in Tampere 
University of Technology, Finland, is to learn to write small programs on one’s own. We 
use Python as the programming language, and in addition to basic computer usage skills, 
there are no other prerequisites for the course. 

The course is obligatory for almost all the students in the whole university, more than 
1000 students every year. Consequently, large and heterogeneous student groups are in-



cluded – in addition to computer science students, also for instance electrical engineer-
ing, automation engineering, mechanical engineering, and even material science students 
take the course. The background for this decision is that in the modern world all gradu-
ates need to know at least the basics of programming to better understand the use of 
computer applications in their own fields. 

While computer science students build almost all of their professional skills on top of 
their ability to program, the students in many other fields just need to understand what 
programming is. In addition, students’ previous programming skills vary greatly: most 
of the students start with no previous programming knowledge, but the teaching group 
also includes students who have been programming in high school and in their free time. 

The diversity of the teaching group is illustrated in Figure 1. Students in Group A are 
majoring in some other field than computer science. Consequently, they only need ele-
mentary programming skills. Group B consists of students who start with no prior pro-
gramming experience and need to cover all the topics of the course. They need to work 
really hard in this course. Group C consists of students that know the basics prior to the 
course. Thus, they cope even without special attention from the teacher and are most of-
ten neglected in large teaching groups. In our case, all of these students are attending the 
same course, and hence our goal is to meet the needs of all these student groups in our 
pedagogical design. 

Another solution would be that all the different curricula that need programming 
would be free to create their own courses with small number of students participating in 
each of them. However, our solution where all students attend the same course ensures 
flexible possibilities of changing study plans for students. There are many students who 
do not know what programming is before they at- tend the course. In our course they can 
decide that they want to cover the topics more thoroughly and proceed to further pro-
gramming courses. In addition, in comparison to going for different courses, this model 
allows fine-tuning the goals in accordance to students’ views, not only on individual 
course definitions. 

 

 
Fig. 1. Diverse student population, with special target groups A, B, and C identified. 

2.2 Practical arrangements 
All the course material is available online, delivered by using the A+ course platform 
(Karavirta, Ihantola, & Koskinen, 2013). The material contains an e-book where all the 
theory is explained and embeds automatically assessed programming assignments with 
immediate feedback. Each assignment can be submitted for evaluation at most ten times. 
The automated approach is widely applied in programming education (Carter et al., 
2003; Douce, Livingstone, & Orwell, 2005). 



In addition to automated feedback, the students also receive feedback from teaching 
assistants for selected assignments. These selected assignments test the core ideas of 
programming thus giving the students first hand feedback on whether they’ve actually 
understood the problems at hand or if there’s something to improve on and pay attention 
to in the future. 

The course spans over two teaching periods (in total 14 weeks), and it is 5 ECTS cred-
its in size. A number of assignments are to be completed weekly. We use the flipped 
classroom method (Bishop & Verleger, 2013), where the students first complete the pro-
gramming assignments and then attend the class to discuss different ways of solving the 
assignments and the problems they faced. Students work self-guided and ask for help 
from the teaching staff if necessary. To this end, we use a multipurpose computer class-
room, where the students are allowed to work whenever they want. In addition, there are 
teaching assistant hours in the multipurpose classroom at least 20 hours a week. 

At the end of the course students take an electronic exam which is like a skills demon-
stration where the student shows under controlled conditions that he/she can complete a 
small programming assignment independently. The exam is not supposed to be difficult. 
Essentially it is a programming assignment of the same style as provided during the 
course. 

 Our course design is learner-centered. The students work according to their personal 
weekly schedules and the teaching assistants are available upon request in the multipur-
pose classroom at least during peak times. This way of working requires a lot of self-dis-
cipline from our students. On the other hand, it is very flexible. We also highlight that 
working in their own schedule does not mean working alone. They are encouraged to 
work in pairs and also to discuss their problems both with the teaching assistants and in 
the lectures. 

The course design and all the practical arrangements follow the principle of construc-
tive alignment (Biggs & Tang, 2007) in which teaching and assessment methods are 
chosen to meet predetermined learning goals. As the learning goal is to learn to imple-
ment small programs on one’s own, that is exactly what the student does every week 
during the course in all the assignments and in the exam. 

2.3 Grading 
Our course is graded on a scale from zero (failed) to five (the best). The final grade is 
defined by the completed assignments. In the A+ course platform, there are over 120 
programming assignments, which we divided into four categories: 
 

• A elementary: small assignments, where the student mostly just repeats some- 
thing that was exemplified in the materials. 

• B basic: further small assignments, which mainly concentrate on one new 
topic, but are more difficult than elementary assignments, because the solution 
is not directly in the materials. 

• C applied: typically, the student has to combine knowledge related to more 
than one topic. Some of these assignments are so large that we call them pro-
jects, despite the students working on them only for a few hours. 

• D advanced: these assignments require the student to get familiar with materi-
als outside the core content of the course or are in some other way more diffi-
cult than assignments in the other categories. 
 

Points are allocated to assignments in accordance to how laborious they are. The larg-
est ones constitute approximately 100 points and the smallest 10 points. There is a dead-
line every week, with an optional, discouraged extension – if an assignment is submitted 



during the extension, one can only receive 70% of the associated points. Even during the 
extension, it is possible to meet the teaching assistants in the class. This is important, be-
cause sometimes automated assessment causes problems in the submission phase. 
Assignments are associated with grading rules. Table 1 presents a slightly simplified 
version of the grading rules table. To achieve grade 3, the student should collect 400 
points from the elementary, 900 points from the basic, and 400 points from the applied 
assignments, and pass the extended exam. Both exams are only graded as pass/fail. The 
verbal explanation for grade 3 is “good” in our university. Thus, the requirement is that 
the student achieving this grade knows the core content of the course well enough to ap-
ply it in practice (applied assignments, level C). Students targeting grades higher than 3 
also need to accomplish advanced assignments. If the student has set the target lower 
than grade 3, he/she is allowed to pass the course with less work. However, a grade of 3 
is a prerequisite for the more advanced programming courses. 
 

Table 1. The grading rules table lists what are the requirements for each grade. 

Grade A-points 
(elemen-
tary) 

B-points 
(basic) 

C-points 
(applied) 

D-points 
(advanced) 

Exam2 

1 600 700 - - basic 
2 600 800 200 - basic 
3 400 900 400 - extended 
4 200 900 400 200 extended 
5 - 700 400 500 extended 

 
As different students achieve different skill levels, there are two versions of the exam, 

basic and extended. The grading rules (Table 1) also define which exam the student has 
to take. The extended exam is not necessarily any harder than the basic one, but it covers 
a wider selection of topics. The role of the exam is only to double-check that students 
did their assignments independently enough to reach the learning objectives. Therefore, 
the exam is graded pass/fail and failing it will cause failing the course. 

It is possible to patch up missing points by completing assignments from the higher 
categories. The purpose of this rule is to enforce that missing a single deadline is never 
fatal. If you miss deadlines, the first consequence is that it is impossible to gain the grade 
5. By missing more deadlines, the grade 4 will also be unreachable, and so on. To fail 
the course completely, the state of affairs has to be such that the student has repeatedly 
missed deadlines. 

On the course platform, the student is presented with progress bars showing the num-
ber of collected points in each category. It is easy to follow how the points accumulate. 
In addition, the fully completed assignment scores are shown in green-colored circles 
and partly completed in yellow. Figure 2 shows the students view of the course platform. 
On the right-hand side, the student sees the accumulated points from different assign-
ment categories and in the middle the progress of different rounds; the first four rounds 
(weeks) that have already been closed are collapsed while the last one is open. 

2.4 Individual Learning Goals and Learning Paths 
As already pointed out, the overarching learning goal of the course is that the student is 
able to implement small programs independently. However, in the spirit of the criterion-
referenced grading (Lister & Leaney, 2003), with such a diverse student group in ques-
tion, the students’ individual learning goals may vary greatly.  
  

 



 
Fig. 2. Screen shot of the course platform showing progress bars and completion status of different assignments 

 
All the students passing the course are required to meet the learning goal of imple-

menting small programs independently. This means all students cover the basic concepts 
of Python—i.e. functions, lists, dicts, for instance—in some way. In levels A and B, the 
learning goal is just to get familiar with all these concepts. In level C, the students need 
to be able to apply this knowledge in more difficult situations. For example, in addition 
to knowing the data structures list and dict, they need to be able to combine the data 
structures, i.e. implement a program where the items of a list are dicts, for instance. In 
level D, the assumption is that the student will go further with programming studies and 
thus needs to learn how programmers search for information in work life. Therefore, 
some of the D assignments require searching for information in the Python documenta-
tion. 

In contrast to traditional grading, here the grade that the student receives does not de-
scribe how well the student can implement given tasks but how widely he/she has cov-
ered the topics handled in the course. 

Setting individual learning goals does not mean that the students who only cover as-
signments in levels A and B cover all the materials but do it somehow worse than other 
students. It means that they have identified they do not need to cover all the materials. 
They can still do all their work thoroughly. For example, for a student of some other dis-
cipline than computing it is enough that he/she is able to apply the information provided 
in the course materials and there is no need to learn to use the Python documentation. 

Figure 3 presents two simplified illustrations regarding how the course can proceed. 
The time-axis of the illustrations runs horizontally from left to right. There are a number 
of assignments on different levels each week. In the beginning of the course there are 
mainly elementary and basic assignments and, in the end, applied and advanced. Figure 
3a illustrates the course completion of a student who has set a very low target grade and 
only worked on level A and B assignments. Figure 3b illustrates the course completion 
of a student who has had prior programming experience already when starting the course 
and thus has skipped all the A-level assignments. When comparing these two accom-
plishments, we can almost say that these two students have almost taken a different 
course because their learning paths differ so much from each other despite them taking 
the same course. 
 



 
Fig. 3. Illustrating the differentiation of learning paths in our course setting. 

This way of implementing differentiation of learning paths allows us to pay special at-
tention to the student group C (Figure 1), which is often neglected simply because other 
student groups need more attention. As no student in the course is supposed to complete 
all assignments available on the course platform, some of the advanced ones can be so 
difficult that they also challenge the students with previous programming experience. 
Some of the advanced assignments can also cover topics that are not important for all the 
students. 

The students — especially those with no prior programming experience — are en-
couraged to complete as many assignments as possible in the first weeks of the course. If 
they don’t know anything about the course content, it is almost impossible to set the tar-
gets. At the end of the third week of the course, they have already seen assignments at 
all difficulty levels and know a little better so it is possible to set the target grades. At 
this point, we inquire what their targets are for this course. Despite their answers, noth-
ing prevents the students from changing their targets later on, however. For example, 
many of the advanced assignments are “deep diving” into a specific topic. Skipping ad-
vanced assignments in the first half of the course does not prevent the student from com-
pleting assignments from the advanced category in the latter half of the course. Naturally 
even easier is to stop working on the assignments from the higher levels. 

 
3 Research Questions and Methodology 

In the previous section we presented the agile grading scheme and how we assumed stu-
dents would apply it. In this section we describe the research setup aiming at understand-
ing how students really use the setup. 

3.1 Research Questions 
In addition to describing our implementation of the agile course setup, the main objec-
tive of this study is to understand how students utilize the agile course setup defined in 
the previous section. The related research questions are: 
 

1. How are students’ self-reported target grades (i.e. individual learning goals) in 
the beginning of the course related to the final learning outcomes? 

2. What kinds of behavioral patterns can be detected among students in the agile 
course setup? 

 
Studying these research questions helps us to understand the course setup from the 

perspective of the diverse student population (Figure 1) attending our course. 



3.2 Data 
To answer the research questions, we collected data in two course implementations dur-
ing the academic year 2016-2017. The CS students were mainly attending the first im-
plementation (Autumn 2016). Students from the other disciplines attended both imple-
mentations (Autumn 2016 and Spring 2017). We had access log data of all the 
submissions from the course platform, grade targets set after the third week and final 
grades. 

When comparing the grades in RQ1, we analyzed the data of all the students who 
were active in the course platform during any two weeks of the course, or who answered 
the question about the grade target. This is because in our context it’s quite common that 
students sign up to the course platform just to see what the course looks like and may 
then immediately drop out from the course. The selected inclusion criteria resulted in 
831 students; 527 in the 2016 course version from where 482 (91%) answered the grade 
target question, and 304 in the 2016 course version from where 267 (88%) answered the 
question. When answering the RQ2, we focused on the subset of the students who had 
answered the question about the grade target. 

3.3 Methods 
To answer RQ1, addressing the effect of defining an individual learning goal, we used 
Wilcoxon signed-rank test to compare the grade distributions of students who set their 
grade targets and students who did not. In addition, for students who set a target, we ex-
amined the predictive power of a linear regression model to estimate the final grade 
based on the target. 

In RQ2, we applied visual data analytics to identify different behavioral pat- terns 
among the students taking the course. As defined by Keim (2002): ”The visual data ex-
ploration process can be seen a hypothesis generation process: The visualizations of the 
data allow the user to gain insight into the data and come up with new hypotheses”. 
This kind of manual exploration of visualizations is typical in learning analytics and ed-
ucational data mining (Mazza & Milani, 2005; Romero & Ventura, 2010). 

Two teachers of the course who had knowledge on the content of the assignments 
looked at the visualizations and identified students with similar characteristics in their 
course completion paths. Examples of visualizations will be provided later on in this pa-
per in Section 4.2. Patterns were identified and the data was then re-analyzed in order to 
confirm visualizations can be divided into these categories. Although visualizations of 
all study paths were viewed for identifying archetypal course completion patterns, the 
exact frequencies of the different learning strategies were not calculated. 
 

4 Results 

 
In this section, we describe the phenomena discovered in the data using both the visuali-
zations and the additional data related to the course context. Section 4.1 is related to 
RQ1 and Section 4.2 to RQ2. 

4.1 Comparison of Grades and Targets 
 

Table 2 presents the distributions of the final grades in both course versions. Presenta-
tion separates students with and without grade target set. As expected, grades in the au-
tumn 2016 course version (with CS-majors) are higher than in spring 2017 when partici-
pants were mostly non-majors. 

 



We calculated Wilcoxon signed rank test with continuity correction to compare grades 
of students who answered the questions about the goal grade and students who did not. 
Non-parametric method was selected because of the relatively small number, and 
skewed distribution of the students who did not set their target grades (see Table 2). Stu-
dents who answered the question performed significantly better with Z=5232, p< .000 
and Z=3683, p=0.004, respectively in 2016 and 2017 course versions. We conclude that 
merely setting a grade target (i.e., an individual learning goal) seems to play an im-
portant role in performance. The grade difference in terms of median grades in 2016 was 
one and in 2017 two grades. Defining a goal seems to be especially important in passing 
the course. As illustrated in Table 2, dropout rates in 2016 were 17.4% and 42.2%, re-
spectively for students with and without an individual goal. The same stats in 2017 were 
40.1% and 70.3%. 
 

Table 2. The grade distribution of students in both the course implementations. 

Grade 2016 2017 
goal set no goal goal set no goal 

0 84 (17.4%) 19 (42.2%) 107 (40.1%) 26 (70.3%) 
1 58 (12.0%) 13 (28.9%)  44 (16.5%) 4 (10.8%) 
2 79 (16.4%)  7 (15.6%)  30 (11.2%) - 
3 51 (10.6%)  5 (11.1%) 12 (4.5%) 1 (2.7%) 
4 99 (20.5%) - 47 (17.6%) 4 (10.8%) 
5 111 (23.0) 1 (2.2) 27 (10.15) 5 (5.4%) 

 
For students who set their targets, we constructed simple linear regression models to 

predict the final grade based on the self-reported grade target. Both course versions re-
sulted to a significant model with adjusted R2 of 0.277 (F(1,481)=185.71, p<0.000) and 
0.18 (F(1,265)=58.89, p<0.000), respectively for the 2016 and 2017 course versions. 
The exact models and related illustrations are provided in Fig. 4. Negative offset and 
slope less than 1 in both models indicate that estimates are often optimistic. Means of the 
target grades among the students who defined that were 3.7 and 3.4, whereas means of 
the actual grades were 2.7 and 1.7, respectively for the 2016 and 2017 course versions. 
Moreover, we found that it is almost impossible to exceed your own expectations if the 
grade target is low (i.e., 1 or 2). Only one student who set the target grade at 1 or 2 
achieved a better grade. Among the students who set a reasonable target grade, e.g. 3 or 
4, there were more of those who exceeded their expectations (see discussion on casual 
well performers in Section 4.2).  



 
Fig. 4. Self-reported grade goal against the final grade and the regression model to predict the latter based on the target grade. 
Autumn 2016 course version (with CS students) is on the left. Spring 2017 course version with only few CS students attend-
ing is on the right. The difference in student background is clearly visible in grade goals as well as eventual grades. 

4.2 Students’ strategies 
 
To answer RQ2 (what kinds of behavioral patterns can be detected among students in the 
agile course setup) we started by looking at students who got the best grades. The ra-
tionale of this was to identify different strategies that that lead to similar outcomes. After 
manual inspection of the data, we identified the following archetypes of students: 

 
1. Perfectionists, who set their goal high and do practically all the available assign-

ments, 
2. Opportunists, who set their goal high, and did not do the optional (i.e. easier) as-

signments. 
3. Casual well-performers, who did not set their goals too high but who still got a 

good grade at the end. 
 

The exact frequencies of the patterns are not calculated. However, in comparison to per-
fectionists, the number of opportunists is small. Among casual well-performers there is a 
continuous spectrum from perfectionists to opportunists, again dominated by perfection-
ists – or at least students who do more voluntary A-exercises. This is not surprising, as 
casual well-performers started with the assumption they will actually need some A-
points (i.e., lower grade target). In addition to high performers, dropouts turned out as 
interesting subgroup and the following patterns were recognized among them: 

 
4. Dropouts by missing assignments: Students who after some point were not able 

to pass the course or get the desired grade and stopped immediately after that. 
5. Dropouts by missing skills: Students who completed enough assignments and 

even participated in the exam (multiple times) without passing it. 
6. Dropouts by failing personal expectations: Students who gained enough points 

to pass the course but not enough to meet the requirements of the target grade 
failed the course because they did not show up in the exam. 

 



In addition to the above observations, two generic behavioral patterns that extend over 
the whole student population, almost disregarding their eventual grades, are: 

 
7. Goal-driven students will stop all their activities immediately after they have 

gained enough points for their target grade. 
8. Compensating students who have missed a significant number of assignments 

but who then end up compensating the missing points by doing more demanding 
assignments.  

 
In the following we study these groups in more detail by using visualizations of their 

course completion paths. 
 
Group 1: Perfectionists: This group of students did not care for the point requirements 
much. They completed all or almost all the assignments despite they had already gained 
enough of points for grade 5. There were more of these students in the first course im-
plementation that the CS students took. 

Figure 5 illustrates a typical course completion path for a student in this group. It is 
typical for enthusiastic learners to be interested in completing challenging assignments 
like the ones we had in level D. However, this student has also completed almost all A-
assignments. It is especially noteworthy, that the A- and B-assignments in week 9 were 
all clearly instructed to be aimed for students who did not cover this topic in the earlier 
week. The students who had covered it, for instance the student presented in Figure 5, 
were instructed to proceed directly to the C-assignment of this week. Still this student 
has completed them all, exactly like all the other assignments too. 

 

 
Fig. 5. Perfectionist. Student who targeted grade 5 and achieved it. He completed practically all the assignments in the whole 
course. His only non-completed assignments are so called ”extra assignments” that were open after the end of the course and 
assignments he was not required to do. 

For this student, the course platform contains lines of green-colored circles and full pro-
gress bars. We assume that this was one of the motivational reasons for completing so 
many assignments that did not contribute to learning. This is why we have named the 
group perfectionist



Group 2: Opportunists: Although it was not usual, there were also students who took 
the advantage of not having to complete the A-level assignments since they were target-
ing grade 5 and had prior programming experience. Figure 6 illustrates one such comple-
tion path. In some of the weeks this student has completed some of the easiest assign-
ments probably to check what the new materials are about. However, he has mainly 
concentrated on completing the applied and advanced assignments, which is more mean-
ingful for a student who already has the basic knowledge. The week 10 where he has 
completed multiple B-assignments was about object-oriented programming, which was 
probably a new topic for this student. 

 
 
 
 

 
Fig. 6. Opportunist. Student who targeted grade 5 and achieved it. He had previous programming experience before this 
course and thus took advantage of the grading rules. He has only checked some of the A-level assignments but mainly 
skipped them. 

Group 3: Casual well-performers: As can be perceived in Figure 4, a number of stu-
dents targeting grades 3 and 4 exceeded their personal targets and ended up with a better 
grade. The course completion path visualizations of these students do not differ much 
from the visualizations of groups 1 and 2. We identified these students by also looking at 
the targets they had set for themselves on the third week of the course. 

These students probably did not know exactly what to expect from this course. They 
just started completing the assignments and kept on working even if they had reached 
the point requirements of the grade they were targeting. The aim of the grading system 
was that you can change your targets during the course and this group of students proves 
that it works.



 
Group 4: Dropouts by missing assignments: Some students missed so many assign-
ments that it was not possible to compensate any more. They gave up with the course 
and stopped working on the programming assignments. Typically, these students col-
lected more points in the beginning of the course but then suddenly changed the direc-
tion completely. 

There can be various reasons for this behavior. Some of the students realized that 
completing the course required more time than they had expected and allocated in their 
weekly schedules. Some of the students realized that they have already missed so many 
points that it was impossible to gain enough points by completing all the remaining as-
signments. 

 
Group 5: Dropouts by missing skills: These students completed a lot of programming 
assignments and gathered enough points to pass the course. However, they failed due to 
not passing the exam. As explained earlier, the exam was not a difficult programming 
assignment, but similar to the regular assignments done during the course. What made 
the exam different from the regular assignments was that the student was expected to 
demonstrate the ability to write some code on their own in a controlled environment. 

We have observed that there are students belonging in this group for two reasons: 
some of them co-operated all the time with a friend or a group of friends and some of 
them were regularly working in the multipurpose classroom waiting for the teaching as-
sistant to solve all the problems they ran into. Nevertheless, the problem was the same 
for all of them: they did not learn the necessary programming skills to be able to work 
on their own and thus complete the programming assignment in the exam. 

 
Group 6: Dropouts by failing personal expectations: These students were aiming at a 
high grade but collected enough points for passing at a lower grade only. They never 
took the exam of the course and thus failed the course. It seems that they are ambitious 
and did not want to have a bad grade in their study register. These students most likely 
signed up for the course’s next implementation. 
 
Group 7: Goal-driven students: In the beginning of the course, these students com-
pleted as many assignments as possible. When they gained enough points for one of the 
categories, they immediately stopped working on assignments in that category. The stu-
dents aiming at grade 1 could gain enough points for passing the course at around week 
9. Figure 7 illustrates a course completion path for a student in this group who stopped 
working on the course assignments after week 9. Figure 8 illustrates a rather more com-
plicated course completion path from a student representing this group. He stopped 
working on the assignments in different categories step by step. 

The teaching assistants reported that some students were complaining that the assign-
ments in the higher levels were too difficult to be completed without completing A-as-
signments related to the same topic but there was no need to complete the A-assignments 
after fulfilling the A-point requirement. The complaining students were from this group 
and targeting grades 3-5. The complaints really encapsulate the aim of completing the 
programming assignments only to gain enough points. They did not see that completing 
the assignment in high level categories would be easier if you had first completed the 
easy assignments related to the same topic. 

 
 
 



 
Fig. 7. Goal-driven. Student who targeted grade 1 and achieved it. In the beginning of the course he completed almost all the 
assignments. Then, on week 9 he gained enough of points for passing the course and stopped working on the course. 

 

 
Fig. 8. Goal-driven. Student who targeted grade 3 and achieved it. He reached the requirements for A-points in week 7. After 
that he did not complete any A-assignments. Then, he reached the requirement for B-points in the middle of week 10, and did 
not complete any more B-assignments after that. 

 
Group 8: Compensating students:  These students had a phase of the course where 
they missed a lot of deadlines or handed in a lot of solutions by the extended deadline 
and thus missed points. For many students such an incident lead to dropping out from 
the course. However, the students in this group did not give up, but patched up the miss-
ing points by extra assignments in the end of the course. Figure 9 illustrates one course 
completion path of a student who was missing quite a lot of assignments in the first half 
of the course but did not dropout.  

 



All the topics handled in the course build on the topics from the earlier weeks. This 
means that a student cannot just start working on the new assignment after missing all 
the assignments from previous week(s). You always need some knowledge from the ear-
lier weeks to complete the new assignments. Therefore, patching up the missed points 
can become very laborious. 

The aim of the grading was that none of the assignments is so important that missing 
it would lead to failing the course. This grading system allows the students to compen-
sate missed assignments very liberally. However, compensating is not easy so the stu-
dents really pay for the free time they have taken in the middle of the course. 

A student with less thorough knowledge is most likely not able to compensate missing 
many assignments. We also observed multiple ways of dropping out from the course. 

 
 

 
Fig. 9. Compensating. Student who targeted grade 3. However, he missed so many assignments that he only got grade 1. The 
biggest losses were the most difficult assignments in weeks 3-4 and almost all the assignments during weeks 5-6. Looking at 
the visualization quickly, it might seem that he has completed a lot of assignments. How- ever, there are many large red cir-
cles (weeks 3, 5, and 6) that are not colored. He was grouped in the compensating students, because he was able to catch up 
by completing some of the last assignments that were targeted for students targeting grades 3-5. 

4.3 Student Feedback 
This student-centered, agile style of arranging the course that allowed the students to 
work according to their own schedule was praised by the students who completed the 
course. Approximately 80% of students in each course implementation reported they 
worked “mostly independently” and over 10% “more often independently than in the 
multipurpose classroom”, when asked for feedback after the course was over. The open-
ended feedback from students mentioned often, e.g. “It is very effective to be able to 
work on one’s own pace”. Of course, there was also negative feedback from students 
who did not like the approach of working independently but most of the feedback was 
positive. 

The students who were not majoring in computer science also gave positive feedback 
regarding the possibility to pass the course with less work. However, some students criti-
cized the grading, because they felt that it was unfair that you cannot have a good grade 
without completing the advanced assignments. 



In the feedback over half of students checked that the course was too laborious. This, 
of course, was not our intention – rather, our idea was that the students work every week 
until their time for this course is up and then leave the rest of the assignments uncom-
pleted. However, many of the students took more time for this course and completed 
most the assignments even if they did not manage to do it in the time they were planning 
to. The teaching assistants reported that many students felt that they need to have grade 5 
because they can decide the grade themselves. In the traditional way of grading you typi-
cally do your best and hand in your solution for grading. Then the grader decides about 
your grade. Our way of grading turned this scene in the opposite direction: the students 
were able to decide their grade themselves by working for a longer time. Psychologi-
cally, there is a big difference in getting the grade that the grader decides for you and in 
making the decision yourself. For a student targeting grade 5, the decision to complete 
almost all the assignments had to be taken weekly again and again. 
 

5 Discussion 

Fundamentally, our goal was to be able to meet the needs of different student groups. 
The results section gave us insights into student feedback, the grades they achieved and 
different kinds of strategies of taking the course. While the feedback was generally posi-
tive and the students mostly liked the agile course setup, we also identified subjects for 
discussion and improvement.  

5.1 Criterion referenced grading with automated feedback 
In the “traditional” way of grading, it is possible to define the requirements for each 
grade after all submissions have been received. In the criterion referenced approach, the 
requirements have to be defined beforehand because they are the tool for guiding what 
students do. When this is combined with automated feedback, students know all the time 
what grades they have already earned and what grades are still reachable – provided they 
are able to pass the exam. After all, feedback students get from the assignments is one of 
the powerful influences on learning and achievement – either good or bad (Hattie & 
Timperley, 2007). In this study we observed both sides of feedback. 

Automated assessment is sometimes criticized as it allows students to gather points 
from partially correct implementations. This can lead to a mismatch between actual and 
expected skills. In general, this could be tackled, for example, with a more coarse-
grained grading of the assignments or by having some mandatory assignments where the 
feedback – even if automated – would be delayed (Spacco et al., 2006). Other ap-
proaches to address trial and error learning in the context of automatically assessed pro-
gramming exercises are surveyed by Ihantola et al. (Ihantola, Ahoniemi, Karavirta, & 
Seppälä, 2010). We approached this challenge by grading nearly all assignments as 
passed/failed. 

5.2 (Un)selecting the Assignments 
When looking at the strategies defined in the previous section, both Opportunists and 
Goal-driven students followed a clear strategy for optimizing their workload. This antic-
ipated pattern is demonstrated by advantage taking students skipping the easy assign-
ments. Goal-driven students, however, made a sudden stop before the end of the course 
when they had enough points for their target grade. They might have been able to pursue 
a higher grade but as the criterion-based grading scheme was publicly available, they de-
cided to use the remaining time for something else – hopefully for other courses they felt 
more relevant for their further studies. 



An alternative interpretation for the goal-driven group could be that after a certain 
point, the assignments simply became too difficult. The fact that some goal-driven stu-
dents applied also the opportunist strategy at the same time, and that some of the stops 
were between grades supports this. Thus, we can ask, is it reasonable to allow students to 
choose which assignments are valuable for their learning? If the grading rules direct the 
student in the wrong direction, correcting the course of learning takes a lot of self-disci-
pline and good self-regulatory skills. 

Moreover, looking at the groups Dropouts by missing assignments and Compensating 
students, we perceive that there is a very fine line between passing and failing the 
course. This raises the question, is it fair for students to allow them to skip assignments 
if the consequences are troublesome: compensating work or failing the course entirely. 
We assume that the difference between Compensating students and Dropouts by missing 
assignments is closely linked to the self-regulatory skills of students. Thus, in the future, 
we should support such skills as well. For example, gamification and various visualiza-
tions affect self-regulation (Auvinen, 2015). In addition, peer review can boost self-effi-
cacy (Zingaro, 2014), which contributes to the students’ persistence to pass the course. 

5.3 Learning the Necessary Skills 
The group Dropouts by missing skills did well during the course but failed the exam. We 
assume that free riding in pair programming could have led to disparity between the 
exam and the assignments. Thus, we argue that Dropouts by missing skills could be 
helped by adding a mid-term exam into the course requirements. This way they would 
recognize earlier that their way of working has led into problems with learning. If they 
recognized this early enough, it would still be possible to correct the problem before the 
final exam. Moreover, our electronic exam setting (Laine, Sipila, Anderson, & Sydän-
heimo, 2016) allows students to take the exam in their own schedule, so it would be easy 
to add the mid-term exam. We will consider it in the following course implementations. 
Another problem in our exam setup was that the students self-selected the difficulty of 
the exam. A longer exam where students would solve both easier and more demanding 
tasks should solve this problem. 

5.4 The Requirements of Passing the Course 
Finally, the group Dropouts by failing personal expectations is problematic from the 
teacher’s perspective. The obligatory exam leaves students the possibility to decide to 
fail the course on purpose. 

In our context, students can re-take this course and raise their grades later. The teach-
ers of course wish that students would first make sure they pass and then later promote 
their grade if they still feel it is important. Thus, it seems that there is a need for rede-
signing the passing requirements so that it is not possible for the student to decide that 
he/she wants to fail the course like this. However, making the exam optional for grade 1 
is not ideal, since the existence of the group Dropouts by missing skills proves that there 
is a need for a controlled exam. Midterm exam, discussed in the previous Section, and 
improved (automated) detection of extensive collaboration (Hellas, Leinonen, & Ihan-
tola, 2017; Yan, McKeown, Sahami, & Piech, 2018) are the alternatives we consider to 
address these challenges in the future. 

5.5 Over performing 
In our study, the group Perfectionists did extra on the A-level assignments as well as 
over-performed by completing assignments where they learned new and exciting things 
(level C and D in our case). 



There can of course be explanations to why students want to complete the voluntary 
A-assignments: Some of them do not have prior programming experience and thus need 
to learn all the details. The A-assignments are designed for this and thus useful. It is also 
possible that some students completed them in the beginning of the course just to do 
something since there were not many C- and D-level assignments at this phase of the 
course. However, in the later part of the course there were also A-assignments for the 
students who had difficulties in the course and thus missed some assignments here and 
there. These A-assignments are repeating the basic concepts that have already been 
learned in the earlier assignments. Therefore, we assume that a student who is going to 
have grade 5 will not learn much by completing these repetitive extra A-assignments. To 
our understanding, the only motivation of this student group for completing these repeti-
tive extra A-assignments is that they want to have the maximum points on the course 
platform. Thus, we decided to name them the Perfectionists. 

5.6 Summarizing Different Student Strategies 
The course completion strategies resemble the strategies identified by Karavirta et al. 
(Karavirta, Korhonen, & Malmi, 2005). Based on the clustering of how students use re-
submits in the context of automated assessment, they divide learners between: passers, 
ordinaries, iterators, ambitious and talented. One can argue that our Perfectionists are 
also ambitious. Advantage taking students are most likely the talented, and both com-
pensating and goal driven students could be- long into passers. In the future, it would be 
extremely interesting to combine the information from resubmissions to learning paths 
and use the improved profiling for adaptive learning (Brusilovsky et al., 1998). 

5.7 Further Observations 
 
Finally, it can be regarded as unfair that the students, who fail to complete advanced as-
signments, cannot get grade 5. However, we believe it is also important to learn to set 
priorities, which is an important work-life skill for the later career – if you are not major-
ing in CS do you need to have the best grade in a laborious programming course? 
Granted, for a more homogeneous student group, such considerations might be mislead-
ing, but based on experience, students in any case set different priorities to their courses, 
and hence offering an agile, well-defined approach to do so has been regarded welcome. 
 

6 Conclusions 

In this chapter, we have provided an insight to the way that we provide personalized 
learning experiences in a university-wide introductory programming course. Course con-
tent is flexibly defined by the learners, and, based on the individual goal setting, the stu-
dents are allowed to choose the assignments they work on. In analogy to agile software 
development, this corresponds to allowing the development team to decide which fea-
tures they choose to work on, depending on the complexity and other factors associated 
with the feature. We have also shed light on how students experience and utilize the ag-
ile course setup by analyzing their study paths. In this respect, the following research 
questions directed our study. 
 

1. How are students’ self-reported target grades in the beginning of the course re-
lated to the final learning outcomes? 

 
Just setting a goal – in our case, the target grade – seems to have a strong positive corre-
lation with passing the course. Moreover, there is small/medium correlation between the 



target grade and final grade. Interestingly, the means of the target grades in Autumn 
2016 (including CS students) and Spring 2017 (mainly other students) were nearly the 
same, while the actual performance in Autumn 2016 was much better (see histograms in 
Figure 4). This hints that the presumably weaker students did not utilize the grading 
scheme as we expected. Perhaps it is difficult to set yourself low expectations. Given the 
way that the course was designed, this may have guided weaker students to do tasks that 
were too difficult. 
 

2. What kinds of behavioral patterns can be detected among students in the agile 
course setup? 

 
The main objective of this study was to understand how students utilize the agile course 
and how it works from the perspective of the diverse student population. However, in the 
process, we identified three distinct behavioral pat- terns that were related to high perfor-
mance (i.e., Perfectionists, Opportunists, and Casual well-performers), three patterns of 
failing the course (i.e., Dropouts by missing assignments, by missing skills, and by fail-
ing personal expectations), and two other behavioral patterns associated with how stu-
dents work (i.e., Goal- driven students and Compensating students). 

The analysis of the goals and the perceived behavioral patterns show that there are 
various ways of completing the course. Unfortunately, we also perceived various ways 
of failing the course which suggests that the low performing students should be taken 
more into consideration when developing the course. Notwithstanding, the diversity of 
the students’ strategies demonstrates that the criterion referenced grading scheme cer-
tainly supports the diversity of the student population better than a traditional course 
setup where all students complete the course in the same manner. Adjustment of the 
grading criterion is needed though. 

Obviously, there are numerous directions for future work. In fact, almost any of the 
identified student groups could be more elaborately studied to understand their motives 
and goals. In particular, understanding why some talented and clearly capable students 
also complete simpler assignments rather than directly focusing on more complex prob-
lems is an interesting issue we plan to address in the future. In addition, studying how 
the students advance in their studies later on, and whether this correlates with their re-
sults and motivations in this course forms an interesting piece of further research. 

 

References 
Ahadi, A., Lister, R., Haapala, H., & Vihavainen, A. (2015, July). Exploring machine learning methods to automatically 

identify students in need of assistance. In Proceedings of the eleventh annual International Conference on International 
Computing Education Research (pp. 121-130). ACM. 

Auvinen, T. (2015). Educational technologies for supporting self-regulated learning in online learning environments (Doc-
toral dissertation) Retrieved from http://urn.fi/URN: ISBN:978-952-60-6281-5 

Biggs, J., & Tang, C. (2007). Teaching for Quality Learning at University 3rd edition. Open university Press. 
Bishop, J. L., & Verleger, M. A. (2013, June). The flipped classroom: A survey of the research. In ASEE National Conference 

Proceedings, Atlanta, GA, USA (Vol. 30, No. 9, pp. 1-18). 
Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H., Krathwohl, D. R., et al. (1956). Taxonomy of educational objec-

tives: The classification of educational goals. handbook I: Cognitive domain. New York: David McKay company. Inc. 
(7th Edition 1972). 

Brusilovsky, P., et al. (1998). Adaptive educational systems on the world- wide-web: A review of available technologies. In 
Proceedings of workshop” www-based tutoring” at 4th international conference on intelligent tutoring systems (ITS’98), 
San Antonio, TX, USA. 

Carter, J., Ala-Mutka, K., Fuller, U., Dick, M., English, J., Fone, W., & Sheard, J. (2003). How shall we assess this? In ACM 
SIGCSE Bulletin (Vol. 35, pp. 107–123). 

Carter, J., Bouvier, D., Cardell-Oliver, R., Hamilton, M., Kurkovsky, S., Markham, S., . . . others (2011). Motivating all our 
students? In Proceedings of the 16th annual conference reports on innovation and technology in computer science educa-
tion-working group reports (ITiCSE’11).  (pp. 1–18). ACM. 

Carter, J., White, S., Fraser, K., Kurkovsky, S., McCreesh, C., & Wieck, M. (2010). ITiCSE 2010 working group report mo-
tivating our top students. In Proceedings of the 2010 ITiCSE working group reports (pp. 29–47). ACM 



Douce, C., Livingstone, D., & Orwell, J. (2005). Automatic test-based assessment of programming: A review. Journal on 
Educational Resources in Computing (JERIC), 5 (3), 4. 

Fuller, U., Johnson, C. G., Ahoniemi, T., Cukierman, D., Hernan-Losada, I., Jackova, J., . . . Thompson, E. (2007, Decem-
ber). Developing a computer science-specific learning taxonomy. SIGCSE Bulletin, 39 (4), 152–170. 

Hattie, J., & Timperley, H. (2007). The power of feedback. Review of educational research, 77 (1), 81–112. 
Hellas, A., Leinonen, J., & Ihantola, P. (2017). Plagiarism in take-home exams: Help-seeking, collaboration, and systematic 

cheating. In Proceedings of the 2017 ACM conference on innovation and technology in computer science education (pp. 
238–243). ACM 

Ihantola, P., Ahoniemi, T., Karavirta, V., & Seppälä, O. (2010). Review of recent systems for automatic assessment of pro-
gramming assignments. In Proceedings of the 10th Koli calling international conference on computing education re-
search (pp. 86–93). 

Illeris, K. (2002). The three dimensions of learning. Malabar, Florida: Krieger Publishing Company. 
Johnson, C. G., & Fuller, U. (2006). Is bloom’s taxonomy appropriate for computer science? In Proceedings of the 6th baltic 

sea conference on computing education research: Koli calling 2006 (pp. 120–123). 
Johnson, G., Gaspar, A., Boyer, N., Bennett, C., & Armitage, W. (2012). Applying the revised Bloom’s taxonomy of the cog-

nitive domain to Linux system administration assessments. Journal of Computing Sciences in Colleges, 28 (2), 238–247. 
Karavirta, V., Ihantola, P., & Koskinen, T. (2013, July). Service-oriented approach to improve interoperability of e-learning 

systems. In Advanced Learning Technologies (ICALT), 2013 IEEE 13th International Conference on (pp. 341-345). IEEE. 
 Karavirta, V., Korhonen, A., & Malmi, L. (2005). Different learners need different resubmission policies in automatic as-

sessment systems. In Proceedings of the 5th annual finnish/baltic sea conference on computer science education (pp. 95–
102). 

Keim, D. A. (2002). Information visualization and visual data mining. IEEE transactions on Visualization and Computer 
Graphics, 8 (1), 1–8. 

Laine, K., Sipila, E., Anderson, M., & Sydänheimo, L. (2016, 9). Electronic exam in electronics studies. In SEFI annual con-
ference 2016. 

Lister, R., & Leaney, J. (2003). Introductory programming, criterion-referencing, and bloom. ACM SIGCSE Bulletin, 35 (1), 
143–147. 

Mazza, R., & Milani, C. (2005). Exploring usage analysis in learning systems: Gaining insights from visualisations. In Work-
shop on usage analysis in learning systems at 12th international conference on artificial intelligence in education (pp. 
65–72). 

Merriam, S. (2001). Andragogy and self-directed learning: Pillars of adult learning theory. New Directions for Adult and 
Continuing Education (89), 3–14.  

Romero, C., & Ventura, S. (2010). Educational data mining: a review of the state of the art. IEEE Transactions on Systems, 
Man, and Cybernetics, Part C (Applications and Reviews), 40 (6), 601–618. 

Seddon, G. M. (1978). The properties of bloom’s taxonomy of educational objectives for the cognitive domain. Review of 
Educational Research, 48 (2), 303–323. 

Spacco, J., Hovemeyer, D., Pugh, W., Emad, F., Hollingsworth, J. K., & Padua- Perez, N. (2006). Experiences with Marmo-
set: designing and using an advanced submission and testing system for programming courses. ACM Sigcse Bulletin, 38 
(3), 13–17.  

Thompson, E., Luxton-Reilly, A., Whalley, J. L., Hu, M., & Robbins, P. (2008). Bloom’s taxonomy for CS assessment. In 
Proceedings of the tenth conference on australasian computing education conference. volume 78 (pp. 155–161). 

Yan, L., McKeown, N., Sahami, M., & Piech, C. (2018). Tmoss: Using intermediate assignment work to understand exces-
sive collaboration in large classes. In Proceedings of the 49th ACM technical symposium on computer science education 
(pp. 110–115). 

Zingaro, D. (2014). Peer instruction contributes to self-efficacy in CS1. In Proceedings of the 45th ACM technical sympo-
sium on computer science education (pp. 373–378).



 


