
JOURNAL OF NANO- AND ELECTRONIC PHYSICS ЖУРНАЛ НАНО- ТА ЕЛЕКТРОННОЇ ФІЗИКИ

Vol. 12 No 5, 05021(4pp) (2020) Том 12 № 5, 05021(4cc) (2020)

2077-6772/2020/12(5)05021(4) 05021-1  2020 Sumy State University

Design and Development of an Efficient Branch Predictor for

an In-order RISC-V Processor

C. Arul Rathi1,*, G. Rajakumar1, T. Ananth Kumar2,†, T.S. Arun Samuel3

1 Francis Xavier Engineering College, Tirunelveli 627003, India

2 IFET College of Engineering, Tamilnadu 605108, India

3 National Engineering College, Kovilpatti 628503, India

(Received 23 June 2020; revised manuscript received 15 October 2020; published online 25 October 2020)

Conditional branches are a serious issue in the pipelined processor. The branch direction and branch

target address are determined and calculated by the processor after several cycles of the instruction de-

code, which results in the pipeline stall. Pipeline stall leads to control hazards in the processor and results

in performance degradation. To increase the rate of the instruction flow in modern processors, branch pre-

diction is used. Branch prediction provides an ideal speedup in performance of the processor. The processor

predicts the direction in the branch prediction and determines instructions in accordance with the predict-

ed path. The processor tests any prediction for the branch when the branch condition is calculated. If the

prediction is incorrect, the processor will automatically abort all instructions taken along the wrong path

and return the state to the address of the determined branch. An inaccurate branch predictor results in in-

creased program run-time and leads to higher power consumption. Once the position of a branch is known,

the actual target address of the next instruction must also be determined along the expected path. If the

branch is expected not to be taken, the destination address is simply the address of the current branch plus

the size of the command word. Unless the branch is to be taken, then the target depends on the branch

type. The branch target buffer (BTB) can reduce branch efficiency by predicting the branch path and stor-

ing information used by branch. There are no stalls if the branch entry is found in BTB, and the calcula-

tion is accurate, or the penalty shall be two cycles or more. This paper focuses on the design and develop-

ment of branch predictor with BTB for the fetch unit, which further integrates to an in-order pipelined

RISC-V processor. The performance of the RISC-V core in terms of clock cycle latency, instruction per cycle

(IPC), was measured and analyzed.

Keywords: Branch target buffer, Pipeline, Hazard, Branch predictor, Fetch, Conditional and unconditional

instruction.

DOI: 10.21272/jnep.12(5).05021 PACS numbers: 93.85.Tf, 91.30.pd

*ananth.eec@gmail.com

1. INTRODUCTION

RISC-V is a modern instruction set architecture

with standard open architecture which is designed to

be scalable for a wide range of applications [3]. To de-

sign high-performance systems [8], the speed of opera-

tions called throughput and the number of calculations

per unit time become essential [7]. We often go for a

technique called pipelining. Pipelining [1] is a standard

feature used in RISC-V processors. Pipelining involves

not only executing instructions over multiple cycles but

also executing multiple instructions per cycle, i.e. we

are going to overlap instructions. Every phase of the

pipeline is known as a stage. The five-stage pipeline

processor is implemented [11] (fetch, decode, execute,

memory, write back).

The primary motivation for having a pipeline is that

our instruction is arriving continuously once every

cycle. So, we should be able to feed one new instruction

every cycle, which is fetched and then executed moving

from one stage to the other IF, ID, EX, MEM, WP. So, a

new instruction should be available for every cycle of

the pipeline; otherwise, it leads to hazards in the pipe-

line. Hazards are basically classified into three types.

The first kind of hazard can be a structural hazard.

The structural hazard arises when two instructions are

already in the pipeline in two different stages, but they

are trying to use the same hardware resource. The

second kind of hazard is called a data hazard. The data

hazard can arise due to instruction dependency. The

third kind of hazard is called a control hazard. This

arises because of branch instructions.

For getting efficient output of the processor, it must

fetch and decode instructions at a higher bandwidth.

The branch predictor helps to improve the performance

of pipelining or superscalar processors by predicting

the branch at an early stage. The branch predictor

prefects a minimal data structure and attempts to

predict the branch output. The processor will assume

the execution of an instruction based on the predicted

result from the branch predictor.

A processor can have better overall performance,

especially when the prediction rates are high [13, 14].

Without branch prediction, a processor must stop when

branch instructions are not resolved. Further work on

the question of forecasting conditional branches and

instructions is written. This paper concerns the reduc-

tion of control hazards by developing an efficient

branch predictor for an in-order RISC-V processor. Our

proposed branch predictor includes branch target buff-

er (BTB) [4, 6], so the branch predictor can predict the

direction of the branch as well as the branch target

address. Further, this architecture design can be en-

hanced with a hybrid branch predictor and implement-

ed with the RISC-V processor.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Sumy State University Institutional Repository

https://core.ac.uk/display/339162473?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://jnep.sumdu.edu.ua/index.php?lang=en
http://jnep.sumdu.edu.ua/index.php?lang=uk
http://sumdu.edu.ua/
https://doi.org/10.21272/jnep.12(5).05021
mailto:ananth.eec@gmail.com

C. ARUL RATHI, G. RAJAKUMAR ET AL. J. NANO- ELECTRON. PHYS. 12, 05021 (2020)

05021-2

1.1 Existing System

Branch instructions can be problematic in a pipe-

line. This is due to a branch instruction, which informs

the processor about the next instruction that focuses on

another instruction. The branch instruction needs to

execute another instruction, and according to the re-

sult, it decides to jump or not. The easiest method is

always to assume the branch was not taken.

In this way, the correct instructions are exempted. If

the assumption is correct, no action must be taken. If the

assumption is incorrect, the pipeline will be flushed.

Branch prediction is another approach for the con-

ditional divisions. In order to minimize pressures, it is

expected that the branch will be taken or not taken in

the early phase of the pipelining process. The forecast

of the branch is divided into a static prediction and a

dynamic prediction of the branch.

1.2 Static Branch Prediction

The static branch prediction is simple; it does not

use any feedback from the run-time output. The static

branch predictors are rule-based static branch predic-

tors or profile-based static branch predictors.

Single-direction prediction. The single-direction

prediction is the most straightforward branch predic-

tion technique. In this case, the prediction is either

taken or not always taken. The retroactive approach

never implemented is the variation of the single-

direction prediction.

Program-based prediction [12]. The compiler uses

branch hints from the instruction set architecture to

predict whether or not the branch is taken.

Profile-based prediction. The profile-based static

predictors collect statistics from the instrumented ver-

sion of a program and send the information to the com-

piler. This detail is used by the compiler as a branch

hint for the final program.

1.3 Dynamic Branch Prediction

The dynamic branch predictors use the program ex-

ecution information to predict the branch instruction.

The dynamic branch predictors have high prediction

rates than other techniques.

Smith predictor. Smith predictor [9] records all

branches whether or not the branch is taken in the

previous occurrence. The saturation counter reports

when the branch happens and then raises the counter

and reduces the counter if the branch is not taken.

Two-level predictor. The two-tier predictor [10] sep-

arates the branch history into the branch history rec-

ord and pattern history table. The pattern history table

lists the frequency of each occurrence of the branch.

The content of the branch history record is used to

index the pattern history table.

Bi-mode predictor. Multiple pattern history tables

(PHTs) are used for the reduction of aliasing. In the bi-

mode predictor [5], two PHTs are used, one to store the

most taken branches, and the other is to store the most

not taken branches. A choice predictor is used to choose

between these two predictors.

YAGS predictor. The YAGS predictor [2] is identical

to the bi-mode predictor, but two PHTs document only

those instances that conflict with the direction bias.

More than one prediction method is used for a hy-

brid predictor, also called a combined predictor. To pre-

dict the branch, two or more branch predictors dis-

cussed above are combined.

2. PROPOSED SYSTEM

In the proposed system, the efficient branch predic-

tor is designed for a RISC-V processor. The system gets

the input from the fetch unit of the pipelined processor,

and the generated output is given back to the same

fetch unit. Another input comes from the execution

stage, which is used to compare the predicted value and

the actual executed value. The block diagram of the

proposed efficient branch predictor is shown in Fig. 1.

The branch predictor consists of PHT and BTB,

which are commonly used data structures. The PHT

and BTB have been indexed according to the branch

address. The PHT forecasts whether the branch is

taken or not. The following instruction address is taken

from the BTB when the branch is taken. The next

command address if the branch is not taken is the cur-

rent branch address plus instruction size.

Fig. 2 shows the architecture of an efficient branch

predictor for the RISC-V processor. The PHT uses the

2-bit saturation counter state transition, which in-

creases when the prediction is correct and decreases if

the prediction is wrong. The PHT uses a valid bit to

ensure the finishing of the training period. The valid

bit will be initially set to zero. When the branch is en-

countered for the first time, it changes the valid bit to

zero. The target branch address of the current branch

instruction is stored in the BTB. The BTB is updated

by the execution unit of the pipelined processor.

Fig. 1 – Block diagram of the branch predictor

Fig. 2 – Architecture of the branch predictor

DESIGN AND DEVELOPMENT OF AN EFFICIENT BRANCH … J. NANO- ELECTRON. PHYS. 12, 05021 (2020)

05021-3

Fig. 3 – 2-bit saturation counter

Fig. 4 – The branch instruction is identified in the branch pre-

dictor

The processor output is entered in the branch pre-

dictor. Then the branch predictor predicts whether or

not the branch is taken. Finally, the predicted branch

address is checked at the processor execution unit.

If it is correctly predicted, the execution unit gives a

signal to the branch predictor that the prediction is

correct. If it is wrongly predicted, then the execution

gives a signal to the branch predictor that the predic-

tion is incorrect. It also flushes out the incorrect values

and goes with the executed correct value.

3. RESULTS AND DISCUSSION

Hardware describes the proposed model as HDL code

and it is simulated in ModelSim. This hardware pro-

gramming can be implemented successfully with Xilinx

FPGAs. ModelSim is an HDL modeling environment

that is multi-language. ModelSim may be used with or

without Intel Quartus Prime, ISE Xilinx or Vivado

Xilinx. The simulation is done through a graphical user

interface (GUI) or using scripts automatically.

Fig. 5 – The branch predictor is trained in the run-time

Fig. 6 – The branch predictor predicting the branch correctly

The proposed branch predictor is a dynamic branch

predictor, so when the branch is encountered for the

first time, it makes some note in the PHT. Fig. 4 shows

the first appearance of the branch at a clock cycle of

60 ns.

The PHT uses the 2-bit saturation counter, so it will

not predict the branch on the next encountering of the

same branch unless it confirms the branch in the sec-

ond appearance of the same branch. Fig. 5 shows the

second appearance of the branch at 140 ns.

From the third time onwards, it will start predict-

ing the branch correctly. Fig. 6 shows the branch pre-

dictor predicting correctly.

4. CONCLUSIONS

This paper explores the design and development of

a branch predictor for a RISC-V processor. The branch

predictor plays a major role in enhancing processor

efficiency. The efficient branch predictor removes the

control hazards in the pipelined processor. There is no

need for static training period for the efficient branch

predictor. The efficient branch predictor is designed

successfully with a branch target buffer. It can be im-

plemented with the in-order RISC-V processor to

achieve higher performance.

REFERENCES

1. Chang, Po-Yung, Marius Evers, Yale N. Patt, Int. J. Parallel

Progr. 25, No 5, 339 (1997).

2. Eden, Avinoam N., Trevor Mudge, In Proceedings. 31st

Annual ACM/IEEE International Symposium on Microar-

chitecture 69, (1998).

3. Evers, Marius, Po-Yung Chang, and Yale N. Patt, Int.

Symposium on Computer Architecture, 24, 3 (1996).

4. B. Fagin, K. Russell, Int. Symposium on Microarchitecture,

193 (1995).

5. Lee, Chih-Chieh, I-Cheng K. Chan, Trevor N. Mudge, Int.

Symposium on Microarchitecture, 4 (1997).

6. Lee, K.F. Johnny, Alan Jay Smith, IEEE Computer 17 No 1,

6 (1984).

7. Scott McFarling, John L. Hennessy, Int. Symposium on Com-

puter Architecture, 396 (1986).

8. Scott McFarling, Compaq Computer Corporation Western

Research Laboratory (1993).

9. Jim E. Smith, Int. Symposium on Computer Architecture,

135 (1981).

10. Yeh, Tse-Yu, Yale N. Patt., ACM SIGARCH Computer

https://doi.org/10.1007/BF02699882
https://doi.org/10.1007/BF02699882
https://doi.org/10.1145/232974.232975
https://doi.org/10.1145/232974.232975
https://doi.org/10.1145/146628.139709

C. ARUL RATHI, G. RAJAKUMAR ET AL. J. NANO- ELECTRON. PHYS. 12, 05021 (2020)

05021-4

Architecture News 20, No 2, 124 (1992).

11. Yeh, Tse-Yu, Yale N Patt, Int. Symposium on Computer

Architecture, 124 (1992).

12. Yeh, Tse-Yu, Yale N. Patt, Int. Symposium on Computer

Architecture, 257 (1993).

13. Kumar, T. Ananth, S.S. Janaki, Int. J. Adv. Res. Eng. Technol.

1, No 3 (2012).

14. Kumar, T. Ananth, R.S. Rajesh, International Conference

on Communication and Network Technologies, 254 (2014).

https://doi.org/10.1145/146628.139709
https://doi.org/10.1145/165123.165161
https://doi.org/10.1145/165123.165161
https://doi.org/10.1109/CNT.2014.7062765
https://doi.org/10.1109/CNT.2014.7062765

