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INTRODUCTION 

Fungi play important roles in forest ecosystems as mutualists, saprotrophs and 
pathogens. Fungal communities are drivers of soil organic matter decomposi-
tion and nutrient cycling (Swift et al., 1979), as well as the mediation of plant 
nutrition and productivity via mycorrhizal symbiosis (van der Heijden et al., 
1998; Read & Perez‐Moreno, 2003). One of the fundamental aspects in above- 
and belowground relationships is to understand the extent to which plant species 
diversity influences fungal diversity and vice versa (Wardle et al., 2004). Plant 
diversity influences soil microbes through species identity (Nguyen et al., 
2016b; Chen et al., 2019). Plant species identity along with species-specific 
genetic traits prompts differences in litter quality (Conn & Dighton, 2000; 
Aponte et al., 2010, 2013), microclimate under the tree canopy (Joly et al., 2017), 
root parameters (Comas & Eissenstat, 2009), root exudates (Zhalnina et al., 
2018), mycorrhizal type (Tedersoo & Bahram, 2019), etc. The strength of feed-
backs between above- and belowground biodiversity depends on the group of 
soil biota (Wardle, 2006). Plant diversity effects on diversity of free-living biota 
are driven by chemical differences among plant-derived litter types, while the 
diversity of root-associated biota is influenced by genetic differences among 
plant species (Wardle, 2006; Nguyen et al., 2016b). Mycorrhizal fungi can 
regulate plant communities via soil feedback (Aponte et al., 2013). Interactions 
between plants and fungi play an important role in ecosystem functioning. How-
ever, the effects of plant diversity on microbial communities in forest eco-
systems are not well understood. 

Mycorrhizal symbiosis has a fundamental role in the nutrient cycling and 
plant nutrition through the acquisition of phosphorus and nitrogen under limiting 
conditions (Read & Perez‐Moreno, 2003). Plants allocate a substantial proportion 
of carbon belowground to mycorrhizal fungal symbionts. Fungal tissues poten-
tially represent a large carbon input into soil organic matter pools (Langley & 
Hungate, 2003; Clemmensen et al., 2015). Decomposition exhibits a major 
control over carbon and nutrient cycling in forest ecosystems (Berg, 2000; 
Hättenschwiler, 2005). Climate, soil organisms and plant litter are the main 
factors affecting decomposition (Cadisch & Giller, 1997; Krishna & Mohan, 
2017; See et al., 2019). The quality of soil organic matter is strongly influenced 
by the chemical and physical properties of the input plant litter (Hättenschwiler, 
2005; Cassart et al., 2020). In forest ecosystems, litter from different plant 
species becomes usually mixed (Staelens et al., 2003; Ťupek et al., 2015). This 
leads to an issue of how mixing the litter from different tree species influences 
decomposers. Previous studies have suggested that more heterogeneous plant 
litter mixture promotes greater resource partitioning and niche specialists, hence 
supporting higher microbial diversity (Hooper et al., 2000; Chapman & Newman, 
2010; Santonja et al., 2017). Decomposers may be specialized to break down 
litter from the plant with which they are associated (Strickland et al., 2009). As 
a result, plant litter is often decomposed more rapidly in the vicinity of the plant 
from which it originates, termed as the ‘home‐field advantage effect’ (Ayres 
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et al., 2009; Veen et al., 2015). It has been demonstrated that EcM fungi may 
have preference for certain litter species (i.e., plant species represented in litter) 
(Conn & Dighton, 2000; Aponte et al., 2010, 2013). 

Litter species composition has usually stronger effects on decomposition than 
litter species richness per se (Wu et al., 2013; Cuchietti et al., 2014; Santonja 
et al., 2017). For example, decomposer communities are influenced by leaf litter 
origin from broadleaf or coniferous trees (Prescott & Grayston, 2013; Nagati 
et al., 2018) and deciduous or evergreen trees (Aponte et al., 2010, 2013). 
Compared with broadleaved and deciduous trees, litter of coniferous and ever-
green trees has higher lignin content but lower nitrogen content, rendering these 
types of litter more difficult to decompose (Prescott et al., 2000; Aponte et al., 
2012). Besides leaf litter that is deposited aboveground, plant root litter is an 
important source of carbon input to forest soils (Rasse et al., 2005; Fan & Guo, 
2010). Root litter seems to contribute even more to the carbon pools in soils 
than aboveground litter due to higher content of lignin that is chemically more 
recalcitrant (Rasse et al., 2005). Similarly to leaf litter, root litter is mixed in the 
stands of several tree species (Brassard, 2010). Li et al. (2018) found no dif-
ferences in the composition of the root fungal community between the levels of 
root litter richness. However, the effect of root litter mixing on fungal richness 
and community composition still remains unknown. 

The tree species diversity effect on root-associated and plant pathogenic fungi 
is expected to be stronger compared to the effect on free-living decomposer fungi. 
Decomposers are more generalist than root-associated fungi in their associations 
with plant-derived resources, predicting stronger links and feedbacks between 
plant and root-associated fungal diversity (Wardle, 2006). Tree species identity 
affects EcM fungal species richness and community composition (Ishida et al., 
2007; Tedersoo et al., 2012; Bogar & Kennedy, 2013), as many species of EcM 
fungi exhibit host preference or specificity at different taxonomic levels (Ishida 
et al., 2007; Bahram et al., 2012; Kennedy et al., 2015; Molina & Horton, 2015). 
Due to host specificity, forest stands with more plant species should be able to 
support higher richness of root-associated fungi (Kernaghan et al., 2003; Wardle, 
2006; Ishida et al., 2007; Tedersoo et al., 2016; Nguyen et al., 2016b). The influ-
ence of tree species identity on EcM fungi is associated with tree phylogeny. 
Stands with more phylogenetically distant hosts harbour higher richness of 
fungi and more dissimilar fungal communities comparing to stands with closely 
related host trees (Ishida et al., 2007; Smith et al., 2009; Põlme et al., 2013; 
Tedersoo et al., 2013; Nguyen et al., 2016b).  

Tree species identity is one of the most important factors controlling EcM 
fungal richness and community composition in forest ecosystems, but the 
importance of tree species combinations on EcM fungal communities in mixed 
stands has received limited attention. In mixed-species stands, root-associated 
fungi can be shared among different tree species (Simard et al., 1997; Horton & 
Bruns, 1998). Many previous studies have found that tree species composition 
affects EcM fungal richness and community composition in mixed stands through 
a neighbourhood effect (Haskins & Gehring, 2004; Bahram et al., 2011; Jairus 
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et al., 2011; Bogar & Kennedy, 2013; Santolamazza-Carbone et al., 2019). This 
effect can be related to the unique properties created by heterospecific neigh-
bours that are not found in single-species stands (Cavard et al., 2011). The neigh-
bour effects on EcM fungal communities are found to be indirectly mediated by 
litter quality and associated soil properties as well as temperature and moisture 
(Conn & Dighton, 2000; Brandtberg et al., 2000; Légaré et al., 2005; Aponte 
et al., 2010, 2013). Therefore, at a stand scale, different tree species create spatial 
heterogeneity of soil conditions that can lead to niche partitioning and increase 
in biodiversity (Conn & Dighton, 2000; Buée et al., 2007).  

This thesis addresses fungal diversity in relation to plant litter and host plant 
diversity and tree neighbourhood effects. I postulated the following main research 
hypotheses (in bold), referring to particular studies (Roman numerals): 
 
1) Litter species richness enhances fungal richness (I). More diverse plant 

litter is expected to promote niche specialists and hence support higher 
microbial diversity. 

2) Composition of saprotrophs, plant pathogens and EcM fungi is mainly 
driven by litter species composition (I). We expected to detect shifts in 
fungal community composition related to variation in litter and soil nutrient 
availability. 

3) The relative proportion of host-specific EcM fungi is greater in the litter 
of their intimate host plant (I). We predicted that the relative proportion of 
host-specific EcM fungi is greater in their host plant litter than in the other 
plant species litter due to their evolutionary history of being exposed to the 
host plant litter with certain litter quality; in particular, we expected that 
alder-specific fungi occur in relatively greater abundance in alder litter, be-
cause of their high host-specificity. 

4) Diversity of biotrophic fungal groups responds strongest to dominant 
vegetation, whereas free-living groups are more affected by abiotic 
variables (II). Soil fungal groups that are directly associated with plants 
(e.g. mycorrhizal fungi, plant pathogens) show higher degree of specificity 
while saprotrophs are more generalist. 

5) EcM fungal richness increases with increasing number of tree species at 
different spatial scales (II, III, IV). At least partly due to host specificity, 
forest stands with more plant species should be able to support higher richness 
of root-associated fungi. 

6) Tree species identity determines EcM fungal richness (II, III) and com-
position (III). Host species identity is expected to influence the richness and 
structure of EcM fungal assemblages as many species of EcM fungi exhibit 
host preference or specificity. 

7) EcM fungal richness and community composition associated with indi-
vidual tree species vary depending on neighbourhood context (III). EcM 
fungal community associated with a certain host species is expected to differ 
in mixtures compared with pure stands as influenced by the co-occurring 
tree species. 
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MATERIAL AND METHODS 

Sampling sites and study design 

To test the hypotheses, our research team and collaborators carried out field 
experiments and observational studies, and identified fungal species with molecu-
lar methods. To study foliar and root litter richness and composition effects on 
fungal richness and community structure, a litter decomposition experiment was 
set up in the Satakunta forest diversity experimental area in Southwest Finland 
(https://treedivnet.ugent.be/) (I). For studying the effects of tree species richness 
and composition on EcM fungal richness and community structure, root samples 
were collected from the exploratory sites established as part of the FunDiv-
EUROPE platform in North Karelia, Finland (www.fundiveurope.eu) (III). 
Altogether 1251 composite soil samples were collected within the period of 
2011 to 2018 from the northern Baltic region (Estonia and North Latvia) to 
determine the biotic and abiotic factors underlying the diversity of soil fungi at 
regional scale (II). To study the influence of biotic and abiotic factors on soil 
fungal diversity at global scale, composite soil samples were collected from 
natural communities of 365 sites across the world (IV).  

For the litter decomposition experiment in study I, we selected two five-
species mixture plots (20 × 20 meters) of silver birch (Betula pendula Roth), 
black alder (Alnus glutinosa L. Gaertn.), Siberian larch (Larix sibirica Ledeb.), 
Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies L. Karst.) 
planted in 1999 (Figure 1A). Within each of the two plots, we randomly 
selected five individual focal trees of each species, except the non-native larch, 
and placed litter bags under these trees on the soil surface. Each focal tree 
(treated as “block”) received eight bags of single-species foliar and root litters, 
two bags of two-species (the same random combination for both foliar and root 
litters), two four-species foliar and root litter mixtures and two extra bags of 
single-species foliar and root litter that matched the tree identity, altogether 560 
litter bags. All roots were dried at 65 °C for 48 hours to kill EcM fungi, whereas 
leaves were dried at room temperature to better mimic natural conditions. One 
gram of dried litter was weighed into each bag, with litter species mixes pooled 
in equal proportion. Litter bags were harvested after 12 months of decom-
position (I).  

The North Karelia exploratory platform in Finland is composed of 28 plots 
(30 × 30 meters) of monocultures, two- and three-species mixtures of silver birch 
(Betula pendula Roth.), Scots pine (Pinus sylvestris L.) and Norway spruce 
(Picea abies L. Karst.) established in 2010 (Figure 1B,C,D,E) (III). There are 
four replicate plots of monocultures and each of the tree species combinations 
(birch, pine, spruce, birch–pine, birch–spruce, pine–spruce, birch–pine–spruce). 
Fine root samples were collected from all 28 plots by sampling four trees per 
species per plot, resulting in 192 samples. Coarse roots were traced from the 
tree trunk; smaller root branches attached to these were dug out and 15 cm root 
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length including most intact fine roots and mycorrhizas were collected. Roots 
were carefully cleaned from adhering soil with water. Each mycorrhizal root 
sample was cut to equal length fragments and from each sample, ten fragments 
were randomly selected and washed again with water. These root samples were 
placed on a tissue paper to remove the excess water and then placed into tubes 
containing CTAB buffer (1% cetyltrimethylammonium bromide, 100 mM Tris–
HCl (pH 8.0), 1.4M NaCl, 20 mM EDTA) for molecular analyses (III). 

Figure 1. Satakunta experimental area plot of five-species mixture (A), study I, and 
North Karelia exploratory region plots of birch monoculture (B), birch–pine–spruce (C), 
birch–spruce (D) and pine–spruce (E) mixtures, study III. Photos by E. Otsing (A) and 
Timo Domisch (B, C, D, E). 
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In the regional and global soil sampling studies (II, IV), the composite soil 
samples consisted of 40 pooled soil cores and were collected from mostly  
2500-m2, circular plots. In a plot, we randomly selected 20 trees located at least 
eight meters apart (II, IV). From two opposing sides of each tree, 1–1.5 meters 
from each tree trunk, loose debris was removed from the forest floor and soil 
cores (5 cm in diameter and 5 cm in depth) were collected using a sterilized 
PVC tube (II, IV) or sharp knife (II). About 10 grams of soil from the margins 
of each core was placed into a zip-lock plastic bag, with the interior of the soil 
core placed back into the hole (II, IV). Coarse roots and stones were removed, 
and the soil was air-dried at <40 °C (II, IV). Soil cores almost always included 
fine roots and comprised both the organic layer and top mineral soil (II, IV). 
During sampling, all woody plant and dominant herb species were recorded and 
the relative basal area was estimated using direct measurements or visual 
estimates (II). 

 
 

Molecular analysis 

DNA was extracted from homogenized leaf and root litter samples (I), root 
samples (III) or soil samples (II, IV) using PowerSoil DNA Isolation Kit 
(MoBio/Qiagen, Carlsbad, CA, USA) following the manufacturer’s protocols. 
We extracted DNA from 0.20 grams of litter (I), 2.0 grams of soil (II, IV) and 
approximately 0.20 grams of root samples (III). Only for studies II and IV, 
DNA extracts were further purified using FavorPrep™ Genomic DNA Clean-
Up Kit (Favorgen, Vienna, Austria). In study I, DNA extracts were subjected to 
polymerase chain reaction (PCR) with a mixture of five forward primers 
ITS3ngsMixTag1-5 (consensus: CTAGACTCGTCANCGATGAAGAACGYRG) 
and a degenerate reverse primer ITS4ngsUni (CCTCCSCTTANTDATATGC). 
In study II, DNA was amplified with the universal eukaryotic primers ITS9mun 
(TGTACACACCGCCCGTCG) and ITS4ngsUni. In study III, PCR was carried 
out using a mixture of five forward primers ITS3ngsMixTag1-5 and a degen-
erate reverse primer ITS4ngs (TCCTSCGCTTATTGATATGC). In study IV, 
PCR was performed using a mixture of six forward primers ITS3ngsMixTag 
1-5,10 and a degenerate reverse primer ITS4ngs. All forward primer mixtures 
were equimolar (I, III, IV). The reverse primers (in study II, also forward 
primers) were tagged with unique 10–12 base pairs long identifiers (I–IV). PCR 
protocols are described in detail in studies I–IV. We included both negative and 
positive controls in PCR and sequencing runs in all studies. Amplicons were 
subjected to adaptor ligation and Illumina MiSeq sequencing (2 × 300 paired-
end) in the Estonian Genome Center (Tartu, Estonia) (I) or in NERC Biomole-
cular Analysis Facility (Liverpool, UK) (III). In study II, PCR products were 
sequenced on PacBio Sequel II instrument using SMRT cell 1M in University 
of Oslo. In study IV, amplicons were subjected to 454 adaptor ligation, emulsion 
PCR, and 454 pyrosequencing by using the GS-FLX+ technology and Titanium 
chemistry as implemented by Beckman Coulter Genomics (Danvers, MA). 
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Data analysis 

Bioinformatic analyses for the high throughput sequencing data were performed 
using PipeCraft 1.0 platform (Anslan et al., 2017) (I, II, III) or mothur (IV). 
Detailed options for data processing are given in papers I–IV. The internal 
transcribed spacer (ITS2) reads were assigned to operational taxonomic units 
(OTUs) by clustering at 97% sequence similarity threshold (I, III), 98% thres-
hold (II) or 90.0% and 95.0-99.0% sequence similarity thresholds (IV).  
All OTUs represented by a single sequence (singletons) were removed (I–IV). 
The most abundant (I–III) or the longest (IV) sequence of each cluster was 
selected as a representative for BLASTn sequence similarity search against  
both International Nucleotide Sequence Databases collaboration (INSDc; 
http://www.insdc.org) and UNITE (Nilsson et al., 2019; https://unite.ut.ee/) 
databases. BLASTn searches were run against reference sequences of fungi in 
1%-distance species hypotheses (SH) that include third-party taxonomic and 
metadata updates (Kõljalg et al., 2013; Nilsson et al., 2014) as implemented in 
the PlutoF workbench (Abarenkov et al., 2010) (I–IV). We used BLASTn out-
put values of taxonomic assignment to remove remaining potential artefacts and 
positive and negative controls to account for tag switching errors and con-
taminants. We relied on 98% (or 97%), 90%, 85%, 80% and 75% sequence 
identity as a criterion for assigning OTUs to species, genus, family, order or class 
level, respectively (I–IV). Each fungal genus, family or order was assigned to 
functional categories based on study IV itself (IV) or FUNGuild (Nguyen et al., 
2016a) (I, III). In study II, the newly built FungalTraits database (Põlme et al. 
unpublished; used beta version available at DOI:10.15156/BIO/807446) was 
used to assign OTUs to guilds and EcM fungi further to lineages and explora-
tion types. Taxa were considered to be EcM if they matched to any sequences 
belonging to EcM fungal lineages and exhibited sequence blast score/sequence 
length above the predetermined lineage-specific thresholds (Tedersoo & Smith, 
2013, 2017) (I–IV). 

For richness modelling, we calculated the standardized residuals of OTU 
richness in relation to the square-root of the number of obtained sequences to 
account for differences in sequencing depth (I, III, IV). For study II, all OTU 
richness measures were converted to residuals based on the average values of 
raw residuals taken from regression analyses of OTU richness vs. square root-
transformed sequencing depth and log-transformed sequencing depth. In study I, 
we tested the effects of litter species richness and composition, focal tree species 
identity, plot (fixed factors) and block (random factor; nested in tree species and 
plot), and mass loss (covariate) on standardized residuals of OTU richness in 
foliar and root litter samples. In study III, we tested the effects of tree species 
richness, composition (fixed factors) and identity (nested in plot), and plot 
(random factors) on standardized residuals of OTU richness in root samples. 
General linear models (GLM) (Type I SS) for standardized residuals of OTU 
richness were calculated in STATISTICA 12 (StatSoft Inc., Tulsa, OK, USA) 
(I, III). Using one-way and two-way analysis of variance (ANOVA), we 
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performed Tukey’s post hoc tests to distinguish statistically significantly dif-
ferent groups, using the R package agricolae (De Mendiburu, 2014) (I, III). We 
used the random forest machine learning algorithm to generate non-linear 
models for all richness variables using combined features of random forest 
(Liaw & Wiener, 2002) and VSURF (Genuer et al., 2019) packages in R. Model 
evaluation was performed using 999 trees (II). Because these analyses provided 
no information about the type of fit or determination coefficient, we tested these 
pre-selected best predictors by fitting quadratic functions and general linear 
modelling for each dependent variable as implemented in STATISTICA 13 
(TIBCO Software Inc., NY, USA) (II). In study IV, candidate predictors were 
preselected from multiple linear and polynomial regression analyses based on 
coefficients of determination and forward selection criteria to determine the best 
predictors of global fungal diversity. The most parsimonious models were 
determined according to the corrected Akaike information criterion (AICc). 
Components of the best models were forward-selected to determine their 
relative importance as implemented in the packfor package (Dray et al., 2009) 
(IV). We used piecewise structural equation modeling, implemented in piece-
wiseSEM package (Lefcheck, 2016) (II), and Structural Equation Modeling 
(SEM) in Amos version 22 (SPSS Software, Chicago, IL) (IV) to characterize 
direct and indirect relationships between OTU richness and the potential pre-
dictors (II). 

As implemented in PRIMER v6 (Clarke and Gorley, 2006) and PERMA-
NOVA+ (Anderson et al., 2008), permutational multivariate analysis of 
variance (PERMANOVA) with 999 permutations was used to test differences in 
fungal community composition (I, III). With previously described nested 
designs, we tested the effects of litter species richness and composition, focal 
tree species identity, plot and block, and mass loss on fungal community struc-
ture in foliar and root litter samples (I). The effects of tree species richness, 
composition and identity, and plot were tested on EcM fungal community struc-
ture in root samples with previously described nested designs (III). The Bray-
Curtis dissimilarity metric was applied on the Hellinger transformed sequence 
abundance data (I, II, III). Euclidean distance was used to generate environ-
mental distance matrices (I, III). Hellinger transformation with Euclidean 
distance and a multistage model selection procedure, implemented in the 
DISTLM function of PERMANOVA+, were used for fungal community com-
position modelling (IV). Statistical significance level was considered at α = 0.05 
(I–IV) or 0.001 (II). To visualize the effects of different factors on fungal 
community composition, non-metric multidimensional scaling (NMDS) were 
performed on abundance data in vegan package (Oksanen et al., 2017) (I–IV). 
Potential non-linear effects were estimated using General Dissimilarity Modelling 
(GDM) (Manion et al., 2018) (II). 
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RESULTS AND DISCUSSION 

Partly in agreement with hypothesis 1, fungal richness increased with 
increasing number of plant species represented in foliar litter (litter species 
richness), but the effect was weak and context-dependent in root litter (I). 
In foliar litter mixture, plant species richness was one of the two strongest 
predictors for total fungal, saprotroph and plant pathogen richness, but none of 
the tested factors affected EcM fungal richness. Plant species composition of 
litter had a significant additional effect on richness of all fungi, plant pathogens 
and saprotrophs in foliar litter but not in root litter. Three out of the seven foliar 
litter mixtures had significantly higher observed fungal richness compared with 
the expected fungal richness based on single-species litter (two-species mixtures 
alder–birch and birch–spruce and the four-species mixture alder–birch–pine–
spruce). Root litter species richness and composition showed significant but 
weak effects on richness of saprotrophs, plant pathogens and EcM fungi. 
Although significant synergistic effects of root litter mixtures on total fungal 
richness were detected (the two-species mixtures alder–birch and birch–spruce), 
the overall richness effect was non-significant, because of the lack of synergistic 
four-species effect. Overall, these results are consistent with several studies, 
which reported enhanced fungal richness or diversity with increasing foliar litter 
species richness (Kubartová et al., 2009; Chapman & Newman, 2010; Santonja 
et al., 2017), suggesting promotion of fine-scale resource heterogeneity in litter 
mixtures (Chapman & Newman, 2010). The patterns of root litter richness 
effects can partly be explained by 1) the initial root heating treatment impact for 
endophytes and pathogens or 2) the paucity of specialist fungi for fine root 
decomposition as roots naturally decompose in the soil matrix (Štursová et al., 
2012) and roots of all species were colonized by EcM fungi (Langley & Hungate, 
2003; Fernandez et al., 2016). This study is inconclusive with regard to the litter 
species richness effects on fungal richness associated with roots. 

Consistent with hypothesis 2, community composition of saprotrophic 
and plant pathogenic fungi in foliar litter was strongly affected by litter 
species composition, but its effect on EcM fungal composition was negli-
gible (I). In root litter, litter species composition influenced significantly 
community composition of saprotrophic and plant pathogenic fungi, but 
this effect was much weaker than in foliar litter (I). Several studies have also 
reported that foliar litter of different tree species developed distinct microbial 
communities, particularly when conifers and broadleaved trees were compared 
(Aneja et al., 2006; Chapman & Newman, 2010; Urbanová et al., 2015). Further-
more, mixing different litter species altered microbial community composition 
(Kubartová et al., 2009; Chapman & Newman, 2010). Several studies have 
analyzed succession of fungal communities on decomposing root litter of one 
single tree species (Kohout et al., 2018; Herzog et al., 2019), but studies reporting 
root litter mixing effects on fungal communities are scarce (Li et al., 2018). In 
root litter, the species composition effect was much weaker, which could be 
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related to our heating treatment or lower specificity of soil-borne root decom-
posers. However, root litter of broadleaved trees differed from root litter of 
conifers in their fungal composition, indicating the effect of litter chemistry or 
the confounding phylogeny effect (Betulaceae vs. Pinaceae) (Silver & Miya, 
2001; Prescott, 2010; Guerrero-Ramírez et al., 2016). After one year of decom-
position, many of the typical leaf pathogenic fungi were present, indicating that 
a part of the decomposer community most probably originated from living 
tissues. Saprotrophs are influenced directly by chemical differences among 
plant-derived substrate types (Wardle, 2006). While saprotrophic fungi are the 
primary decomposers of fresh litter (Cooke & Rayner, 1984; Talbot et al., 2013), 
some plant pathogens (Baker & Bateman, 1978; Osono, 2007) are also potentially 
important in the initial stages of decomposition, as they often express sapro-
trophic activity after leaf senescence. Considering that plant pathogens have 
strong preferences for host species, litter species composition may affect plant 
pathogen community composition with strong patterns between coniferous and 
broadleaf litter types (Zhou & Hyde, 2001; Arnold, 2007; Prescott & Grayston, 
2013).  

We found no support to hypothesis 3 as host-specific EcM fungi showed 
no evidence for preferring the litter of their intimate host (I). With respect 
to host-specific EcM fungal taxa, alder-specific fungal taxa contributed most to 
the relative OTU and sequence abundance both in foliar and in root litter, but 
they showed no evidence of preference for alder litter. It cannot be excluded 
that fresh litter might be an unsuitable substrate for EcM fungi to test this effect. 
Nonetheless, our results suggest that the growth of EcM fungal hyphae into fresh 
litter is rather opportunistic and unspecific. Aponte et al. (2010, 2013) found 
that two coexisting tree species, through variability in their litter quality, generate 
species-specific changes in the soil abiotic properties, thus creating selective 
environmental conditions that shape EcM fungal communities with potential 
positive feedbacks. The calcium content in litter and soil, together with soil pH, 
are among the most influential variables for mediating indirect host species 
effects on EcM fungal communities (Aponte et al., 2010).  

Partly consistent with hypothesis 4, biotrophic groups responded more 
strongly to host plant effects than free-living groups – tree species had 
respectively 27% and 52% stronger effects on composition of plant patho-
gens and EcM fungi compared with saprotrophs, but both biotrophic and 
free-living groups were more affected by soil pH (II). Most overstorey tree 
species had an effect on community composition of EcM fungi, but only a few 
had significant influence on other fungal guilds. Community structure of sapro-
trophs, pathogens and EcM fungi was most strongly influenced by soil pH, 
which explained 11.4%, 6.4% and 5.3% of variation, respectively. Plant species 
did not affect the diversity of soil saprotrophs, but had a weak effect on litter 
(explained 3.1% of variation) and wood (4.4% variation) saprotrophs and leaf 
pathogens (4.4% variation). Soil pH (unimodal relationship) and plant richness 
(positive effect) had strongest effects on total fungal richness. Soil pH was the 
most important predictor of richness for most fungal functional and taxonomic 
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groups. EcM fungal richness was most strongly related to soil calcium concen-
tration, followed by relative abundance of Betula sp., Corylus avellana, EcM 
plants taken together and soil pH. Leaf pathogens prevailed at weakly acidic to 
neutral soils and their richness was negatively related to proportion of EcM 
plants, particularly to Picea abies. Litter saprotrophs prevailed at near-neutral 
pH and their richness responded negatively to proportion of EcM plants, in par-
ticular to Picea abies, with synergistic effects between pH and tree composition. 
The strong negative effect of EcM plant proportion is attributable to reduced 
soil pH and potential competition between EcM and saprotrophic fungi for 
nutrients bound in soil organic material (Fernandez & Kennedy, 2016; Sterken-
burg et al., 2018). The EcM conifers Picea abies and Pinus sylvestris are asso-
ciated with strongest effects on diversity and composition of most fungal groups, 
with part of these effects attributable to soil acidification by exuding organic 
acids and shedding recalcitrant litter (Prescott et al., 2000; Cornelissen et al., 
2001; Tedersoo & Bahram, 2019). Therefore, both of these conifers are important 
tree species in North European forest ecosystems by generating habitats suitable 
for the specialist host-associated and acidophilic fungal communities and adding 
much to the landscape-scale soil microbial diversity. Taken together, the positive 
effects of tree diversity on overall fungal richness represent a combined niche 
effect of soil properties and intimate associations. 

Individual studies provided context-dependent support to hypothesis 5. 
At regional scale, evidence for a positive relationship between tree species 
richness and EcM fungal richness was not found (III), while the results 
were mixed in study II. At global scale, host plant richness had a positive 
impact on EcM fungal richness (IV). Based on study II, we detected signi-
ficant positive correlation between EcM fungal richness and host richness 
(r=0.46, P<0.05). However, EcM tree species richness effect on EcM fungal 
richness was non-significant in best models explaining richness of fungi, or in 
Structural Equation Models (II). In addition to modelling in study III, we 
summed the number of EcM fungal OTUs separately for each tree species 
within a plot and compared it between plots of monocultures, two- and three-
species mixtures. Tree species richness had non-significant effect on EcM OTU 
richness in birch (F2,13=2.08; P=0.165), pine (F2,13=0.18; P=0.834) and spruce 
root samples (F2,13=0.60; P=0.564) (III). In the global soil-based assessment, 
richness of EcM fungi responded positively to the relative proportion and 
species richness of EcM plants (explaining 18.3 and 8.5% of variance, respect-
ively) as well as to soil pH (13.0%) (IV). The results from study III are con-
sistent with previous research reporting no significant effect of increasing plant 
species richness on EcM fungal species richness at the local scale (Tedersoo et 
al., 2016; Nguyen et al., 2016b) and global scale (Tedersoo et al., 2012). How-
ever, the 28 plots of the exploratory region were located in an area of 150 km by 
150 km; such regional-scale assessment, relatively small sample size and the 
presence of confounding edaphic, geographic and climatic factors may have 
blurred the richness-to-richness relationships (III). In contrast, positive correla-
tion between plant and EcM fungal diversity has been observed at local scale in 
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several studies (Kernaghan et al., 2003; Tedersoo et al., 2016). Variation in 
EcM fungal richness explained by host richness in study IV indicates either 
niche differentiation of fungi in forests of mixed hosts or sampling effects 
(forests with higher host diversity are more likely to include plant species that 
harbour high fungal diversity). Also, it is suggested that soil microbial richness 
should be positively affected by plant richness due to greater environmental 
heterogeneity (Bruns, 1995; Wardle, 2006; Dickie, 2007) as each plant species 
creates consistent patterns in the chemical composition of litter and root exudates 
(Gobran et al., 1998; Aponte et al., 2010; Waring et al., 2015; Zhalnina et al., 
2018). However, on the smaller scale, other factors such as tree species identity 
may have a stronger influence on EcM fungal richness than tree species richness 
per se (Tedersoo et al., 2010, 2016; Nguyen et al., 2016b; Nagati et al., 2018; 
Chen et al., 2019). Despite a well-established background and evidence for 
positive relationships of plant and microbial richness, these effects remain 
elusive and point to the importance of the study system, geographic scale and 
ability to disentangle diversity effects from sampling effect and various con-
founding variables. 

Partly consistent with hypothesis 6, tree species identity was one of the 
most important factors affecting EcM fungal composition, but it had no 
effect on EcM fungal richness (III). However, EcM fungal richness in study 
II was significantly influenced by tree species identity. Based on study II, we 
detected significant effect of tree species identity on EcM fungal richness 
(F5,90=5.78; P<0.001). Post-hoc tests revealed that Betula pendula and Quercus 
robur were associated with significantly higher EcM fungal richness compared 
with Pinus sylvestris (Figure 2) (II). In study III, pine had lower EcM fungal 
richness than birch, but it was non-significant. Pine and spruce shared more 
EcM fungal OTUs than pairwise combinations with birch (III). The ordination 
graphs showed less distance (i.e. higher community similarity) between EcM 
fungal communities of pine and spruce than between both of the conifers and 
birch (Figure 3A) (III). These results are in line with other studies, which have 
demonstrated that the identity of plant species affect community composition of 
EcM fungi at local and global scales (Dickie, 2007; Ishida et al., 2007; Teder-
soo et al., 2012; Bogar & Kennedy, 2013). Multiple studies have shown that 
host tree species is the most important factor shaping the community composition 
of EcM fungi (e.g. Dickie, 2007; Bogar & Kennedy, 2013). Similarly to our 
results, Nagati et al. (2018) found that EcM fungal community composition was 
more influenced by dominant tree species than variation in tree species richness. 
Different tree species with different EcM fungal communities indicates to some 
degree of specificity and/or preference in plant-fungi interactions (Santolamazza-
Carbone et al., 2019). Host specificity and/or preference have an important role 
in driving EcM community composition and are often phylogenetically con-
served at subgenus, genus and family levels (Kernaghan et al., 2003; Ishida et 
al., 2007; Põlme et al., 2013; Tedersoo et al., 2013; Molina & Horton, 2015). 
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Figure 2. Relationships between tree species identity and residuals of EcM fungal 
richness based on study II. For this analysis, we chose plots comprising a single EcM 
tree species. Circles and whiskers represent means and standard errors, respectively. 
Different letters denote significant differences (P<0.05) among hosts. 
 
 
EcM fungal richness associated with either birch, pine and spruce did not 
depend on tree neighbourhood context, i.e. species composition of co-
occurring trees. EcM fungal community composition of spruce (but not 
that of pine and birch) was significantly influenced by tree species com-
position, which is only partly consistent with hypothesis 7 (III). The NMDS 
ordination indicated that EcM fungal community structure of spruce differed the 
most in birch–spruce mixture compared to spruce monoculture (Figure 3B). 
Similarly to our results, Hubert & Gehring (2008) found that richness of EcM 
fungi was not influenced by a neighbouring heterospecific EcM host. However, 
that study revealed that the EcM fungal community structure of ponderosa pine 
(Pinus ponderosa) was affected by the neighbouring pinyon pine (Pinus edulis), 
but pinyon pine EcM community structure was insensitive to the presence of 
ponderosa pine neighbours. Bahram et al. (2011) also showed neighbouring tree 
species effects on EcM community composition of Populus tremula. Heterospe-
cific neighbouring plants can create community shifts compared with mono-
cultures through different mechanisms. Priority effects among Alnus- and Betula-
associated EcM fungi allowed the established Alnus neighbourhood to control 
the structure of the Betula EcM fungal community possibly by providing 
sufficient supply of photosynthate for EcM fungi and facilitate the colonization 
of Betula, which the fungi typically do not associate with (Bogar & Kennedy, 
2013). Also, the influence of host neighbourhood can be associated with impro-
ved soil properties (Brandtberg et al., 2000; Légaré et al., 2005). Aponte et al. 
(2010) found that litter and topsoil under the canopy of winter-deciduous oak 
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Quercus canariensis were richer in calcium and the soils were less acidic than 
those under the evergreen oak Quercus suber, suggesting that the conditions 
may be either favouring or limiting certain fungal species. Pine (Pinus sylvestris) 
and spruce (Picea abies) litter is rich in phenolic compounds that results in 
accumulation of recalcitrant organic layer (Strack et al., 1989; Kuiters, 1990). 
However, birch–spruce stands with different quality litter inputs and improved 
soil physical and chemical properties create spatial heterogeneity that may 
influence EcM fungal communities (Brandtberg et al., 2000; Dickie, 2007; 
Aponte et al., 2013). Mixed birch and spruce stands in forestry has been sug-
gested as the admixture of broad-leaved species can lead to higher microbial 
activity, lower accumulation of organic matter on the forest floor and increase 
in soil pH resulting in higher total yields and better quality of both species’ 
timber compared with pure stands (Brandtberg et al., 2000; Schua et al., 2015). 
 

 
Figure 3. NMDS ordination plots visualizing the relative importance of (A) tree species 
identity and (B) tree species composition effects for spruce in explaining the community 
structure of EcM fungi in root samples. Ellipses denote 95% confidence intervals for the 
different groups. Figure adapted from Fig. 6 in study III. 
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CONCLUSIONS 

The following main conclusions and working hypothesis can be inferred from 
this thesis: 
• Foliar litter mixtures with higher richness (number of plant species rep-

resented in litter mixtures) harbour higher fungal diversity, suggesting that 
the presence of higher fine-scale resource heterogeneity promotes niche 
specialists in diverse litter mixtures (I). 

• Root litter richness effect on fungal diversity is context-dependent and 
remains inconclusive (I). 

• Foliar litter composition has a strong influence on community composition 
of saprotrophic and plant pathogenic fungi. In root litter, litter composition 
effect on community composition of saprotrophic and plant pathogenic fungi 
is weaker (I). 

• Litter species composition can have a weak impact on EcM fungal com-
munity composition in foliar litter, but it may have no such effect in root litter 
(I).  

• Host-specific EcM fungi are not relatively more abundant in their host 
plant’s litter (I), but this issue warrants further research. 

• At global scale, host plant richness and EcM fungal richness show a positive 
relationship (IV). At regional and local scale, there is controversial evidence 
that EcM fungal richness is influenced by tree species richness (II, III). 

• EcM fungal richness varies among different tree species, which may be partly 
related to the hosts’ genetic features and litter properties such as pH (II). 

• Tree species identity plays an important role in structuring the communities 
of plant pathogens (II) and EcM fungi (II, III). 

• Tree neighbourhood context (i.e., species composition of co-occurring trees) 
does not influence EcM fungal richness of either birch, pine or spruce (III). 

• EcM fungal communities associated with spruce differ in birch–spruce 
mixture compared with pure stands, suggesting that birch neighbourhood in 
mixed stands may improve soil properties that have a direct effect on EcM 
fungal communities (III). 

• Based on all studies (I–IV), the species richness effect of plants on fungi is 
generally positive, but largely depends on the context, i.e. the influence of 
particular plant species (taxonomic sampling effect) and the various con-
founding factors, which may or may not be accounted for in many studies. 
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SUMMARY 

Fungi make strong contributions to the carbon and nutrient cycles of forest 
ecosystems. Saprotrophs are the main drivers of organic matter decomposition. 
Mycorrhizal fungi supply nutrients to their host plants and contribute to nutrient 
cycling. Mycorrhizal fungi and plant pathogens regulate plant productivity via 
plant-soil feedback. Tree species are expected to affect fungal communities 
through direct biotic interactions and quality of input litter. Interactions between 
plants and fungi play important roles in the ecosystem functioning, but still little 
is known about the functional significance of tree species diversity on fungal 
richness. In forest ecosystems, litter from co-occurring tree species usually 
becomes mixed, leading to a question of how mixing the litter from different 
tree species affects decomposers. Tree species mixtures are associated with 
greater fine-scale environmental and resource heterogeneity that could promote 
higher biodiversity in forest stands. In addition to foliar litter, root litter is 
another major carbon source in forest soils. Compared with foliar litter, root 
litter has higher lignin content and it decomposes more slowly, playing an 
important role in carbon accumulation and long term storage in forest soils. 
Similarly to foliar litter, root litter becomes mixed in the stands of several tree 
species. However, the effects of root litter mixing on fungal communities still 
remain mostly unknown. Tree species diversity may affect biotrophic ecto-
mycorrhizal fungi and plant pathogens more strongly compared to free-living 
saprotrophs. Richness and community composition of biotrophic fungi are most 
strongly controlled by tree species identity, but tree species richness and com-
position may also have roles in determining richness and composition of ecto-
mycorrhizal fungi and plant pathogens in mixed stands.  

This thesis addresses diversity of fungi in relation to tree litter and host tree 
diversity and tree neighbourhood effects. The following main hypotheses were 
postulated: 1) fungal richness increases with increasing litter richness; 2) litter 
composition affects the community composition of saprotrophs, plant pathogens 
and EcM fungi; 3) the relative proportion of host-specific EcM fungi is higher 
in their host plant litter; 4) diversity of biotrophic EcM fungi and plant patho-
gens is related to dominant vegetation, whereas free-living saprotrophs are more 
affected by abiotic factors; 5) tree species richness increases EcM fungal rich-
ness at different spatial scales; 6) tree species identity affects richness and com-
position of EcM fungi; 7) EcM fungal richness and community composition 
depend on tree neighbourhood context. To study the effects of tree species, we 
analysed root and soil samples and decomposed foliar and root litter samples. 
Litter and root samples were collected from tree diversity experimental areas in 
Finland. For larger-scale field surveys, we collected soil samples from Estonia 
and North Latvia, and worldwide. We used high-throughput sequencing methods 
to identify fungal taxa present in the collected samples. 

The main results and conclusions are the following: 1) fungal diversity 
increases with increasing foliar litter richness. This suggests that litter mixtures 
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provide more microhabitats for the niche specialists. Fungal diversity in root 
litter is only weakly affected by litter richness; 2) foliar litter composition 
determines community composition of saprotrophic and plant pathogenic fungi, 
but in root litter, litter composition effect on saprotrophic and plant pathogenic 
fungi is weaker. EcM fungal community composition in foliar litter can be 
weakly affected by litter composition; 3) host-specific fungi may not prefer the 
litter of their host plant; 4) EcM fungal richness is related to plant richness at 
global scale. At regional scale, positive correlation between plant richness and 
fungal richness can be present, but this effect may not be directly causal; 5) tree 
species identity can determine EcM fungal richness. Tree species identity has 
also an important effect on community composition of EcM fungi and plant 
pathogens; 6) EcM fungal richness of birch, pine or spruce does not depend on 
neighbouring tree species. EcM fungal community of spruce differs in mixed 
stands of birch and spruce compared with spruce monocultures. This suggests 
that birch neighbourhood in mixed stands may improve soil properties that can 
influence EcM fungal communities; 7) taken together, tree species richness has 
usually a positive effect on fungal diversity, but the direct influence depends on 
the effect of particular plant species and the confounding factors. This thesis 
provides new insights into the effects of root litter mixing on fungal com-
munities. Also, it improves the knowledge of neighbourhood effects on root-
associated EcM fungal communities and stresses the importance of mixed tree 
species stands in forestry. Future research should incorporate larger plant species 
gradients in order to study the relationship between plant species richness on 
fungal richness. However, care must be taken by accounting taxonomic sampling 
effects, which can mask the effect of tree species richness per se. 
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SUMMARY IN ESTONIAN 

Puuliikide mõju seente liigirikkusele ja liigilisele koosseisule 

Seened on metsaökosüsteemis olulised süsiniku ja toitainete ringes. Saprotroofid 
on looduses peamised orgaanilise aine lagundajad. Mükoriisat ehk seenjuurt 
moodustavad seened aitavad taimedel omastada mineraalaineid ja seeläbi 
suurendavad nende produktiivsust. Mükoriisaseentel ja patogeenidel on oluline 
mõju taimekooslustele ka taimede- ja mulla-vahelise tagasiside kaudu. Taimede 
ja seente interaktsioonidel on ökosüsteemi funktsioneerimises tähtis osa, mis-
tõttu maapealse ja mulla bioloogilise mitmekesisuse seoste mõistmine on olnud 
kaasaegsetes ökoloogilistes uuringutes oluline teema. Siiani pole hästi teada, 
mil määral puude liigirikkus ja koosseis mõjutavad seente liigirikkust ja kooslust. 
Puuliigid mõjutavad eeldatavalt seenekooslusi läbi otseste bioloogiliste inter-
aktsioonide ja varise kvaliteedi. Metsaökosüsteemides seguneb kooskasvavate 
taimeliikide erineva keemilise koostisega lehevaris. Kas ja kuidas selline varise-
segu mõjutab seal ja mullas elavaid mikroorganisme on jätkuvalt oluline uurimis-
teema. Juurevaris on lehevarise kõrval samuti oluline metsamulla süsinikuallikas, 
mis sarnaselt lehevarisele seguneb mitme puuliigiga puistutes. Juurevarise segu-
nemise mõjusid on lehevarisega võrreldes märksa vähem uuritud. Mükoriissete 
seente liigirikkust ja liigilist koosseisu mõjutab kõige enam nendega inter-
akteeruv puuliik, kuid puude liigirikkusel ja koosseisul võib samuti olla roll ekto-
mükoriissete seente liigirikkuse ja koosseisu kujunemisel segapuistutes. Oma 
doktoritöös käsitlen seente elurikkust seoses taimede varise ja peremeestaimede 
mitmekesisuse ning puude naabruse mõjuga. Doktoritöö peamised hüpoteesid 
on järgmised: 1) seente liigirikkus varises on seda suurem, mida suurem arv puu-
liike on esindatud; 2) varise koosseis mõjutab oluliselt saprotroofide, taimepato-
geenide ja ektomükoriisaseente liigilist koosseisu; 3) peremehe-spetsiifiliste ekto-
mükoriisaseente suhteline osakaal on suurem just nende peremeestaime varises; 
4) biotroofsete ektomükoriisaseente ja taimepatogeenide mitmekesisus on seotud 
peapuuliigi ja puude liigirikkusega, samas kui saprotroofe mõjutavad rohkem 
abiootilised tegurid; 5) ektomükoriisaseente liigirikkus suureneb puuliikide arvu 
suurenemisega erinevatel ruumiskaaladel; 6) puuliik määrab ektomükoriisa-
seente liigirikkuse ja liigilise koosseisu; 7) ühe puuliigi ektomükoriissete seente 
liigirikkus ja liigiline koosseis sõltuvad naabruses kasvavatest puuliikidest.  

Hüpoteeside testimiseks viisin koos uurimisrühmaga läbi välieksperimendid 
ja vaatlusuuringud ning määrasin molekulaarsete meetoditega seeneliigid. Puu-
liikide mõju tuvastamiseks analüüsisime seenekooslusi lehe- ja juurevarise proo-
vides ning juure- ja mullaproovides. Varise segamise mõju uurimiseks viisime 
läbi lagunemiskatsed Satakunta metsade elurikkuse uuringualal Edela-Soomes, 
mis on osa ülemaailmsest puuliikide mitmekesisuse eksperimentaaluuringute 
võrgustikust TreeDivNet (https://treedivnet.ugent.be/). Selleks, et uurida puude 
mitmekesisuse mõju ektomükoriissete seente kooslustele, kogusime juure-
proovid Põhja-Karjalas asuvast uuringuregioonist (vt Foto 1, lk 11). See on osa 
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projektist FunDivEUROPE (www.fundiveurope.eu), mille eesmärk on uurida 
puuliikide mitmekesisuse mõju ökosüsteemile Euroopa küpsetes metsades, 
keskendudes iga metsaregiooni puhul sellele omastele puuliikidele mono-
kultuurides ja segapuistutes. Mullaseente elurikkust mõjutavate biootiliste ja 
abiootiliste tegurite määramiseks regionaalsel skaalal korjasime Eestist ja 
Põhja-Lätist 1251 mullaproovi ning globaalsel skaalal kogusime 365 mulla-
proovi. Sealhulgas Euroopast 86, Aasiast 77, Aafrikast 36, Põhja-Ameerikast 27, 
Lõuna-Ameerikast 59 ja Austraaliast 80 proovi. Seentaksonite määramiseks 
eraldasime kogutud proovidest DNA ja kasutasime mass-sekveneerimise 
meetodit. Seeneliikide määramiseks kasutasime rRNA geene siduvat ITS 
markerit. Saadud DNA-järjestused on talletatud ja avaandmetena kättesaadavad 
rahvusvahelistes geenipankades (INSDC, UNITE).  

Minu doktoritöö peamised tulemused ja järeldused on järgmised: 1) seente 
liigirikkus lagunevas lehevarises on seda suurem, mida rohkem on selles erine-
vate puuliikide lehti. See viitab asjaolule, et väikeseskaalaline ressursside hetero-
geensus varisesegus tagab rohkem nišše, mis võimaldab koos eksisteerida 
suuremal arvul seeneliikidel. Juurte liigirikkuse mõju seente liigirikkusele sõltub 
kontekstist ja on ebaselge; 2) lehevarise koosseisul on tugev mõju saprotroofide 
ja taimepatogeenide liigilisele koosseisule. Juurevarise koosseis mõjutab sapro-
troofide ja taimepatogeenide liigilist koosseisu, kuid mõju on nõrgem kui lehe-
varises. Lehevarises võib varise koosseisul olla nõrk mõju ektomükoriisaseente 
liigilisele koosseisule, kuid juurevarises ei pruugi sellel mõju olla; 3) peremehe-
spetsiifiliste ektomükoriisaseente ohtrus ei pruugi peremeestaime varises suurem 
olla; 4) globaalsel skaalal on peremeestaimede liigirikkuse ja ektomükoriisa-
seente liigirikkuse vahel positiivne seos. Regionaalsel tasemel on positiivne 
korrelatsioon enamasti tuvastatav, ent see ei pruugi olla otsene põhjuslik seos; 
5) ektomükoriisaseente liigirikkus võib puuliikide lõikes erineda. Puuliigil on 
oluline roll taimepatogeenide ja ektomükoriisaseente koosluste struktureerimisel; 
6) ektomükoriissete seente liigirikkus kasel, männil või kuusel ei sõltu naab-
ruses kasvavatest puuliikidest. Ektomükoriisaseente liigiline koosseis kuusel 
võib kase ja kuuse segametsas erineda kuuse monokultuuriga võrreldes, osu-
tades sellele, et kase naabrus kase–kuuse puistudes võib olla seotud paranenud 
mullaomadustega, mis võivad mõjutada ektomükoriissete seente kooslusi; 
7) taimede liigirikkuse mõju seente elurikkusele on kõigi nelja töö põhjal pigem 
positiivne, ent sõltub suuresti kontekstist – liikide valikust ja segavatest tunnus-
test, millega paljudes uuringutes ei arvestata. 
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