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Abstract  
 

This study estimates the price and income elasticity coefficients of electricity demand in the 

mining sector of South Africa for the period ranging from April 2006 to March 2019. A time 

varying parameter (TVP) model with the Kalman filter is applied to monitor the evolution of 

the elasticity estimates. The TVP model can provide a robust estimation of elasticities and 

can detect any outliers and structural breaks. The results indicate that income and price 

elasticity coefficients of electricity demand are lower than unit. The income elasticity of 

demand has a positive sign and it is statistically significant. This indicates that mining 

production – used as a proxy for mining income – is a significant determinant of electricity 

consumption in the mining sector. In its final state income elasticity is estimated at 0.15 per 

cent. On the contrary, price does not play a significant role in explaining electricity demand. 

In fact, the price elasticity coefficient was found to be positive which is contrary to normal 

economic convention. This lack of response is attributed mainly to the mining sector’s 

inability to respond, rather than an unwillingness to do so.  

 

A fixed coefficient model in a form of Ordinary Least Squares (OLS) is used as a benchmark 

model to estimate average price and income elasticity coefficients for the period. The results 

of the OLS regression model confirm that price does not play a significant role in explaining 

electricity consumption in the mining sector. An average price elasticity coefficient of -0.007 

has been estimated. Income elasticity was estimated at 0.11 for the period under review. 

The CUSUM of squares test indicate that parameters of the model are unstable. The Chow 

test confirms 2009 as a breakpoint in the data series. This means that elasticity coefficients 

of electricity demand in the mining sector are time variant. Thus the OLS results cannot be 

relied upon for inference purposes. The Kalman filter results are superior.  

 

This study cautions policy makers not to interpret the seeming lack of response to price 

changes as an indication that further prices increases could be implemented without 

hampering electricity consumption in the sector. Furthermore, it recommends that the 

electricity pricing policy should take into account both the negative impacts of rapid price 

increases and the need to invest in long-term electricity infrastructure in order to improve the 

security of energy supply. A long term electricity price path should be introduced in order to 

provide certainty and predictability in the price trajectory. This would allow all sectors of the 

economy sufficient time and space to make investment and operational decisions that would 

have the least adverse effects on economic growth and job creation.  
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Chapter 1 

Introduction 

 

1.1 Background 
 

Energy security is one of the most important components of a successful economic 

development programme (Blignaut, 2009:696). It is a fundamental input for both a country’s 

social and economic development. Ferguson et al. (2000) found a strong positive correlation 

between increases in wealth over time and increases in energy consumption in most 

developed countries. In general, countries with a high per capita income also have a high per 

capita energy consumption. Consequently, a high level of energy consumption, in particular 

commercial energy like electricity, could signify a high economic status of a country. It is in 

this context that developing countries, and in particular Sub- Saharan Africa, invested 

significantly in the development of its electricity infrastructure. This investment is aimed at 

improving efficiencies and fostering higher economic growth (Wolde-Rufael, 2004:1108).  

 

In recent years, the global demand for electricity has outpaced the demand for energy as a 

whole. For the period 2000 to 2010, overall energy usage increased by 26 percent while 

electricity consumption grew by 40 percent (Kwon et al., 2016:324). The rapid increase in 

electricity consumption during this period contributed to the power shortages in several 

countries across the world, including in North America and Europe (Kwon et al., 2016:324). 

In 2007 and 2008, South Africa experienced periods of significant shortages in electricity 

supply. This resulted in the rolling blackouts commonly referred to as load shedding. This 

was particularly concerning as there is an observable long-term correlation between GDP 

growth and electricity sales in South Africa. As the economy grows, the productive sector of 

the economy requires more energy and electricity to support its growth, since more 

machinery will be required to enable capacity expansion and higher production at company 

level. When household income increases, household electricity consumption also rises. 

Higher income levels in a country result in higher household expenditure. Typically, a rise in 

household expenditure includes expenditure on household capital goods such as 

refrigerators, television sets, geysers and heaters. Consequently, higher income leads to 

greater electricity consumption by households. When the economy grows and per capita 

income increases, electricity consumption is likely to increase in the productive sectors of the 

economy, as well as in households. Figure 1 illustrates the relationship between GDP growth 

and electricity sales in South Africa from 1951 to 2011. A casual observation indicates that, 

for the most part, electricity sales grew more rapidly than GDP. This indicates that for every 

additional unit of output produced, the economy consumed a higher amount of electricity 
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than in the preceding period. This is to be expected in an economy that was dominated by 

electricity-intensive sectors like mining and manufacturing. It shows that the availability of 

cheap and abundant electricity has at the very least been an enabler for growth in the 

economy. However, since 1998, GDP growth has overtaken growth in electricity sales. The 

long-term trend lines of the two indicators intersected in 2005. This development reflects a 

change in the growth composition of the economy. The economy is now growing faster in 

sectors that do not require a lot of electricity to function. This would consist mainly of the 

services orientated sectors like retail, finance and tourism. It is also plausible that over time, 

as technologies improve and production processes become modernised, the primary sectors 

of the economy have improved their efficiencies, thereby reducing the amount of electricity 

they need per unit of output. Nevertheless Figure 1 depicts a close relationship between 

economic growth and electricity sales growth.  

 

Figure 1: Electricity Sales Volume and Real GDP Growth 

 

Source: Eskom Integrated Financial Report (various issues), Statistics South Africa: GDP publication series 

 

This relationship between electricity consumption and economic growth informed 

government’s policy to make electricity cheap and abundant. In 1991 Eskom, South Africa’s 

power utility, announced a national price compact which was underpinned by the assertion 

that cheap electricity prices were essential for faster economic growth (Van Hoeren, 1996:9). 

The objective of this price compact was to keep electricity prices as low as possible for as 

long as possible, in an effort to provide South Africa with an international competitive edge. 
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Following this compact, the real price of electricity declined substantially over time. Research 

by Doppegieter et al. (1999:52) found that electricity tariffs in South Africa were amongst the 

lowest in the world during the 1990’s. The real average tariff declined from 40.0 cents (2012 

constant prices) per kilowatt hour (KWh) in 1978 to 23.50 cents in 2005. This pricing strategy 

was an implied subsidy for the economy, with a view to stimulating economic growth and 

development. It is important to note that this favourable pricing outlook was not always in 

place. In the decades leading to the 1991 price pact, electricity price increases were quite 

steep. Figure 2 depicts the historical electricity price trajectory in real and nominal terms. 

From 1974 to 1978 the real electricity price almost doubled from 24 cents per KWh to 40 

cents. This means that electricity prices increased by 60 per cent from 1974 to 1978 after 

accounting for inflation. This rapid increase in electricity prices was occasioned by the 

infrastructure expansion programme that Eskom had embarked on at the time.  It was busy 

with the construction of its flagship projects, including the construction of new power stations. 

This significant increase in the generation capacity necessitated an increase in the electricity 

distribution network such that more industries, mines and farms could be connected to the 

electricity network.  

 

This aggressive electricity infrastructure expansion programme was based on an assumption 

that economic growth would continue at a rapid pace, thus providing demand for more 

electricity power in the future. However, by the late 1970’s and early 1980’s the South 

African economy had slowed down materially. This slowdown was occasioned by political 

unrest and international financial sanctions that were imposed on the country.  By the late 

1980’s Eskom was left with excess capacity and sluggish electricity demand. It was in this 

context that the 1991 national price compact was formulated. According to this agreement, 

annual electricity price increases were deliberately set below the inflation rate in order to 

encourage electricity consumption and stimulate economic growth. This meant that every 

year, electricity became relatively cheaper as compared to other goods and services. This 

strategy encouraged growth in the electricity-intensive industries as the low electricity price 

was effectively a subsidy to these industries. Subsidising energy use involves providing it at 

a price below its opportunity cost. This happens when the regulated electricity price does not 

reflect the long run marginal cost of supply. Such a policy may encourage an inefficient use 

of electricity, resulting in the country becoming more energy intensive. Furthermore, the low 

electricity tariff may discourage new investment in the electricity sector, thereby limiting the 

scope for further capacity expansion. It follows that this strategy could only be sustained for 

as long as Eskom had excess capacity. It also follows that this implicit electricity price 

subsidy would result in a depletion of Eskom’s financial reserves, increased borrowings and / 

or more equity bailouts from the shareholder(s). The strategy was inherently unsustainable. 
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Figure 2: Historical Aggregated Electricity Prices 

 

Source: Eskom MYPD 3, 2013. 

 

After almost two decades of declining real prices, an aging generation fleet and no new 

capacity additions to speak of, electricity demand began to outstrip supply. This resulted in 

load-shedding or blackouts in 2008 (Eskom GMTNP, 2013:3). The short supply threatened 

the integrity of the grid as generation could not keep up with demand. At this point it was 

clear that the utility needed to expedite its generation capacity expansion programme. It 
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higher tariff on the economy in general and large power users in particular, NERSA revised 

the 2013 tariff increase downwards to 16 per cent (Eskom GMTNP, 2013:51). Nevertheless, 

this signified a new pricing regime. In 2012, Eskom submitted its application for the third 

Multi-Year Price Determination. It requested an average annual price increase of 16 per cent 

over the five-year period ending on 31 March 2018. Eskom argued that it needed these 

increases to support investment and expansion in the sector, while enhancing the quality of 

the electricity supply and diversifying its generation capacity. The requested price increase 

consisted of 13 per cent to cover Eskom’s operational inputs and debt-servicing costs. The 

remaining 3 per cent was requested to cover the costs of procuring power from independent 

power producers (Eskom MYPD 3, 2013:8). Notwithstanding the high tariff increases, 

electricity prices in South Africa remained relatively low by international standards.  

 

Figure 3: International Electricity Price Survey - 2015 

 

Source: International Electricity and Natural Gas Survey, NUS Consulting Group, 2015. 

 

Figure 3 indicates that in 2015 South Africa’s average electricity price was 8.46 US cents per 

Kwh. This was still below the mean for the group of 18 countries that were sampled by the 

NUS consulting group. In 2016, the World Bank undertook an analysis of electricity utilities in 

39 African countries. The study found that Eskom’s average unit price was relatively low as 

compared to most utilities in other countries (Kojima & Trimble, 2016:8). The authors noted 
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financial distress in the future. These studies suggest that at least at the time when they 

were conducted, there was still scope for further tariff increases without adversely affecting 

the country’s international competitiveness. However, it could be argued that the recent rapid 

increase in electricity prices could have a negative impact on the sectors that consume most 

of the electricity in the economy.  

 

Figure 4: Electricity Consumption (MW/h) per Standard Industry 

Classification 

 

Source: Eskom Integrated Financial Report (2012/13) 

 

Figure 4 depicts electricity consumption per standard industry classification in South Africa. 

The gold mining industry is the largest consumer of electricity in the country. This is followed 

closely by the ferrochrome and the platinum group metals (PGMs) sub-sectors. This means 

that the top three largest consumers of electricity per standard industry classification are all 

within the mining sector. It is evident that the mining sector is a large consumer of electricity 

in South Africa. Therefore, the electricity demand response in this sector could have a 

significant impact on the aggregate level of electricity consumed in the country as a whole. If 

the mining sector is experiencing financial strain, this could result in a reduction in electricity 

consumption by the sector. If this reduction in consumption is not compensated by an 

increase in sales in another sector, it could result in a significant drop in revenue for the 
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electricity utility. By extension, the performance of the commodities market may have a 

significant impact on the level of electricity consumption in this sector. If there is a boom in 

the commodities market and the level of mining production increases, electricity consumption 

may increase. Similarly, if mining output decreases, electricity consumption is expected to 

decline.  

 

South Africa has large reserves of chrome, gold, platinum group metals, vanadium and other 

minerals (DoE, 2010:72). The mining of these natural resources has played a pivotal role in 

the development of the electricity industry in South Africa. The vast nature of mining activity 

across the country forms a significant customer base for Eskom. In the 2012/13 financial 

year, electricity sales to the mining sector accounted for 14.5 per cent of Eskom’s total sales 

(Eskom, 2012/13:62). The mining sector has historically been dominated by the gold sub-

sector. However, its dominance has declined over the years as the old gold mines closed 

down and fewer new operations were opened. As a result gold production has decreased 

significantly. In 1970, 1 000 tonnes of gold were produced, in comparison to only 253 tonnes 

in 2007 (DoE, 2010:72). Similar developments have befallen other sub-sectors although not 

to the same extent.  

 

Figure 5: Electricity Consumption in the Mining Sector 

 

Source: Eskom Sales report 2017/18 

 

Figure 5 indicates that electricity consumption in the mining sector has been on a downward 

trend over the last decade or so. This may be an indication that the mining sector in South 

Africa has entered its twilight years. Mineral resources are finite in nature, therefore all mines 

have a finite lifespan. At some point any mining operation has to cease, either because the 
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resources have been depleted or because it is no longer commercially viable to continue 

with it. It follows that as mining production declines, electricity consumption could decline 

with it. The decline in consumption could, however, also be interpreted as evidence that 

electricity prices have become too high for the mining sector, suggesting that certain 

operations cease to be commercially viable. The high electricity price increases during the 

last decade may have encouraged the sector to scale down its electricity usage and seek 

alternative mining strategies in an effort to contain its operating costs. This may have stifled 

growth and investment in the sector.   

 

The declining electricity consumption in the mining sector should be of concern to Eskom for 

several reasons. Firstly, the mining sector and Eskom are joined at the hip. The discovery of 

a gold reef in Langlaagte, Johannesburg in 1886 sparked a rush that had an immense 

impact on the city as well as on the electricity sector as a whole. The soaring demand for 

electricity occasioned by a booming mining sector hastened the need for network integration, 

regulations and a greater electricity supply at an affordable price. Prior to this, electricity was 

generated by private or municipality-owned generators, which operated in a disintegrated 

network (Amusa et al., 2009: 4168). Given these new requirements,  Parliament approved 

the 1922 Electricity Act in terms of which Eskom was established and given the task of 

supplying a large amount of electricity at relatively low prices to the mining sector in 

particular and the broader economy in general (Marquard, 2006:126). It follows that from the 

onset the mining sector always provided a significant customer base for Eskom. The sector 

creates a significant level of stable and predictable electricity consumption. Unlike other 

sectors which have peak and off peak demand during the day, the mining sector’s demand 

profile is fairly static throughout the day. This creates an essential level of around the clock 

minimum demand which is crucial for operating the electricity network efficiently. Eskom also 

depends on the mining sector for the supply of coal which is used as fuel for its power 

stations. South Africa has vast coal reserves, which serve as a source of cheap primary 

energy. Coal-fired power stations produce most of the country’s electricity. In 2006, coal-fired 

power stations generated about 92 per cent of all electricity produced in South Africa (DoE, 

2010:52). 

 

The mining sector plays a critical role in the economy of South Africa. It is a significant 

source of foreign exchange earnings and a critical creator of job opportunities, especially for 

semi-skilled and unskilled labour. Figure 6 depicts, amongst other indicators, the sector’s 

share of total employment in the country. This dropped from about 5.5 per cent in 2007 to 

below 4.6 per cent in 2018. Most notably, the sector’s share of total exports has plummeted 

from 36 per cent in 2011 to 25 per cent. As a proportion of GDP, the mining sector has been 
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on a gradual decline. In the past decade, the mining sector in South Africa has been under 

considerable pressure. This pressure emanated from internal and external factors. Internal 

growth in the sector has been curtailed by limited export capacity infrastructure in the form of 

ports and the rail network. The intermittent electricity supply disruptions have also 

undoubtedly disturbed production processes in the sector. The sector has also experienced 

tenuous industrial relations, which have often resulted in output losses. All these bottlenecks 

have constrained growth and investment. Policy uncertainty with respect to ownership and 

local procurement rules have contributed to the decline in fixed investment in the mining 

sector. This further exacerbated the reduction in electricity consumption by the sector.  

 

Figure 6: Mining Sector contribution to the SA economy 

 

Source: Mineral Council South Africa, 2019 

 

The mining sector also serves as a strategic line of defence for the electricity network. 

Electricity consumption in the mining sector is highly concentrated. As a result, in times of 

emergencies it is relatively easy to identify several electricity supply points and switch them 

off in order to save the rest of the network.  This tactic proved to be effective when Eskom 

declared a national emergency in 2009. It compelled its large customers, especially the 

mining houses, to cease operations because it could not guarantee supply. This act saved 

the network from a national blackout which would have an untold impact on the economy 
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and security of the country. Since then, the mining sector has been called upon on numerous 

occasions to curtail its level of electricity consumption when the network is deemed to be 

vulnerable. This electricity supply crisis highlighted the pressing need for capital investment 

in the country’s electricity generation and reticulation capacity (Maroga, 2009:4). It also 

demonstrated the risk that the electricity generation capacity constraint posed for the 

country’s economic growth in the short to medium term. In an effort to resolve this crisis, the 

South African government established a long term plan of how the country will meet its 

electricity generation requirements going forward. This plan is commonly referred to as the 

Integrated Resource Plan (IRP). It is a 20-year plan that gives an estimate of South Africa’s 

electricity demand and possible ways of catering for it. In its latest version, the IRP 2019 

(DMRE, 2019) identifies key generation and reticulation projects, including the completion of 

Medupi and Kusile power stations. It also envisages an increasing bias towards renewable 

energy, mainly in the form of solar and wind power, as part of the country’s response to the 

challenge of climate change. The urgency of this infrastructure expansion is demonstrated in 

most stark terms by a decreasing electricity generation reserve margin. The reserve margin 

refers to the spare capacity that could be called upon should there be a breakdown in one of 

the generators. During 2007, the utility’s reserve margin for generation capacity reduced to 

about 6 per cent of peak demand (Eskom GMTNP, 2013:3). This was significantly below the 

recommended global practice of maintaining a reserve generation capacity of 15 percent. 

The main reason for this low level of reserves can be ascribed to the increase in electricity 

demand by 50 percent between 1994 and 2007 (Inglesi-Lotz & Blignaut, 2011:452). 

Notwithstanding the substantial increase in electricity demand, there were no material 

additions made to the generation capacity during this period. This happened despite the 

Energy Policy white paper of 1998 indicating government’s intention to make decisions about 

large public sector electricity generation investments in response to rapidly increasing 

electricity demand (DME, 1998). As it was anticipated, since 2008 electricity demand has 

frequently outstripped supply, thereby severely restraining the electricity grid.  

 

The other contributing factor towards a low reserve margin had to do with the age of the 

Eskom generation plant fleet itself. The average age of these plants was 30 years, with the 

oldest power station being over 50 years old (Eskom, 2012/13:58). As power stations get 

older, they are more likely to break down. In addition, very old stations will face challenges 

when sourcing their spare parts due to their outdated technology (Eskom, 2012/13:71). This 

adds to the downtime that is required each time the plant breaks down. In general, older 

plants require maintenance more frequently, resulting in longer and more frequent downtime. 

The increase in downtime means that the generation plants have become less reliable. The 

Unplanned Capability Loss Factor (UCLF) measures the lost energy caused by unplanned 
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production interruptions as a result of equipment failures and other plant conditions (Eskom, 

2012/13:58). It measures the amount of production lost due to system breakdowns as a 

percentage of total production capacity available.  

 

Figure 7 indicates that the UCLF percentage has been on a gradual increase since 2008. On 

average, Eskom lost 15.22 percent of its generation capacity due to unplanned breakdowns 

during 2014/15 as compared to 4.4 per cent during 2008/9. The increase in UCLF starkly 

reflects the decreasing reliability of the Eskom generation fleet. Ordinarily if the generation 

fleet becomes more prone to breakdowns it would require an even higher level of a reserve 

margin. In addition, an increasing unplanned capacity loss factor limits the downtime that is 

made available for normal maintenance work. Ultimately, the lack of adequate space to do 

scheduled maintenance, plus the pressure to always keep the lights on, resulted in an even 

weaker plant performance, in turn resulting in a sustained deterioration in UCLF from 2008 to 

2016.  

Figure 7: Unplanned Capacity Loss Factor (UCLF)  

 

Source: Eskom Integrated Annual Financial Report (2017/18) 
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In the absence of any meaningful additions to the generation capacity, an increasing UCLF 

percentage means that there is even less energy available to be supplied into the electricity 

network. The Energy Availability Factor (EAF) measures plant availability plus energy losses 

not under the control of plant management (Eskom, 2012/13: 58).  In the year which ended 

in March 2016, Eskom had an average EAF of 71.07 percent as compared to 85.3 percent in 

2008/9 (Eskom, 2017/18: 58). This means that for the 2015/16 financial year Eskom had on 

average 71.07 percent of its installed generation capacity available for electricity generation. 

The other 29 percent of its generation capacity was unavailable due to breakdowns and 

planned maintenance. Figure 8 illustrates that the EAF has been weak for most of the period 

under review. This indicates that, notwithstanding an impressive amount of installed 

generation capacity, a significant portion of it was not available to generate electricity when 

needed. In view of these supply constraints, Eskom had to cut the electricity supply to some 

customers, leading to rolling blackouts across the country. The failure to cater for the rising 

electricity demand of the grid in 2007 emphasised the urgent requirement for investment in 

new generation capacity. The deterioration in plant performance, which resulted in a lower 

EAF percentage, further added to the urgency for investment in electricity infrastructure. 

Hence, it is important to replace the old power stations, which have become susceptible to 

breakdowns, and add new generation capacity to cater for the rising demand. To respond to 

this supply shortfall, the government has estimated that the country needs 40 000 MW of 

new capacity by 2030 (IRP, 2019:42). This includes 10 500 MW to replace some of the 

existing power stations that will be decommissioned at the end of their useful lives.  

 

Figure 8: Energy Availability Factor (EAF)  

 
Source: Eskom Integrated Financial Report (2017/18) 
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It is mainly because of this infrastructure expansion programme that electricity prices in 

South Africa have increased sharply in recent years. Eskom has invested an average of 

R40bn per year over the last ten years in electricity generation and reticulation infrastructure 

(Eskom, 2017/18:74). This investment is aimed at alleviating the electricity supply shortage 

and improves the reliability of electricity supply in the country. As a consequence of this 

investment drive, Eskom has accumulated significant amounts of debt. The utility’s gross 

debt has increased almost tenfold from R36bn in 2007/08 to R358bn by end of March 2018 

(Eskom, 2017/18:81). Most of this debt has been guaranteed by the South African 

government. This high level of debt has, however, become a source of risk for the South 

African economy. Eskom is an effective monopoly in the generation and transmission of 

electricity in South Africa. It supplies approximately 95 per cent of South Africa’s electricity 

and approximately 45 per cent of the total electricity consumed on the continent (Eskom 

GMTNP, 2013:94). It follows that if Eskom is in financial distress and it cannot fulfil its 

electricity supply role, it would have a devastating effect on the economy. It was with this 

background that Eskom submitted its tariff application to NERSA for the fourth multi-year 

price determination (MYPD 4). As part of this application, it requested an average annual 

price increase of 15 percent over the three year period ending in March 2022 (Eskom MYPD 

4, 2019:15), arguing that the new electricity price level would allow it to complete its 

infrastructure investment drive and service its debt. This would alleviate any pressure on the 

government for further bailouts, thereby reducing the risk that Eskom poses to South Africa’s 

fiscal strength. 

 

The Minerals Council of South Africa strongly opposed the proposed electricity tariff 

increases. They impressed upon the regulator that any significant further price increases 

would have negative economic and social consequences. Questions were raised about how 

this price trajectory would affect electricity demand in the mining sector. The Minerals 

Council argued that electricity consumption in the sector was on a downwards trend partly 

due to the high price increases that were allowed in the recent past. In their view, any further 

increases in price would result in a significant decrease in electricity consumption, thereby 

resulting in lower revenues for Eskom. NERSA indicated that it had to strike a balance 

between the two competing views. The regulator awarded an effective price increase of 

13.87 percent, 7.81 percent and 5.05 percent for the years 2019, 2020 and 2021, 

respectively. This decision was lauded as a victory for the end users, as only a portion of the 

requested tariff increase had been awarded. As part of its reasons for decision, NERSA 

argued that an above inflation price increase would result in a decrease in electricity sales 

volume (RFD: 115). NERSA concluded that higher prices were not a viable long term 

solution for Eskom’s revenue shortage as they would incentivise consumers to look for 
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alternative energy sources and defect from the national electricity grid. This would result in a 

reduction in sales revenue which would in turn cause Eskom to increase its electricity tariffs 

even further. However, Eskom indicated that this decision would have negative financial 

implications for it. It indicated that its shareholder would be required to support it financially if 

it were to survive. If NERSA did not allow the consumer to pay a cost reflective tariff then the 

tax payer would have to fund the resultant revenue shortfall. To this end the government of 

South Africa has announced a financial rescue package for Eskom. A total of R138bn has 

been allocated in a form of equity injections into the entity (MTBPS 2019). However the 

minister indicated that the government was itself in a dire financial position and it could no 

longer afford to rescue Eskom or any other state owned enterprise in the future. This raises 

questions about the long-term sustainability of the entity if it has to rely on the government 

for continued financial support. Therefore until cost reflective electricity tariffs are achieved, 

the financial health of Eskom is bound to remain fragile. 

 

In essence the regulator was caught between a rock and hard place. On the one hand there 

is sufficient evidence that Eskom’s generation fleet is underperforming. This is to be 

expected given the average age of its power stations. It also means that an increasing 

amount of costs and downtime will be incurred as more maintenance work is required owing 

to the age of the fleet. The need to build new generation capacity to cater for new demand 

and to replace old generators is undeniable. Without this investment programme, the utility 

will produce a diminishing amount of electricity as the years go by and the existing 

generation plant becomes older and more unreliable. This would increase the risk of 

electricity shortages in the country. An inadequate supply of electricity will have negative 

economic and social welfare implications. From that perspective, the upwards pressure on 

electricity prices is understandable. On the other hand, electricity consumption by key 

customers like the mining sector has been declining over time. The assertion that additional 

price increases will result in a further reduction in electricity sales volume in the mining 

sector must be tested. It is crucial to determine what the impact of past electricity price 

increases have been on this sector. The regulator cannot be seen to be awarding price 

increases that may stifle economic growth and investment in the country. The socio-

economic ramifications of that could be too disastrous to contemplate. At the same time the 

regulator cannot be seen to be stifling investment and development in the electricity sector 

by denying Eskom a cost reflective tariff. The consequences of such an outcome would also 

be devastating on the economy and could undermine the government’s efforts to develop the 

country and create more job opportunities for its citizens. Thus the regulator is required to 

strike a fine balance between the two competing policy requirements. 
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1.2  Statement of the Problem 
 

Concerns have been raised that the higher rate of electricity price increases in the recent 

years may have a dampening effect on electricity demand. The demand response to these 

price increases is therefore a crucial aspect to consider when making electricity price 

decisions. Over the years, Eskom has been criticised for not incorporating the potential 

demand response to price increases on its electricity demand projections (Inglesi & Pouris, 

2010:4). It has been argued that although demand response may have been subdued over 

the years, especially prior to 2006, it cannot be assumed that the same lack of response will 

be observed in the future. It is entirely plausible that the level of demand response following 

the materially higher price increases which commenced in 2006 could be more pronounced 

than in the earlier years. Therefore, it is important to ascertain how electricity demand has 

responded to changes in electricity prices over time, especially in electricity intensive sectors 

like mining. This will inform policy makers on whether or not the electricity demand 

projections, on which the Eskom generation capacity expansion programme is based, are 

reasonable. This assessment must be performed keeping in mind the markedly different 

rates of price increases that were recorded during the period under review. This is important 

because if these electricity sales projections do not take into account the consumer response 

to changes in electricity prices, then there is a risk that expected future electricity demand 

could be overstated. This could result in lower than projected electricity sales. 

 

Figure 9: Eskom Electricity Sales Volume 

 

Source: Eskom Integrated Report (Various issues). 
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This concern is especially heightened by the marked reduction in Eskom’s electricity sales 

volumes over the last few years. The decline in sales has not been confined to the mining 

sector alone. Figure 9 indicates that Eskom’s sales volume has decreased by over ten 

thousand gigawatt hours from 2012 to 2017. Sales volume decreased by an average of 0.9% 

per annum from 2015 to 2017. This happened while the average tariff increased from 69 

cents to 82 cents in the same period. The lower sales volume could be attributed to a 

number of factors, including the downturn in economic growth and demand response to tariff 

changes. There is an emerging risk that Eskom could price itself out of the market, as 

cheaper and usually more environmentally friendly means of electricity generation come into 

effect. This would be bad for Eskom as it could be left with idle or excess generation 

capacity. Eskom could be left with assets that are not generating any sales or revenue for it. 

This has raised the spectre that Eskom could be caught up in a utility death spiral. A utility 

death spiral occurs when additional generation and distribution of electricity makes the 

electricity grid more expensive for the remaining consumers thus making alternatives even 

more economically attractive (Felder & Athawale, 2014:10). If a death spiral occurs an 

electricity price increase would be futile in raising sufficient revenues to cover the utility’s 

total costs. This happens because after a price increase is introduced, lower sales volumes 

follow. Hence fewer units of electricity are used to cover the utility’s fixed costs thus a further 

price increase becomes necessary. This higher price results in an even greater sales 

decline, which requires yet another price increase. It is apparent that as the utility tries to 

recover its total costs through higher prices it actually makes less profit due to the decline in 

its sales volume. Historically the death spiral related to price increases resulting from high 

utility costs. However, the proliferation of Distributed Generation (DG), particularly end-user 

solar panels, has resulted in an erosion of electricity utility sales across the world. Most of 

the costs in the generation and transmission of electricity are fixed. The utility recovers these 

costs through charges that are allocated to customers. These costs are volumetric in nature 

(Hledik, 2014: 83). This means that the higher the volume of sales achieved, the lower the 

component of fixed costs is allocated per unit of electricity. With more DG systems in place, 

electricity demand falls, which forces utilities to raise prices in order to compensate for a 

drop in sales and help to recover costs. However, this increase in prices accelerates the 

adoption of more DG systems and further electricity price increases, thereby inducing a utility 

death spiral. The utility death spiral in this context includes the phenomena of retail 

customers migrating from a full-requirements utility service to a partial service or moving 

towards self-sufficiency. Like in an operational cost-induced death spiral, any attempts to 

recover the lost revenue through higher prices could aggravate the problem, resulting in 

fewer customers on the utility network and even more revenue being lost.  
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Therefore, cost recovery is threatened whenever a major decrease in sales volume occurs. 

The starting point of a utility death spiral is either a drop in the sales volume or a rapid cost 

increase or both occurring at the same time. These events could be occasioned by the 

increased attractiveness of new technologies, a depressed economy or other major shocks 

to the electricity network. Although it is theoretically possible, some scholars have argued 

that a utility death spiral is unlikely to occur as both utilities and regulators are likely to adopt 

measures that will avert such eventuality (Costello & Hemphill, 2014). In particular the tariff 

structure of electricity utilities is criticised for being too dependent on energy flows while the 

majority of the actual costs of supplying electricity are capacity based. Capacity costs are 

fixed in nature. They do not vary depending on the level of energy flow at a particular point in 

time. Thus a tariff structure that is mainly dependent on energy flows is unlikely to be cost 

reflective. The penetration of DGs simply exacerbates this problem. In order to avoid a utility 

spiral, regulators must migrate towards a tariff structure that is capacity based rather than 

energy usage orientated (Eid et al., 2014:253). This will allow the tariffs to be better aligned 

to the utilities’ underlying cost structure. For example, a tariff structure that charges electricity 

users based on their respective observed maximum capacity usage improves cost-causality 

as compared to charges that are simply levied on energy flows under a volumetric tariff 

regime. Another proposed measure that a utility could take to avert a death spiral is to shift 

more of the fixed costs of its operation to its price inelastic customers (Costello & Hemphill, 

2014:19). This would result in the utility being able to increase its revenue by increasing its 

average tariff. This requires the utility to be able to anticipate the demand response of each 

key customer segment before implementing a price increase such that only the customers 

with the least demand response are targeted. On the other hand, some economists argue 

that the long run demand response to a utility price change is extremely large such that a 

utility which raises its price will probably lose more revenue on the back of a reduced sales 

volume (Lovins, 1988:155). They argue that the only way for a utility to increase its revenue 

in the long run is to lower its unit price. This inherently requires the utility to cut its 

operational costs such that a downwards shift in the marginal cost and the average cost 

curves can be realised. Notwithstanding these varied opinions, it is crucial to establish what 

the demand response to an electricity price change is. If the demand response is inelastic, 

an increase in price would likely result in an increase in revenue from electricity sales. 

However, if the demand response is elastic, an electricity price increase could result in a 

decrease in revenue, further straining the utility’s financial position. Once this has been 

established a utility can determine whether or not an increase in its price would result in a 

reduction in its revenue base. This is crucial to ensure the financial sustainability of the utility. 

This will also contribute towards understanding how a customer is likely to react to changes 

in the tariff structure as articulated earlier. 
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Another consideration to be made is to establish whether or not there is a causality 

relationship between electricity consumption and economic growth. There is a difference of 

opinion on whether or not such a relationship exists. If it is established that some form of a 

causality relationship exists between electricity consumption and economic growth, an 

assessment of the impact of the electricity price increase should not be limited to the 

revenue implications for the utility only. It should also take into account the impact that a 

reduction in the utility’s sales volumes could have on the broader society. There is a risk that 

electricity price increases could slow economic growth. In turn sluggish economic growth 

could reduce future electricity consumption. Therefore higher electricity prices could drag the 

economy into a recession or a low growth trajectory. This makes it even more important to 

estimate the demand responses of key sectors of the economy. Decisions to increase 

electricity prices, either in the form of general increases or targeted increases should be 

informed at least in part by how consumers would respond, and how their response would 

impact the utility’s revenue base and the economy at large. This study seeks to shed light on 

these considerations and provide policy makers with some information in order to adequately 

address these concerns.  

 

1.3 Objective of the Study 
 

The primary objective of this study is to estimate the price elasticity coefficient of electricity 

for the mining sector. It provides insight into the sector’s electricity demand response to price 

changes between April 2006 and March 2019. During this period, electricity price increases 

in South Africa were higher than the inflation rate. This sent a signal to the economy that real 

electricity prices in South Africa were on an upward trajectory, thereby moving away from a 

prolonged period of nominal price increases that were below the inflation rate. This feature 

distinguishes this study from other South African studies, as most of them were conducted 

during periods when nominal prices were increasing, while real prices were decreasing. 

Several empirical studies, such as Inglesi-Lotz and Blignaut (2011), found that price did not 

play a significant role in determining electricity consumption in South Africa. However, it can 

be argued that the declining real electricity price during those studies probably resulted in a 

somewhat subdued response, thereby presenting relatively low price elasticity coefficients. 

Therefore the point of contention is the magnitude of the elasticity coefficients, especially 

given the price increases that were implemented during the period under review. It cannot be 

assumed that the elasticity coefficients have remained unchanged while the sector was 

experiencing significant price adjustments. The new estimations of price elasticity 

coefficients will be useful to provide some insights into the impact that price increases have 

on electricity demand. It will bring clarity on whether or not the reduction in electricity sales 
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was a consequence of price increases during this period. This would contribute towards 

assessing the veracity of the claim that the utility is in the clutches of a death spiral. This 

study could assist policy makers in formulating an appropriate electricity pricing policy in 

South Africa. 

   

The results of this study should be interpreted in conjunction with the existing findings on the 

nature of the causality relationship between electricity consumption and economic growth as 

well as other related information. Firstly, the study discusses existing findings on the energy 

intensity of the South African economy and the implications that this may have on the price 

elasticity of electricity demand. Secondly, it provides an overview of the various schools of 

thought about the causality relationship between electricity consumption and economic 

growth. Thirdly, the study assesses the theoretical aspects of demand response in general 

and price elasticity in particular. Lastly, the study undertakes a review of the outcomes of the 

empirical studies that have been conducted in South Africa and internationally. This 

approach lays the ground for making inferences about the elasticity coefficients that are 

derived from the demand response during the period under review. Overall, the study draws 

from the findings of other related studies to provide a proper context within which the newly 

estimated price elasticity coefficients can be interpreted.  

 

1.4 Significance of the Study 
 

This topic is relevant and timely given that Eskom’s electricity sales have been steadily 

declining over the last few years while electricity prices have been increasing. On the one 

hand, the utility argues that electricity prices in South Africa are relatively low and must be 

gradually increased towards a truer cost reflective tariff. This would be achieved when the 

price of electricity equals its long run marginal cost of production. This implies that cost 

reflective prices must be used to indicate to the electricity consumers the true economic cost 

of supplying electricity so that supply and demand can be matched efficiently (Munasinghe, 

1981:333). On the other hand, there are preliminary indications that the consumer may be 

experiencing considerable pressure due to the high rate of electricity price increases. The 

reduction in electricity sales volumes over the last several years suggests that consumers 

are responding negatively to price increases. This could have an adverse effect on the 

utility’s revenue base which could threaten its long term sustainability. There is a risk that 

further price increases could spark a utility death spiral. This would severely undermine the 

developmental objectives of supplying cheap and reliable electricity to most segments of 

society. Therefore a study that seeks to establish the demand response to price increases in 
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this environment is crucial. It will assist policy makers in determining the most effective price 

path. 

 

Authors like Satchwell et al. (2015) downplay the possibility of a utility death spiral however, 

they recognise the revenue erosion brought about by solar DG penetration. They propose 

changes in the tariff designs to avoid cross subsidisation or implied subsidies. Nevertheless, 

they caution that demand sensitivity to tariff structure changes could contribute to the 

adoption of solar-plus-battery systems. This would exacerbate the revenue erosion 

experienced by utilities. A study by Picciariello et al. (2015) concluded that in order to avert a 

death spiral, utilities should design a tariff structure based on the cost-causality principle to 

better reflect costs based on the electricity network usage. Once again the success of such a 

policy shift would depend mainly on the demand sensitivity to changes in the structure of the 

electricity tariff. It is apparent that irrespective of how a utility chooses to respond to a 

declining revenue base, demand sensitivity remains a key aspect for consideration. Once the 

elasticity coefficients have been estimated, a utility can choose a most efficient tariff 

structure for itself. This study therefore forms the basis on which a plethora of alternatives 

could be considered going forward. Last but not least, this study reviews the existing 

literature on the causality relationship on electricity consumption and economic growth. This 

will help to locate the debate about price increases or changes in the tariff structure within 

the context of the developmental and socio-economic objectives that an electricity utility may 

have.  

 

1.5 Methods and Data 
 

This study uses monthly aggregate data for the mining sector as a whole. It follows Arisoy & 

Ozturk (2014) and Wang & Mogi (2017) by using value added in a particular sector as a 

proxy for income in that sector. Thus, mining production is used to estimate income 

elasticity. The mining production data is obtained from Statistics South Africa. The electricity 

consumption data is obtained from the Eskom sales department. The electricity price has to 

be treated carefully. Firstly the electricity price in the mining sector is not uniform. The price 

that the mines face varies according to the customer category, high season or low season, 

peak or off-peak. For the purposes of this study, average monthly prices are used for the 

industry as a whole. It is acceptable to use these monthly average prices since this study is 

less concerned about the absolute level of the electricity price itself but more about the rate 

of change of the price. However this approach has been criticised before. In economic theory 

firms and consumers face marginal price rather than the average price. Following this idea 

some studies use marginal price data when estimating price elasticity. However, Shin (1985) 
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and Ito (2014) found strong evidence that residential consumers respond to average 

electricity prices. This approach was also adopted by Wang & Mogi (2017).Thus in this study 

average price, rather than marginal price, is used. The average electricity price is obtained 

by dividing the monthly sales revenue by the number of electricity units sold during a 

particular month. This has an added advantage of effectively smoothing the electricity price 

for a particular month. The daily and sometimes hourly price variations are accounted for as 

part of a simple average. The monthly electricity price is derived as follows: 

 Cents per kilowatt hour =
Sales Revenue

Kilowatt Hours Sold
  

 

This study employs a time-varying parameters (TVP) model based on the Kalman filter 

technique. This technique provides the evolution of price and income elasticity coefficients 

over time. The model enables the detection of any exogenous shocks and structural breaks 

that may have occurred during the period under review. For comparison purposes, an 

Ordinary Least Squares (OLS) regression is also performed. The elasticity coefficients 

estimated by this model are averages for the period under review and may not be relied 

upon in the presence of breakpoints. This study uses the Chow Test to ascertain whether or 

not there are any breakpoints in the data.  

 

The research hypotheses of this study are the following: 

 

• Electricity prices have a negative relationship with electricity consumption in the 

mining sector. 

• Mining production (income) has a positive relationship with electricity consumption in 

the sector. 

 

The alternative hypotheses of this study are the following: 

 

• Electricity prices have a positive or no relationship with electricity consumption in the 

mining sector. 

• Mining production (income) has a negative or no relationship with electricity 

consumption in the sector. 

 

This study uses the 5 per cent critical value for all the tests that are performed. In instances 

where a different critical value is considered, this is clearly indicated with the rationale for 

that decision provided.  
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1.6 The Scope and Limitation of the Study 
 

This study focuses on the mining operations that receive their electricity supply directly from 

Eskom and are located inside the borders of South Africa. It excludes the electricity supplied 

to the sector by the redistributors and the electricity consumption that emanates from self-

generation by the mining sector itself. Eskom sells electricity directly to nearly 1 000 mining 

customers. This represents a significant majority of all the mining customers in the country. 

This customer base accounts for a large and concentrated amount of Eskom’s electricity 

sales. The sales data to this client base is fairly accurate as it is monitored by both Eskom 

and the mines for the purposes of smart metering and billing processes. The mining sector is 

arguably the most valuable customer base for Eskom. It provides a large stable and 

predictable demand of electricity all day, every day. This profile makes it one of the cheapest 

and easiest customer categories to cater for. In addition, electricity prices in the mining 

sector are used to provide a cross subsidy towards other customer categories, especially the 

lower income households and rural customers. If Eskom loses significant portions of its most 

valued – and perhaps its most profitable – client base, then its entire business model will be 

in serious jeopardy. It is for this reason that the study focusses on this customer base. The 

study focuses on the period from April 2006 to March 2019 as this was a period when the 

industry experienced significantly high electricity price increases. The price trajectory during 

this period has moved away from a sustained period of increases that were below the 

inflation rate. The rapid rise in electricity prices during the period under review provides an 

ideal platform from which an unbiased price response can be assessed. This will provide 

sufficient insight into how the sector has responded to this price trajectory albeit the 

increases were from a small base. 

  

1.7 Organisation of the Study 

 

This study is organized in five chapters. Following the introductory chapter, chapter two 

commences by discussing the electricity intensity of the South African economy, and how it 

relates to the causality relationship between electricity consumption and economic growth. It 

then presents a review of the literature on the price elasticity of electricity demand, both 

theoretically and empirically. Chapter three discusses the methodology and the econometric 

modelling. This chapter provides a detailed discussion of the econometric techniques that 

are used in this study. Chapter four analyses the data using the methods explained in 

chapter three and interpret the results obtained from E-views. The final chapter concludes 

the study and provides policy implications.  
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Chapter 2 

Literature Review 

 

2.1 Introduction  
 

This chapter has three main sections. It starts with the review of the energy and electricity 

intensity in South Africa. It proceeds by discussing the theories on the causality relationship 

between electricity consumption and economic growth. The second part discusses the 

theory of demand response in general and price elasticity in particular. The last part 

focusses on the empirical literature on the price elasticity of electricity demand in South 

Africa and across the globe.  

 

2.2 Energy Intensity  

 

It could be argued that an unintended consequence of the 1991 electricity price pact or any 

other similar pricing strategy would be the over-allocation of electricity as a factor of 

production. The sustained lower-than-inflation price increases could result in electricity being 

cheaper as compared to other factors of production. This could result in an over-allocation of 

electricity in the production process. Capital intensive sectors like mining would find it 

attractive to automate their production processes and use more units of electricity per unit of 

output. Once such automated processes are in place, the sector would become less 

responsive to electricity price increases. This would result in a relatively subdued price 

elasticity coefficient. It is therefore important to ascertain whether or not South Africa uses 

energy and electricity in particular, efficiently.  

 

Energy studies have received considerable attention, not only because of the increasing 

awareness of energy shortages, but also because of the adverse effects that all energy 

consumption has on the environment (Inglesi-Lotz & Blignaut, 2011:450). Energy intensity is 

directly related to the emission of greenhouse gases such that an improvement in energy 

efficiency may result in a reduction in emissions. The pure concept of energy intensity is 

defined as the ratio between energy consumption and economic activity (Silva & Guerra, 

2009:2590). The value of energy intensity shows how many units of energy are consumed in 

order to produce one unit of economic output. The literature differentiates between global 

energy intensity and added energy intensity (Silva & Guerra, 2009: 2590).  Global energy 

intensity is the total amount of energy consumed per production activity. The added level of 

energy intensity is the level of energy consumption per activity after taking into account the 

relative changes in production. Energy intensity is therefore inversely related to energy 
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efficiency, where energy efficiency refers to a reduction in the amount of energy consumed 

in order to render a certain level of service or economic activity. This improvement in energy 

efficiency can be achieved through technological improvements in the production process, 

better organisational structure or an improvement in the economic environment. As in other 

countries, the government of South Africa has identified energy supply as a critical element 

of economic growth and social development. The allocation of free basic electricity to 

impoverished segments of the population is aimed at ensuring universal access to electricity 

in the country (Inglesi-Lotz & Pouris, 2012:114). This will contribute positively towards the 

social wellbeing of all citizens with improved productivity being a potential spinoff from this 

programme. The electrification programme underpins the government’s policy towards 

access to energy as part of the country’s socio-economic developmental plan. 

 

Inglesi-Lotz & Pouris (2012) found that energy intensity in South Africa gradually declined 

between 1993 and 2006. Even though both economic output and total energy consumption 

increased during the period, the increase in economic output was higher than the increase in 

energy consumption. Notwithstanding the improvement, energy intensity in South Africa was 

estimated to be much higher than in other comparable countries. For the year 2000, South 

Africa’s energy intensity was estimated to be about 3.3 times the average of OECD countries 

(Sebitosi, 2008:1591). This was the case despite the fact that energy consumption per capita 

in South Africa was about half the average of the OECD countries (Sebitosi, 2008:1591). A 

combination of a high energy intensity and a low energy consumption per capita caused 

South Africa to be ranked amongst the top seven emitter of greenhouse gases per capita 

(Sebitosi, 2008:1591). A similar study by Kohler (2014) observed that even though the 

energy intensity level in South Africa has been gradually improving in recent years, the 

improvement compared unfavourably to the reductions in both OECD and non-OECD 

countries. The author calculated that in 2010, South Africa was amongst the highest energy 

intensive countries in the world at 0.13 tonnes of oil equivalent (toe) per thousand 2005 

dollars of GDP. This is in contrast to the energy intensity of 0.09 and 0.15 (toe) for OECD 

and non-OECD countries respectively (Kohler, 2014: 524).  

 

Inglesi-Lotz & Pouris (2012) ascertained that the industrial consumers accounted for the 

biggest proportion of energy consumption in South Africa. In addition, they found that the 

mining sector was amongst the most energy intensive sectors in the economy.  They found 

that the energy intensity in this sector increased by twenty-one per cent from 1993 to 2006, 

even though the national energy intensity declined during the period (Inglesi-Lotz & Pouris, 

2012:117). Energy intensity in the mining sector had defied the national trend over the period 

of their study. Energy efficiency improvements provide an opportunity to realise economic 



25 
 

value and meet energy demands in a sustainable and cost effective manner (Sebitosi, 

2008:1591). It was against this background that the Department of Minerals and Energy 

published the country’s first energy efficiency strategy in 2005.  The objective of this strategy 

is to increase access to affordable energy sources, accelerate energy efficiency gains and 

reduce greenhouse gas emissions. Therefore, energy efficiency represents the cheapest 

available prospect of energy supply. By becoming more energy efficient, an economy can 

achieve higher levels of production with the same amount of energy that is currently 

available to it, thereby eliminating, or at least reducing, the need for investment in additional 

energy supply infrastructure.  

 

2.3 Electricity Intensity  
 

The lower electricity prices emanating from the 1991 national electricity price pact 

inadvertently contributed to the South African economy becoming very energy intensive. 

Notwithstanding the fact that the character of the South African economy was already energy 

intensive, the historically low electricity prices had provided little incentive to save energy 

(Inglesi-Lotz & Pouris, 2012:113). Inglesi-Lotz & Blignaut (2012) found that there was a large 

variation of electricity intensity between various sectors in the economy. According to their 

calculations, the three most electricity intensive sectors in the economy in 2006 were basic 

metals, mining and quarrying, and non-metallic minerals. By contrast, the transport, 

construction, food and tobacco sectors were amongst the most electricity efficient sectors in 

the economy. Furthermore, the study found that the economy-wide total electricity intensity 

had been on an upward trend during the period 1994 to 2006. Electricity intensity more than 

doubled from 0.329 in 1990 to 0.713 in 2007 (Inglesi-Lotz & Blignaut, 2012:4495). The 

alarming rate of increase in electricity intensity since 1994 is attributed to the resource-based 

nature of the South African economy and the local abundance of coal. The historical 

domestic under-pricing of coal and electricity has led to a heavily capital and electricity 

intensive developmental path (Kohler, 2014:525). In addition, the government programme for 

universal access to electricity for households following the dawn of democracy in 1994 has 

also contributed to increased intensity.  

 

Inglesi-Lotz & Blignaut (2012:4494) found that electricity intensity in South Africa was 

significantly higher than the average of the OECD developing countries. Electricity intensity 

in the OECD countries has remained relatively constant at 0.35 GWH/$ million over the 

period 1990 to 2007, whereas South Africa’s electricity intensity has increased from 0.329 in 

1990 to 0.713 during the same period (Inglesi-Lotz & Blignaut, 2012: 4495). Between 1971 

and 2010, electricity intensity in South Africa was on average 43 per cent and 30 per cent 
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higher than in OECD and non-OECD countries respectively (Kohler, 2014:525). Overall nine 

out of thirteen sectors in South Africa were more electricity intensive than their OECD 

counterparts (Inglesi-Lotz & Blignaut, 2012). A common feature is that in both South Africa 

and the OECD countries, the basic metals sector had the highest electricity intensity. 

However, the electricity intensity of this sector was significantly higher in South Africa. In as 

far as the mining and quarrying sector is concerned, electricity intensity in South Africa is 

significantly higher than the OECD average (Inglesi-Lotz & Blignaut, 2012:4496). A further 

study by Inglesi-Lotz & Blignaut (2014) aimed at creating a theoretical benchmark-and-trade 

carbon system collaborated the findings of the earlier studies. The authors found that the 

differences between sectoral electricity intensities of South Africa and the OECD countries 

were substantial. The study used three different standards of electricity intensity to 

benchmark against. In all three scenarios, the mining and quarrying sectors were deemed to 

be purchasers of carbon credits as their electricity intensity was higher than the OECD 

benchmark (Inglesi-Lotz & Blignaut, 2014:837). Even in a more generous scenario where the 

benchmark was set at 20 times the OECD level, the South African mining sector was found 

short of at least 20 carbon credits. This is in contrast to the construction sector for example, 

which would be a seller of up to 100 carbon credits if such a system were introduced. This 

indicates that the construction sector is more efficient and less electricity intensive than its 

OECD counterparts.  

 

According to the various studies reviewed in this chapter, it is evident that while South 

Africa’s energy intensity has been on a gradual decline, electricity intensity was on the rise 

from 1990 to 2007. This is partly because South Africa has historically enjoyed favourable 

electricity tariffs. It can also be argued that this was a direct consequence of the 1991 

electricity price pact. This price pact encouraged automation and made electricity intensive 

processes attractive. Electricity had become cheaper over time, which resulted in its over-

allocation in the production sectors of the economy. By 2011, South Africa still had electricity 

tariffs that were amongst the lowest in the world (Kohler, 2014:525). The cheap and 

abundant electricity propelled the mining sector to be one of the top electricity intensive 

industries in the economy. The electricity intensity in this sector rose sharply from 1994 to 

2006 with no indication of changing course (Inglesi-Lotz & Blignaut, 2012:4497). The 

increasing electricity intensity coupled with electricity shortages pose a threat to the country’s 

sustainable development.   

 

It follows that electricity price reform, consumer education and other efficiency enhancement 

programmes, amongst other initiatives, will have to be implemented in order to safeguard the 

country’s energy security into the future. A range of options is available for South Africa to 
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implement in order to have a successful energy efficiency and conservation programme. 

These measures include the use of more efficient electrical appliances, the use of more 

renewable energy and extensive consumer education. Although the government has 

introduced credible policy documents to improve energy efficiency, it is the implementation of 

these policies that remain a problem (Sebitosi, 2008:1595). Consequently, electricity tariffs 

had to increase in order to provide the correct price signal in the market. A further analysis of 

the electricity intensity in South Africa indicates that there has been a gradual improvement 

in the intensity level during the period under review. Figure 10 indicates that after a marked 

increase following the 1991 electricity price pact, electricity intensity levels have been on a 

downward trend since 2004. The improvement in the intensity levels coincided with an 

increase in electricity prices. This suggests that a sustained correction in the price level may 

have played a role in improving electricity efficiency in the economy. 

 

Figure 10: Electricity Intensity 

 

Source: Integrated Resource Plan (IRP 2019) 

 

In addition to a general price increase, some scholars have suggested that differential pricing 

can be used as a tool to encourage efficiency gains and reduce electricity intensity in the 

economy. It is argued that the negative effects of an electricity price increase could be 

minimised if these increases are diversified amongst high electricity consuming industries 

like mining (Kohler, 2014:531). A differential tariff structure which is punitive to high electricity 

intensive sectors would raise the cost of energy inefficiency and induce a rearrangement of 
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the production processes such that an efficient allocation of electricity is achieved. It follows 

that in the long term a differential electricity pricing regime would drive out the least electricity 

efficient industries, thereby making the economy less electricity intensive. Such a system is 

similar to what was applied in China in 2004. The government of China instituted special 

pricing policies for electricity intensive sectors in an effort to improve energy efficiency and 

reduce demand pressure on the electricity network. Electricity intensive industries that did 

not meet specific energy efficient targets were taxed through higher differential electricity 

tariffs (Price et al., 2010:6498). The primary objective of the system was to drive electricity 

inefficient sectors out of the market or force innovation in those sectors. Another proposed 

system involves penalising electricity intensive sectors through the use of carbon tax. The 

carbon benchmark-and-trade system as envisaged by Inglesi-Lotz & Blignaut (2014) is one 

such system. In such a regime electricity intensive sectors would be compared against an 

agreed benchmark. If these sectors perform worse than the benchmark then they would 

have to purchase carbon credits in order to continue operating. However, if they outperform 

the benchmark they earn carbon credits which could be sold in the market. This is a carrot 

and stick system whereby electricity users are rewarded for efficiencies and are penalised 

for inefficiencies.  

 

The available literature suggests that South Africa and in particular the mining sector is very 

electricity intensive as compared to its counterparts. Policy makers should implement 

corrective measures to improve the electricity and energy efficiency of the country in the long 

run. The introduction of the Carbon Tax Act No 15 of 2019, which became effective from 

June 2019, is one of the policy initiatives aimed at reducing the country’s carbon footprint. It 

gives effect to the polluter-pays-principle for large emitters and helps to ensure that firms and 

consumers take the negative externalities (including those emanating from electricity 

consumption) into account when evaluating their future production processes. It is clear that 

policy makers have several policy options available to them when trying to reduce electricity 

intensity. However any efforts to reduce electricity usage in any sector should take into 

account the potential causality relationship between electricity consumption and economic 

growth. 

 

2.4 Causality: Electricity Consumption and Economic Growth 
 

Several studies indicate a high correlation between electricity consumption and economic 

growth. In a study that encompassed over one hundred countries, which collectively 

accounted for more than ninety-nine per cent of the global economy, Ferguson et al. (2000) 

established that there is a highly-correlated relationship between electricity consumption and 
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economic growth. However, the correlation between electricity consumption and economic 

growth was stronger than the correlation between total energy consumption and economic 

growth (Ferguson et al., 2000:934).  In addition, the correlation factor for electricity 

consumption was higher in wealthier countries than in poorer ones. In a similar way 

Rosenberg (1998) showed that electricity supply played an integral role in the economic 

development of the United States of America. Electricity supply was crucial both as a factor 

of production during the country’s industrial development and as a key factor in improving 

the quality of life of its citizens (Rosenberg, 1998:7). Therefore, electricity consumption is 

beneficial for the production processes in an economy and it has a positive utility impact on 

the welfare of the consumers. However, a high correlation between electricity consumption 

and economic growth does not imply causality. The main question that economists are 

concerned with is whether electricity consumption stimulates, retards or is neutral to 

economic growth. From an economic planning perspective, it is important to establish 

whether economic development takes precedence over electricity consumption, or whether 

electricity supply itself is a stimulus for economic growth. The literature concerning the 

relationship between electricity consumption and economic growth has led to the emergence 

of two opposite views, namely the neutrality view and the institutional view.  

 

The neutrality hypothesis assumes that there is no causality between electricity consumption 

and economic growth (Ghali & El-Sakka, 2004:225). It is based on a neo-classical 

assumption that electricity plays a relatively minor role in influencing economic growth. The 

main reason for the neutrality hypothesis is that the cost of energy is usually very small as a 

proportion of GDP, thus it is not likely to have a material impact on overall economic growth. 

The proponents of this hypothesis argue that the possible impact of a change in electricity 

consumption on economic growth depends mainly on the structure of the economy and the 

stage of economic development of the country concerned (Ghali & El-Sakka, 2004:226). It is 

argued that as the economy develops, its production structure becomes more service 

orientated and less energy intensive.  

 

The neutrality hypothesis is likely to hold in instances where energy intensity is low and / or 

energy costs are relatively low. As a result, the neutrality hypothesis is more likely to be 

supported by studies that are conducted in high income countries which are at an advanced 

stage of development. It follows that this hypothesis may fall short in instances where an 

energy intensive sector is being assessed irrespective of the state of development of the 

country concerned. The impact of a change in electricity consumption in the sector might 

have a material impact on its output growth, even though the impact on overall economic 

growth may be insignificant. What is more, if this hypothesis is proven it may have serious 
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implications for the optimal use of different factors of production in the economy. This is 

essentially the case for countries that have an abundance of energy sources like oil, natural 

gas or coal where electricity prices are likely to be distorted by some form of subsidies. The 

lack of causality between electricity and economic growth could lead to an inefficient use of 

electricity as a factor of production. This inefficient allocation of resources could lead to an 

inappropriate growth of some sectors of the economy, thereby resulting in an imbalanced 

economy. The incorrect pricing and subsequently inefficient use of electricity as a factor of 

production may result in an economy that is skewed towards more capital-intensive means 

of production. This may result in the displacement of labour, as the economy becomes more 

capital intensive. Such an outcome could result in less job opportunities been created. 

Typically, this would not be good for an economy that is still in a developing stage.  

 

On the other hand, the institutional economists consider energy and electricity in particular 

as a limiting factor to GDP growth. They argue that there is a causality relationship between 

electricity consumption and economic growth (Ghali & El-Sakka, 2004:225). They consider 

electricity as a critical component of the production process in any modern economy. Thus, 

its unavailability could limit the productivity of other factors of production. There are three 

distinct views in the literature about the direction of the causality between electricity 

consumption and economic growth. The first view is known as the growth hypothesis.  This 

hypothesis assumes that there is a unidirectional causality that runs from electricity 

consumption to economic growth (Ozturk, 2010:341). The growth hypothesis asserts that 

electricity supply has a significant impact on economic growth both directly as part of the 

energy sector and indirectly as a complement to labour and capital in the production 

process. The proponents of this view argue that governments should encourage an increase 

in electricity consumption, as it will inevitably result in an increase in economic growth and 

an improved standard of living for its citizens. If the growth hypothesis holds then all 

electricity conservation initiatives should be halted, as this would have negative implications 

for economic growth. This is in sharp contrast to the conservation hypothesis. This 

hypothesis stipulates that electricity consumption is driven by economic growth (Apergis & 

Payne, 2011:770). As a result, unidirectional causality flows from economic growth to 

electricity consumption. Therefore, if the economy achieves a different level of electricity 

consumption this would not affect economic growth. It follows that if this hypothesis holds, 

electricity conservation policies can be implemented without any negative implications for 

economic growth. The economy will simply become more energy efficient without any 

adverse effects on income growth or the general standard of living. The third view is the 

feedback hypothesis. This hypothesis advocates that there is an interdependent relationship 

between electricity consumption and economic growth (Ozturk, 2010:342). This suggests 
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that there is a bidirectional causality relationship between the two variables. The feedback 

hypothesis implies that a reduction in electricity consumption will have negative implications 

for economic growth and vice versa.  

 

The idea that electricity supply is essential for economic growth and development has been 

well established (Blignaut & De Wet, 2001:360). If electricity is accepted as a limiting factor 

to GDP then any shortages in electricity supply could hinder economic growth. Similarly, any 

tampering with electricity consumption could have an effect on economic development. It is 

crucial for economists and policy makers to ascertain whether economic development takes 

precedence over electricity consumption or whether electricity consumption serves as a 

stimulant to economic development in a particular country. This involves establishing the 

direction of the causality relationship between the two variables in order to formulate 

appropriate energy policies that can achieve the intended outcomes.  

 

To sustain a high economic growth rate when the unidirectional causality effect runs from 

economic growth to electricity consumption, the economy should be able to cater for a 

rapidly increasing level of electricity consumption. This requires a country to maintain an 

adequate level of electricity generation capacity reserves at all time. A failure to cater for the 

increasing level of electricity consumption may have negative economic repercussions. This 

direction of the unidirectional causality effect makes it possible to consider energy 

conservation strategies without jeopardising prospects of economic growth. In a similar way, 

this argument is relevant to the neutrality hypothesis. In such a scenario, electricity 

conservation strategies can be implemented safely as it will only cause energy efficiency 

gains with little or no effect on economic growth. Such policies should be pursued, as they 

will result in a better allocation of resources and / or a reduction in the country’s carbon 

footprint. On the other hand, if the unidirectional causality effect flows from electricity 

consumption to economic growth, a reduction in electricity consumption will lead to a fall in 

economic growth. In this scenario, policies promoting an increase in the availability of 

electricity will have positive economic growth implications. This will also improve the 

standard of living of communities who did not have previous access to electricity. In the case 

of the feedback hypothesis, the bi-directional relationship between the two variables creates 

a possibility that energy conservation policies that are aimed at reducing electricity 

consumption may curtail economic growth. In a similar way, a reduction in economic growth 

should have a dampening effect on electricity consumption while an increase in economic 

growth should cause a surge in consumption. Policy makers should keep this in mind when 

seeking more effective policy solutions.  
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There is still no consensus on either the existence of the causality relationship between 

electricity consumption and economic development or its direction. Various studies found 

different results for different countries. For example, a study by Wolde-Rufael (2006) found 

different causality results for seventeen African countries. The study found a positive 

unidirectional causality running from economic growth to electricity consumption for six 

countries, an opposite causality for three, and bidirectional causality for another three. There 

was no causality detected for the remaining five countries, including South Africa. The 

results on South Africa were in sharp contrast to the results of the study by Odhiambo 

(2009), which found a long run bidirectional causal relationship between electricity 

consumption and real gross domestic product. The lack of consensus on the empirical 

results may be attributed to differences in model specifications, variable selection and time 

horizon between the two studies. Furthermore, the different findings for different countries by 

Wolde-Rufael (2004) indicate that there is no uniformity on the existence or the direction of 

causality between electricity consumption and economic growth. A possible reason may be 

that these countries are at different stages of development, which results in different 

scenarios and hypotheses.  

 

In an effort to bring clarity on this, a study by Apergis & Payne (2011) used a sample of 

eighty-eight countries to examine the causal relationship between electricity consumption 

and economic growth. The countries were divided into four panels according to the World 

Bank’s income classification for high income, upper middle income, lower middle income and 

low income countries. The study revealed the presence of bi-directional causality for high 

and upper middle income countries (Apergis & Payne, 2011:779). In the case of lower 

middle income countries, there was unidirectional causality running from electricity 

consumption to economic growth in the short run while bidirectional causality was detected 

in the long run. Finally, the study indicated unidirectional causality running from electricity 

consumption to economic growth for the low income panel (Apergis & Payne, 2011:780). 

This means policies aimed at improving the accessibility and affordability of electricity in the 

low income countries will also improve their economic growth prospects. What is more, these 

policies will also improve the quality of life of their citizens, especially in the rural and remote 

areas where access to electricity is inadequate. The results for the high and upper middle 

income country panels provide support for the feedback hypothesis. In these countries, 

higher economic growth may stimulate demand for more electricity consumption while higher 

electricity demand may induce faster economic growth. The interdependence between 

electricity consumption and economic growth suggests that electricity conservation 

measures may affect economic growth negatively.  
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South Africa was included amongst the upper middle income panel in the study. These 

findings suggest that electricity consumption and economic growth have an interdependent 

relationship in the country. Therefore, the electricity policy in the country must be guided by 

this relationship. Firstly, all measures of electricity conservation or the restriction of electricity 

consumption must be implemented with caution as they might restrain economic growth. 

Secondly, it is important for the country to have an adequate supply of electricity, as it is a 

stimulant of economic growth. In addition the results indicate that there is merit for improving 

the availability and accessibility of electricity across the country. This will yield positive 

developmental and social results. Therefore, investment in the electricity sector is paramount 

for long-term economic development. It should be noted that given the bidirectional nature of 

the causality between electricity consumption and economic growth in South Africa, the 

demand response to any electricity policy should be taken into account. This includes 

assessing the demand response to any proposed electricity price increases. If a price 

change results in a material change in the level of electricity consumption, it could have an 

impact on economic growth and social welfare. A price change that results in lower electricity 

consumption might restrain economic growth. 

 

2.5 Theoretical Literature Review – Demand Response  

 

Demand response refers to a change in the behaviour of consumers in lieu of a change in 

the scarcity of supply (Albadi & El-Saadany, 2008:1990). It includes all intentional 

modifications to the consumption profile with respect to the timing and the level of total 

consumption. This change in behaviour can be realised as a result of an Incentive Based 

Response (IBR) and/ or a Price Based Response (PBR). 

 

2.5.1 Incentive and Price Based Response  
 

Incentive based programmes involve rewarding consumers for reducing their consumption 

during a particular time of the day or season of the year. On the other hand price based 

programmes involve flattening the demand curve by introducing price variations between 

one period and the next. In the electricity sector, IBR includes measures like Direct Load 

Control, Interruptible Load, Emergency Demand Reduction and Ancillary Services Market 

(Albadi & El-Saadany, 2008:1990). Participants in these programmes give consent to their 

supplier to curtail their electricity supply for some time if certain conditions in the electricity 

network are met. This can be an inconvenience to the consumer as supply curtailment can 

happen at short notice or without any warning at all, depending on the nature of the 

programme. For this inconvenience, consumers who enlist on these programmes are 
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compensated either through a rebate on their electricity bill, a favourable tariff or direct cash 

payments.  

  

Electricity price response refers to a consumer’s change in electricity consumption in 

response to a change in the price that it pays for electricity (Neenan & Eom, 2007:4).  A price 

change can be either explicit or implicit. An explicit price change occurs when the posted 

price of a unit of electricity that a consumer pays increase or decrease. If the posted price 

remains unchanged, but a consumer is offered a financial incentive to alter its consumption 

profile this will in effect be an implicit price change. The literature broadly refers to three main 

pricing schemes that have been implemented to promote a greater demand response in the 

electricity market (Fan & Hyndman, 2011:3710). The Time of Use (TOU) tariff is the most 

commonly used price scheme. This refers to a tariff structure where pre-determined but 

different unit prices are applied for usage during different blocks of time within a twenty-four-

hour day. The difference in price serves as an incentive for consumers to use electricity 

during the time slots when it is cheaper to do so. In South Africa, some large power users 

get incentivised to use more electricity at night than during the day by virtue of a cheaper 

night tariff (Eskom GMTNP, 53). This is done to reduce electricity demand during the day in 

order to provide some relief to the network. The second category is the Critical Peak Price 

(CPP). This tariff is used only during peak demand periods, while a flat tariff or TOU tariff is 

used for the rest of the day. This tariff is designed to discourage consumers from using 

electricity during peak periods. It is essentially the most expensive tariff of the day. The third 

category is Real Time Pricing (RTP). Where an integrated wholesale electricity market 

exists, prices can be determined on an hourly basis, thereby reflecting the changing demand 

and supply dynamics. In such a market, customers face hourly price changes each day. 

These hourly prices are usually announced a day in advance (Niemeyer, 2001:1).    

 

Currently South Africa does not have an integrated wholesale market whereby consumers 

and suppliers interact to determine prices. To date real time pricing in its purest form does 

not exist in the country. However, a weaker form of RTP can be observed in Eskom’s 

seasonal pricing mechanism. For example, in winter electricity demand increases as 

temperatures drop and the demand for heating energy increase. This often puts pressure on 

the electricity network. In response to this supply constraint Eskom charges its key 

customers a higher tariff during this period (Eskom GMTNP, 2013:53). This is done in an 

effort to curtail demand during winter. The higher winter tariff is implemented in order to 

reflect the unique supply and demand dynamics of that season. After winter, the tariff is 

adjusted back to where it was before. 
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These three price schemes are to various degrees a departure from the traditional flat tariff 

structure whereby a consumer would be charged a flat tariff irrespective of the time of day or 

season of use. It follows that a successful implementation of such schemes requires smart 

meters that are able to record the required additional information over and above the amount 

of energy used. In South Africa, the use of smart meters has historically been reserved for 

large power users and it has only recently been rolled out to some households.  

 

2.5.2 Demand Transformation vs Demand Shifting  
 

A price change, whether explicit or implicit, can encourage a consumer to change its 

demand profile. A consumer could alter its demand profile within a one day or one season 

cycle while keeping its total electricity consumption relatively unchanged. This is referred to 

as demand shifting (Neenan & Eom, 2007:5).  This is typical of a situation where a consumer 

‘shifts’ its electricity consumption from a high tariff period to a low tariff period within a day. 

Thus, the objective of ‘shifting’ is to substitute electricity usage in a higher tariff time period 

with usage in a cheaper tariff time period. The objective of demand ‘shifting’ is not to reduce 

overall demand by substituting electricity with another factor of production, but it is to take 

advantage of lower tariffs by shifting demand during the course of the day. In contrast, 

demand transformation refers to modifying the total electricity consumption in a particular 

period in response to a change in the relative price of electricity as compared to other factors 

of production (Neenan & Eom, 2007:6). A consumer that is facing an electricity price change 

may decide to substitute electricity with other forms of energy like natural gas, solar power or 

any other form of self-generation, thereby reducing its total electricity consumption. 

 

 It is important to note that for demand transformation to occur in the electricity sector, the 

consumer should have access to other forms of energy supply. Furthermore, the relative 

price of the substitute energy should be cheaper than the new electricity price, otherwise any 

demand transformation would not be profit maximising. Similarly, for demand shifting to 

happen in a sustainable manner, the opportunity costs of doing it should not be prohibitive to 

the consumer. Nevertheless, the distinction between the two demand responses is critical as 

it explains the impact of a price change on the demand profile and on total electricity 

consumption. Both elements have crucial implications for the revenue expectations of a 

power utility. If sufficient demand shifting occurs (i.e. from a high tariff time block to a low 

tariff period), it will have negative revenue implications for the utility, even though total 

electricity consumption may remain relatively unchanged. However, a total reduction in 

electricity consumption, which is what is observed in the case of demand transformation, 
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could have either a negative, neutral or positive impact on revenue depending on price 

elasticity. 

 

2.5.3 Price Elasticity  
 

Demand response is a component of the neoclassical theory of demand. This theory forms 

the basis of the demand curve. The demand curve shows how much of a good or service 

consumers are willing to buy as the price per unit changes. The law of demand states that 

there is an inverse relationship between quantity demanded of goods or services and their 

unit price, ceteris paribus. This means that holding all other factors constant, an increase in a 

price of a good or service will result in a reduction in the quantity demanded of that good, 

and vice versa. Goods that comply with this rule are known as normal goods. Electricity is a 

normal good, thus it should have a negatively sloped demand curve in accordance with the 

law of demand. An increase in its unit price should therefore result in a reduction in its 

quantity demanded.  

 

The magnitude of the demand response or price sensitivity can be measured by the 

coefficient of price elasticity. Price elasticity is the relative change in quantity demanded 

which is caused by a change in price, ceteris paribus (Neenan & Eom, 2007:15). It is defined 

as the ratio of the percentage change in quantity demanded to the percentage change in 

price while holding all other factors of demand unchanged (Niemeyer, 2001:2).  Price 

elasticity seeks to isolate the percentage change in the quantity demanded, following a one 

percent change in price.  

 

A good is considered to be price-elastic if its elasticity coefficient is greater than 1, in 

absolute terms. This means that a 1% increase in price will result in a greater than 1% 

decrease in the quantity demanded. By the same measure, if a 1% increase in price results 

in less than a 1% decrease in quantity demanded, then the good is considered to be price-

inelastic. If the ratio between the percentage price change and percentage quantity change 

equals 1, then elasticity is unitary. This means that a particular percentage change in price 

will result in an equal percentage change in the quantity demanded. Figure 11A illustrates 

the demand curve of a price-elastic good. A small increase in price results in a large 

decrease in the quantity demanded. This means that the elasticity coefficient is greater than 

1 in absolute terms. Figure 11B illustrates the opposite. The elasticity coefficient in this case 

is less than 1 in absolute terms. This means that a large price increase will result in a 

relatively small decrease in the quantity demanded. The good is therefore price-inelastic. 
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Figure 11A: Elastic Demand   Figure 11B: Inelastic Demand  

                                                                  

 

 

 

 

 

 

 

 

 

Price elasticity is useful because it reflects the relationship between the change in the price 

of a good and the change in the consumers’ expenditures on that good (Niemeyer, 2001: 2).  

If the demand is price elastic, a price increase will lead to lower total expenditure on that 

good. If the demand is price inelastic a price increase will result in a higher total expenditure. 

In the case of unitary price elasticity, the percentage price change is offset by an equal 

percentage change in quantity demanded thereby neutralising each other’s impact on total 

expenditure (Niemeyer, 2001:2). The underlying consumer behaviour, which underpins the 

theory of demand, stipulates that a consumer with a fixed budget constraint essentially has 

only three options when faced with a price increase: Firstly, the consumer can buy another 

good as a substitute. Secondly, the consumer can buy less of the good with no 

corresponding purchase of a substitute. Lastly, the consumer can continue to purchase the 

same amount of the good and reduce expenditures on other goods in his or her consumer 

bundle. It is therefore essential for elasticity coefficients to be specific about which kind of 

demand response they are measuring.  

 

Academic literature refers to two kinds of electricity price elasticity coefficients, namely own-

price elasticity and substitution elasticity (Fan & Hyndman, 2011:3709). The own-price 

elasticity of electricity is defined as a percentage change in total electricity usage as a result 

of a one percentage change in the unit price of electricity (Bernstein & Griffin, 2006:6). 

Therefore own-price elasticity is a measure of electricity demand transformation in response 

to a one per cent price change. If the electricity price varies from one time block to the next 

in a single a day or season, as in the case of TOU and RTP tariff schemes, consumers may 

treat electricity usage in different time blocks as substitute goods (Neenan & Eom, 2007: 17). 

Electricity usage in peak periods may be substituted with usage in off-peak periods if tariffs 

are materially different between the two periods. When there is a price change in one of the 
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“goods” (e.g. peak period electricity), it will not only affect demand of that good, but it will 

also affect demand of the substitute “good” (off-peak electricity). The substitution elasticity 

thus measures the percentage change in the ratio of electricity consumption between two 

time periods following a price change in either of the two periods (Neenan & Eom, 2007:17). 

Thus, price elasticity coefficients play a pivotal role in explaining the revenue implications of 

any price change.  

 

Own-price elasticity and substitution elasticity are somewhat similar in a sense that they both 

measure the magnitude of demand response following a price change. If the coefficient of 

either of the two is elastic, it indicates a relatively large change in electricity consumption in 

response to a price change. However, since each one of these elasticity calculations 

measures a different demand response, they should each be used in their appropriate 

context. Own-price elasticity should be used where total electricity consumption has been 

reduced, whereas substitution elasticity should be used where the price response is mainly 

characterised by shifting consumption from one period to the other (Fan & Hyndman, 

2011:3717).   

 

2.5.4 Short-run vs Long Run Price Elasticity  
 

The magnitude of a demand response to a particular price change will differ over time. The 

consumers’ ability to respond to price changes is likely to increase as more time passes 

following the announcement of a price change. In the short-run, which is usually considered 

to be less than two years, consumers have limited capacity to respond to a price change. 

Since capital stock is fixed in the short-run, the consumers’ only available response is to 

reduce the intensity of use of their current stock of equipment or shift their consumption to 

off-peak periods (Fillipini, 2011: 5817).   

 

In the long-run, which is considered to be greater than five years, consumers have both the 

time and motivation to respond to a price change (Niemeyer, 2001: 2). In the long-run new 

technologies and new production processes are introduced. This creates scope for the 

consumers to migrate from their current capital equipment into more energy efficient stock as 

part of their business recapitalisation processes. With the benefit of time, consumers could 

also re-engineer their production processes such that they become more energy-efficient 

and more cost-effective. They could even consider other options, which were not available to 

them in the short-term. For example, they could install their own electricity generators for 

their own consumption and/or adjust their work schedules such that most of their production 

activities – and subsequently consumption – are shifted from peak to off-peak periods. As a 
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result, price elasticity coefficients tend to be higher in the long-run than in the short-term 

(Niemeyer, 2001: 2).    

 

Price elasticity is a vital measure of the quantum of the demand response following a price 

change. It provides insight into what the impact of a potential price change could be. 

Elasticity coefficients are useful in estimating the effects of an electricity levy or subsidy on 

overall electricity demand. Price elasticity estimates are an important tool for policy-makers, 

energy-planners and managers of power utilities. Consider, for example, a public utility 

requesting an electricity price hike from the regulator. The regulator needs to consider how 

the price adjustment will affect demand both in the short-run and in the long-run. It is crucial 

that the appropriate form of price elasticity is used to measure the expected demand 

response. The substitution elasticity is useful to measure demand shifting, while own-price 

elasticity is useful to measure demand transformation. Since the focus of this study is to 

ascertain whether price increases have resulted in the transformation of electricity demand in 

the mining sector (i.e. a change in aggregate electricity demand), it pays attention to own-

price elasticity only, and not to substitution elasticity. For simplicity’s sake and in keeping 

with convention, henceforth this study refers to ‘price elasticity’ instead of ‘own-price 

elasticity’.  

 

2.6 Empirical Literature Review – Price elasticity 

 
Price is an important factor for electricity consumption. This highlights the need for 

understanding its demand sensitivities (Inglesi-Lotz & Blignaut, 2011:458). A review of the 

empirical estimates of price elasticity of electricity demand can be broadly categorised as 

long-term and short-term elasticity estimates. The main objective of this section is to discuss 

the key findings of the various elasticity studies that have been conducted in different 

countries. These findings are then compared to the elasticity coefficients that have been 

estimated for South Africa. In addition, the South African studies are critiqued in order to 

identify potential areas of improvement that could be incorporated into this study.  

 

2.6.1 International Studies 
 

A number of studies found that the price elasticity of electricity demand is generally very low 

and insignificant, especially in the short run. Although electricity demand is indeed price-

inelastic, some studies indicate that price plays a significant role in determining electricity 

demand in the long run. Irrespective of the econometric techniques used, the findings among 

different studies were fairly similar.  



40 
 

Bose & Shukla (1999) examined the econometric relationship between electricity 

consumption and variables like income, price of electricity and price of diesel for five major 

customer categories in India. These categories were residential, commercial, agriculture, 

small and medium industries, and large industries. Income and price elasticities of electricity 

consumption were estimated at the national level by pooling data across 19 states spread 

over a nine-year period. The results showed that short run price elasticities varied from -1.35 

in agriculture, -0.65 in residential, -0.45 in large industry, -0.26 in commercial and 

insignificant in small and medium industries. Electricity demand in the commercial and large 

industrial sectors were found to be income elastic while the residential, agricultural and small 

and medium industries were inelastic. On the whole, income was found to play a more 

critical role than electricity prices in determining electricity demand. With all industries taken 

together the income elasticity coefficient was estimated to be 0.73. Using a slightly different 

approach, a study by Al-Faris (2002) resorted to identifying the main economic fundamentals 

that influenced the behaviour of electricity consumption in the Gulf States (Saudi Arabia, 

United Arab Emirates, Kuwait, Oman, Bahrain and Qatar) from 1970 to 1997. According to 

the study, both income and prices affect demand. The average price elasticity for the 

countries under review was -0.09, with estimates ranging from -0.04 for Saudi Arabia to -

0.18 for Qatar. The author found that for any price policy to be an effective demand reduction 

tool, given the low elasticity and overall electricity prices, a substantial upward adjustment of 

electricity tariffs would be required (Al-Faris, 2002:123).  

 

A sectoral and regional study by Egorova et al. (2004) on Russia’s industrial sectors, 

produced similar findings. The study showed that even though price is an important factor 

when determining electricity demand, output is more significant. For the period from 1998 to 

2002, the estimated price elasticity of electricity demand in Russian industries ranged from -

0.2 to -0.4. The authors noted that these estimates were fairly close to the European and 

American estimates (Egorova et al., 2004:8). In the United States of America, a study by 

Kamerschen and Porter (2004) used the simultaneous equation model to estimate the price 

elasticity coefficient of electricity demand for the residential and industrial sectors for the 26 

years ending in 1998. The study found that the residential customers were more price 

sensitive than the industrial customers. It also confirmed the view that weather plays a 

greater role in explaining electricity consumption in the residential sector than in the 

industrial sector. The residential price elasticity estimates ranged between -0.085 and -0.94 

whereas the industrial estimates ranged between -0.34 and -0.55. Total electricity demand 

appeared to be the least sensitive with its price elasticity estimate ranging between -0.13 and 

-0.15. The authors noted that these elasticity values were in line with the findings of other 

previous studies in the United States (Kamerschen & Porter, 2004:97).  
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In Sweden, a study was conducted by Lundberg (2009) to determine the demand functions 

for Swedish industrial electricity consumption for the periods from 1960 to 1992 and from 

1993 to 2002. Lundberg found that the coefficients for price elasticity and the cross-price 

elasticity of electricity demand were insignificant in the first period, but significant in the 

second period. The author indicated that after the deregulation of the electricity market which 

effectively commenced in 1992, firms had been induced to expand their flexibility in energy 

usage, which in turn made substitution between electricity and oil much easier (Lundberg, 

2009:31). This made electricity demand more sensitive to price, although it was still rather 

price-inelastic. Bianco et al. (2010) analysed non-residential electricity consumption in 

Romania for the period from 1975 to 2008, to forecast consumption up to 2020. According to 

the authors’ findings the price elasticity of electricity demand was -0.0752 in the short-run 

and -0.274 in the long-run (Bianco et al., 2010:3587). This indicated higher demand 

response in the long run than in the short run. In a similar way, Dilaver & Hunt (2010) 

assessed the relationship between electricity consumption, industrial value-added and 

electricity prices, to forecast the future industrial demand for electricity in Turkey. Their study 

provided projections for electricity demand in 2020 by applying a structural time series 

technique to annual data covering the period from 1960 to 2008. According to their findings 

the price elasticity of electricity demand in Turkey for the period was -0.16. However, the 

underlying demand for energy showed an increasing trend (Dilaver & Hunt, 2010:17), 

suggesting a potentially higher demand response in the long run. 

 

Ghaderi et al. (2006) examined the electricity demand functions of the industrial sector in 

Iran. The authors estimated the electricity demand for 17 subgroups from 1980 to 2002. 

They used different variables to measure the electricity demand sensitivity in the industrial 

sector. These variables included a number of industrial customers representing components 

of the demand function and dummy variables to control for the Iran-Iraq war. The results 

indicated that the coefficients of price elasticity are significant in most subgroups, such as 

food, furniture and basic metals, whereas the overall electricity demand was still price-

inelastic (Ghaderi et al., 2006:403). Muazzam et al. (2013) assessed the growth trends of 

electricity consumption in Pakistan’s industrial sector for the period from 1975 to 2008. The 

authors found that price is a significant variable in this equation, with an increase in 

electricity tariffs causing a decrease in the demand for electricity. The study also showed that 

an increase of one percentage point in the price of electricity would result in a 0.28 per cent 

decrease in the demand for electricity. Although the authors found that electricity demand is 

price-inelastic, they still recommend,  for the purpose of fostering industrial growth, policies 

that ensure price control on ‘future demand’ as well as efficient compensation to cover any 

‘shortages of electricity’  (Muazzam et al., 2013:643). 
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De Vita et al. (2006) used an autoregressive distributive (ARDL) bounds testing approach to 

co-integration to estimate the long-run elasticity of the Namibian energy demand for the 

period from 1980 to 2002. The authors estimated the long-run elasticity coefficients for the 

aggregate energy consumption levels for electricity, petrol and diesel. Their finding showed 

that energy consumption has a negative correlation with the price of electricity, while the 

price elasticity coefficients vary for the different fuel types. While the price elasticity of 

electricity demand was estimated at -0.30, the authors found no significant cross-price 

elasticity outcomes for the various fuel types (De Vita et al., 2006:3462). Similarly, Ziramba & 

Kavezeri (2012) also used the bounds testing approach to estimate the long-run price 

elasticity of aggregate electricity demand for Namibia from 1993 to 2010. Their findings 

showed that electricity demand is price-inelastic, with a long-run elasticity estimate of -0.32 

(Ziramba & Kavezeri, 2012:208).  

 

Wasantha-Athukorala & Wilson (2010) investigated the short run dynamics and long run 

equilibrium relationship between residential electricity demand and the factors influencing 

demand in Sri Lanka for the period 1960 to 2007. Their study used co-integration and error 

correction models to capture the long run as well as short run relationships among the 

relevant variables. The results showed that electricity demand is both price and income 

inelastic. However, electricity demand was more responsive in the long run than in the short 

run. The long run demand elasticities of income, own price and price of kerosene oil (a 

substitute source of energy) were estimated to be 0.78, -0.62 and 0.10 respectively. The 

short run elasticities for the same variables were estimated to be 0.32, -0.16 and 0.10 

respectively. The study concluded that increasing the electricity price would not be the most 

effective way of reducing electricity demand. It surmised that given the low price elasticity 

level the government could remove the existing price subsidies without it having a significant 

impact on sales revenue. It also noted that the long run income elasticity of demand showed 

that any future increase in household incomes would likely result in a significant increase in 

electricity consumption. Therefore, income played a more significant role than price in 

determining electricity demand in the Sri Lankan residential market. The study concluded 

that any power generation expansion plans should take into account the potential impact of 

future income increases on electricity demand if the country were to avoid power shortages 

in the future.  

 

In Japan, price elasticity of electricity demand had long been assumed to be as small as -0.1 

or 0 without any proper examination of the empirical validity of such an assumption (Hosoe & 

Akiyama, 2009:4313). This assumption was based on the outcomes of earlier studies that 

were conducted elsewhere in the developed world. These included studies by Taylor (1975) 
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and Anderson (1971) that had analysed industrial and commercial electricity demand and 

found small elasticity coefficients which were close to zero. As more reforms were introduced 

in the Japanese electricity market, it became crucial to test such a priori assumptions, 

particularly because these reforms were aimed at changing the behaviour of customers who 

consumed a large part of the electricity generated in the country. Hosoe & Akiyama (2009) 

estimated the price elasticity of electricity demand in the industrial and commercial sectors in 

nine of the ten electricity supply regions in Japan. The regional power demand function was 

estimated using the ordinary least squares as well as the panel estimation method. The price 

elasticity coefficient was found to be significant and negative in all the regions. It ranged 

between -0.086 in Tokyo and -0.297 in Shikoku in the short term. Long term price elasticity 

estimates ranged between -0.120 in Kansai and -0.564 in Hokkaido. An analysis of the 

results revealed that urban regions had lower price elasticity than their rural counterparts. 

They attributed this to the difference among regions in the availability of suitable plant sites 

for self-owned power plants. The industrial and commercial users analysed in this study 

were large scale users. Some of them are equipped with their own power plants in order to 

substitute the electricity they purchased from the regional power company. The authors 

noticed that as the share of power supplied by their own power plants increases, electricity 

demand became more price elastic. The availability of physical space and more 

accommodative environmental regulations in the rural regions make it more likely for 

customers in those areas to have their own electricity generating power plants. As articulated 

in section 2.5.2, the availability of options makes demand transformation more easily 

attainable. Thus electricity demand by customers with alternative sources of energy is 

typically more sensitive to price changes than by customers who are wholly dependent on 

the electricity grid.  

 

In a fairly unique approach, a study by He et al. (2011) used the Computable General 

Equilibrium (CGE) model to simulate the impact of electricity price adjustments on demand 

for electricity in China. The simulation results show a range of electricity elasticities for 

different consumer categories. The price elasticity coefficient for residential customers was 

found to be -0.30, while the price elasticity estimate for coal mining and agriculture were -

0.12 and -0.06 respectively. On the whole the short run price elasticities of electricity 

demand of each sector were small. The price elasticity of electricity demand for the total 

economy was estimated at -0.037. However, the elasticity values of the electricity intensive 

sectors like mining, metal product industry, metal smelting and rolling processing were 

relatively larger than the less intensive sectors. Based on this, the authors argued that 

increasing electricity prices in the industries which are characterized by high energy 

consumption and high pollution should be considered in order to adjust the structure of the 
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Chinese economy in the long run. The authors also noted that the absolute value of price 

elasticity of electricity demand of the agricultural sector was relatively small. This meant that 

the impact of electricity price changes in this sector was relatively benign. Therefore cheap 

electricity prices would not provide sufficient stimuli for the sector.  

 

In Spain, Balzquez et al. (2013) conducted an empirical analysis on residential demand for 

electricity. The study used aggregate panel data at the province level for 47 Spanish 

provinces for the period 2000 to 2008. A dynamic demand function was estimated using a 

two-step system based on the general method of moments (GMM) estimator. The study 

found the residential sector to be price inelastic with an estimated coefficient of -0.07 in the 

short run and -0.19 in the long run. Income elasticity was estimated at 0.23 and 0.61 for the 

short run and long run respectively. This meant that electricity demand in Spain was more 

responsive to price and income in the long run than in the short run. Furthermore, the study 

confirmed that weather variables have a significant impact on electricity consumption by the 

residential customers.  

 

A study by Lim et al. (2014) examined the electricity demand function in the Korean service 

sector by using data covering the period 1970 – 2011. The study used a co-integration and 

error correction model to estimate the short and long run elasticities of electricity demand in 

this sector. The short and the long run price elasticities were estimated to be -0.421 and -

1.002 respectively. The income elasticity values were estimated to be 0.855 in the short run 

and 1.090 in the long run. These findings were rare because they indicated that electricity 

demand in the service sector was inelastic to changes in both price and income in the short 

run, but elastic in the long run. Therefore, a pricing policy strategy would be effective in 

limiting electricity demand in the long run. Furthermore, policy makers should encourage 

electricity efficiency strategies as income growth in this sector is likely to result in even faster 

growth in electricity demand in the long run.  

 

In Jamaica a study by Campbell (2018) used the bounds testing approach to co-integration 

to obtain long run price elasticity of demand estimates for the period 1970 – 2014. The study 

focussed on aggregate demand and three different consumer categories, namely residential, 

commercial and industrial customers. The main results of the study suggest that price is a 

significant determinant of electricity demand at the aggregate level with an own-price 

elasticity of -0.40. The price elasticity coefficients of -0.82, -0.15, and -0.25 were estimated 

for the residential, commercial and industrial sectors respectively. Given these findings, the 

authors concluded that price based approaches were more likely to be successful in slowing 

electricity demand growth in the residential sector than in the other two customer categories. 
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On the other hand, the commercial and industrial consumers were found to be very 

responsive to changes in income with an income elasticity coefficient of 0.77 and 1.22 

respectively. These findings indicate that the residential customer is more price sensitive 

than its commercial or industrial counterparts. It also supports the hypothesis that for the 

most part, electricity demand is more responsive to income changes than price changes.  

 

The majority of international studies found that electricity demand is price-inelastic, and that 

income plays a more significant role in determining electricity demand as compared to price. 

However, demand responsiveness seems to be more pronounced in the long-term than in 

the short-term. As a result, elasticities of electricity demand are generally higher in the long-

term than in the short-term. This is consistent with economic theory as both consumers and 

producers are expected to have greater flexibility in changing their behaviour over the long- 

term than in the short-run. It is more probable for industrial users of electricity to change their 

production processes and acquire more energy efficient equipment in the long-term than in 

the short-run. In some cases, price is deemed to play an insignificant role in determining 

electricity demand in the short-term, but it plays a pivotal role in the long-term. It is also 

evident that elasticities of electricity demand are different in different countries. These 

differences could be occasioned by the differences in the developmental level, pricing 

mechanism and climate in these countries (He et al., 2011:116). Another observation is that 

a sector-specific analysis may yield different elasticity estimates to those of the economy as 

a whole. In some cases electricity intensive sectors were found to have higher price elasticity 

values (in absolute terms) than the less intensive sectors. In other cases, price is significant 

in the macro-economic analysis, but insignificant in the sector-specific analysis. Therefore, 

even in the same country, the elasticities of electricity demand may differ from one sector to 

the other and from one jurisdictional or electricity supply region to the next.  

 

2.6.2 Critique of International Studies 
 

The introduction of Distributed Generation (DGs) will serve as a structural change in the 

electricity markets, especially in the developed world. The a priori assumption that there are 

no structural breaks in the electricity demand function in these markets may not hold 

anymore. This is especially the case in advanced markets like Europe, where a customer is 

also simultaneously a seller with the capacity to sell their excess self-generated electricity 

back into the national grid. As seen in Hosoe & Akiyama (2009), the ability of the customers 

to generate their own electricity has a significant impact on the price elasticity of electricity 

demand. These customers are generally more sensitive to the changes in the grid electricity 

price since they have an option to install or increase their own generation, and can therefore 
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substitute away the more expensive electricity for their own generated supply. This is likely 

to become a stronger feature in the electricity demand equation as the price of installing DGs 

reduces. It therefore follows that markets that have experienced a high penetration of DGs, 

or that have potential to do so, may present different elasticity values than what was inferred 

by most studies that have been reviewed thus far.   

 

There is sufficient evidence from the studies that were reviewed that weather conditions play 

a significant role in explaining electricity demand in the residential sector. In some studies 

the weather was found to have the greatest impact on the residential sector (Kamerschen & 

Porter, 2004:98). Therefore studies that focus on residential customers but fail to account for 

climate conditions in their models may be found wanting.  

 

2.6.3 South African Studies 
 

An earlier study conducted by Pouris (1987) on the price elasticity of electricity demand in 

South Africa examined the effect of price on the demand for electricity from 1950 to 1983. It 

placed considerable emphasis on the estimation of the long-run price elasticity of electricity 

demand. The coefficients were estimated by using an unconstrained distributed lag model. 

Over a 12-year period, the price elasticity of electricity demand was estimated at -0.90 

(Pouris, 1987:1269). According to the author, more than 70 per cent of electricity in South 

Africa was consumed by the industrial and mining sectors over this period.  

 

Blignaut & De Wet (2001) examined electricity consumption in the manufacturing sector with 

regard to price, by estimating the price elasticity coefficients for the various subsectors 

during the period from 1976 to 1996. The authors found that even though the electricity 

intensity was particularly high in the manufacturing sector, there was a weak relationship 

between price and consumption. For most subsectors, an increase in price did not result in a 

decrease in consumption, and the price elasticity coefficients were positive. This emphasized 

the insignificance of price. All price elasticity coefficients were small and between 1 and -1, 

indicating that electricity consumption was price-inelastic (Blignaut & De Wet, 2001:367). 

Similarly, Ziramba (2008) analysed residential electricity demand by using the bounds testing 

approach to cointegration. The study found that price did not have a significant impact on the 

residential sector during the period from 1978 to 2005. The author found that the price 

elasticity coefficients were negative and statistically insignificant in both the short and the 

long run. The long-run price elasticity was -0.04, whereas the short-run value was -0.02. 

According to Ziramba (2008:3465) “in the long run, income is the main determinant of 

electricity demand, while electricity price is insignificant”. Amusa et al. (2009) applied a 
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similar methodology as Ziramba (2008), in order to analyse the aggregate demand for 

electricity in South Africa for the period from 1960 to 2007. The results showed that 

electricity prices have an insignificant impact on electricity demand in the long run while 

income is actually the main determinant of electricity demand. 

 

In contrast to the findings of Ziramba (2008), Blignaut & De Wet (2001) and Amusa et al. 

(2009), Inglesi (2010) found that electricity prices have a significant impact on total electricity 

demand in the long run at a macro-economic level. Inglesi (2010) analysed the relationship 

between electricity demand, income, prices and population for the period from 1980 to 2005. 

The results show that the “long run impact of income and price is significant although both 

estimates are inelastic at 0.42 and -0.55 respectively” (Inglesi, 2010:202). The results also 

indicated that the consumption of electricity can be explained by growth in the gross 

domestic product and that price is insignificant in the short-term. In an effort to expand on the 

work of Inglesi (2010) and Blignaut & De Wet (2001), Inglesi-Lotz & Blignaut (2011) 

examined the electricity consumption of various economic sectors in response to changes in 

price and economic output for the period from 1993 to 2006. The authors determined the 

overall relationship between price, output and consumption. Their pooled effect model 

showed that price and output are significant factors in the overall or aggregate electricity 

demand of industries. The fixed effects model on the other hand accounted for cross-sector 

dynamics and showed that electricity prices are insignificant, while output becomes less 

significant (Inglesi-Lotz & Blignaut, 2011:458). An analysis of the results indicates that cross-

section heterogeneity in the sample data might be the cause of price insignificance. A 

Seemingly Unrelated Regression (SUR) model was used to estimate separate elasticity 

coefficients for the various economic sectors. The results for the individual sectors showed 

that price is insignificant in determining electricity demand for most economic sectors, with 

the exception of the industrial and transport sectors. The price elasticity coefficients of the 

industrial and transport sectors were -0.869 and -1.220 respectively (Inglesi-Lotz & Blignaut, 

2011:458). 

 

Kohler (2014) estimated the price and income elasticities of electricity demand in different 

economic sub-sectors which were collectively classified as the industrial sector. The study 

employed the ARDL bounds testing procedure to estimate the demand function of each 

economic sub-sector using OLS. The sample period covered was 1993 to 2006. The results 

showed that for most sub-sectors price did not play a significant role in determining electricity 

demand. Only the iron and steel, paper and print, and construction sub-sectors showed a 

negative price elasticity value. These sectors yielded relatively high price elasticity values 

with the iron and steel at -0.586, paper and print at -1.774 and the construction sector at -
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7.765. The rest of the sectors, including mining and non-ferrous metals, did not reflect any 

significant response to price changes. On the other hand income was found to be a 

significant determinant of electricity demand in almost all the economic sub-sectors under 

review. Sectors like non-ferrous metal, iron and transport equipment were found to be 

income elastic with an estimate of 1.797 and 2.578 respectively. At an aggregate level, total 

industry electricity demand was found to be price inelastic at -0.939 and income inelastic at 

0.628.  

 

2.6.4 Critique of South African Studies 
 

Even though the findings of the South African studies are in line with international studies, 

there are three key concerns about their validity. Firstly, electricity prices declined in real 

terms from 1978 to 2005. On average, the real price declined by 0.43 per cent per annum 

from 1960 to 2007 (Amusa et al., 2009:4172). The decrease in the real price of electricity 

during this period could result in a somewhat subdued demand response, thereby presenting 

relatively low price elasticity coefficients. This could nullify the significance of the effect of 

prices on consumption during the various periods covered by these studies.  

 

Secondly, the historically low levels of electricity prices induced a lack of demand 

responsiveness to price changes (Blignaut & De Wet, 2001:373). In addition to this low base, 

the decline in real prices led to the cost of electricity accounting for a significantly low 

percentage of the total input costs. For the period from 1976 to 1996, the electricity costs 

accounted for less than 10 per cent of the total operating costs for most of the sectors in the 

economy (Blignaut & De Wet, 2001: 367). According to the calculations by Inglesi-Lotz & 

Blignaut (2011: 459), this low electricity cost ratio was still firmly in place by 2005. The low 

ratio of electricity costs to total operating expenditure and a declining trend in real prices 

indicate that changes in electricity tariffs were of limited concern to consumers at that time. 

Consequently, it is plausible to find subdued price elasticity estimates during this period. 

However, this might not hold from 2006 onwards, when real prices began to rise. It is 

therefore crucial to have a study that covers a period when real prices were increasing.  

 

Lastly, most of the studies make an implicit assumption that price elasticity estimates did not 

change materially during the periods under review in the respective studies. The elasticity 

estimates are therefore effectively averages over these periods. Given the long periods 

covered by most studies, the structural changes in the South African economy over the 

course of time and the material changes in electricity intensity levels, this assumption does 

not seem plausible. Inglesi-Lotz (2011) duly challenged this assumption. She used the 
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Hansen test to determine whether or not the estimated parameters in the electricity demand 

function in South Africa for the years 1980 to 2005 had remained static. The results suggest 

that the parameters had changed over time. Therefore it must be assessed whether or not 

the price elasticity coefficient has remained static during the period under review. If it has 

remained unchanged, then models that assume as such can be used to estimate long term 

elasticity averages and make inferences about demand response in the future. However, if 

there is parameter instability during the period under review, efforts must be made to 

highlight this structural change as long term averages would be misleading. It would be 

prudent to ascertain this fact so that policy makers can make more informed demand 

projections. 

 

2.7 Review - Modelling Techniques 
 

The literature review indicates that there is no single preferred approach for estimating 

econometric models (Beenstock et al., 1999:168). However, fixed coefficient models are 

among the most commonly used modelling techniques. These models range from Engle-

Granger co-integration, Johansen co-integration, error correction (ECM) to autoregressive 

distributed lag (ARDL) models. As time passes, new models are introduced with the view to 

improve the old ones or to serve as alternatives to the existing ones. Consequently, there is 

no uniform approach to modelling electricity demand and estimating its price and income 

elasticity coefficients (Jamil & Ahmad, 2011: 5520).  

 

Some studies have compared various methodologies of energy demand modelling and 

ended up with different results (Beenstock et al., 1999:182). For example, a study by 

Amarawickrama & Hunt (2008) used six different techniques to highlight the variation in 

elasticity estimates emanating from using different econometric techniques. Their findings 

indicate that the long run elasticity coefficients obtained while using the different techniques 

were dissimilar even though the same data set was being used. The estimated long run 

income elasticity coefficients ranged from 0.99 for the Static Engle–Granger (EGII) method 

to 1.96 for the Structural Time Series Model (STSM). This represented a wide range in the 

income elasticity estimates depending on the technique that was used. The estimated long 

run price elasticity coefficients ranged from 0 for the Static EGII, Dynamic EG, the Pesaran, 

Shin and Smith (PSS) method and FMOLS methods to -0.06 for the STSM method. The 

Johansen method gave an estimate of -0.04 and the Static EGI gave an estimate of -0.02. 

This indicated that even at the largest (in absolute terms) estimated coefficient, price 

elasticity would have a limited effect on the demand of electricity in Sri Lanka. Therefore all 
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models supported the conclusion that the price elasticity of electricity demand in Sri Lanka 

was inelastic.  

 

A similar exercise was conducted by Alberini & Filippini (2011). They conducted an empirical 

analysis of the residential demand for electricity using annual aggregate data of 48 US states 

from 1995 to 2007. They used the LSDVC and the “system” GMM estimator proposed by 

Blundell & Bond (1998). Unlike in the other studies, their results indicated that the estimated 

price elasticities differed significantly depending on the technique that was used. Short run 

elasticities varied between -0.08 and -0.15 while long run price elasticities varied between -

0.45 and -0.75. Therefore changing the estimation technique alone resulted in a 70 to 88 per 

cent variation in the elasticity coefficient. The wide range in the income elasticity coefficient 

observed from different models would be of some concern to electricity demand forecasters 

and policy makers. This study highlights the importance of using different techniques if there 

is no clear statistical rationale for favouring one over another, rather than just having a blind 

faith in one technique.  

 

These differences in outcomes owing to differences in techniques, has led to criticisms and 

counter-criticisms amongst researchers (Fan & Hyndman, 2011:3711). Questions have been 

raised about which models are more appropriate in which circumstances. There is a growing 

acknowledgment that elasticities of electricity demand are not static (Wang & Mogi, 

2017:233). This raises the question whether or not, given the structural and technological 

changes that the electricity sectors the world over are undergoing, the fixed parameter 

models are the best approach to model electricity demand and its elasticities. The aim of this 

section is to discuss the modelling techniques that have been widely used over time and 

discuss the evolution of the literature in this regard.  

 

2.7.1 Fixed Coefficient Demand Models 
 

The Ordinary Least Squares (OLS) method, or variations thereof, is most renowned for 

estimating elasticity coefficients. Historically, the “simple” Error Correction Model (ECM) has 

also been widely used in electricity demand analysis (Jamil & Ahmad, 2011:5520). More 

recently, studies show that models that represent special cases of the general 

autoregressive distributed lag (ARDL) model impose very implausible a priori restrictions on 

the relationship between short and long run elasticity estimates (Cuddington & Dagher, 

2015:189). For example, the exclusion of contemporaneous price as an explanatory variable 

in the ECM model forces short-run elasticity estimates to be zero. Although this may be the 

case in some instances, the condition seems unreasonable, especially if annual data is 



51 
 

used. Similarly, the Partial Adjustment Model (PAM) also has a priori restriction on the 

magnitude of the elasticity estimates. In essence, the PAM and ECM models force the short-

term elasticity estimates to be lower than their long-term counterparts (Cuddington & 

Dagher, 2015:189).  This restriction applies to all forms of elasticity estimates, including price 

and income elasticity. Although this outcome is consistent with economic theory, ideally it 

should be derived from the data and not be forced as a condition in the model. 

 

The AR(1) model, on the other hand imposes a priori restriction that short-run elasticity must 

be equal to long run elasticity (Cuddington & Dagher, 2015:192). This condition is often 

found wanting, especially if the purpose of the study concerned is to compare the short-run 

and the long run elasticity estimates. To avoid any a priori restrictions on the magnitude of 

the elasticity coefficients, some researchers found the Autoregressive Distributed lag (ARDL) 

model to be more useful for energy demand studies (Jamil & Ahmad, 2011:5520). A study by 

Fatai et al. (2003:119) found that the ARDL approach is better to forecast performance in 

comparison to the other approaches. The authors highlight the particular fact that ARDL 

does not require pre-testing for the order of integration of the variables as a key advantage 

over the other models. 

 

Rao (2007) came to a different conclusion. The author examined alternative techniques to 

estimate time series models and concluded that the ECM specification has an advantage 

over the alternative approaches. The study suggests that the general to specific (GTS) 

approach adequately forecasts data and could be used for inference purposes (Rao, 

2007:1620). Cuddington & Dagher (2015) addressed this contradiction by using a vector 

error correction model that reduces a single-equation conditional ECM with no loss of 

information. Following this assertion they suggest that ARDL or its corresponding specific 

ECM can be employed as a dynamic demand specification model. Cuddington & Dagher 

(2015:202) also conclude that the PAM and AR(1) process should not be employed owing to 

the implausible a priori restrictions that these models place on short and long-run elasticity 

estimates. In conclusion, the authors found that these restrictions can be easily avoided 

when a general to specific modelling approach is employed.   

 

Studies by Huntington (2007) and Inglesi-Lotz & Blignaut (2011) use OLS regressions that 

allow for contemporaneous effects in order to estimate short-run and long-run elasticity 

coefficients. Cuddington & Dagher (2015) found that the OLS estimates of the dynamic 

demand coefficients will be consistent when the data series contains only stationary and 

lagged regression variables. If the model allows for contemporaneous effects, as in the case 

of Huttington (2007), all variables must be weakly or strictly exogenous in order for OLS 
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estimates to be consistent.  Once this is established, conditional inference from the OLS 

estimators is valid. If the variables are endogenous the OLS estimators could result in biased 

and inconsistent parameters (Cuddington & Dagher, 2015:188).  

 

Consequently a critical shortcoming in research is the failure to test for the weak exogeneity 

condition which is required to validate parameter estimation when using OLS. Quite often, 

the variables are simply assumed to be weakly exogenous, as in the case of the research by 

Huttington (2007). This may seem like a reasonable assumption to make, especially in South 

Africa where electricity tariffs are not determined by the market but are imposed by the 

regulator. However, Cuddington & Dagher (2015:196) argued that while it may be 

reasonable to assume that this assumption holds when dealing with income and substitute 

price effects in a dynamic demand model, it is typically not reasonable for own-price effects. 

It may be tempting to exclude contemporaneous price from the demand model in an effort to 

legitimise the use of OLS; however, this would make the model susceptible to omitted 

variable bias (Cuddington & Dagher, 2015:188). It follows that all the necessary OLS 

conditions must be met before any inference can be made from the OLS estimators. If a 

study fails to indicate that all the relevant tests have been performed and does not disclose 

the results thereof, there is no assurance that the findings of the empirical work are valid. In 

fact, there is no reason to trust that the conclusions of that particular study are correct. When 

a researcher uses the OLS model, the conditional data testing that is a prerequisite for a 

valid deployment of OLS is just as important as the results of the study itself. Another 

shortcoming is that for most studies the authors fail to disclose the standard errors of their 

elasticity coefficients. This makes it difficult to ascertain whether there is any statistical 

difference between the short-term and long run elasticity estimates of the same study. More 

importantly, it makes it impossible to establish whether elasticity coefficients across different 

studies are statistically different from each other.  

 

2.7.2 Time-Varying Coefficient Demand Models 
 

More recently there has been a growing trend of supporting time-varying coefficients, 

considering the parameter instability due to outliers and structural breaks in the electricity 

sector. The introduction of new electricity generation technologies, the restructuring of the 

sector and incidences of electricity supply shortages in different electricity supply 

jurisdictions and other related disruptions have encouraged researchers to seek demand 

models that are able to handle any such disruptions or break points. To achieve this, time-

varying parameter models are often estimated and analysed by using state space methods. 
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A key advantage of state space models is that they can be analysed by using the Kalman 

filter.  

 

Wang & Mogi (2017) estimated the price and income elasticities of industrial and electricity 

demand in Japan using annual data from 1989 to 2014.  A time-varying parameter model 

(TVP) with the Kalman filter was applied to test the evolution of consumer behaviour given 

the exogenous shock (i.e. the 2008 Asian economic crisis) and the structural breaks (i.e. 

electricity deregulation: 1995 and Fukushima Daiichi nuclear disaster: 2011). The results 

suggest that both industrial and residential consumers became less sensitive to price after 

the electricity deregulation and the economic crisis. However, both sectors became more 

sensitive to price after the nuclear crisis. In particular, price elasticity of electricity demand by 

the industrial sector customers fluctuated considerably during the period under review. It 

declined dramatically from -0.797 in 1995 to -0.289 in 2007 during the industry deregulation 

period. After the financial crisis of 2008, price elasticity further declined to -0.020 in 2010 

which was the lowest estimated value (in absolute terms) for the period. Following the 

Fukushima Daiichi disaster, price elasticity began to recover and reached -0.16 in 2014 

which was its final state. On the other hand the sectors income elasticity of electricity 

demand was estimated at 1.024 in its final state. It barely changed during the period under 

review. A somewhat similar result was observed for the residential sector customers. Income 

elasticity of residential demand remained stable from 1989 to 2015 at 1.206 and 1.219 in 

those years, while price elasticity increased from -0.48 in 1989 to -0.64 in 1994. Following 

the electricity sector deregulation in 1995 price elasticity decreased marginally from -0.72 to -

0.61 in 2007. From 2008 it further declined and dropped to -0.3107 in 2010. Similarly to the 

case of the industrial sector, price elasticity in this sector recovered after the 2011 nuclear 

disaster and reached its final state at -0.511 in 2014. The authors of this study also 

estimated an OLS model on the same data and made several observations. For income 

elasticity, the results of the OLS model were reasonably close to the final values as derived 

by the Kalman filter. This made sense as there was not much variation observed in this 

parameter during the period. However, the OLS price elasticity estimates were materially 

higher than the Kalman filter final estimates at -0.341 and -0.681 for the industrial and 

residential customers respectively (Wang & Mogi, 2017:238). Therefore, if long term 

forecasts were to be made based on the OLS results, there could potentially be an over-

estimation of demand response. This seems to validate the opinions of Morisson & Pike 

(1977). They argued that if the elasticity coefficients do not vary over time, the Kalman filter 

and the OLS approach are expected to produce similar results. However, in the presence of 

parameter instability, the Kalman filter can be proven superior to the least squares model. 
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Arisoy & Ozturk (2014) estimated the price and income elasticity of industrial and residential 

electricity demand in Turkey for the period 1960 to 2008. A time-varying parameters model 

based on the Kalman filter was used. The results showed that the price and income 

elasticities of electricity demand in both the industrial and residential sectors were inelastic. 

The income elasticity of electricity demand was estimated at 0.979 and 0.955 for the 

industrial and residential sectors respectively. The price elasticity estimates were very low for 

both sectors. The price elasticity of the industrial electricity demand was estimated at -0.014, 

while the residential sector was at -0.0223. The authors observed the varying estimates of 

price and income elasticity of electricity demand in both these sectors had not changed 

significantly since the 1970s. The study concluded that electricity price increases in Turkey 

would not discourage electricity consumption in either sector as there was limited demand 

response.  

 

A similar study by Inglesi-Lotz (2011) applied the Kalman filter model to estimate the 

evolution of income and price elasticities of electricity demand in South Africa from 1983 to 

2005. The study found that income elasticity experienced a downward trend from 1986 to 

1990 where it was close to zero. However, it increased sharply from the beginning of the 

1990’s with its final state estimated at 1.002 in 2005. On the other, hand price elasticity was 

close to unitary elastic during the 1980s and beginning of 1990s. The results showed that 

from 1991/92, price elasticity decreased sharply (in absolute terms) from -1.077 in 1986 to -

0.045 in 2005. The study showed that the price elasticity of electricity demand became 

inelastic since the beginning of the 1990s. From then onwards, electricity prices did not play 

a significant role in determining electricity demand. This was at the time when the national 

electricity price pact became effective. The low electricity prices (in real terms) following this 

price pact resulted in a declining price elasticity. The price pact was therefore a disruption or 

a structural break in the electricity demand equation. As it was built to do, the Kalman filter 

model detected this structural change and pointed it out. The author noted how the elasticity 

values of electricity demand at different times seemed to match with the findings of other 

South African studies which focussed specifically on the corresponding time periods (Inglesi-

Lotz, 2011:3694). 

 

2.7.3 Specification of the Electricity Demand Model  
 

A further challenge in modelling electricity demand is with respect to choosing the 

explanatory variables. Different studies use different variables to explain the variation in 

electricity demand (Jamil & Ahmad, 2011:5520). In general, the explanatory variables that 

have been used for analysing electricity demand can be broadly classified as demographic, 
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economic, and weather related. For instance, Amusa et al. (2009:4170) expresses electricity 

demand as a function of electricity price, the price of electricity substitutes, production 

output, and the prices of electrical machinery. This model requires a fair amount of data for 

all explanatory variables in a format that best reflects the sector under review and therefore 

poses significant data challenges. For example, different mining operators use different 

technologies and different equipment for their operations. Consequently it is difficult to 

standardise the electrical machinery prices in every sector or subsector. Such constraints 

resulted in almost all studies modelling electricity demand as a function or combination of 

output/income, temperature, population, substitute price and own-price (Narayan et al., 

2007:4489). 

 

Al-Faris (2002:120) expressed electricity demand as a function of own-price, price of 

substitute (e.g. natural gas) and real income. In contrast, a study by De Vita et al. 

(2006:3454) analysed electricity demand in Namibia by incorporating variables on marginal 

electricity prices, real income and minimum temperatures into its demand model. Inglesi-Lotz 

& Blignaut (2011:456) modelled electricity demand as a function of price and output. In their 

model electricity consumption is dependent on only two explanatory variables, namely 

electricity price and output.  

 

2.8 Discussion 

 
A wide range of studies that were reviewed in this chapter indicate that electricity demand 

across different countries and most economic sectors is both price and income inelastic. It is 

also apparent that electricity demand responds more to changes in income than in price.  

Although electricity demand has generally been income inelastic, the elasticity estimates are 

usually higher than the price elasticity estimates. In some studies income elasticity was 

estimated close to unitary, while price elasticity was fairly subdued. It can be observed that 

elasticity coefficients are higher in the long run than in the short term. This means that 

electricity demand is more responsive to price changes in the long run than in the short run. 

However, there is no clear convergence of elasticity estimates of electricity demand across 

different countries. The electricity industry is undergoing material structural changes the 

world over. These changes emanate from within the individual countries in a form of internal 

reforms (i.e. industry restructure) and at a global level (i.e. changes in technology). There is 

already evidence emerging in the literature that shows that these changes may have an 

impact on the elasticities of electricity demand. Therefore, for the purposes of making long 

term electricity demand projections, the results of these studies should be viewed with this 

potential shortcoming in mind.  
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The South African studies have by and large yielded similar results to their international 

counterparts. Electricity demand was found to be price inelastic and income inelastic. In 

most cases income or output was found to play a more significant role in determining 

electricity demand. The role of price in this regard was always limited or insignificant. A 

unique feature in the South African context is how different studies have estimated 

significantly varied elasticity values depending on the period under review. The literature 

indicates that prior to the 1991 electricity pact; price played a significant role in determining 

demand. In the mid to late 1990s, prices became an insignificant variable in the electricity 

demand equation. As a result, the electricity intensity in the country increased dramatically. 

Nevertheless the economy benefited (especially the energy-intensive sectors) from this 

cheap and abundant electricity given the bi-directional causality relationship that exists 

between economic growth and electricity consumption in South Africa. Since 2006, however, 

electricity prices in South Africa have increased sharply. Unsurprisingly, calculations done in 

this study indicate that electricity intensity has improved markedly, even reaching some pre-

1991 levels. There is a reasonable chance that elasticity coefficients of electricity demand 

have been markedly different during this period as compared to the periods that were 

assessed in the literature review. This evolution of elasticities of electricity demand, from pre-

1991 to post-2006 illustrates the importance of time variant coefficient demand models. 

 

Notwithstanding the growing recognition of time-varying coefficients, there are still a lot of 

studies that use fixed-coefficient regressions in energy modelling.  The prominent techniques 

encountered in the literature review range from OLS, ECM, Engle-Granger co-integration, 

Johansen co-integration and the ARDL bounds testing approach. The literature is still 

evolving on the superiority of the time-varying or fixed-coefficient approach. Therefore there 

is no reason to doubt the integrity of the results that have been produced by these models. 

Nevertheless, it may be necessary to evaluate the underlying statistical behaviour of the 

energy demand parameters before any long term inference can be drawn from elasticity 

estimates produced by these models. 

 

 It should be noted that there is a limited amount of literature on the price elasticity of 

electricity demand in the mining sector both in South Africa and Internationally. Historically, 

electricity demand in this sector has been considered to be inflexible. However the advent of 

DGs has ushered in new flexibility in the sector’s electricity demand profile. This study is an 

early contribution towards a body of knowledge that will be acquired as the proliferation of 

self-generation technologies increases and the sector becomes more sensitive to the grid 

electricity price. It is aimed at filling some of the research gap that currently exists and lays 

the foundation for future work that will be required as the sector’s demand profile changes. 



57 
 

Chapter 3 

Methodology and Econometric Modelling 

 

3.1 Introduction  

 

This chapter consists of three sections. The first section discusses the electricity demand 

model which has been adopted in this study. The second section focusses on the various 

diagnostic tests that are aimed at ensuring that the data is compliant with the classical linear 

regression model (CLRM) assumptions. This makes it permissible to perform linear 

estimations. The last section discusses the Kalman filter as the preferred econometric 

modelling technique for estimating elasticity coefficients of electricity demand. It also 

provides the rationale for this choice.  

 

3.2 Model Specification  
 

A number of determinants of electricity demand have been considered in the empirical 

literature. In broad terms, the demand for electricity has usually been specified as a function 

of, among others, real income and the price of electricity. This study follows a similar 

approach to Arisoy & Ozturk (2014), where electricity demand is approximated by electricity 

consumption and the income variable is approximated by monthly mining production. It could 

be argued that more variables, including but not limited to the price of commodities, the 

exchange rate, global economic growth and domestic interest rates, could play some role in 

determining the level of electricity consumption in the mining sector. However, these 

variables are likely drivers of mining production itself. Thus, their inclusion and other similar 

macro-economic variables are likely to give rise to challenges of multicollinearity as their 

impact is already encapsulated by including mining production as an explanatory variable.  

 

The electricity demand function in the mining sector can thus be denoted in a form of a 

generalized two-variable population regression function such that: 

 

𝑌𝑡 = 𝛼1 + 𝛼2𝑋2,𝑡 + 𝛼3𝑋3,𝑡 + 𝑢𝑡 ,      ∀𝑖 = 1, … , 𝑁 ∧ 𝑡 = 1, … , 𝑇 (1) 

where: 

• 𝑌𝑡  is the dependent variable (i.e. electricity consumption),  

• 𝑋2,𝑡 and 𝑋3,𝑡 are the time-variant explanatory variables (i.e. electricity price and 

mining production, respectively) and 

• 𝑢𝑡 is the error term which is assumed to be white noise and which is normally 

distributed.  
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In equation (1), 𝛼1 is the intercept or constant term. It provides the average autonomous 

electricity consumption when prices and output are at zero. It gives the mean effect which all 

the other excluded variables from the model have on the dependent variable 𝑌𝑡. The 

coefficients 𝛼2 and 𝛼3 are partial regressors. The coefficient 𝛼2 measures the change in the 

mean value of electricity consumption Y per unit change in production, holding electricity 

price constant. Likewise, 𝛼3 measures the change in the mean value of Y per unit change in 

price while production remains constant. This equation represents a population regression 

function (PRF). It would be appropriate if the entire population data was available for 

regression analysis. However, this is rarely the case. As it was indicated earlier, the sample 

data that has been made available for the purpose of this study is not exhaustive of the 

population data. Therefore, the task at hand is to estimate the PRF on the basis of the 

available sample data.  

 

A sample regression function (SRF), which corresponds with the PRF of Equation (1) can be 

denoted as follows:  

 

𝐿𝑛𝐶𝑜𝑛𝑠𝑡 = 𝛽̂1 + 𝛽̂2𝐿𝑛𝑃𝑟𝑖𝑐𝑒𝑡 + 𝛽̂3𝐿𝑛𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑡 + 𝜀𝑡̂ (2) 

 

The subscript 𝐿𝑛 indicates that all the variables are in their natural logarithms such that 

𝐿𝑛𝐶𝑜𝑛𝑠 is the natural logarithm of electricity consumption, 𝐿𝑛𝑂𝑢𝑡𝑝𝑢𝑡 is the natural logarithm 

of mining output and 𝐿𝑛𝑃𝑟𝑖𝑐𝑒 is the natural logarithm of electricity price. 𝛽̂1 is the constant 

and 𝜀𝑡̂ is the error term. The demand function has been transformed into a double log form. 

Transforming variables into their natural logarithm form has two basic advantages. Firstly, 

the natural logs enable the slope coefficients to be interpreted as the elasticity of the 

dependent variable with respect to the percentage change in the independent variables. 

Therefore 𝛽̂2 and 𝛽̂3 represent estimates of price and income elasticities respectively. 

Secondly, the log transformation reduces the problem of heteroscedasticity which is 

discussed later in this chapter.  

 

The OLS estimators of the population partial regression coefficients 𝛽̂2 and 𝛽̂3 can be 

derived as follows: 

𝛽̂2 =
(∑ 𝑦𝑖 𝑥2𝑖𝑡)(∑ 𝑥3𝑖

2 ) − (∑ 𝑦𝑖𝑥3𝑖)(∑ 𝑥2𝑖𝑥3𝑖)

(∑ 𝑥2𝑖
2 )(∑ 𝑥3𝑖

2 ) − (∑ 𝑥2𝑖𝑥3𝑖)2
 (3) 

and 

𝛽̂3 =
(∑ 𝑦𝑖 𝑥3𝑖)(∑ 𝑥2𝑖

2 ) − (∑ 𝑦𝑖𝑥2𝑖)(∑ 𝑥2𝑖𝑥3𝑖)

(∑ 𝑥2𝑖
2 )(∑ 𝑥3𝑖

2 ) − (∑ 𝑥2𝑖𝑥3𝑖)2
 (4) 
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3.3 Unit Roots and other Time Series Issues  
 

In a time series analysis, one of the main concerns is to establish whether or not the 

variables are stationary so as to avoid obtaining spurious regressions. It is often stated that 

macro-economic data and financial market variables follow a random walk. This makes such 

data susceptible to unit root behaviour. However, a random walk process can be stationary if 

its mean and variance are found to be constant across time and the covariance between any 

time periods is dependent on the lag between them (Tsay 2002:56). A random walk time 

series can be broadly defined by the following properties:  

 

𝑀𝑒𝑎𝑛: 𝐸(𝑌𝑡) = µ 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒: 𝑉𝑎𝑟 (𝑌𝑡) = 𝐸(𝑌𝑡 − µ)2 = 𝜎2 

𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒: = 𝛾(𝑘) = 𝐸[(𝑌𝑡 − µ) (𝑌𝑡 + 𝑘 − µ) 

where – 

 𝑌𝑡 is a series of a random walk 

𝛾(𝑘) is the auto covariance at lag 𝑘 

 

A random walk time series would be considered to be stationary if all of the above conditions 

are satisfied. If one or more conditions are not met, then the time series would have a unit 

root thus making the series non-stationary. Non-stationary series violate the classical OLS 

assumptions, giving rise to spurious regression. The concern for stationarity of time series 

variables gives rise to unit root tests. In this study, the stationarity of the time series is tested 

using the unit root test, as originally suggested by Dickey & Fuller (1981). Therefore this 

study uses the Augmented Dickey Fuller test. In order to understand this test it is useful to 

consider the original Dickey Fuller test and acknowledge its shortcomings.  

 

A random walk economic data time series that resembles the Markov first-order auto-

regressive model can be given as follows: 

 

𝑌𝑡 = 𝜃𝑌𝑡−1 + 𝜀𝑡 (5) 

where –  

𝑌𝑡 is a given time series and 

𝜀𝑡 is the white noise error term 
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If 𝜃 =1 then every data observation will be highly dependent on its immediate predecessor 

barring the impact of any white noise. That means that the time series has a unit root. If a 

time series has unit root (i.e. non-stationary), it cannot be used in its current form as it would 

result in spurious outcomes. A common remedy to addressing this problem is to take the first 

difference of the time series and use it instead. There is a possibility that this first difference 

data series becomes stationary (Dickey & Fuller 1981: 1058). Therefore, taking the first 

difference of equation (5),  

 

𝑌𝑡 − 𝑌𝑡−1 = 𝜃𝑌𝑡−1 − 𝑌𝑡−1 +  𝜀𝑡 

                   = (𝜃 − 1) 𝑌𝑡−1 + 𝜀𝑡 

(6) 

 

Equation (6) can be re-written as: 

 

∆𝑌𝑡 = 𝛾𝑌𝑡−1 +  𝜀𝑡 (7) 

where – 

𝛾 = (𝜃 − 1), 

∆  is the first difference operator. 

 

It now becomes possible to estimate equation (7) by using the sample time series data. This 

can be achieved by taking the first differences of 𝑌𝑡 and regress them against 𝑌𝑡−1. If the 

estimated slope coefficient (i.e. the estimated 𝛾) is negative, then it can be concluded that 𝑌𝑡 

is stationary. If the estimated slope coefficient is zero then the series can be considered to 

be non-stationary (Gujarati 2003: 814).  

 

Testing the null hypothesis that 𝛾 = 0 or turns out to be slightly complicated since the t value 

of the estimated coefficient of 𝑌𝑡 does not follow a normal distribution even in large samples 

(Gujarati 2003: 814). Under the null hypothesis 𝛾 = 0, the estimated t-value follows the tau 

(𝜏) statistic. The tabular values of the 𝜏 statistic distribution are given by Dickey and Fuller 

(1979). The 𝜏 test is commonly referred to as the Dickey Fuller (DF) test in honour of its 

discoverers. A key feature of the 𝜏 statistic is that its distribution is wider than that of a 

normal t statistic. Therefore the critical points in the 𝜏 statistic distribution are larger (in 

absolute terms) than those of the t statistic. This makes it possible to accept a null 

hypothesis (i.e. there is unit root - data series is nonstationary) under 𝜏  test that would have 

otherwise been rejected under the normal t test. In that sense the 𝜏 test is a more stringent 

test than the normal t test. For example, the border line of rejection of the null hypothesis at 

the 95 per cent confidence level with a sample size T =100 for a one-tailed t test is -1.658. 
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The corresponding critical value for the 𝜏 test is -1.95. This makes it more likely for the 𝜏 test 

to accept the null and deem the data series to be nonstationary. 

 

A random walk process may or may not have a drift. It may also have both deterministic and 

stochastic trends (Gujarati 2003: 802). In light of this the Dickey Fuller test considers three 

possible deterministic structures for each individual time series. The model considers a 

structure where the data series has a constant and a trend, no constant but a trend, or 

neither a constant nor a trend.   

 

The equations can be denoted as follows: 

 

∆𝑌𝑡 = 𝛾𝑌𝑡−1 + 𝜀𝑡 

                               ∆𝑌𝑡 = 𝑎0 + 𝛾𝑌𝑡−1 + 𝜀𝑡 (8) 

                                           ∆𝑌𝑡 = 𝑎0 + 𝑎2𝑡 + 𝛾𝑌𝑡−1 + 𝜀𝑡 (9) 

where – 

𝑡 is a time trend variable 

 

The first equation is a repetition of equation (7) where 𝑌𝑡 is a pure random walk. Equation (8) 

adds a drift term (or intercept) 𝑎0 to the random walk. In equation (9) 𝑌𝑡 is a random walk 

which has both a drift term and a linear time trend 𝑎2𝑡. Thus, the difference between the 

three regressions is the presence of the deterministic elements 𝑎0 and 𝑎2𝑡. For all three 

equations, the key parameter is 𝛾. In each case the null hypothesis is that  𝛾 = 0, meaning 

there is a unit root and thus the time series is nonstationary. The alternative hypothesis is 

that that 𝛾 is less than zero, therefore there is no unit root and the time series is stationary. If 

the null hypothesis is rejected it means that the time series (𝑌𝑡) is stationary with a zero 

mean, non-zero mean and around a deterministic trend for equations (7), (8) and (9), 

respectively (Gujarati 2003: 815).    

 

The Dickey Fuller unit root test involves estimating one (or more) of the equations above, by 

using OLS in order to obtain the estimated value of 𝛾 and dividing it by its associated 

standard error to compute its 𝜏 statistic. If the computed absolute value of the 𝜏 statistic 

exceeds the Dickey Fuller 𝜏 -value, we reject the hull hypothesis that 𝛾 = 0, in which case the 

time series is stationary. However if the computed absolute value of the 𝜏 statistic is less 

than the Dickey Fuller tau value, then the null hypothesis will not be rejected meaning the 

time series is non-stationary. It is important to note that the critical values of the tau test to 
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test the null hypothesis are different for each of the three random walk specifications referred 

to in equations (7), (8) and (9). It is therefore critical to make sure that the appropriate critical 

tau values are used. The main shortcoming of the Dickey Fuller (DF) test is that it assumes 

that the error terms 𝜀𝑡 in equations (7), (8) and (9) are uncorrelated. However, in the event 

that this is not the case, the test loses its power significantly, thereby making its results less 

credible. To deal with this shortcoming Dickey and Fuller augmented their test such that the 

number of lags of the independent variable is included to the regression in order to whiten 

the errors (Gujarati 2003: 817).   

 

3.3.1 Augmented Dickey Fuller Test  

 
The Augmented Dickey Fuller (ADF) test augments the three Dickey Fuller (DF) diagnostic 

specifications by adding the lagged values of the dependent variable. For example, equation  

(9) has been augmented as follows: 

∆𝑌𝑡 = 𝛽1 + 𝛽2𝑡+ 𝛾𝑌𝑡−1 + ∑ 𝜓𝑖∆𝑌𝑡−1

𝑘

𝑖=1

+ 𝜀𝑡 
(10) 

Where – 

𝜀𝑡 is the white noise error term, 

∆𝑌𝑡−1 = (𝑌𝑡−1 −  𝑌𝑡−2), ∆𝑌𝑡−2 = (𝑌𝑡−2 − 𝑌𝑡−3), 𝑒𝑡𝑐. 

 

In equation (10), k refers to the number of lagged difference terms included in the model. 

This is often determined empirically until enough terms are included so that the error term 

becomes serially uncorrelated. By so doing, the model ensures that error terms are white 

noise with a zero mean and a constant variance across different time periods. The Schwarz 

Information Criteria (SIC) is automatically used to select the maximum lag length for k. The 

ADF test uses the same critical 𝜏 -statistics that are used in the original DF test as both tests 

follow the same asymptotic distribution. Similarly to the DF test, the null hypothesis of the 

ADF test is that the data has a unit root which means the series is not stationary. The 

rejection of the null hypothesis that 𝛾 = 0 implies that the time series does not have a unit 

root and is therefore stationary. If the null hypothesis is not rejected, then the time series is 

not stationary. A common shortcoming of both the ADF and the DF tests is that there is no 

way of knowing upfront which one of the three equation specifications (i.e. equations (7), (8) 

and (9)) is applicable. This raises the risk of committing a specification error. To avoid this, 

some trial and error may be required until the correct specification is identified. In this study 

all three equation specifications are tested on E-views until the correct one is identified.  
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3.3.2 Normality Test  

 
This study uses a data sample of less than 150 observations. Given this sample size, it is 

imperative to ensure that the error term in the model follows the normal distribution. 

Otherwise the testing procedure that is conducted will not be valid, given the relative size 

and finite nature of the sample data. The Jarque–Bera test for normality is employed in this 

research. This test is based on OLS residuals analysis. It computes the skewness and 

kurtosis of the OLS residuals. It uses the following statistic: 

 

𝐽𝐵 = 𝑛 (
𝑠2

6
+

(𝑘 − 3)2

24
) 

(11) 

 Where, n is the sample size, 

s is the skewness coefficient and 

k is the kurtosis of the coefficient.  

 

The null hypothesis is that the residuals are normally distributed, while the alternative 

hypothesis is that residuals are not normally distributed. The null hypothesis is rejected if the 

𝜌 value of the statistics is lower or equal to the level of significance. If the 𝜌 value is found to 

be reasonably high, which will happen if the value of the statistic is close to zero, the 

normality assumption is not rejected. The Jarque-Bera test statistic asymptotically follows the 

chi square distribution with two degrees of freedom (Gujarati 2003: 148).  

 

3.3.3 Serial Correlation Test  
 
Autocorrelation, also known as serial correlation, may exist if the error term of one period is 

related to the error term in another period of the same data series. If such a relationship 

exists, it would be a violation of one of the assumptions of classical linear regression model 

(CLRM) which states that the error term which relates to any observation should not be 

influenced by the error term relating to any other observation. That means that the expected 

relationship between the error terms of different time periods is non-existent (Gujarati 2003: 

442). This can be denoted as: 

𝐸(𝜀𝑡𝜀𝑡+1) = 0, 𝑡 ≠ 𝑡 + 1 (12) 

 

where 𝐸 is the expected or average value of the error term 𝜀𝑡 over time. 

Autocorrelation can be either positive or negative. Positive autocorrelation refers to a 

scenario where autocorrelation is already established and the error term, which is of a 



64 
 

particular sign (i.e. a positive or negative sign), is followed by another error term with the 

same sign throughout the time series.  

This can be denoted as follows:  

𝑐𝑜𝑣(𝜀𝑡 , 𝜀𝑡+1) > 0, ∀𝑡 ≠ 𝑡 + 1 (13) 

where:  

cov is the covariance of the error term 𝜀𝑡 over time.  

 

When autocorrelation exists, the error term is approximated by assuming that it is generated 

through the following process: 

𝜀𝑡 = 𝜌𝜀𝑡−1 + 𝑢𝑡 , −1 < 𝜌 < 1 (14) 

where: 

𝜌 is the first order autocorrelation coefficient, and 

𝑢𝑡 is a stochastic error which satisfies the standard OLS and CLRM assumptions.  

 

Therefore, 𝑢𝑡 is white noise. This means that the value of the error term 𝜀𝑡 is equal to rho 

times its value in the preceding period plus a random error term. Equation (14) is known as 

the Markov First Order Autoregressive Scheme, usually denoted as AR(1). It is the 

regression of 𝜀𝑡 on itself lagged for one period. It is referred to as the first order regression 

because 𝜀𝑡 and its immediate predecessor is involved in the regression. 

Given the AR(1) scheme, the following dynamics can be derived:  

𝑣𝑎𝑟(𝜀𝑡) = 𝐸(𝜀𝑡
2) =

𝜎𝑢
2

1 − 𝜌2
 (15) 

 

𝐶𝑜𝑣(𝜀𝑡 , 𝜀𝑡+1) = 𝐸(𝜀𝑡𝜀𝑡−1) = 𝜌2
𝜎𝑢

2

1 − 𝜌2
 (16) 

 

𝐶𝑜𝑟(𝜀𝑡 , 𝜀𝑡+1) = 𝜌2 (17) 

where: 

𝐶𝑜𝑣(𝜀𝑡 , 𝜀𝑡+1) refers to covariance between error terms which are 1 period apart and 

𝐶𝑜𝑟(𝜀𝑡 , 𝜀𝑡+1) refers to the correlation between error terms which are 1 period apart. 

 

In Equation (15) and Equation (16), 𝜎𝑢
2 represents the homoscedastic variance of the error 

term 𝑢𝑡. Since ρ is a constant between -1 and 1, Equation (15) shows that under the AR(1) 
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scheme, the variance of 𝜀𝑡 is still homoscedastic. If ρ is 1, the variances and co-variances 

above will be undefined. The covariance of the error term is always greater than zero for all 

observations. On the other hand, negative autocorrelation occurs when an error of a 

specified sign tends to be followed by an error of the opposite sign. It can be denoted as 

follows: 

𝑐𝑜𝑣(𝜀𝑡 , 𝜀𝑡+1) < 0, ∀𝑡 ≠ 𝑡 + 1 (18) 

 

It follows that in the presence of autocorrelation the OLS estimators are still linear unbiased 

as well as consistent and asymptotically normally distributed; however, they are no longer 

efficient (Gujarati 2003: 454). This means that the estimated parameter 𝛽̂ is still a true 

estimate of 𝛽. However, its variance is no longer efficient. (i.e. minimum variance). Thus, 𝛽̂ 

is not a Best Linear Unbiased Estimator (BLUE). In addition, the estimated standard errors of 

the coefficient are biased which results in unreliable hypothesis tests (t-statistic). 

 

There are several ways to detect autocorrelation. This thesis uses the Durbin Watson Test. 

The Durbin Watson Test uses the AR(1) process to detect autocorrelation. In essence, the 

Durbin Watson Test is concerned with estimating 𝜌. Given Equation (14), it is observable 

that if 𝜌 is equal to 0, then there is no autocorrelation. In the AR(1) scheme, the value of 𝜌 is 

unknown. The Durbin Watson Test uses the estimated correlation between the error term in 

period t and the error term in period t-1 to calculate it. The value given by the DW Test is 

known as the d-statistic and it is calculated as follows: 

 

𝑑 =
∑ (𝜀𝑡̂ − 𝜀𝑡̂−1)2𝑇

𝑡=2

∑ 𝜀𝑡̂
2𝑇

𝑡=1

 (19) 

 

where T represents the last observation in the time series.  

 

From Equation (19) the d-statistic can be derived such that: 

𝑑 ≈ 2(1 − 𝜌̂) (20) 

 

where 𝜌̂ is the estimator of the first order coefficient of autocorrelation 𝜌. 𝜌̂ is denoted as 

follows: 

 

𝜌̂ =
∑ 𝜀𝑡̂𝜀𝑡̂−1

∑ 𝜀𝑡̂
2  (21) 
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The DW Test has no unique critical value defining the point at which one can reject the null 

hypothesis of no autocorrelation. However, it has a zone of indecision which is defined by a 

lower bound (𝑑𝑙) and upper bound (𝑑𝑢). These bounds are dependent on the number of 

observations in the sample data and the number of explanatory variables in the original 

model. The d-statistic ranges from zero to four (0 to 4) (Gujarati 2003: 469). The closer the 

d-statistic is to 2, the stronger the evidence that there is no autocorrelation. The closer the 

statistic is to 0, the more likely it is that there is positive autocorrelation. The closer the 

statistic is to 4, negative autocorrelation is likely to be present in the data. 

 

3.3.4 Heteroscedasticity Test  
 
The error term is a vital component of the classical linear regression model (CLRM). One of 

the CLRM assumptions is that the variance of the error term is constant (homoscedastic). 

This assumption refers to a situation where the error term has the same variance regardless 

of the values(s) taken by the independent variable(s). Mathematically this can be denoted as 

such: 

 

𝑣𝑎𝑟(𝜀𝑡 ∨ 𝑋𝑡) = 𝐸(𝜀𝑡 − 𝐸(𝜀𝑡 ∨ 𝑋𝑡))
2
 

 
    𝐸(𝜀𝑡

2 ∨ 𝑋𝑡) = 𝜎2         ∀𝑡 = 1, … , 𝑇 

(22) 

 

 

where 𝑋𝑡 represents a vector of values for each individual and for all independent variables. 

Contrary to this, heteroscedasticity occurs when the error term does not have a constant 

variance. This takes place when the variance of the error term changes in response to a 

change in the value(s) of the independent variable(s). Mathematically this can be denoted as 

follows: 

 

𝑣𝑎𝑟(𝜀𝑡 ∨ 𝑋𝑡) = 𝐸(𝜀𝑡 − 𝐸(𝜀𝑡 ∨ 𝑋𝑡))
2
 

 
  𝐸(𝜀𝑡

2 ∨ 𝑋𝑡) = 𝜎𝑡
2        ∀𝑡 = 1, … , 𝑇 

(23) 

 

 

The presence of heteroscedasticity in the time series will result in the OLS estimators to not 

be efficient; i.e. not to achieve the smallest variance of the error term. The variance of the 

error term will be different from one observation to the next. Thus, the estimated errors of the 
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coefficients could be biased. As a result, the hypothesis tests (t-statistics) will be unreliable. 

Nevertheless, the OLS estimates will remain unbiased. 

In the presence of heteroscedasticity, the variance of the OLS parameter estimators 𝛽̂2 and 

𝛽̂3 are given by: 

𝑣𝑎𝑟(𝛽̂2) =
𝜎𝑡

2

∑ 𝑥2𝑡
2 (1 − 𝑟23

2 )
 (24) 

and 

𝑣𝑎𝑟(𝛽̂3) =
𝜎𝑡

2

∑ 𝑥3𝑡
2 (1 − 𝑟23

2 )
 

(25) 

 

 

where 𝜎𝑡
2 is the time varying variance of the error term.  

Unlike in a homoscedastic variance where 𝜎̂2 is constant throughout the time series, 

𝜎𝑡
2 changes over time (represented by the subscript t).  

It is important to note that, if one fails to appropriately account for the presence of 

heteroscedasticity, the calculation of the variances and standard errors of the slope 

coefficients will be misleading. The t-statistic which is calculated as 

𝑡 =
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝛽 − ℎ𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑧𝑒𝑑 𝛽

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑒𝑟𝑟𝑜𝑟
 

 

and the conclusions of the statistical significance will be misleading because of the bias in 

the calculation of the standard errors. 

 

Although heteroscedasticity does not cause OLS coefficient estimates to be biased, it can 

cause the estimates of the variance and thus the standard errors to be biased. As a 

consequence thereof, the OLS estimators may no longer be BLUE (best linear unbiased 

estimators). This could compromise the integrity of the hypothesis testing by invoking type II 

errors. A type II error is an incorrect failure to reject a false null hypothesis. This happens 

when the model fails to detect an effect that is present in the data series.  

 

This study uses White’s general heteroscedasticity test to assess if the sample data is 

characterised by heteroscedasticity or homoscedasticity. The test allows for one or more 

independent variable to have a non-linear and interactive effect on the error variance. The 
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step process of the test can be illustrated while using a three variable regression model 

which is denoted in Equation (1): 

 

Step 1: Given Equation (2), run the regression analysis and obtain the residual error term(s) 

𝜀𝑡̂. 

Step 2: Estimate the following auxiliary regression: 

𝜀𝑡̂
2 = 𝜃1 + 𝜃2𝑋2𝑡 + 𝜃3𝑋3𝑡 + 𝜃4𝑋2𝑡

2 + 𝜃5𝑋3𝑡
2 + 𝜃6𝑋2𝑡𝑋3𝑡 + 𝑣𝑡  

In Step 2, the squared residuals from the original regression are regressed on the original 

regressors, their squared values and the cross product(s) of the regressors. Then an 𝑅2 from 

this auxiliary regression is obtained. 

 

Step 3: Under the null hypothesis that there is no heteroscedasticity, it can be shown that 

sample size (n) times the 𝑅2 obtained from the auxiliary regression asymptotically follows the 

chi-square distribution with degrees of freedom (df) equal to the number of regressors 

(excluding the constant term) in the auxiliary regression. That is:  

 

𝑛 ∙ 𝑅2 𝑎𝑠𝑦̃𝑋𝑑𝑓
2  

Step 4: If the chi-square value obtained exceeds the critical chi-square value at the chosen 

level of significance, the conclusion is that there is heteroscedasticity. If it does not exceed 

the critical chi-square value, there is no heteroscedasticity, which is to say that the 

parameter coefficients in Step 2 are simultaneously equal to zero. This can be represented 

as:  

𝜃2 = 𝜃3 = 𝜃4 = 𝜃5 = 𝜃6 = 0 

In this case, the error variance is the homoscedastic constant which is 𝜃1. 
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3.3.5 Misspecification Test  
 
One of the assumptions of the classical linear regression model (CLRM) is that the 

regression model used in the analysis is correctly specified. If this is not the case, the model 

could results in spurious results emanating from the specification error in the model. There 

are several techniques that are available for testing specification errors. This study uses the 

Regression Specification Error Test (RESET) as suggested by Ramsey (1969) to test for 

specification error in the regression. The RESET technique is based on three steps. The first 

step is assuming Y to be dependent variable and X to be an explanatory variable such that:  

 

𝑌𝑡 = 𝜆1 +  𝜆2𝑋𝑡 + µ𝑖 (26) 

and obtain the estimated value of Ỹ𝑡. 

 

The second step is to again regress equation (26) by including the estimated Ỹ𝑡 as an 

explanatory variable in the reconfigured regression such that: 

 

𝑌𝑡 = 𝛼1 + 𝛼2𝑋𝑡 + 𝛼3Ỹ𝑡
2 + µ𝑖 (27) 

 

The last step entails using the F test to find out if the increase in 𝑅2 from equation (26) to 

equation (27) is statistically significant. Let 𝑅2 obtained from equation (26) be 𝑅𝑜𝑙𝑑
2  and 𝑅2  

obtained from equation (27) be 𝑅𝑛𝑒𝑤
2 . The F value can be calculated as follows: 

 

𝐹 =
[

(𝑅𝑛𝑒𝑤
2 − 𝑅𝑜𝑙𝑑

2 )
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑤 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟𝑠

]

[
(1 − 𝑅𝑛𝑒𝑤

2 )
(𝑛 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑡𝑒𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑚𝑜𝑑𝑒𝑙)

]

 

(28) 

 

If the computed F value is significant, one can accept the hypothesis that the regression 

model as stated in equation (26) is mis-specified. The main advantage of RESET is that it is 

easy to implement and it does not require an alternative model to be constructed. However 

this can also be viewed as a weakness. After asserting that a particular model has been mis-

specified, the test does not assist in anyway in building an alternative one.  

 

3.3.6 Parameter Stability Test 
 

A fixed-coefficient model requires that the parameters should be stable throughout the time 

series. An inherent assumption made in such a model is therefore that parameter 
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coefficients do not change substantially during the study period. A fixed-coefficient model is 

not able to highlight any significant changes that may be unfolding in the elasticity estimates 

as time passes. Such variations would be suppressed by long-term averages. Therefore, if 

the assumption of parameter stability is violated, the elasticity coefficients which are 

estimated by this model may be somewhat misleading as they will essentially be averages 

over the entire sample instead of dynamically evolving. It is therefore crucial to determine 

whether or not there are any structural changes or breakpoints in the data series. A data 

series may contain a structural break, due to a change in policy or sudden shock to the 

economy. This study uses the cumulative sum (CUSUM) of squares of the recursive 

residuals test to assess whether or not parameters of the model have remained stable. The 

Chow Test is employed to confirm any breaks that may be identified by the CUSUM test.  

 

The null hypothesis of the CUSUM of squares of recursive errors test is that there is 

parameter stability in the model. The recursive errors are standardised one-step ahead of 

the prediction errors. This makes them homoscedastic. The CUSUM of squares statistic is 

computed as follows: 

𝐶𝑈𝑆𝑈𝑀 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑠𝑡  =  
∑ 𝑤𝑖

2𝑡
𝑖=𝑘+1

∑ 𝑤𝑖
2𝑇

𝑖=𝑘+1

 

Where 

(29) 

𝑤𝑖  are the recursive residuals, k is the number of explanatory variables in the model. 

 

The upper and lower critical values of 𝐶𝑈𝑆𝑈𝑀 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑠𝑡 are given by: 

 

±𝑎 +
(𝑡 − 𝑘)

𝑇 − 𝑘
 

(30) 

The critical values of CUSUM of squares of residuals test can be obtained from Edgerton 

and Wells (1994). Once the CUSUM of squares statistic and the lower and upper bounds are 

calculated, a graph can be created such that if the plot of the residuals crosses any of the 

bounds, it would indicate parameter instability. Thus the null hypothesis can be rejected. This 

is a convenient way of visually ascertaining where break-point(s) occur in the time series.  

Once a potential breakpoint is identified, the Chow Test is used to confirm it. This test in 

effect uses an F-test to determine whether a single regression is more efficient than two 

separate regressions which are created by splitting the data into two sub-periods. Following 

this logic, there are essentially three different regressions. There are two regressions for the 

sub-periods (i.e. sub-period 1 and sub-period 2) and one regression for the entire period. 
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Assuming that March 2009 is a suspected breakpoint, the three regressions can be denoted 

as follows: 

 

Time period April 2006 - March 2009: 𝑌𝑡 = 𝜑1 + 𝜑2𝑋2𝑡 + 𝜑3𝑋3 + 𝜀1𝑡𝑛1 (31) 

 

Time period April 2009 - March 2019: 𝑌𝑡 = 𝜔1 + 𝜔2𝑋2𝑡 + 𝜔3𝑋3 + 𝜀2𝑡𝑛2 

 

(32) 

 

Time period April 2006- March 2019: 𝑌𝑡 = 𝛽1 + 𝛽2𝑋2𝑡 + 𝛽3𝑋3 + 𝜀3𝑡𝑛3 

 

(33) 

Equation (36) assumes that there is no difference between the two sub-periods, such that 

the autonomous consumption (i.e. intercept) and the elasticity coefficients remain the same 

throughout the entire period. If the sector has not undergone any structural change between 

sub-period 1 and sub-period 2, then: 

𝜑1 = 𝜔1 = 𝛽1, 

 

        𝜑2 = 𝜔2 = 𝛽2 and 

 

𝜑3 = 𝜔3 = 𝛽3 

 

It follows that Equation (32) and Equation (33) assume that there has been a structural 

change between the two periods, which explains the difference in the parameter notations. 

The Chow test essentially tests whether the single regression line or the two separate 

regression lines fit the data best. The stages in running the Chow test can be summarised as 

follows: 

1) Estimate the regression using all the data, before and after the structural break, 

collect the Residual Sum of Squares (RSSC) for the complete data. 

 

2) Estimate two separate regressions on the data before and after the structural break, 

collecting the RSS in both cases, giving RSS1 and RSS2. 

 

3) Using these three values to calculate the test statistic from the following formula: 

 

𝐹 =  
𝑅𝑆𝑆𝐶 − (𝑅𝑆𝑆1 + 𝑅𝑆𝑆2) 𝑘⁄

(𝑅𝑆𝑆1 + 𝑅𝑆𝑆2) 𝑛 − 2𝑘⁄
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4) Find the critical values in the F-test tables, in this case it has F(k,n-2k) degrees of 

freedom. 

 

5)  Reject or fail to reject the null hypothesis that there is no structural break in the data 

series. 

 
If the null hypothesis of a breakpoint is not rejected, it means that are two or more sub-

periods within the research scope where the results of the regression analysis are distinctly 

different from the other(s). This would mean that the elasticity values that are estimated by 

the regression in one sub-period are significantly different to the values that are estimated in 

another sub-period within the same research scope. This variation may be caused by 

differences in autonomous consumption, changes in the parameter coefficients, or both. It 

follows that just blindly using averages for the entire period may be problematic.  

 

3.4 Modelling Technique  

 
The consideration of time-varying coefficients is increasingly gaining prominence over the 

constant or fixed coefficients in energy modeling owing to the growing evidence of parameter 

instability in energy demand (Salisu & Ayinde, 2016:1472). Income and price elasticities of 

electricity demand vary over time due to a number of reasons, such as the level of economic 

activity, the regulation of prices, structural changes and the price level. As discussed earlier 

in this study, these factors had an impact on electricity demand in South Africa at different 

stages during the period under review. Unless a study finds evidence that parameters have 

remained stable during the period under review, the results from a fixed-coefficient model 

would be misleading. To avoid this pitfall, it is useful to consider a model which allows 

parameters to be a function of time. To this end, this study makes use of a time-varying 

parameters (TVP) model based on the Kalman filter approach. Given the potential 

shortcomings of the fixed-coefficient models, the TVP approach is equipped to provide more 

reliable results with regard to the price and income elasticities of electricity demand (Arisoy & 

Ozturk, 2014:961). The model specification as presented in equation (2) refers to a constant 

coefficient model based on Ordinary Least Squares (OLS). As articulated above, it would be 

difficult to capture the diverse and dynamic nature of electricity demand in the mining sector 

using this model. Therefore, this demand specification has to be converted into a state-

space format so that the estimated coefficients can be allowed to vary over time.  
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3.4.1 Linear Gaussian State-Space Model  
 

The state-space format provides a general framework for representing a wide range of time 

series models. It is similar to OLS regression, but it does not assume that the coefficients are 

constant over the regression window. Instead, state-space models incorporate variability of 

the coefficients owing to the impact of various factors over time. The general form of a state-

space multi-factor can be denoted as follows: 

 

𝑦𝑡 =  𝛼𝑡 +  ∑ 𝛽𝑖𝑡𝑋𝑖𝑡   

𝑘

𝑖=1

+  𝜀𝑡 
(34) 

where: 

 

𝑦𝑡: Electricity consumption at time t. 

𝑋𝑖𝑡: Factors affecting electricity consumption (i.e. electricity prices and mining production) 

𝛼𝑡: Autonomous electricity consumption, when there is no mining production activity. 

𝛽𝑖𝑡: Exposure of the dependent variable (electricity consumption) to the factor i at time t. 

𝜀𝑡: Random disturbances of electricity consumption at time t. 

𝑘:  The number of factors. A positive integer larger than zero. 

The statistical noise 𝜀𝑡 , is a zero mean random variable. It is generally assumed that the 

covariance between 𝜀𝑡 and 𝑋𝑖𝑡 is zero. This means that the explanatory variables should not 

contain any information about the error terms. Equation (34) is commonly referred to as the 

measurement equation. It measures the relationship between the dependent variable (i.e. 

electricity consumption) and the independent variables (i.e. electricity price and mining 

production). In order to allow for time variability of the coefficients, the state-space model 

should have the capability to estimate the coefficients at every time interval. For this 

purpose, a state equation is utilized. This equation uses the observed information from the 

past in order to describe the dynamics of the state variables such that the future behavior of 

these variables can be predicted given the current state. The outcome of the equation is 

incorporated into the measurement equation at every future input. It follows that a complete 

state-space model essentially consists of two equations, namely the measurement equation 

and a state (or transition) equation. This can be denoted as follows:  

𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛:  𝑦𝑡 =  𝛼𝑡 + ∑ 𝛽𝑖𝑡𝑋𝑖𝑡   

𝑘

𝑖=1

+ 𝜀𝑡 
(35) 
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    𝑆𝑡𝑎𝑡𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛: 𝛽𝑖𝑡 =  𝑀𝑖𝑡𝛽𝑖,𝑡−1 + 𝜖𝑖𝑡  

                                                                              𝛼𝑡 =  𝑀2𝛼𝑡−1 + 𝜉𝑡 

 

where 𝜀𝑡  ~ ℵ(0, 𝜎𝜀𝑡
2 ), 𝜖𝑖𝑡  ~ ℵ(0, 𝜎𝜖𝑖𝑡

2 ), 𝜉𝑡  ~ ℵ(0, 𝜎𝜉𝑡

2 )  and are independent. 𝑀𝑖𝑡 and 𝑀2 are the 

transition matrices, which allow coefficients to evolve based on their past values. In this study 

a first-order autoregressive process is assumed. Let 𝑀𝑖𝑡 =  𝜙1𝑖  and 𝑀2 =  𝜙2. Therefore 

equation (35) can be abbreviated as follows: 

𝑦𝑡 =  𝑍𝑡𝛤𝑡 +  𝜖𝑡 

        𝛤𝑡 =  𝜙𝛤𝑡−1 +  𝛹𝑡       

(36) 

where 𝑖 = 1, … , 𝑘 is the number of factors in the model, 𝛤𝑡 =  (𝛼𝑡   𝛽1𝑡  𝛽2𝑡  … 𝛽𝑘𝑡  )′, 𝑍𝑡 =

(1  𝑋1𝑡  𝑋2𝑡  … 𝑋𝑘𝑡  ), 𝛹𝑡 =  (𝜉𝑡   𝜖1𝑡    𝜖2𝑡  … 𝜖𝑘𝑡  )′ and ϕt =  (ϕ2  ϕ1t ϕ2t  … ϕkt )′. Therefore 𝛤𝑡 

represents the estimated coefficient values for the autonomous consumption, price and 

income at a specific time t. 𝑍𝑡 represents price and mining production observations at a 

specific time t. 𝛹𝑡 represents the estimated error terms of the measurement equation and the 

error terms of the transition equation at every time period t. 𝜙𝑡 is the correlation factor 

between elasticity coefficients are every time period and their immediate preceding 

observations.  

The error is assumed to be distributed with conditional expectation of zero and covariance 

matrix 𝐻𝑡 , 𝐸(𝜖𝑡) = 0 and 𝑉𝑎𝑟(𝜖𝑡) =  𝐻𝑡 . In our case we assume that Ht is constant over time, 

i.e. 𝐻𝑡  = 𝐻 =  𝜎𝜖
2  

Furthermore, 𝐸(𝛹𝑡) =   (0   0)′ and 𝑉𝑎𝑟(𝛹𝑡) =  [
𝑅𝑡 0
0 𝑄𝑡

] where 𝑄𝑡 and 𝑅𝑡  are diagonal 

matrices with the variance of 𝜉𝑡  and (𝜖1𝑡  𝜖2𝑡 … 𝜖𝑘𝑡)′, respectively, as  

𝑅𝑡 =  [

𝜎𝜉1

2 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝜎𝜉𝑡

2
]                                   𝑄𝑡 =  [

𝜎𝜖1𝑡
2 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝜎𝜖𝑘𝑡

2
] 

In our study, we take 𝑅𝑡 = 𝑅 =  𝜎𝜉
2 as constant for any t and 𝑄𝑡 = 𝑄 is a vector depending on 

𝑖 = 1, … , 𝑘 the number of factors in the model. Vector Q contains the constant variance for 

each factor in our model, i.e 𝑄 = (𝜎𝜖1
2 , … , 𝜎𝜖𝑘

2 ). 

The challenge with solving equation (36) is that it has two sets of unknowns, namely the 

coefficient of the state vectors  𝛤𝑡 and the parameter coefficient of the measurement 
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equation. One of the ways of addressing this challenge is by using the Kalman filter 

technique.  

 

3.4.2 Kalman Filter Technique  
 

The Kalman filter technique is the best linear estimator as it minimizes the sum of the 

squared difference between the observed responses in the data set and the predicted 

outcome (Grewal & Andrews, 2001:117). This can be denoted as follows: 

 𝜖𝑡 =  𝑦𝑡 − 𝑦̂𝑡  

                   =  𝑦𝑡 − 𝑍𝑡𝛤̂(𝑡|𝑡 − 1) 

(37) 

Where 𝛤̂(𝑡|𝑡 − 1) is the estimator at time t given the information up to time t-1. Therefore 𝜖𝑡  is 

the prediction error.  

 

Let 𝑎𝑡 be the optimal estimator of 𝛤𝑡  based on all the observed information at time t. Then, the 

estimator could be written as 𝑎𝑡 =  𝐸𝑡(𝛤𝑡), i.e. the conditional expectation of the state 

variables up to time t. The covariance of the estimators, denoted as 𝑃𝑡, is given by 𝑃𝑡 =

 𝐸𝑡[(𝑎𝑡 − 𝛤𝑡)(𝑎𝑡 −  𝛤𝑡)′]. Therefore, the optimal estimator of 𝛤𝑡 , based on all the observations 

at time t-1, could be denoted by 𝑎𝑡−1 =  𝐸𝑡−1(𝛤𝑡); consequently the covariance of this 

estimator is defined by 𝑃𝑡|𝑡 . 

 

Given the above denotation, the Kalman filter consists of the following recursive equations: 

𝑎𝑡|𝑡−1 =  𝜙𝑎𝑡−1                           (state prediction) 

𝑃𝑡|𝑡−1 =  𝜙𝑃𝑡−1𝜙′ + (𝑅  𝑄)′    (prediction dispersion) 

𝑦𝑡|𝑡−1 =  𝑧𝑡𝑎𝑡|𝑡−1  

𝜂𝑡 =  𝑦𝑡 − 𝑦𝑡|𝑡−1                         (prediction error) 

𝐹𝑡 =  𝑧𝑡𝑃𝑡|𝑡−1𝑧𝑡
′ + 𝐻                  (error dispersion) 

𝐺𝑡 =  𝑃𝑡|𝑡−1𝑧𝑡
′𝐹𝑡

−1                       (Kalman gain) 

𝑎𝑡 = 𝑎𝑡|𝑡−1 + 𝑃𝑡|𝑡−1𝑧𝑡
′𝐹𝑡

−1𝜂𝑡    (state estimate) 

𝑃𝑡 = (𝐼2 − 𝐾𝑡𝑧𝑡)𝑃𝑡|𝑡−1             (estimate dispersion)  

(38) 
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Where  𝑃𝑡|𝑡−1 is the covariance matrix of the error of 𝑎𝑡|𝑡−1. 𝜂𝑡 , is an innovation function which 

is a one-period prediction error for 𝑦𝑡. 𝐹𝑡
−1 is the inverse of the covariance matrix of the 

innovation at time t. 𝐺𝑡 is the Kalman gain.  

 

The Kalman filter gain vector depends on 𝜙, (𝑅  𝑄), 𝐻 =  𝜎𝜖
2 and the past data vector 𝑧𝑡 . The 

Kalman gain function plays an important role in updating the estimates because it 

determines how heavily the innovations are weighted. When the system is linear and the 

normality assumptions are valid, this specific form of the Kalman gain function optimally 

weighs the innovations, which makes 𝑎𝑡 =  𝛤̂𝑡 (the expectation of the conditional distribution 

of 𝛤𝑡  given the information 𝑦𝑡). This is the Minimum Mean Square Estimator (MMSE) of  𝛤𝑡  

based on the information up to t. If the assumptions mentioned above are violated, then the 

Kalman filter estimator is no longer the MMSE (Tsay 2002:410).  

 

In other words, the Kalman filter method gives unbiased and efficient estimators of the state 

vector  𝐸(𝛤𝑡|𝑡)  = 𝐸(𝛤𝑡|𝑡−1) =   𝐸(𝛤𝑡)  =  𝑎𝑡 , when the initial conditions 𝑎0 and 𝑃0 and the 

matrices 𝜙, (𝑅  𝑄), 𝐻 are known. The objective of this modelling technique is to infer 

properties of the state 𝛽𝑖𝑡 , 𝑖 = 1, … , 𝑘, from the data series 𝑦𝑡 (Tsay 2002:411). There are 

three important types of inferences made. These are: 

 

• Filtering for 𝑡 = 𝑁, to recover the state variable given the information available at time 

t in order to remove the measurement errors from the data. 

• Prediction for 𝑡 > 𝑁, to forecast  𝛽𝑖,𝑡+𝑚    or 𝑦𝑡+𝑚    for  𝑚 > 0 given the information 

available at time t, where t is the forecast origin. 

• Smoothing for 𝑡 < 𝑁, to estimate 𝛽𝑖𝑡  given the information available at time T , where 

𝑇 > 𝑡 

where: N is the length of the data series. 

The key advantage of the Kalman technique is that the model is “learning” in real time as 

each additional data point is observed. That means that for any value observed in the time 

series, the model can forecast the next observation with minimum error. This agility allows 

the model to observe disturbances in the evolution of the parameter coefficients as time 

progresses. It updates its predictions or forecasts of the future points given the variance 

between its latest observation and what it had previously estimated. This allows the 

estimated coefficients to be time-variant, thereby providing the Kalman filter with a significant 

advantage over the conventional constant coefficient models.  
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3.5 Summary  

 
The research questions of this study are addressed using the methodologies described in 

this chapter. This study uses the ordinary least squares method as a benchmark model only 

and not as a primary research model. Nevertheless, all the relevant pre-requisite tests for the 

use of this model are discussed. Crucially, tests for parameter stability are conducted. The 

CUSUM of squares and the Chow test have been chosen to ascertain whether or not the 

parameters in the model are time variant. In the event that parameter instability is 

established, a more robust model must be employed. This study chooses a space state 

model based on the Kalman filter technique for this purpose. It has also been established 

that if the parameters of the model are static, the OLS and Kalman filter results should be 

fairly similar. However, if there is significant time-variation in the parameters, the Kalman 

filter technique will provide more superior results. The added advantage of the Kalman filter 

technique is that it presents the evolution of the elasticity coefficients over time. The next 

chapter analyzes the data and interprets the results of the various analyses done using 

these methodologies. All the estimations and diagnostic tests are carried out using 

Econometric Views (E-views) version 7.2 statistical software. 

 

It is important to note that both the explanatory variables that are used in this study are 

assumed to be exogenous. This is in line with the assumption that was made by Arisoy & 

Ozturk (2014) and Wang & Mogi (2017) while using a TVP model to estimate elasticity 

coefficients of electricity demand in the industrial sector in Turkey and Japan respectively.  If 

endogeneity is proven, it would require a marginal adjustment of the Kalman gain in the TVP 

model. As discussed in section 2.7.1, this assumption is one of the common shortcomings 

observed in studies that use the OLS as their primary regression model. If the variables are 

endogenous then its estimators are not BLUE. Theoretically, there is a potential bi-directional 

relationship between electricity consumption and mining production albeit with some lag. 

This is consistent with the feedback hypothesis that was discussed in section 2.4. 

Nevertheless this does not qualify as evidence. When using the OLS model, endogeneity 

concerns can be addressed through an instrumental variables (IV) technique known as the 

Two Stage least Squares (TSLS).  This technique requires the modeller to find a genuinely 

exogenous variable (instrument) that is strongly correlated with the potential endogenous 

variable. If mining production is suspected to be endogenous, another variable that is highly 

correlated to it has to be found. However this instrument must not have any direct impact on 

electricity consumption in its own right except through its influence on mining production. The 

difficulty in establishing the presence of endogeneity in an OLS model is in finding a variable 

or instrument that fits these criteria. 
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Chapter 4 

Data Analysis and Interpretation of Results 

 

4.1 Introduction 
 

In the preceding chapter methods of analysing the elasticity estimates of electricity demand 

were discussed. Econometric techniques discussed in the previous chapter are employed 

here, and the results are discussed in detail. This chapter consists of three sections. The first 

section deals with the description of the data and the results of the stationarity tests. The 

second part discusses the results of the OLS regression as a benchmark model in 

conjunction with its requisite diagnostic tests and the proposed remedies thereof. These 

results are discussed within the limitations of a fixed-coefficient model as articulated in the 

previous chapter. The last section focusses on the main results of the study which are 

obtained from the Kalman filter technique. The evolution of the elasticity coefficients is 

assessed and the observed structural breaks are explained.  

 

4.2 Data Description 

 
This study uses electricity consumption, electricity price and mining production as the 

variables in estimating electricity demand. All equations are estimated in the natural 

logarithm form since it enables the interpretation of coefficients in terms of elasticity. These 

variables, their respective sources and their assigned code names are presented in Table 1. 

Electricity consumption and price figures are obtained from Eskom’s sales department. As 

discussed in section 1.5, this study uses average monthly prices and not marginal prices. 

The mining production figures are obtained from Statistics South Africa.  

 

Table 1:  Denotation of Variables  

 

 

The maximum, mean and minimum values for these three variables are presented in Table 

2. For ease of presentation, electricity consumption has been converted into gigawatt hours. 

Electricity price is presented in cents per kilowatt hours, while mining production is kept in its 

Variable Source Logarithmic Transformation Code-name

Electricity Consumption Eskom Sales Department Log(consumption) Logcon

Electicity Price Eskom Sales Department Log(price) logprice

Mining Production Stats SA Log(production) Logprod
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index form. The data shows that price has a minimum of 14 cents and a maximum of 121 

cents. Mining production has ranged from a minimum of 78.7 index points to a maximum of 

115.8 points. Consumption ranges from a maximum of 2800 GWH to a low of 2200 GWH 

with the mean and median at 2570 GWH. The period under review spans April 2006 to 

March 2019, and consists of a total of 156 observations. 

 

Table 2: Summary of Actual Values  

 

 

The first and the second rows in Table 2 show the mean and median values of the 

respective variables. It can be observed that the mean and the median values for all the 

variables are close to each other. However, in the case of both the independent variables the 

median is larger than the mean. The difference between the mean and the median is 

particularly noticeable in the case of price. This indicates that electricity price was relatively 

low at the beginning of the series but increased at some considerable rate as time 

progressed. On the whole the data is skewed to the left with a long tail of low observations 

pulling the mean down more than the median 

 

Table 3: Descriptive Summary  

 

Consumption(GWh) Price (c/kwh) Production

Mean 2,570                               53.8610 99.5192

Median 2,570                               55.8062 100.8500

Maximum 2,800                               121.5064 115.8000

Minimum 2,200                               14.4599 78.7000

Observations 156 156 156

Logcon Logprice logprod

Mean 21.6646 3.8163 4.5968

Median 21.6687 4.0219 4.6136

Maximum 21.7512 4.8000 4.7519

Minimum 21.5131 2.6714 4.3656

Std Dev. 0.0526 0.6222 0.0845

Skewness -0.7385 -0.4487 -0.5812

Kurtosis 3.2812 1.9409 2.7812

Jarque-Bera 14.6944 12.5252 9.0945

Probability 0.0006 0.0019 0.0106

Observations 156 156 156
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Table 3 presents the same variables in their logarithmic forms. Other indicative values such 

standard deviation and skewness are also presented. The standard deviation measures the 

dispersion around the mean in the series. Accordingly log of consumption is a less dispersed 

with the standard deviation of 0.0526 while log of price is highly dispersed with a value of 

0.6222. The relatively high level of dispersion observed in the log of price series pays 

credence to the observation that electricity price changed materially during the period under 

review.   

 

Skewness measures the asymmetry of the distribution of the series around the mean. A 

symmetric distribution has a zero skewness value. Thus none of the series is close to 

symmetric distribution with log of consumption having a value of -0.73851, log of price with a 

value of -0.44866 and log of production with a value of -0.58122. All variables exhibit a 

negatively symmetric distribution which is a further indication that these distributions have 

left tails. Also included in Table 3 are values for kurtosis. This measures the flatness and the 

peak of the distribution of the series. A normal distribution has a kurtosis value of 3. Log of 

consumption has a peaked (leptokurtic) distribution relative to the normal, since it has a 

kurtosis value higher than 3. On the other hand, log of price and log of production have 

flatter distributions (platykurtic) with kurtosis values that are less than 3. The skewness and 

kurtosis values suggest that none of the three variables are normally distributed. 

Nevertheless, these indicative values are not sufficient evidence that the data is not normally 

distributed. A more rigorous econometric test is required for this purpose.   

 

This study employs the Jarque-Bera (JB) test of normality for this purpose. The results of this 

test are enclosed in Table 3 for each variable. The null hypothesis of the JB test is that the 

series follows a normal distribution. The JB statistic follows a chi-squared (𝜒2) distribution 

with two degrees of freedom. The null hypothesis of a normal distribution is rejected for all 

three series due to the low probability values of the JB statistic. Therefore, according to the 

JB test none of the three variables is normally distributed. It follows that the t- and the f- 

statistics that may be derived from this data could be misleading, thus making any 

hypothesis testing less robust. 

 

In Figure 12 the graph of log of price shows that it has a positive growth rate albeit with 

pronounced oscillations. These oscillations are attributable to the fact that electricity prices in 

the mining sector increase significantly during the winter months. This variation in price 

during the year is done to encourage the sector to reduce its electricity consumption during 

the peak demand periods. In winter, residential electricity demand is higher. This puts 

significant pressure on the national grid. Higher winter tariffs for the mining sector are aimed 
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at incentivizing the sector to shift demand to summer in order to lower pressure on the grid. 

This further demonstrates the critical role that the mining sector plays in stabilizing overall 

country electricity demand as seasons change and demand patterns change accordingly.   

 

Figure 12: Time plots of variables in natural logarithmic forms 

 

 

 

The graphs of log of consumption and log of production exhibit fluctuations from time to time. 

In general both these series show a dip in December and January of every year. This can be 

attributed to the fact that the mining sector in South Africa generally operates with skeleton 

staff during significant portions of these months as most workers take their end of year leave 

of absence. Therefore both mining production and electricity consumption during these 

months are generally lower than during other months of the year. The most basic method of 

detecting stationarity depends on plotting the data and visually assessing whether or not the 

series presents some known properties of stationarity (or non–stationarity). It can be 

observed that all variables especially log of price, present prominent seasonality. However in 

order to ascertain whether or not the data series is stationary, a proper econometric test has 

to be performed. 
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4.3 Unit Root Tests 
 

As mentioned in the previous chapter, one of the challenges encountered when studying 

time series relationships is spurious regressions. The problem can be partly avoided by 

checking if the observations in a particular time series are related in such a manner that a 

long run relationship exists between them. In this study the Augmented Dickey Fuller (ADF) 

test is used to test for stationarity. There is no way of knowing upfront which deterministic 

structure is the most relevant for each series. This requires some trial and error. Therefore 

the results of the unit root tests while using all the deterministic structures are presented.  

 

Table 4: Results of the Unit Root Tests  

Variable 

Possible Deterministic 

Structure Statistic P-Value 

Level of 

Significance Conclusion 

Log 

Consumption 

None -0.3941 0.5405 - - 

Intercept -4.2533 0.0008 *** stationary 

Intercept and trend -5.1980 0.0002 *** stationary 

  

Log Price 

None 2.4714 0.9968 - - 

Intercept -2.7218 0.0728 * stationary  

Intercept and trend 0.3262 0.9986 -         - 

  

Log 

Production 

None -1.0751 0.2545 -          - 

Intercept -2.9469 0.0426 ** stationary 

Intercept and trend -2.6459 0.2609 - - 

Note: *, **, and *** denote 10%, 5% and 1% levels of significance respectively 

 

The results of ADF unit root test are enclosed in Table 4. They reveal that all variables have 

a unit root when neither the intercept nor the trend is included in the test equation. When 

both intercept and trend are included in the deterministic structure, still log of price and log of 

production have unit roots; however, log of consumption becomes stationary at a one per 

cent significance level. When only the intercept is included in the test equation all variables 

are stationary with log of consumption, log of production and log of price being stationary at 

one per cent, five per cent and ten per cent significance levels respectively.  
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4.4 OLS Regression 
 

The OLS regression provides average price and income elasticity coefficients for the period 

under review. The regression is estimated such that log of price and log of production are 

explanatory variables for log of consumption. The results of the regression are presented in 

Table 5. The price elasticity coefficient is estimated at -0.02 while income elasticity is 

estimated at 0.30. Therefore both price and income elasticities of electricity demand are 

inelastic, as they are smaller than 1 in absolute terms. Nevertheless, both variables are 

deemed to play a statistically significant role in explaining electricity consumption in the 

mining sector. However, before these results can be relied upon, the requisite OLS 

diagnostic tests should be performed to ensure that the data is compliant with key CLRM 

conditions. Already there are some worrying signs that can be observed from the table of 

results. For example, the relatively low d-statistic is a cause for concern. These results could 

be spurious. In addition, the relatively low 𝑅2 of 34 per cent suggest that our explanatory 

variables do not sufficiently explain changes in electricity consumption. This necessitates 

further scrutiny.  

 

Table 5: Results of the Ordinary Least Squares Regression 

Dependent Variable: LOGCON   

Method: Least Squares   

Date: 09/28/19   Time: 16:53   

Sample: 2006M04 2019M03   

Included observations: 156   
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 20.34315 0.194480 104.6030 0.0000 

LOGPRICE -0.021180 0.005608 -3.776743 0.0002 

LOGPROD 0.305049 0.041279 7.389859 0.0000 
     
     R-squared 0.344257     Mean dependent var 21.66459 

Adjusted R-squared 0.335685     S.D. dependent var 0.052561 

S.E. of regression 0.042840     Akaike info criterion -3.443630 

Sum squared resid 0.280800     Schwarz criterion -3.384979 

Log likelihood 271.6032     Hannan-Quinn criter. -3.419809 

F-statistic 40.16160     Durbin-Watson stat 0.710706 

Prob(F-statistic) 0.000000    
     
     

 

4.5 Residual Diagnostics 
 

The integrity of the error terms is crucial in ensuring that spurious regressions are avoided. 

To this end the results of the diagnostic tests in the form of heteroscedasticity and serial 

correlation are discussed in this section.  
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4.5.1 Heteroscedasticity Test  
 

There are several ways of testing for heteroscedasticity. This study employs White’s Test for 

this purpose. As articulated in the previous chapter, this test provides a flexible functional 

form that is useful for identifying almost any pattern of heteroscedasticity. It does so by 

allowing the independent variables to have a non-linear effect on the variance of the error 

term. This flexibility is particularly crucial in this case as we have already established that the 

data is not normally distributed. The null hypothesis of White’s Heteroscedasticity Test is that 

the data series is homoscedastic. A five per cent level of significance is chosen such that the 

decision matrix is as follows: 

 

• If p-value < level of significance (alpha); then null hypothesis is rejected 

• If p-value > level of significance (alpha); then we fail to reject the null hypothesis. 

 

Table 6: Results of White’s Test  

Heteroskedasticity Test: White  
     
     F-statistic 3.496587     Prob. F(5,150) 0.0051 

Obs*R-squared 16.28427     Prob. Chi-Square(5) 0.0061 

Scaled explained SS 21.43801     Prob. Chi-Square(5) 0.0007 
     
          

Test Equation:    

Dependent Variable: RESID^2   

Method: Least Squares   

Date: 09/28/19   Time: 13:51   

Sample: 2006M04 2019M03   

Included observations: 156   
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C -0.947571 0.647617 -1.463166 0.1455 

LOGPRICE 0.026647 0.022336 1.193000 0.2348 

LOGPRICE^2 -0.001785 0.000731 -2.443482 0.0157 

LOGPRICE*LOGPROD -0.002909 0.004708 -0.617816 0.5376 

LOGPROD 0.399846 0.278082 1.437873 0.1526 

LOGPROD^2 -0.043176 0.029872 -1.445389 0.1504 
     
     R-squared 0.104386     Mean dependent var 0.001800 

Adjusted R-squared 0.074533     S.D. dependent var 0.002988 

S.E. of regression 0.002874     Akaike info criterion -8.828435 

Sum squared resid 0.001239     Schwarz criterion -8.711133 

Log likelihood 694.6179     Hannan-Quinn criter. -8.780792 

F-statistic 3.496587     Durbin-Watson stat 1.513952 

Prob(F-statistic) 0.005105    
     
     

 

It can be observed from Table 6 that the observed 𝑅2 from the auxiliary regression has been 

calculated as N X 𝑅2 = 156 x 0.104386 = 16.28427. The observed 𝑅2 asymptotically follows 
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a chi-squared distribution with five degrees of freedom.  The corresponding p-value is 

calculated to be 0.0061. This is below the five per cent level of significance. Therefore the 

null hypothesis that the data is homoscedastic can be rejected, thereby inferring the 

presence of heteroscedasticity. This means that variances of the series are not constant 

throughout the period under review. Therefore linear regressions based on this data may not 

be suitable for inferences into the future.  

 

4.5.2 Serial Correlation Test  
 

This study uses the Durbin Watson Statistic to detect serial correlation. This statistic can be 

observed in Table 5. It is calculated at 0.710706. As articulated in the previous chapter, the 

d-statistic ranges from zero to four (0 to 4). The closer the d-statistic is to 0, the more likely it 

is that there is positive autocorrelation. At 0.710706 the d-statistic indicates that there is 

likely to be negative correlation as the figure is closer to zero than to two which is a point 

where no autocorrelation can be confirmed. In order to further confirm that there is serial 

correlation in the residuals, the Breusch-Godfrey Serial Correlation LM Test is employed. 

The null hypothesis of the test is that there is no serial correlation in the residuals. The 

results of this test are enclosed in Table 7. The observed 𝑅2 shows that there is a zero 

probability that there is no serial correlation in the error terms.  Therefore the null hypothesis 

is rejected. 

 

Table 7: Results of the Breusch-Godfrey LM Serial Correlation Test  

Breusch-Godfrey Serial Correlation LM Test:  
     
     F-statistic 63.54276     Prob. F(2,151) 0.0000 

Obs*R-squared 71.29225     Prob. Chi-Square(2) 0.0000 
     
          

Test Equation:    

Dependent Variable: RESID   

Method: Least Squares   

Date: 09/28/19   Time: 17:05   

Sample: 2006M04 2019M03   

Included observations: 156   

Presample missing value lagged residuals set to zero. 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.415911 0.148903 2.793167 0.0059 

LOGPRICE -0.001953 0.004164 -0.469082 0.6397 

LOGPROD -0.088957 0.031620 -2.813314 0.0056 

RESID(-1) 0.562404 0.080253 7.007916 0.0000 

RESID(-2) 0.201244 0.079418 2.533988 0.0123 
     
     R-squared 0.457002     Mean dependent var -7.06E-15 

Adjusted R-squared 0.442618     S.D. dependent var 0.042563 
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S.E. of regression 0.031777     Akaike info criterion -4.028638 

Sum squared resid 0.152474     Schwarz criterion -3.930886 

Log likelihood 319.2338     Hannan-Quinn criter. -3.988936 

F-statistic 31.77138     Durbin-Watson stat 1.998834 

Prob(F-statistic) 0.000000    
     
     

 

A popular remedy to serial correlation is to introduce another independent variable in the 

model. In this study this is done by introducing a one period lag of the dependent variable as 

another explanatory variable. Therefore the new model includes three explanatory variables 

namely, log of price, log of production and lag-log of consumption. The results of this 

regression are enclosed in Table 8. 

 

Table 8: Results of Ordinary Least Squares (Regression 2)  

Dependent Variable: LOGCON   

Method: Least Squares   

Date: 09/28/19   Time: 17:50   

Sample (adjusted): 2006M05 2019M03  

Included observations: 155 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 7.153936 1.281020 5.584561 0.0000 

LOGPRICE -0.007363 0.004567 -1.612230 0.1090 

LOGPROD 0.119964 0.036444 3.291711 0.0012 

LOGCON(-1) 0.645608 0.062281 10.36598 0.0000 
     
     R-squared 0.617461     Mean dependent var 21.66448 

Adjusted R-squared 0.609860     S.D. dependent var 0.052715 

S.E. of regression 0.032927     Akaike info criterion -3.963602 

Sum squared resid 0.163709     Schwarz criterion -3.885062 

Log likelihood 311.1791     Hannan-Quinn criter. -3.931700 

F-statistic 81.24353     Durbin-Watson stat 2.005098 

Prob(F-statistic) 0.000000    
     
     

 

A d-statistic of 2.005098 is obtained from this regression. This value is close to 2. It indicates 

that there is no serial correlation in the residuals of this regression. An added advantage of 

this regression model is the noticeable improvement in the value of the 𝑅2 from 34 per cent 

in the original regression to 61 per cent in the latter. This means that the explanatory 

variables as arranged in the second regression have greater explanatory power over 

electricity consumption. Crucially, the elasticity coefficients that are estimated by the new 

regression are significantly different from the initial estimates. The price elasticity coefficient 

has diminished somewhat (in absolute terms) to -0.007 as compared to -0.02 earlier. Price is 

no longer deemed to be a significant determinant of electricity demand in the sector. The 

income elasticity coefficient is now estimated at 0.11 as compared to 0.30 previously. 

However income remains a significant determinant of electricity consumption. The statistical 

significance and relatively large coefficient on lagged electricity consumption supports the 
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view that electricity consumption is strongly path-dependent. This inertia results from the 

inability of mines to drastically change their electricity consumption patterns, once production 

processes are locked in. 

 

4.6 Stability Diagnostics 
 

It is crucial to ensure that any regression model used in the analysis has been correctly 

specified. Otherwise the explanatory power of the independent variables in the model would 

be questionable. Another condition for the results of a fixed coefficient model to be reliable is 

for the estimated parameter coefficients to remain relatively unchanged throughout the 

period under review. This allows the averages that are estimated by this model to be a 

correct representation of the true outcome.  

 

4.6.1 Results of Misspecification Test  
 

The explanatory variables that are included in a regression model must sufficiently explain 

movements in the dependent variable. Otherwise the model could present spurious results 

owing to a non-existent relationship between the independent variables and the dependent 

variable. This is of particular concern since the OLS model was expanded to include the lag 

of log of consumption in an effort to remedy serial correlation. This study employs Ramsey’s 

Regression Specification Error Test (RESET) to test for misspecification. The null hypothesis 

of this test is that the model has been correctly specified. The results of Ramsey’s RESET 

test are enclosed in Table 9. The p-value is calculated as 0.84. Therefore we fail to reject the 

null hypothesis thereby inferring that the regression model has been correctly specified.  

 

Table 9: Ramsey RESET Test 

Ramsey RESET Test   

Equation: OLS    

Specification: LOGCON C LOGPRICE LOGPROD LAGLOGCON 

Omitted Variables: Squares of fitted values  
     
      Value df Probability  

t-statistic  0.199213  150  0.8424  

F-statistic  0.039686 (1, 150)  0.8424  

Likelihood ratio  0.041003  1  0.8395  
     
     F-test summary:   

 Sum of Sq. df 
Mean 

Squares  

Test SSR  4.33E-05  1  4.33E-05  

Restricted SSR  0.163709  151  0.001084  

Unrestricted SSR  0.163665  150  0.001091  

Unrestricted SSR  0.163665  150  0.001091  
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     LR test summary:   

 Value df   

Restricted LogL  311.1791  151   

Unrestricted LogL  311.1996  150   
     
          

Unrestricted Test Equation:   

Dependent Variable: LOGCON   

Method: Least Squares   

Date: 09/29/19   Time: 18:30   

Sample: 2006M05 2019M03   

Included observations: 155   
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C -32.90968 201.1124 -0.163638 0.8702 

LOGPRICE -0.088045 0.405027 -0.217381 0.8282 

LOGPROD 1.431393 6.583114 0.217434 0.8282 

LOGCON(-1) 7.695208 35.38711 0.217458 0.8281 

FITTED^2 -0.252237 1.266158 -0.199214 0.8424 
     
     R-squared 0.617562     Mean dependent var 21.66448 

Adjusted R-squared 0.607363     S.D. dependent var 0.052715 

S.E. of regression 0.033032     Akaike info criterion -3.950963 

Sum squared resid 0.163665     Schwarz criterion -3.852788 

Log likelihood 311.1996     Hannan-Quinn criter. -3.911086 

F-statistic 60.55505     Durbin-Watson stat 2.006261 

Prob(F-statistic) 0.000000    
     
     

 

4.6.2 Determining breakpoints in the Data Series  
 

In order to ensure that the model is stable, it is crucial to ascertain whether or not there are 

any breakpoints in the data series. This study employs two separate tests for this purpose. 

Firstly, the Cumulative Sum (CUSUM) of Squares is employed. A graphical representation of 

recursive residuals, and the upper and lower bounds of the critical value have been plotted in 

Figure 13. The null hypothesis of the test is that the parameters of the model are stable. 

Therefore, if the CUSUM of squares of the variation of the error term stays within the five per 

cent significance level then parameters are stable. It follows that if CUSUM of squares 

deviates outside the five per cent significance level then the parameters are time variant. 

The results indicate that in 2009 the CUSUM sum of squares veered outside the five per 

cent level of significance, therefore the null hypothesis is rejected. The results indicate that 

2009 was a breakpoint in the data. In 2009 the South African economy went through a deep 

recession following the global economic meltdown occasioned by the sub-prime crisis. This 

global economic crisis had a significant impact on the South African mining sector as global 

demand slowed and commodity prices plummeted. Therefore, it is probable that 2009 was 

indeed a breakpoint in the data series. 
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Figure 13: Cumulative Sum of Squares  

 

 

As a secondary confirmation, the Chow test is employed to ascertain whether or not this 

specific time period represents a breakpoint. The results of the Chow Test are presented in 

Table 10. The F-statistic has a probability that is close to zero. That means that there is a 

zero probability that there are no breaks at the specified point in the data series. Therefore 

the Chow Test confirms that a breakpoint in the series occurred in April 2009. Thus we reject 

the null hypothesis that there are no breakpoints. It is possible that there are more 

breakpoints than what has been ascertained here. Be that is it may, the confirmation of at 

least one break point is sufficient proof that the parameter coefficients have been time 

variant. The elasticity estimates are not static throughout the period under review.  

 

Table 10: Results of the Chow Breakpoint Test 

Chow Breakpoint Test: 2009M04   

Null Hypothesis: No breaks at specified breakpoints 

Varying regressors: All equation variables  

Equation Sample: 2006M05 2019M03  
     
     F-statistic 4.292290  Prob. F(4,147) 0.0026 

Log likelihood ratio 17.12204  Prob. Chi-Square(4) 0.0018 

Wald Statistic  17.16916  Prob. Chi-Square(4) 0.0018 
     
     

 

Therefore, it would be more beneficial to employ a model that allows for the time variation of 

parameter coefficients instead of relying on a single average fixed coefficient models like 

OLS. As articulated in the previous chapter, the essence of the Chow test is to show that 

there is at least one sub-period where the elasticity coefficient(s) is materially different from 

the average of the total period under review. To illustrate this point, two more OLS 

regressions are performed in line with the period specifications as articulated in section 

3.3.6. Therefore the first sub-period ends in March 2009 while the second sub-period 
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commences in April 2009 and ends in March 2019. The results of the regression of the first 

sub-period are presented in Table 11. The income elasticity coefficient is estimated at 0.34 

while price elasticity is estimated at 0.05. This indicates that for this sub-period, income 

played a more significant role in explaining electricity consumption. The income elasticity 

coefficient for this period is substantially higher than the estimate for the entire period of 0.11 

as presented in Table 8. On the other hand, price elasticity is close to zero but positive. This 

is not a significant departure from the estimates that were presented earlier. Nevertheless, 

this outcome is contrary to economic theory. As discussed in section 2.5.3 if electricity is a 

normal good, then electricity demand must have a negative relationship with price. However, 

a small but positive price elasticity coefficient indicates that price had a limited impact in 

determining electricity consumption during this period. 

 

Table 11: OLS Regression Sub-period 1 

Dependent Variable: LOGCON   

Method: Least Squares   

Date: 10/13/19   Time: 17:26   

Sample (adjusted): 2006M05 2009M03  

Included observations: 35 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 21.58198 2.291391 9.418728 0.0000 

LOGPRICE 0.051285 0.013785 3.720283 0.0008 

LOGPROD 0.346411 0.040460 8.561810 0.0000 

LOGCON(-1) -0.075866 0.111543 -0.680150 0.5015 
     
     R-squared 0.800312     Mean dependent var 21.69588 

Adjusted R-squared 0.780987     S.D. dependent var 0.037320 

S.E. of regression 0.017465     Akaike info criterion -5.149989 

Sum squared resid 0.009456     Schwarz criterion -4.972235 

Log likelihood 94.12480     Hannan-Quinn criter. -5.088628 

F-statistic 41.41398     Durbin-Watson stat 2.276241 

Prob(F-statistic) 0.000000    
     
     

 

In sharp contrast, the results of second sub-period indicate that income elasticity of electricity 

demand became more inelastic during this period thereby playing a less significant role in 

explaining changes in electricity consumption. On the other hand electricity demand became 

marginally more sensitive to changes in price albeit still very inelastic. The results of this 

regression are presented in Table 12. Income elasticity is estimated at 0.08. This is not 

substantially lower than the total period average of 0.11 as presented earlier. In as far as 

price elasticity is concerned, a coefficient of -0.01 is estimated. This is marginally higher (in 

absolute terms) than the total period estimate of -0.007. However, price is still not considered 

to be a statistically significant determinant of electricity demand. The regression results for 

these two periods present two crucial findings. Firstly, there was significant variation in the 
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income elasticity coefficient over time. As time progressed electricity demand became even 

more income inelastic. Secondly, price elasticity has not played a significant role in 

determining electricity demand. Electricity demand has remained relatively non-responsive to 

price changes. However, there is some evidence of increased demand sensitivity to price 

changes in the second period, albeit still very low.  

 

Table 12: OLS Regression Sub-period 2 

Dependent Variable: LOGCON   

Method: Least Squares   

Date: 10/13/19   Time: 17:30   

Sample: 2009M04 2019M03   

Included observations: 120   
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 6.031537 1.427868 4.224155 0.0000 

LOGPRICE -0.010505 0.008066 -1.302379 0.1954 

LOGPROD 0.084175 0.048728 1.727438 0.0868 

LOGCON(-1) 0.705624 0.069863 10.10005 0.0000 
     
     R-squared 0.591921     Mean dependent var 21.65533 

Adjusted R-squared 0.581367     S.D. dependent var 0.053140 

S.E. of regression 0.034383     Akaike info criterion -3.869763 

Sum squared resid 0.137132     Schwarz criterion -3.776846 

Log likelihood 236.1858     Hannan-Quinn criter. -3.832029 

F-statistic 56.08627     Durbin-Watson stat 2.060830 

Prob(F-statistic) 0.000000    
     
     

 

4.7 Implications of the various diagnostic tests 
 

The results of the various tests highlight the downside of using OLS or any other fixed-

coefficient model for the purpose of estimating elasticity coefficients. The first challenge is 

that the data is not normally distributed. The second challenge is the presence of 

heteroscedasticity. This violation of the Classical Linear Regression Model (CLRM) 

conditions means that the parameter estimators may not be BLUE. Nevertheless, the 

elasticity coefficients as estimated by the OLS model can be utilised notwithstanding their 

shortcomings. After correcting for serial correlation, the price elasticity coefficient is 

estimated at -0.007, but price is found to play an insignificant role in explaining electricity 

consumption. The inclusion of lagged consumption reduces the role of prices in explaining 

electricity consumption, to the point that the price variable is not statistically significant. This 

suggests significant inertia in electricity consumption, supporting the notion that electricity 

consumption is driven by long-term production processes and infrastructure, and slow to 

adjust to price changes. On the other hand income elasticity is estimated at 0.11. Mining 

production is deemed to play a more significant role in explaining electricity demand.  
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It should be noted that these figures are averages for the period under review. Given the 

presence of break points in the data, as confirmed by the Chow Test, these estimates cannot 

be relied upon for inference purposes. There is no evidence of significant variation in the 

price elasticity coefficient. Therefore, the OLS price elasticity estimate is likely to be reflective 

of a true state of affairs at any point during the time series. However, there is significant 

variation in the income elasticity coefficient. This is demonstrated by the vastly different 

elasticity coefficients that were estimated in sub-period 1 (0.34) and sub-period 2 (0.08). This 

shows that the income elasticity coefficient for the mining sector is time variant. Therefore it 

would not be prudent to rely on the OLS average for the purpose of making inferences with 

respect to income elasticity. The variation of this parameter coefficient dictates that a more 

adoptive model should be used in order to reflect the latest state of affairs. This makes a 

time-varying parameter (TVP) model more relevant. 

 

4.8 Time-varying parameter model 
 

Following the confirmation that the mining sector underwent a structural change during the 

period under review, it is beneficial to use a methodology that allows for the elasticity 

coefficients to vary stochastically over time. Firstly, a graphical depiction of this varying 

elasticity coefficient may be more meaningful than a single average figure. This allows the 

modeller to identify breakpoints and provide clarity on the events that caused it. This would 

put the researcher in a better position to make inferences. Secondly, the final state of the 

elasticity coefficients is more useful than the long term averages. They are a better reflection 

of what the demand response is estimated to be at the final stage. It removes any bias that 

may be caused by a particular event or a specific period in the series.  This study uses the 

Kalman Filter technique for this purpose. In cases where parameter instability has been 

ascertained, the Kalman Filter model can be proven to be superior to the least squares 

model (Morisson & Pike, 1977: 773). The Kalman Filter provides a more informed 

assessment of the elasticity coefficients. The results of the Kalman Filter are presented in 

Table 13. In this table, C(1) and C(2) represent the constant parameters of the estimation, 

whereas SV1 and SV2 represent the final estimates for price and production/income 

elasticity respectively. SV3 relates to the value of the remaining factors not included in the 

model that have an impact on electricity consumption in the sector. The results indicate that 

electricity demand in the mining sector is both price and income inelastic. In its final state, 

price does not play a significant role in explaining electricity demand. In fact, the price 

elasticity coefficient was found to be positive. On the contrary, mining production was found 

to be a significant determinant of electricity demand. An income elasticity coefficient of 0.15 

was estimated for its final state.  
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Table 13: Kalman Filter Results 

Sspace: KALMAN    

Method: Maximum likelihood (Marquardt)  

Date: 09/15/19   Time: 11:09   

Sample: 2006M04 2019M03   

Included observations: 156   

Convergence achieved after 4 iterations  
     
      Coefficient Std. Error z-Statistic Prob.   
     
     C(1) -6.809697 0.080835 -84.24185 0.0000 

C(2) 0.999945 0.000131 7640.825 0.0000 
     
      Final State Root MSE z-Statistic Prob.   
     
     SV1 0.034780 0.017163 2.026479 0.0427 

SV2 0.153788 0.033575 4.580468 0.0000 

SV3 20.69754 0.166422 124.3677 0.0000 
     
     Log likelihood 279.7009      Akaike info criterion -3.560268 

Parameters 2      Schwarz criterion -3.521167 

Diffuse priors 3      Hannan-Quinn criter. -3.544387 
     
     

 

The evolution of the price elasticity coefficient is depicted in Figure 14. The price elasticity 

coefficient was fairly static at 0.05 during the three years leading to 2009, and in line with the 

OLS estimate of the same period. The structural break owing to the 2009 global financial 

crisis can be observed in the evolution of the coefficient. During that year the elasticity 

coefficient abruptly turned negative, showing some increased sensitivity to changes in 

electricity prices, albeit still at a very low level. As the global economy recovered and 

commodity prices improved, price elasticity reverted back to almost pre-crisis levels. From 

2011 to 2013 the elasticity coefficient gradually turned marginally positive, indicating a 

reduction in price sensitivity. From 2013 to 2019 the coefficient plateaued at around 0.03.  

 

A positive, but very small, price elasticity coefficient indicates that electricity consumption in 

the mining sector is by and large not responsive to changes in electricity price. 

Notwithstanding the variation of the price elasticity coefficient over the period under review, it 

can be observed that electricity demand has remained very price inelastic. This suggests 

that electricity price sensitivity in the mining sector has remained fairly subdued. Towards the 

latter parts of the period the coefficient gradually declined towards relatively low positive 

figures, although it turned negative on some occasions. Notwithstanding the detected 

breakpoint, the change in the price elasticity coefficient during this period was fairly marginal. 

The elasticity coefficient has remained at or close to zero for most of the period. 
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Figure 14: Evolution of price elasticity coefficient 

 

 

 

In contrast, the changes in the income elasticity coefficient were considerably more 

pronounced. The evolution of income elasticity is depicted in Figure 15. It registered a high 

of 0.46 in 2007, lows of 0.11 in 2010, and 0.15 in its final state. This means that at its final 

state, a one per cent increase in mining production would result in 0.15 per cent increase in 

electricity consumption. On the whole, income elasticity showed a gradual decline during the 

period under review. This means that changes in production are having less impact on 

electricity consumed in the sector. Electricity consumption remained income-inelastic 

throughout the study period. However, mining production continued to play a significant role 

in determining electricity demand.  

 

The positive relationship between production and electricity consumption was maintained for 

the entire period. This further pays credence to the existence of causality between economic 

growth and electricity consumption. The positive income elasticity coefficient indicates that 

an increase in mining production will result in an increase in electricity consumption. The 

gradual decline in the elasticity coefficient indicates some electricity efficiency gains in the 

sector. The sector is using fewer units of electricity to produce a single additional unit of 

production. Nevertheless, mining production remains a significant determinant of electricity 

demand in the sector.  
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Figure 15: Evolution of income elasticity coefficient 

 
 

4.9 Discussion 
 

The Kalman Filter is the primary model that is used to address the research questions of this 

study. It is a more robust forecasting technique than the OLS approach. It allows for the 

algorithmic forecasting to proceed even though some of the CLRM conditions are not met. 

For example, the observed seasonality of the data used in this study would have to be 

corrected before the results of the OLS could be fully relied upon. However these limitations 

are not encountered in the case of the Kalman filter. In fact this technique does not require 

the data series to be stationary before model estimations are performed (Arisoy & Ozturk, 

2014:961). Crucially, this study makes the point that the results of the OLS regression 

cannot be relied upon due to the existence of breakpoints in the data. For these reasons, the 

Kalman filter results are the primary focus of the study while the OLS results are referred to 

solely for benchmarking purposes and are considered within the limitations of this model.  

 

In addition, the Kalman filter provides greater insight into the evolution of Income elasticity. 

As in the OLS model, it affirms that mining output is a significant determinant of electricity 

consumption in the mining sector. It also indicates that electricity consumption in the mining 

sector is income-inelastic. A casual observation of the evolution of the income elasticity 

coefficient indicates that it is gradually declining over time. However, there has been a 
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significant variation in the income elasticity coefficient during the period under review. An 

analysis of the evolution of the income elasticity coefficient indicates that elasticity estimates 

at various time periods by and large correspond with the OLS averages that were calculated 

for those respective periods. Therefore if there was no variation in the parameter over time, 

the OLS average and the Kalman filter estimate would be similar. It could be tempting to 

surmise that the difference between the Kalman filter estimate (0.15) and the OLS average 

(0.11) is not material, therefore either of the two models would be appropriate. However, this 

would be incorrect. The fact that these two models have yielded fairly similar results is simply 

by chance and not by design. For example, if elasticity outcomes in period 1 and period 2 

were swapped around such that income elasticity was increasing over time and not 

decreasing as it is currently the case, the OLS average would remain the same but the 

Kalman filter final state estimate would be materially higher. The higher Kalman filter 

estimate would be more appropriate for inference purposes as it would reflect the higher 

level of income elasticity at that point. On the other hand, the OLS average would be 

misleading at best. In this scenario, the models would be exactly the same, but the 

vulnerabilities of the OLS model would be exposed in a more emphatic way. 

 

The variation in the income parameter means that long term elasticity averages cannot be 

relied upon to make accurate inferences about demand responsiveness to changes in 

production. In this case, a long term elasticity average could understate the anticipated 

electricity consumption response to changes in mining production albeit by a small margin. If 

such a coefficient is used it could result in an inaccurate electricity demand projection. 

Therefore, the Kalman filter is crucial in providing a more reliable elasticity coefficient in this 

circumstance. Policy makers should be conscious of this variation. The income elasticity 

coefficient has plateaued around the current level for several years. There is no evidence to 

suggest that it could go through another change in the near future. Therefore the final state 

of 0.15 can be used as a reliable income elasticity estimate for the short to medium term. 

Therefore, the research hypothesis that mining production has a positive relationship with 

electricity consumption in the mining sector cannot be rejected. 

 

Another point of convergence between the Kalman filter technique and the OLS regression is 

the fact that electricity price does not play a significant role in determining electricity 

consumption. However, the Kalman filter provides an added advantage of depicting how the 

elasticity estimate has evolved over time such that the impact of key events can be detected. 

It is clear that the 2009 global financial crisis had a significant impact on the sector. The 

lower commodity prices that ensued as a consequence of the crisis put the financial viability 

of some mining operations into question. This translated into greater price sensitivity, with 
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the price elasticity coefficient turning negative for a short period of time. Notwithstanding this 

noticeable change, the variation in the elasticity coefficient was within a very narrow margin. 

There is no evidence of any significant variation in the price elasticity estimate over time. As 

a result there is no material difference between the OLS average and the Kalman filter 

estimate. This is consistent with the findings of Morrison & Pike (1977: 774). Both the OLS 

regression model and the Kalman filter technique indicate that price was not a significant 

determinant of electricity consumption at any point during the period under review. This is 

not really surprising, given the capital intensive nature of mining activity in South Africa. 

Once the production plant has been constructed and mining operations commence, it is very 

difficult for mines to alter their electricity consumption in response to a variable cost like 

electricity costs. They do not have the agility to change their production process in the short 

term. Therefore, price sensitivity in the mining sector is a long term consideration. The 

mining houses may consider the electricity price trajectory when setting up new plants or 

extending their current operations, but they are unlikely to scale down on consumption solely 

on the back of higher prices in the short to medium term. In addition, even if a decision to 

shut down operations were to be made, it would take at least several months to implement. 

A decision to shut down operations is usually an elaborate process. There are several 

regulatory and legal processes that have to be followed. All this takes time. Thus a reaction 

to a higher electricity price may not be swift and immediate.  
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Chapter 5 

Conclusion and Policy Implication 

 

5.1 Conclusion  

 

This study is motivated by the recent high increases in electricity prices and the seemingly 

related declining level of electricity sales in the mining sector. The historically low level of 

electricity prices in South Africa has caused economic researchers and policy makers to pay 

less attention to the sensitivity of electricity consumption by large power users to changes in 

prices. In a few studies where the subject was investigated, researchers found a relatively 

benign response owing to a low price level. In the past decade or so, electricity prices 

increased at a substantial rate. The findings of a low price elasticity emanating from a period 

of low prices cannot be extrapolated into a new era of high prices. Due to this reason, a 

literature gap exists in South Africa particular with respect to the demand response to high 

electricity prices by large power users like the mining sector. This study is geared towards 

filling this gap. 

 

The objectives of this study are to estimate the price and income elasticities of electricity 

demand in the South African mining sector. This study also examines the break points 

events that may have contributed to the evolution of the elasticity coefficients over time. In 

pursuit of these objectives this study explores the literature in this area exhaustively, 

identifying gaps and making an effort to fill those gaps. The study also provides 

recommendations to policy makers with respect to the demand sensitivity to price changes. 

 

The findings of the study suggest that electricity prices have on average not played a 

significant role in determining electricity consumption in the mining sector. Electricity 

consumption in the mining sector has by and large remained very price in-elastic, 

notwithstanding the recent price increases. This partly reflects the nature of the mining 

industry itself, and is also partly because electricity prices come from a historically low base. 

For most mining operations, there is limited scope to reduce electricity consumption in a 

significant manner. This is because the production process (i.e. plant and machinery) is 

already set up, therefore it is a sunk cost. Any attempts to change this structure may require 

substantial amounts of investments and a significant down time. It follows that, 

notwithstanding the cost implications of higher electricity costs, continuing with operations as 

normal may be the optimal option available to the mines. This will remain the dominant 

strategy until the cost of investing in a more efficient mining process is lower than the cost of 

higher electricity costs. It is only when a significant change in the opportunity cost occurs that 
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a profit maximising mine would find it necessary to change their production processes. Until 

then it may seem like the mines are not responsive to electricity price changes. However, 

higher electricity prices have undoubtedly put pressure on the profit lines of mining 

operations. Should the mines close in large numbers due to higher electricity costs, this 

would be reflected as reduction in electricity sales and potentially a step change in the price 

elasticity coefficient. Therefore, given the nature of the mining business, changes in the price 

elasticity coefficient are likely to be miniscule until a significant step change occurs. Similarly, 

the income elasticity of electricity demand was found to be very in-elastic. However, mining 

production has consistently remained a significant determinant of electricity consumption 

throughout the period under review.  

 

Furthermore, the results indicate that both price and output elasticity coefficients were time-

varying, although the variation was more pronounced for income elasticity than for price. 

This time variation indicates a change in the parameters’ respective levels of significance in 

explaining electricity consumption during the period under review. The Kalman filter 

technique is particularly useful in estimating elasticity coefficients, given the existence of 

parameter instability. The impact of key break point events like the 2009 global financial 

crisis can be observed in elasticity estimates that are produced by the model. In fact, there is 

sufficient evidence to suggest that prices played a more critical role in explaining electricity 

consumption during the period immediately after the crisis. However, as the economy and 

commodity prices recovered electricity prices became a less significant determinant of 

electricity consumption in the sector. Nevertheless, the variation in the price elasticity 

coefficient has remained within a relatively narrow band. It is important to note that these 

findings do not negate the negative financial impact that higher electricity prices may have 

on marginal mining operations. In addition to other cost pressures, higher electricity prices 

may push some marginal mining operations into a non-viable financial position.  

 

The income elasticity of electricity demand in the mining sector has gradually declined during 

this period. This means that changes in output are having a smaller impact on electricity 

consumed in the sector. It is important to bear in mind that the mining sector has been 

subjected to a radical energy-efficiency and electricity conservation drive as part of Eskom’s 

Demand Side Management (DSM) programme. As part of these programmes, the mines 

were given financial incentives to invest in more energy efficient equipment and processes. 

This intervention could be partly responsible for the gradual decline in income elasticity. It 

could also be argued that the cumulative price increases over time have encouraged mining 

companies to use electricity in a more efficient way as a means of reducing their production 

costs. The increasing price serves as an incentive to consumers to use electricity more 
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sparingly. The gradually declining income elasticity coefficient could be reflective of the 

results of these initiatives. It should be noted, however, that the income elasticity coefficient 

has remained generally flat since 2013. This suggests that the scope for further efficiency 

gains in the sector is limited, notwithstanding a significant increase in the electricity price 

during this period.  

 

5.2 Policy Implications  
 

These results could be of great value to electricity price policy makers and macro-economic 

planners in the country. The results suggest that for the mining sector as a whole, output and 

price elasticity levels are very low.  In theory, it could be argued that there is still some scope 

for further price increases without materially constraining demand. However, such a position 

can only be sustained if a further analysis on the profitability of the mining operations has 

been undertaken. In the case of the mining sector, a lack of response is largely due to an 

inability to respond and not an unwillingness to do so. 

 

Nevertheless, it is important to note that the price elasticity coefficient has become slightly 

more sensitive. After reaching a plateau for a while during the latter parts of the study period, 

the price elasticity coefficient could make a step change in the near future. It is evident that 

the cumulative impact of the electricity price increases since 2006 has made the sector 

slightly more price-sensitive over the course of time. As further price increases come into 

effect, the sector could undergo a step change in the price elasticity coefficient.  Therefore, 

any further price increases must take these constraints into account.  

 

The declining level of electricity consumption in the mining sector creates a unique dilemma 

for policy makers. This is more concerning given the evidence of support for the feedback 

hypothesis that has been found in South Africa. The bidirectional nature of the causality 

between electricity consumption and economic output suggest that any demand response 

which is negative for electricity consumption could have negative repercussions for 

economic growth as well.  It follows that if the price elasticity level goes through a step 

change subsequent price increases could have a negative impact on electricity consumption, 

thereby resulting in negative developmental and social consequences.  

 

The electricity price policy should take these developments into account. Notwithstanding 

these concerns, the movement towards cost–reflective pricing cannot be avoided. This 

should be done in tandem with ensuring that Eskom as a dominant player in the energy 

sector becomes more efficient. Policy makers should make a clear commitment to long-term 
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cost-reflective pricing. This price path should converge towards the long-run marginal cost of 

supplying electricity. If the electricity sector is to attract the levels of investment it requires in 

order to alleviate supply constraints, there must be an assurance that electricity prices will 

reflect the long-term marginal cost of production. Such a policy position would ensure that 

investment in the sector could yield a fair return. This would attract new entrants to the 

electricity industry value chain, thereby diluting Eskom’s monopoly position in the sector. It 

could also result in an improved security of aggregate electricity supply.  

 

Similarly, investors in the mining sector would benefit from such a price–signal. The mining 

sector is characterised by long lead projects with huge capital outlays and high energy 

intensity. A long-term price signal would be crucial for investors to evaluate the feasibility of 

the various projects that they may consider. Electricity price increases must be smooth and 

fairly predictable, so that the long-term planning and capital investment that is required to 

sustain both the mining and the electricity sectors can be achieved in a less volatile 

environment. This kind of price stability could contribute immensely to both regulatory 

stability in the energy sector and operational sustainability in the mining sector.  

 

5.3 Areas for Further Research  
 

It is crucial to consider the impact of distributed demand (DGs) on the price elasticity 

coefficient for large power users like the mines. These customers have both the means and 

the incentive to consider electricity self-generation options in the future. As the technology 

for self-generation becomes cheaper and more proliferated, large customers will find it 

increasingly attractive to have their own electricity generation plants. If a significant number 

of large power users opt to have DGs to either replace or complement electricity supplied 

from the national grid, this could have a material impact on the price elasticity coefficient. As 

discussed in the literature review, in jurisdictions where these options have been considered 

and implemented, their availability result in a marked increase in price sensitivity. 

Furthermore, this kind of large scale demand transformation may result in negative revenue 

implications for the utility.    

 

It is also crucial to consider what the impact of higher electricity prices has been on the profit 

margins of the mining sector. As articulated earlier, the finding that price is not a significant 

determinant of electricity demand does not mean that higher prices do not have negative 

consequences for the sector. Mining is a long term business. If electricity prices become too 

high, they may serve as a hindrance to long term investment and growth in the sector. 

Worse still, they could result in some mining operations being abandoned on account of 
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them becoming non-profitable. The findings of such a research would indicate to policy 

makers whether or not there is still scope for further price increases without placing the 

financial viability of the sector in jeopardy. Furthermore, it could better inform policy makers 

about whether or not to introduce targeted electricity price relief programmes for the sector. 

Policy makers may also want to establish whether or not any further demand shifting could 

be unlocked through tailor made TOU assistance packages. 
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