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ABSTRACT 

 

While graphene-based technology shows great promise for a variety of electronic 

applications, including radio-frequency devices, the resistance of the metal-graphene 

contact is a technological bottleneck for the realization of viable graphene electronics. 

One of the most important factors in determining the resistance of a metal-graphene 

junction is the contact resistivity. Despite the large number of experimental works that 

exist in the literature measuring the contact resistivity, a simple model of it is still 

lacking. In this paper we present a comprehensive analytical model for the contact 

resistivity of these junctions, based on the Bardeen Transfer Hamiltonian method. This 

model unveils the role played by different electrical and physical parameters in 

determining the specific contact resistivity, such as the chemical potential of interaction, 

the work metal-graphene function difference, and the insulator thickness between the 

metal and graphene. In addition, our model reveals that the contact resistivity is strongly 

dependent on the bias voltage across the metal-graphene junction. This model is 

applicable to a wide variety of graphene-based electronic devices, and thus is useful for 

understanding how to optimize the contact resistance in these systems. 
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 While graphene has emerged as a promising material for future electronic devices, 

it is often the metal-graphene (MG) contact resistance that dominates the performance of 

the device.1 For example, although a high carrier mobility of ~10,000 cm2V-1s-1 has been 

reported on SiO2,
2-5 the small density of states (DOS) of graphene near the Dirac point 

can suppress current injection from the metal, resulting in high contact resistivity at the 

MG interface, which limits the total performance of a graphene transistor.6,7 In radio-

frequency circuits, the key figure of merit is the maximum frequency of oscillation fmax, 

which is the frequency at which the power gain drops to unity. This parameter turns out 

to be very sensitive to the contact resistance, especially in the absence of full current 

saturation.6 Therefore, the metal-graphene contact resistance is a critical component of 

graphene-based devices, and controlling its properties is a prerequisite for device 

optimization. 

In two- or three-terminal semiconductor devices, the contact resistance is 

commonly described with the transmission line model,7-9   WLLRR Tscc coth , 

where L (W) is the length (width) of the contact, Rs is the semiconductor sheet resistance 

under the metal, c is the specific contact resistivity of the metal-semiconductor junction, 

and LT is the transfer length, which is the characteristic length over which current 

injection occurs between the semiconductor and the metal. In the diffusive regime, this 

parameter is related to the specific contact resistivity through the relation scT RL  , 

while a more detailed description of LT can be found in the work of Xia et al.10 In any 

case, it is evident that c plays a crucial role in the magnitude and length dependence of 

the metal-graphene contact resistance. 

There have been many experimental studies of the MG junction in the scientific 

literature.11-15 The relevant role played by graphene in metal-semiconductor junctions has 

also been evidenced by the recent experimental work of Byun et al.,16 where a true 

Ohmic contact in Ni-Si junctions has been demonstrated by using an interfacial graphene 

layer to lower the Schottky barrier. In addition, the role of metallic leads in determining 

the transport properties of graphene-based junctions has been addressed by several 

theoretical studies.10,17-19 However, a direct and comprehensive model of carrier transport 

between a two-dimensional graphene sheet and a three-dimensional metal is still lacking. 

Such a model is needed to understand the intrinsic factors that control the magnitude of 

the specific contact resistivity, and thus to understand how to optimize the graphene-

metal contact resistance. 

We address this problem by formulating an analytical model of the tunneling 

current and contact resistivity of the metal-insulator-graphene (MIG) heterostructure, 

from which the MG junction can be seen as a particular case. Our model is based on the 

Bardeen Transfer Hamiltonian (BTH) method,20,21 which allows us to split the metal-

graphene system into separate metal-dipole and dipole-graphene subsystems with known 

Hamiltonians. In the framework of the BTH method, the probability of elastic tunneling 

is calculated using Fermi's golden rule. This gives a quantitative estimate of the coupling 

between the metal and graphene states, allowing us to obtain analytical formulas for both 

the tunneling current and contact resistivity as a function of the applied voltage. This 

model allows us to identify the key parameters in determining the metal-graphene contact 

resistivity, and can also be used in larger-scale simulations of graphene-based electronic 

devices. 



 

 

RESULTS AND DISCUSSION 

 

 We start with a description of the electrostatics of the MIG heterostructure. 

Represented in Fig. 1a, it consists of a metal (M) electrode treated as an equipotential 

with voltage V and work function Wm, and a grounded graphene layer (G) with work 

function Wg. These are separated by an intermediate insulator (I) layer with permittivity  

= r0 and thickness d, where r is the relative permittivity of the insulator and 0 is the 

permittivity of free space. In the MIG band diagram of Fig. 1b, EFg is the graphene Fermi 

energy, ED is its Dirac point energy, and EFm is the metal Fermi energy. An interfacial 

potential step V is developed across the (I) layer due to charge transfer and the chemical 

interaction between the graphene and the metal.22 

 With respect to the Dirac point, the shift of the graphene Fermi level is defined as 

E = ED – EFg and a relationship between the bias voltage V and E can be obtained from 

a voltage (potential energy) loop around the MIG band diagram, 

 

E = Wm – Wg – eV – eV.     (1) 

 

 The interfacial potential step V can be expressed as V = tr + ch, where tr 

results from charge transfer between the (M) and the (G) and ch is the chemical potential 

describing the short-range interaction from the overlap of the (M) and (G) wavefunctions. 

According to the model of Khomyakov et al.,23 the value of tr depends strongly on the 

separation distance d (Fig. 1b) and becomes negligible for d ≥ 4 nm. 

 To model the electron transfer contribution, tr, we use a planar capacitor model 

such that tr(E) = zdQnet/e, where zd represents the effective distance between the charge 

sheets of the (M) and (G) layers (Fig. 2b) and Qnet = e(p – n) is the net charge sheet 

density within the graphene.24 In addition, we have assumed charge neutrality for the 

structure (i.e., the electric field goes to zero outside the structure) and thus Qnet = –Qm, 

where Qm is the surface charge density in the metal. Finally, although in MG junctions 

the electrodes permit transmission, the reflection probability is nearly unity because the 

electrons see a barrier height ~4 eV and thus the MG junction can be treated as a 

mesoscopic capacitor.25 Substituting the conventional expression23 for p – n into Eq. 1 

yields the relation 

 

f(E/kBT) + E + eV – eVD = 0,    (2) 

 

where we have defined 

 

eVD = Wm – Wg – ch.     (3) 

 

 The physical meaning of VD is that of the voltage applied to the metal needed to 

align the graphene Fermi level to the Dirac point. Also, in Eq. 2,  2222 fd veze    and 

f(x) = (kBT)2 [F(–x) – F1(x)], with F1(x) the Fermi-Dirac integral of order 1. Equation (2) 

has a closed-form analytical solution at zero temperature and should be solved 



numerically for T > 0. As T → 0 the f function reduces to f = ±E2/2, where the upper 

(lower) sign applies for E < 0 (E > 0). Equation 2 then becomes a simple quadratic 

equation for E whose solution is 

 



 121 


DVV
E      (4) 

 

In Eq. 4 the upper sign applies for V ≤ VD and the lower sign for V > VD. This result holds 

not only for MIG structures but also for the MG junction since, as was mentioned 

previously, a MG junction can be seen as a particular case of the MIG structure where the 

layer (I) represents a dipole layer with deq the equilibrium separation between (M) and 

(G).23,26,27 In this work, we model zd = d – d0 with d0 = 0.24 nm. We have used d = deq, r 

= 1 and ch > 0 for MG junctions and d > deq, r = 4 and ch = 0 for MIG structures. 

 In Fig. 3 we show, for T → 0, the behavior of E as a function of the bias voltage 

V in a MG junction for five different metals. At V = 0, metals such as Cu, Ag, and Al 

dope the graphene n-type while Pt and Au electrodes result in p-type graphene. For the 

sake of comparison, we have also shown E for a hypothetical metal X with work 

function Wm = Wg = 4.5 eV and tr = 0, so that the graphene is undoped at V = 0. Given 

the weak dependence of Eq. 2 on the temperature, at T = 300K the curves represented in 

Fig. 3 don’t change significantly except for the slopes near E = 0. Therefore, Eq. 4 is a 

very good approximation to Eq. 2. 

 For the results shown in Fig. 3 we have not included metals such as Co, Ni, Pd, or 

Ti, typically used as metallic contacts, because those metals strongly disturb the graphene 

band structure. In particular, the characteristic linear dispersion of graphene at the K-

point is destroyed23 and our model fails. Furthermore, a model for the ch term has not 

been established with these metals. However, we can apply our model to these metals in 

MIG structures, as will be shown later. This is because we assume that the insulator layer 

doesn’t modify the graphene linear dispersion relation28 and the ch term is considered to 

be zero. The solutions for Eq. 2 (T > 0) and Eq. 4 (T = 0) will be used later for the 

calculation of the tunneling current. 

 The specific contact resistivity c of the MG junction is defined as 

 
0

1






V
c dVdJ , where J is the tunneling current density between the metal (M) and 

the graphene (G) across the dipole layer and V is the voltage applied to the metal.7,29 In 

the Methods section we show how to calculate the tunneling current density from the 

BTH approach,20,21 starting from the expression for the tunneling current 

 

           
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where the subscripts g and m label the states in the (G) and (M) electrodes with energies 

Eg and Em, respectively, gS is the electron spin degeneracy, gV is the valley degeneracy, 

and gm and mg refer to the tunneling rates for electrons moving from g → m and m → g, 

respectively. Finally, fg and fm are the Fermi occupation factors for the electrons. The 

tunneling rates are given by Fermi’s golden rule as 
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is the matrix element for the transition, with m0 the electron mass in the (I) layer. The 

terms  zg ,r  and  zm ,r  represent the (G) and (M) electron wavefunctions, 

respectively, and their explicit forms are shown in the Methods section. From the 

complex exponential dependence of the in-plane wavefunctions, part of the integral of 

Eq. 7 transforms into the delta function  
mg kk   when the contact area is large 

enough, implying conservation of the in-plane momentum k. On the other hand, the 

energy delta function in Eq. 6 guarantees that only energy-conserving tunneling processes 

are possible. 

 After some manipulation of Eq. 5, described in the Methods section, Fig. 4a 

shows, at T = 300K, the magnitude of the tunneling current density of the MG junction as 

a function of V for Pt, Au, Cu, Ag, and Al metal electrodes, with work functions, Fermi 

energies, and equilibrium separation distances given in Table 1. The current-voltage (I-V) 

relationship of a MG junction or a MIG structure can be understood by considering the 

possible locations of the metal and graphene Fermi levels around the graphene Dirac 

point, as illustrated in Fig. 2 assuming E > 0 at V = 0, as is the case for a Pt contact. The 

applied voltage V changes the relative difference between the Fermi levels on each side 

of the junction according to EFg – EFm = eV. If V > 0 a positive current will flow from the 

graphene to the metal via tunneling across the (I) layer. A special situation arises when 

the applied voltage drives the graphene Fermi level to perfect alignment with the Dirac 

point, resulting in E = 0. We have labeled such a bias as VD. Analogously, if V < 0 a 

negative tunneling current will flow across the (I) layer from the metal to the graphene, 

and there will be a bias that aligns the metal Fermi level with the graphene Dirac point. 

We have labeled this bias as VC, which occurs when eV = –E. At these critical biases, 

the low graphene DOS at the Dirac point pinches off the junction and the current changes 

very little with changes in the applied bias. This can be seen, for example, in the I-V 

curve of Pt at a bias voltage of V = 0.7 V. Although not shown in Fig. 4a, the tunneling 

current at T = 0 calculated by Eqs. 20 and 23-25 (see Methods) is barely distinguishable 

from the results at room temperature. The main difference is the slope of the I-V curve 

when the applied voltage is V = VD. 

 Figure 4b shows the differential contact resistivity   1
dVdJ  for a MG junction 

as a function of the bias voltage V. The thick lines are for T = 300K and the thin lines are 

for T = 0. The differential contact resistivity (DCR) exhibits, for every metal, large peaks 

at voltages V = VD and V = VC, which have been labeled for the Al curve. Metals such as 

Pt and Au show maximum values of the DCR at V > 0 while for Cu, Ag, and Al the DCR 

is maximized at V < 0. For the MG junction with the X metal, only one peak appears at V 



= 0, similar to metal-insulator-metal (MIM) diodes.32 In Fig. 4b, one can see that a metal 

such as Au leads to a high specific contact resistivity (DCR at V = 0) because its VD value 

is close to zero, resulting in a Fermi energy close to the Dirac point at zero bias. 

However, the DCR for Au is significantly lower than that of Pt for V ~ 0.7 V. Thus, the 

resistivity of the MG contact is strongly dependent on the voltage drop across the 

junction. A similar situation occurs for MIG structures, as will be shown later. 

 Taking advantage of the fact that the specific contact resistivity only weakly 

depends on the temperature (see Fig. 4b), it can be obtained, after some simple algebra, 

from Eq. 19 of the Methods section 
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where   22 2  mE   and E0 is the shift of the graphene Fermi level with respect to 

the Dirac point at V = 0. Using the data reported in Table 1, Eq. 8 gives the following 

values for c: 
61059.4  , 61044.22  , 61053.8  , 6109.7  , and 61045.5   Ohm-cm2 

for Pt, Au, Cu, Ag, and Al, respectively. These values are consistent with experimental 

results reported by Nagashio and Berdebes.7,11 The traditional wisdom is that metals with 

high or low work functions with respect to pristine graphene make the best contacts 

because the resulting Fermi level sits far away from the graphene Dirac point.6,33 

However, our model shows that the contact resistivity depends not only on the work 

function difference but also on the voltage drop across the junction. Although Eq. 8 has 

been obtained for a MIG structure like that of the Fig. 1, it also describes the specific 

contact resistivity of a graphene-based three-terminal device such as the one studied by 

Xia et al. when a back gate voltage is applied.16 However, in the latter case the value of 

E0 must be calculated by means of an expression similar to Eq. 2, but taking into 

account the gate capacitance. Equation 8 permits, in a simple manner, an understanding 

of the intrinsic factors that control the value of the specific contact resistivity and 

therefore of the contact resistance. 

 Next, we show in Fig. 5 the behavior of the differential tunneling resistivity 

(DTR) as a function of the voltage V for a MIG structure with d = 0.6 nm. The DTR is 

calculated in the same manner as the DCR for the MG junction,   1
dVdJ . Here, we 

have assumed a relative permittivity r = 4 for the (I) layer. In the inset, the expected 

exponential dependence of the resistivity with d can be observed for a Pt contact at two 

different values of V. In these structures the DTR depends directly on the work function 

difference between the metal and graphene since ch = 0. It is worth mentioning that, 

using Cu or Ag as the metal electrode, the graphene in the MG junction is n-doped (Fig. 

4b) but in the MIG structure the graphene is p-doped (Fig. 5). This capability to change 

the doping type is mediated by the cancelation of chemical potential term ch. In general, 

when considering a wide range of bias voltages and device geometries, Pt appears to 

offer the best performance of the contact metals studied here. 

 Figure 6a shows the asymmetry factor for different metals, which is defined as the 

magnitude of the ratio of the reverse current at –V to the forward current at +V , and is a 

figure of merit for MIM diodes. The asymmetry factor of the MG junction with Au 



reaches 2.3 at 0.2 V and in the X diode decreases monotonically, which can be explained 

by the differences between the dispersion relations of graphene and metals in the 

graphene conduction and valence bands. Also, Fig. 6b shows the variation of the DCR at 

V = VD as a function of temperature. In Fig. 4b it is observed that only at V = VD does the 

DCR depend strongly on the temperature, which is attributed to the reduced DOS in the 

graphene when E = 0, while at V = 0 that dependence is weak. 

 

 

CONCLUSIONS 

 

 In conclusion, we have developed models for both the tunneling current and the 

contact resistivity, as a function of the voltage applied to the metal electrode, for the MIG 

heterostructure based on the BTH method. We have considered the MG junction as a 

special case of the MIG structure by utilizing a dipole layer as the interfacial layer. From 

the model for the differential contact resistivity we have found a simple analytical 

expression for the specific contact resistivity, which elucidates the role played by the 

chemical potential of interaction ch, the work function difference, and the insulator 

thickness between the metal and graphene. In general, the model reveals the role played 

by the electrical and physical parameters in determining the contact resistivity. 

Specifically, among the metals considered here, Pt exhibits the smallest specific contact 

resistivity. However, given the voltage dependence of the contact resistivity, metals like 

Au or Ti can show a smaller resistivity than that of the Pt depending on the operating 

regime. The obtained values of the specific contact resistivity are on the order of those 

given in previous reports. Also, our model can be useful to predict how the specific 

contact resistivity depends on the difference between the Dirac point and Fermi energies 

when a back gate voltage is applied in a graphene-based three-terminal FET, which 

makes it useful for understanding the metal-graphene contact resistance. Finally, the 

temperature dependence of the contact resistivity is generally weak at equilibrium for 

every metal, but is strong and decreases with increasing temperature at V = VD, i.e. in the 

situation corresponding to undoped graphene. Overall, our model expounds on the role 

played by various parameters in determining the contact resistivity of the metal-insulator-

graphene junction, which should be useful for optimizing the contact resistance of 

graphene-based electronic devices. Our model can also be used in larger-scale 

simulations of these devices. 

 

 

Figure 1. (a) Physical structure and (b) band diagram of the metal-insulator-graphene 

structure examined in this paper. 

 

Figure 2. (a) Band diagram of isolated graphene and metal. (b) Band diagram of a metal-

insulator-graphene structure at equilibrium showing charge transfer. A voltage drop V is 

developed across the interfacial layer, and E represents the shift of the graphene Fermi 

level with respect to the Dirac point. (c) Non-equilibrium band diagram of the metal-

insulator-graphene structure. As mentioned in the main text, the metal-graphene junction 

is obtained by letting d → deq. 

 



Figure 3. Graphene Fermi level shift with respect to the Dirac point as a function of the 

bias voltage V in a metal-graphene junction for different contact metals. The equilibrium 

separation distances used here are taken from Table 1. 

 

Figure 4. (a) Tunneling current density J and (b) differential contact resistivity (thick line 

for T = 300K, thin line for T = 0) for the metal-graphene junction as a function of the bias 

voltage V considering different metal electrodes at the equilibrium separation. 

 

Table 1. Wm and deq represent the metal work function and equilibrium separation 

distance between graphene and the metal, respectively. EFm is the metal Fermi energy at T 

= 0, ch is the chemical potential of interaction, and VD is the voltage given by Eq. 3. 

 

Figure 5. Differential tunneling resistivity (DTR) of the metal-insulator-graphene 

heterostructure and its dependence on the insulator thickness d, assuming  = 40 and T = 

300K. The inset shows the exponential variation of the DTR with d for two different bias 

voltages. 

 

Figure 6. (a) Asymmetry factor of the metal-graphene junction for different contact 

metals. (b) Differential contact resistivity of the metal-graphene junction at V = VD for 

different contact metals as a function of the temperature. 

 

Figure 7. Parabolic and linear dispersion relations corresponding to metal and graphene 

electrodes, respectively. At T = 0 only states lying in the shaded region contribute to the 

tunneling current. For a given kz both the in-plane momentum k and the total energy E are 

conserved only for the states with in-plane momentum k1 in the conduction band and k2 in 

the valence band. 

 

 

METHODS 
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