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Abstract
We produce an estimate for the K -Bessel function Kr+i t (y) with positive, real argu-
ment y and of large complex order r+i t where r is bounded and t = y sin θ for a fixed
parameter 0 ≤ θ ≤ π/2 or t = y coshμ for a fixed parameter μ > 0. In particular,
we compute the dominant term of the asymptotic expansion of Kr+i t (y) as y → ∞.
When t and y are close (or equal), we also give a uniform estimate. As an application
of these estimates, we give bounds on the weight-zero (real-analytic) Eisenstein series
E ( j)
0 (z, r + i t) for each inequivalent cusp κ j when 1/2 ≤ r ≤ 3/2.

Keywords Bessel functions · Asymptotic expansions · Uniform asymptotic
expansions · Eisenstein series · Bounds

Mathematics Subject Classification 41A60 · 33C10 · 11M36

1 Introduction

The K -Bessel function Kr+i t (y) (see 4.1 for the definition) appears in a number
of ways in mathematics such as in the Fourier expansion of Eisenstein series (for
background on Eisenstein series, see [14] for example), and these series are important
automorphic functions (namely, functions invariant under a cofinite Fuchsian group)
because they are eigenfunctions of the non-Euclidean Laplacian (i.e. the operator
D := y2( ∂2

∂x2
+ ∂2

∂ y2
)).1 In this paper, we will produce bounds for Kr+i t (y) in the

1 Other names for the K -Bessel function also exist in the literature such as, for example, the Macdonald-
Bessel function, the modified Bessel function of the second kind, and the modified Bessel function of the
third kind.
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novel case of positive, real argument y and of large complex order r + i t where r is
bounded and t varies linearly with y in all possible ways. In particular, we compute the
dominant term of the asymptotic expansion of Kr+i t (y) as y → ∞ for the two cases
t = y sin θ for a fixed parameter 0 ≤ θ ≤ π/2 (Theorem 1.1) or t = y coshμ for a
fixed parameter μ > 0 (Theorem 1.3). (The case t < 0 is also handled as Remark 2.1
shows.) Note that, thus, our result is for y and t both approaching infinity. Except for
the case of θ = π/2, we prove Theorems 1.1 and 1.3 using Laplace’s method (see
[17, p. 127, Theorem 7.1] or [16] for example) in Sect. 2.

Theorems 1.1 and 1.3 are nonuniform results. In the case where t and y are nearly
equal, we will find that there are two relevant saddle points. When t/y approach 1, the
two saddle points coalesce and these results go to infinity. Consequently, a uniform
result in this case is highly desirable. We give such a uniform result (Theorems 1.5
and 1.6) in Sect. 3. The uniform result is important not only for the completeness of
the estimates for the K -Bessel function but also for applications.

One such application for estimates on K -Bessel functions is the study of Eisenstein
series. As an application of our results, we will, in Sect. 5, give bounds on the weight-
zero Eisenstein series E ( j)

0 (z, r + i t) for each inequivalent cusp κ j when 1/2 <

r ≤ 3/2. (For the case r = 1/2, we will use known estimates on the K -Bessel
function, Kit (y), to give bounds on the Eisenstein series, E

( j)
0 (z, 1/2+ i t).) Already,

our nonuniform results suffice to give bounds on the Fourier coefficients of these
Eisenstein series (Theorem 1.10) when 1/2 < r ≤ 3/2. However, to bound the
Eisenstein series themselves (Theorem 1.12), it is necessary, when 1/2 < r ≤ 3/2, to
use our uniform results.

1.1 Statement of results

Let ν := r + i t . Our first two results (Theorems 1.1 and 1.3) together give an asymp-
totic for Kν(y) for large order but bounded r (so |t | grows to infinity) and positive,
real argument y. There are two cases: y ≥ t ≥ 0 (Theorem 1.1) and 0 < y < t
(Theorem 1.3). When t < 0, see Remark 2.1.

We note that more terms of the asymptotic expansions found in
Theorems 1.1, 1.3, 1.5, and 1.6 could be computed using the techniques in this paper;
however, these computations quickly become tedious and are omitted.

Theorem 1.1 Let M ≥ 0 and 0 ≤ θ ≤ π/2 be fixed real numbers. Let |r | ≤ M,
0 < y ∈ R, and

t = y sin θ. (1.1)

Then

Kν(y) =
⎧
⎨

⎩

√
π

2y cos θ
e−y(cos θ+θ sin θ)eirθ + O

(
y−3/2e−y(cos θ+θ sin θ)

)
if 0 ≤ θ < π

2

e− π
2 y+i π

2 r y−1/3 Γ ( 13 )

2
2
3 3

1
6

+ O
(
y−2/3e− π

2 y+i π
2 r
)

if θ = π
2
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Eisenstein series and the K -Bessel function

as y → ∞. Here, the implied constants depend on θ and M for the case 0 ≤ θ < π
2

and on M for the case θ = π
2 .

Remark 1.2 In the special case of purely imaginary order, our result agrees with stan-
dard results. As examples, see [9, p. 87 (18)] and [5, (14)] for the case 0 < θ < π

2
and [21, pp. 78, 247] and [5, (14)] for the case θ = π

2 . Also, note that the Γ in the
statement of the theorem refers to the gamma function.

Theorem 1.3 Let M ≥ 0 and μ > 0 be fixed real numbers. Let |r | ≤ M, 0 < y ∈ R,
and

t = y coshμ. (1.2)

Then

Kν(y) =
√

2π

y sinhμ
e−y π

2 coshμ+ir π
2

[
cosh(rμ) sin

(π

4
− y (sinhμ − μ coshμ)

)

− i sinh(rμ) cos
(π

4
− y (sinhμ − μ coshμ)

)]

+ O
(
y−3/2e−y( π

2 coshμ+i(sinhμ−μ coshμ))
)

+ O
(
y−3/2e−y( π

2 coshμ−i(sinhμ−μ coshμ))
)

as y → ∞. Here, the implied constants depend on μ and M.

Remark 1.4 Since y sinhμ = √
t2 − y2 and μ = cosh−1( t

y ) hold, our result, in
the special case of purely imaginary order, reduces to the standard result for purely
imaginary order (see [9, p. 88 (19)] for example), namely:

Kit (y) ∼ √
2π(t2 − y2)−

1
4 e−t π

2 sin

(
π

4
− (t2 − y2)

1
2 + t cosh−1

(
t

y

))

,

as y → ∞.

Our next two results (Theorems 1.5 and 1.6) give a uniform asymptotic for Kν(y)
for large order but bounded r and positive, real argument y in the case where t and y
are nearly equal (or equal). Here, there are also two cases: y ≥ t ≥ 0 (Theorem 1.5)
and 0 < y < t (Theorem 1.6). When t < 0, see Remark 2.1. Note that Ai(·) is the
Airy function.

Theorem 1.5 Let M ≥ 0 and 0 < θ ≤ π
2 be real numbers. Let |r | ≤ M, 0 < y ∈ R,

and

t = y sin θ. (1.3)
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Then there exists a (small) θ0 > 0, which does not depend on t or y, such that, for all
π
2 − θ0 ≤ θ ≤ π

2 , we have

Kν(y) = π
√
2

y1/3
e−y π

2 sin θ+ir π
2 cos

(
rθ − r

π

2

)( ζ

cos2 θ

)1/4

Ai
(
y2/3ζ

)

− iπ
√
2

y2/3
e−y π

2 sin θ+ir π
2 sin

(
rθ − r

π

2

)
ζ−1/2

(
ζ

cos2 θ

)1/4

Ai′
(
y2/3ζ

)

+ O

(
Ai
(
y2/3ζ

)
e−y π

2 sin θ

y4/3

)

+ O

(
Ai′
(
y2/3ζ

)
e−y π

2 sin θ

y5/3

)

as y → ∞. Here ζ = [ 32
(
θ sin θ + cos θ − π

2 sin θ
)]2/3

is a nonnegative real number
and the implied constants depend on θ0 and M.

Theorem 1.6 Let M ≥ 0 and μ ≥ 0 be real numbers. Let |r | ≤ M, 0 < y ∈ R, and

t = y coshμ. (1.4)

Then there exists a (small) μ0 > 0, which does not depend on t or y, such that, for all
0 ≤ μ ≤ μ0, we have

Kν(y) = π
√
2

y1/3
e−y π

2 coshμ+ir π
2 cosh (rμ)

(
ζ

− sinh2 μ

)1/4

Ai
(
y2/3ζ

)

− π
√
2

y2/3
e−y π

2 coshμ+ir π
2 sinh (rμ) ζ−1/2

(
ζ

− sinh2 μ

)1/4

Ai′
(
y2/3ζ

)

+ O

(
Ai
(
y2/3ζ

)
e−y π

2 coshμ

y4/3

)

+ O

(
Ai′
(
y2/3ζ

)
e−y π

2 coshμ

y5/3

)

as y → ∞. Here ζ = − [ 32 (μ coshμ − sinhμ)
]2/3

is a nonpositive real number and
the implied constants depend on μ0 and M.

Remark 1.7 We make a few observations.

1. When r = 0, our result agrees with the standard result by Balogh [3]. To see this,
let us use ζ̃ to denote ζ from [3] to distinguish it from our use of ζ . For the first case,
letting θ̃ = θ −π/2, we note that sec−1(sec θ̃ ) = −θ̃ as θ̃ < 0, which yields via a
short computation that ζ = ζ̃ cos2/3 θ̃ . As y cos θ̃ = t , the agreement follows. For
the second case, we note that sec−1(1/ coshμ) = cos−1(coshμ) = iμ, which
yields the nonpositive real number ζ = ζ̃ cosh2/3 μ and agreement.

2. The expressions are defined when θ → π
2 and when μ → 0 by Taylor approxi-

mation.
3. When r 
= 0, there are order y−2/3 terms, unlike when r = 0.

We also give a result for small y, which will be applied in the computation of our
bounds for the Eisenstein series.
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Proposition 1.8 For 3/2 ≥ r ≥ 1/2, |t | ≥ t0, and 0 < y < 1, we have

Kr−1/2+i t (y) = O(y1/2−r e−|t |π/2|t |r−1)

where the implied constant depends only on t0 and is uniformly bounded for all large
enough t0.

Remark 1.9 Here, t0 ≥ 1 is chosen to be a fixed large constant (large enough to use the
first term in theStirling asymptotic series for the gamma function for the approximation
in the proof of the proposition below).

Let z := x+iy, s := r+i t ∈ C. As an application of our above results, we compute
bounds on the Eisenstein series for large enough |t |. Let G := PSL2(R), Γ ⊂ G be
a cofinite Fuchsian group, and H be the upper-half plane model of the hyperbolic
plane (i.e. with the Poincaré metric). The group G acts transitively on the left of H
via Möbius transformations, and, moreover, these actions are orientation-preserving
isometries. We assume that Γ \H has at least one cusp, that one of these cusps is
located at ∞, and that the cusp κ1 := ∞ (called the standard cusp) has stabilizer

Γ1 := Γ∞ :=
{(

1 b
0 1

) ∣
∣
∣
∣ b ∈ Z

}

in Γ . As Γ∞ acts on the unit strip [0, 1] × (0,∞) to tesselate H, the quotient group
Γ∞\Γ tessellates the unit strip so as to agree with the tessellation of H given by Γ ,
and we have a canonical2 fundamental domain F that extends to infinity for theΓ∞\Γ
action—to determine F , let the real part of the points of F range between 0 and 1,
inclusive of 0. Often we will consider the topological closure F .

There are, in general, a finite number of inequivalent cusps {κ j }qj=1 ⊂ R ∪ {∞},
and the stabilizer in Γ of a cusp κ j is a parabolic subgroup Γ j (see, for example,
[10, Chap. 6] for the definition of inequivalent cusps). For each inequivalent cusp, we
choose σ j ∈ G such that σ j (κ j ) = ∞, namely taking the cusp κ j into the standard
cusp. (We always choose σ1 to be the identity.) Note that σ j is not in Γ for any
j ∈ {2, . . . , q}. By modifying σ j for j ∈ {2, . . . , q}, we can ensure that

σ j (F) ∩ {z ∈ H : y ≥ B} = [0, 1] × [B,∞) (1.5)

holds for all j ∈ {1, . . . , q} and for all B ≥ B0 > 1 (see [18, (2.2)] or [10, p. 268]).
Here B0 is a fixed constant depending only on Γ . Let us denote the j-th cuspidal
region in F by C j,B :

C j,B := σ−1
j ([0, 1] × [B,∞)) ⊂ F .

And define the bounded region of F by

FB := F −
q⋃

j=1

C j,B .

2 See [10, Chap. 6, p. 5] for the definition of canonical.
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There is an Eisenstein series E ( j)(z, s) of weight 0 for each inequivalent cusp [10,
Definition 3.5, p. 280]:

E ( j)(z, s) := E ( j)
0 (z, s) :=

∑

σ∈Γ j\Γ
(Im(σ jσ z))

s, E(z, s) := E (1)(z, s) := E (1)
0 (z, s).

The Fourier expansion at the standard cusp is the following (see [15, Lemma 2.6] or
[10, p. 280] for example):

E ( j)
0 (z, r + i t) = δ j1y

r+i t + ϕ j1(r + i t)y1−r−i t (1.6)

+
∑

n 
=0

ψn, j (r + i t)
√
yKr−1/2+i t (2π |n|y)e2π inx ,

where ϕ j1(r + i t) is an element in the scattering matrix (r + i t) = (ϕ jk(r + i t))

(cf. [10, Chap.8]) and ψn, j (r + i t) are the Fourier coefficients. Since E ( j)
0 (z, r + i t)

has no poles for |t | ≥ 1 (see [14,18]), let cn := ψn, j (r + i t).
We first give a bound on the Fourier coefficients of the Eisenstein series, the proof

of which only requires our nonuniform bounds on the K -Bessel function (Theorem 1.3
in particular).

Theorem 1.10 Let t0 ≥ B0 be a large constant. For N ≥ 1, 3/2 ≥ r > 1/2, and
|t | ≥ t0, we have

∑

1≤|n|≤N

|cn|2 = O
(
e|t |π (N + |t |)

)
{

ω(t) +
(

|t | + N

|t |
)2r−1

}

,

where the implied constant depends only on the lattice subgroup Γ and t0.

Remark 1.11 Note that [18, Proposition 4.1] gives a bound for the case of r = 1
2 . Here,

ω(t) denotes the spectral majorant function whose properties areω(−R) = ω(R) ≥ 1
and

∫ T

−T
ω(R) dR = O(T 2) (1.7)

as |T | → ∞ [10, pp. 161, 299, 315]. The implied constant depends only on the lattice
subgroup Γ .

Finally, we give a bound on the Eisenstein series themselves, the proof of which
requires our bounds on the Fourier coefficients and on the K -Bessel function. Note
that our uniform bound for the K -Bessel function is essential here.

Theorem 1.12 Let j ∈ {1, . . . , q}, t0 ≥ B0 be a large constant, |t | ≥ t0,
3
2 ≥ r ≥ 1

2 ,
y > 0, and ε > 0. Then, we have
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E( j)
0 (z, r + i t)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ j1y
1/2+i t + O(y1/2) + O

(
y−1/2−ε

√
ω(t)|t |1+ε

)
if r = 1

2 and 0 < y < 1,

δ j1y
r+i t + O(y1−r ) + O(y1−r )

(( |t |
y

)r+1/2 + |t |
y

√
ω(t)

)

if 1 ≥ r > 1
2 and 0 < y < 1,

δ j1y
r+i t + O(y1−r ) + O

(( |t |
y

)2r−1/2 +
( |t |

y

)r √
ω(t)

)

if 3
2 ≥ r > 1 and 0 < y < 1,

δ j1y
1/2+i t + O(y1/2) + O

(
|t |1+ε

√
ω(t)

)
if r = 1

2 and 1 ≤ y ≤ |t |
2 ,

δ j1y
r+i t + O(y1−r ) + O

(
|t |r+1/2 + |t |√ω(t)

)
if 1 ≥ r > 1

2 and 1 ≤ y ≤ |t |
2 ,

δ j1y
r+i t + O(y1−r ) + O

(
|t |2r−1/2 + |t |r√ω(t)

)
if 3

2 ≥ r > 1 and 1 ≤ y ≤ |t |
2 ,

δ j1y
1/2+i t + O(y1/2) + O

(
e|t |

π
2 −2π y

) (
|t |−1/2+ε

√
ω(t)

)
if r = 1

2 and |t |
2 < y,

δ j1y
r+i t + O(y1−r ) + O

(
e|t |

π
2 −2π y

) (√|t | +
√

ω(t)√|t |
)

if 3
2 ≥ r > 1

2 and |t |
2 < y,

where the implied constants depend only on the lattice subgroup Γ and t0.

Remark 1.13 For |t |
2 < y, we have an alternative formulation of the theorem:

E( j)
0 (z, r + i t)

=
⎧
⎨

⎩

δ j1y
1/2+i t + O(y1/2) + O

(
e|t |

π
2 −2π y

) (
y−1|t |1/2+ε

√
ω(t)

)
if r = 1

2 and |t |
2 < y,

δ j1y
r+i t + O(y1−r ) + O

(
e|t |

π
2 −2π y

) (
y−1

(
|t |3/2 + √|t |ω(t)

))
if 3

2 ≥ r > 1
2 and |t |

2 < y.

These bounds on the Eisenstein series give the following corollary:

Corollary 1.14 Let j ∈ {1, . . . , q}, t0 ≥ B0 be a large constant, |t | ≥ t0, and
3
2 ≥

r ≥ 1
2 . Then, as y → ∞, E ( j)

0 (z, r + i t) decays exponentially (like y−1e−2π y) to the
constant term of its Fourier expansion at a cusp.

Proof The result is immediate for the Fourier expansion at the standard cusp. For the
Fourier expansion at other cusps, the analog of Theorem 1.12 holds with analogous
proof. This gives the desired result. ��
Remark 1.15 We now compare our bounds for the Eisenstein series with those of
others.

(1) For r > 1 and t ∈ R, it can be shown that E ( j)
0 (z, r+ i t) = δ j1yr+i t +O(y1−r )+

O((1+ y−r )e−2π y) where the later implied constant depends on t (and the lattice
Γ ) [12, Corollary 3.5]. Our bound, however, makes the t dependance (for |t | ≥ t0)
explicit. Also, as y → ∞, our result gives faster decay (y−1e−2π y versus e−2π y)
to the constant term of the Fourier expansion.

(2) For r = 1/2, there has been some recent interest on bounds for the Eisenstein
series. In particular, the sup-norm problem for certain eigenfunctions has had
much interest (see [4,13,20] for example). Specifically, for Eisenstein series, there
are recent results in [2,11,23] of which the most relevant for us is the result by
Huang and Xu (generalizing the earlier result of Young) for the modular group
Γ = PSL2(Z) [11, Theorem 1.1]:

E0(z, 1/2 + i t) = y1/2+i t + O(y1/2) + O(y−1/2 + t3/8+ε).
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(As Γ = PSL2(Z) has only one cusp, we have dropped the superscript notation
in the Eisenstein series.) Note that the bound on the Eisenstein series given by
Huang and Xu does not decay exponentially to the constant term of its Fourier
expansion as y → ∞. Our bound, however, has this exponential decay.

1.2 Outline of paper

Section 2 is devoted to the proof of Theorems 1.1 and 1.3. Section 3 is devoted to the
proof of Theorems 1.5 and 1.6. Section 4 gives a proof of Proposition 1.8. Finally,
Sect. 5 gives a proof of Theorems 1.10 and 1.12.

2 Bounds for K�(y)where �(�) large,�(�) bounded, and y is real and
positive

For background on asymptotic expansions, see [7] (especially Chap.7) for example.
The saddle points and paths of steepest descent for the function Kit (y) (i.e. purely
imaginary order) have been obtained by Temme [19]. The saddle points and paths of
steepest descent for our function Kν(y) are the same as we now show. In addition, we
give a proof of the dominant behavior.

In this section (Sect. 2), let us set

ν := r + i t

where r , t ∈ R. An integral representation for Kν(z) (see [21, p. 182 (7)] for example)
is

Kν(z) = 1

2

∫ ∞

−∞
e−z cosh R−νR dR = 1

2

∫ ∞

−∞
e−z cosh R+νR dR (2.1)

where z ∈ C\{0} such that | arg(z)| < π
2 . There are two cases: y ≥ t ≥ 0 and

0 < y ≤ t .

Remark 2.1 Note that if t < 0, then applying (2.1) allows us to be in one of these two
cases.

2.1 First case: y ≥ t ≥ 0

Proof of Theorem 1.1 Let us first consider the case 0 < θ < π/2. Using (2.1), we have

Kν(y) = 1

2

∫ ∞

−∞
e−yϕ(R)er R dR, (2.2)

where

ϕ(R) := cosh R − i R sin θ.
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The saddle points (values of R for which ϕ′(R) = 0) are as follows [19] (see also
[5, Sect. 2.1] ):

Rk := i
(
(−1)kθ + kπ

)
, k ∈ Z.

Let us now write R = u + iw and thus we have

�(−ϕ(R)) = − cosh u cosw − w sin θ

�(−ϕ(R)) = − sinh u sinw + u sin θ.

The path of steepest descent through the saddle point R0 = iθ is given by
�(−ϕ(R)) = �(−ϕ(R0)) and is the following curve [19]:

w = arcsin
(
sin θ

u

sinh u

)
, −∞ < u < ∞.

We remark that w′(0) = 0 and that w′(u) is bounded over all −∞ < u < ∞.
We will apply Laplace’s method, which can be found at [17, p. 127, Theorem 7.1].

Using (2.2), the path of steepest descent as the integration path used in Laplace’s
method, and R0 = iθ as the saddle point, we see that assumptions (i) – (iv) of
Laplace’s method is satisfied.

It remains to show that the final condition (v) is also satisfied. We know that the
integration path is a path of steepest descent because along it �(ϕ(u+ iw)) is constant
and, when u → ±∞, we have that �(ϕ(u + iw)) → ∞. As R0 is the only saddle
point lying on the path of steepest descent, then R0 is a global minimum on the path
(see [7, p. 66]). Thus, condition (v) is satisfied, and we may apply Laplace’s method
to obtain the desired result.

The case θ = 0 is a simplification of the case 0 < θ < π/2.
Let us now consider the case θ = π/2 (or, equivalently, t = y). Apply [21, p. 78

(8) and p. 247 (5)] to obtain

Kr+iy(y) ∼ 1

2
π ie

1
2 (r+iy)π i

(

− 2

3π
e
2
3π i sin(π/3)

Γ ( 13 )
( 1
6 iy
)1/3

)

as y → ∞. Simplifying gives the desired result for the case θ = π/2. This gives the
desired result in all cases. ��

2.2 Second case: 0 < y < t

Let us define the constant μ > 0 by t = y coshμ and the function

ψ(u) := cosh u cosw + w coshμ.

We start by finding the saddle points and a suitable path.
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Using (2.1), we have

Kν(y) = 1

2

∫ ∞

−∞
e−yφ(R)er R dR, (2.3)

where

φ(R) := cosh R − i R coshμ.

The saddle points (values of R for which φ′(R) = 0) are as follows [19] (see also
[5, Sect. 2.1] ):

R±
k := ±μ + i

(π

2
+ 2kπ

)
, k ∈ Z.

Let us now write R = u + iw and thus we have

�(−φ(R)) = − cosh u cosw − w coshμ = −ψ(u),

�(−φ(R)) = − sinh u sinw + u coshμ.

The paths of steepest descent/ascent through the saddle points R±
k are given by

�(−φ(R)) = �(−φ(R±
k )) and are the following family of curves [19]:

sinw = coshμ
u

sinh u
± sinhμ − μ coshμ

sinh u
.

We use only the parts of these curves as shown in [19, Fig. 3.3], which we will refer
to as the path of steepest descent. Notice that this path is the union of two branches
L− ∪ L+, separated by the imaginary axis, where

— L− runs from − ∞ to 0 and from 0 to + i∞,

— L+ runs from + i∞ to 0 and from 0 to + ∞.

What is important about this path is that, on both of the branches, the function yφ(R)

has constant imaginary part, namely

χ := �(yφ(R+
0 )) :=y (sinhμ − μ coshμ)

=y sinhμ − t cosh−1
(
t

y

)

=
√

t2 − y2 − t cosh−1
(
t

y

)

,

χ− := �(yφ(R−
0 )) = − χ

for L+ and L−, respectively.

Proof of Theorem 1.3 Wewill use Laplace’s method, which can be found at [17, p. 127,
Theorem 7.1].
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Using (2.3), we note that the integral representation is the correct form to apply
Laplace’s method. We will use what we called the path of steepest descent as the path
of integration; see [19, Fig. 3.3] for the graph. We split this path of integration into
two parts, the first from−∞ to i∞ and the second from i∞ to∞. We apply Laplace’s
method separately to the two integration paths and, by the Cauchy-Goursat theorem,
add the results together. Let us first consider the integration path from i∞ to ∞. We
see that conditions (i) – (iv) of Laplace’s method are satisfied.

It remains to show that the final condition (v) is also satisfied. We know that the
integration path is a path comprised of steepest descent/ascent pieces because along it
�(φ(u + iw)) is constant and, when u → ∞, we have that �(φ(u + iw)) → ∞. As
R+
0 is a saddle point lying on the path, then R+

0 is a local minimum on the path and,
moreover, other local minima occur at the other saddle points (see [7, p. 66]), which
for us are R+

k where k ∈ N. Directly computing, we see that �(φ(R+
k ) > �(φ(R+

0 )

for all k ∈ N. Hence, R+
0 gives the global minimum. Thus, condition (v) is satisfied,

and we may apply Laplace’s method to obtain

e−yφ(R+
0 )Γ

(
1

2

)
a0√
y

as y → ∞ where φ(R) = cosh R − i R coshμ and

a0 = er R

(2φ′′)1/2

evaluated at R+
0 . Computing, we have that the contribution from this part of the path

of integration to the dominant term is the following:

√
πerμ+ir π

2√
2iy sinhμ

e−y( π
2 coshμ+i(sinhμ−μ coshμ)).

Likewise, for the other part of the path of integration, Laplace’s method gives

√
πe−rμ+ir π

2√−2iy sinhμ
e−y( π

2 coshμ−i(sinhμ−μ coshμ)).

Here the saddle point which gives the global minimum is R−
0 and the other saddle

points R−
k where k ∈ N are larger and can be ignored as before.

Adding these two parts together yields the desired dominant term of the asymptotic
expansion for Kν(y). This gives the desired result. ��

3 Uniform bounds for K�(y)where �(�) large,�(�) bounded, and y is
real and positive near coalescing saddle points

Already, when r = 0, C. Balogh computed a uniform asymptotic expansion which
is valid for all cases including the case of two nearby saddle points [3]. Balogh used
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a technique involving differential equations, but it is not clear that such a technique
will work when r is no longer zero. We will use another technique, developed by
C. Chester, B. Friedman, and F. Ursell [6], which will yield the uniform dominant
and next dominant terms for the case where t and y are nearly equal (or equal) and r
bounded.

3.1 First case: y ≥ t ≥ 0

We prove Theorem 1.5 in this section. Let

F(R) := F(R, θ) := − cosh R + i R sin θ.

Then we have that

Kν(y) = 1

2

∫ ∞

−∞
eyF(R)er R dR. (3.1)

The path of steepest descent has been obtained by Temme [19, Fig. 2.1] and the
saddle points (values of R for which F ′(R) = 0) that are relevant are R0 := iθ and
R1 := i(π −θ). Note that R0 and R1 are close in the complex plane when θ is close to
π/2. The technique used to estimate the K -Bessel function in Theorems 1.1 and 1.3
depends on the distance between R0 and R1 and, hence, does not yield a uniform
estimate.

To use the Chester–Friedman–Ursell technique, let us introduce

θ̃ = θ − π/2,

S = 2−1/3 (i R + π/2) ,

where 21/3(1−cos θ̃ ) assumes the role of the parameter α from the Chester-Friedman-
Ursell technique (see [6, (3.2)]). Under the change of variable from R to S, the integral
becomes

Kν(y) =
∫ i∞+2−4/3π

−i∞+2−4/3π

−i

22/3
eir
(
π/2−21/3S

)

eyF(iπ/2−i21/3S,θ̃+π/2) dS (3.2)

and the relevant saddle points become

S0 = 2−1/3 (i R0 + π/2) = −2−1/3θ̃ (3.3)

S1 = 2−1/3 (i R1 + π/2) = 2−1/3θ̃ .

We will represent F(iπ/2 − i21/3S, θ̃ + π/2) by the cubic [6, (2.1)]

F(iπ/2 − i21/3S, θ̃ + π/2) = 1

3
u3 − ζ(θ̃)u + A(θ̃) (3.4)
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where, under this representation, the saddle points correspond as follows:

S0 ↔ u = ζ
1
2 (θ̃)

S1 ↔ u = −ζ
1
2 (θ̃).

By substitution in (3.4), we have

F(iπ/2 − i21/3S0, θ̃ + π/2) = −2

3
ζ

3
2 (θ̃) + A(θ̃),

F(iπ/2 − i21/3S1, θ̃ + π/2) = 2

3
ζ

3
2 (θ̃) + A(θ̃),

which yields

A(θ̃) = −π

2
cos θ̃

ζ(θ̃ ) =
(
3

2

(
θ̃ cos θ̃ − sin θ̃

)
)2/3

.

Here, we have taken the branch of ζ(θ̃) required by the Chester-Friedman-Ursell
technique (see the top of p. 603 in [6]). (And thus ζ(θ̃) are positive real numbers.)
Note that

ζ(θ̃) ∼ θ̃2

22/3
∼ 21/3(1 − cos θ̃ ) as θ̃ → 0.

Locally, the representation is analytic in u which yields [6, (2.2)]

−i

22/3
eir
(
π/2−21/3S

) dS

du
=

∞∑

m=0

pm(θ̃)(u2 − ζ )m +
∞∑

m=0

qm(θ̃)u(u2 − ζ )m . (3.5)

Note that −θ̃ ≥ 0. For small enough −θ̃ (independent of y and t) [6, Lemma], we
have that the dominant term of the asymptotic expansion of Kν(y) is [6, (5.2–5.4),
Theorem 2]

2π ieyA(θ̃ ) p0(θ̃)
Ai(y2/3ζ )

y1/3

and the next term is

−2π ieyA(θ̃ )q0(θ̃)
Ai′(y2/3ζ )

y2/3
.
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We now compute p0(θ̃) and q0(θ̃). Taking first and second derivatives in (3.4), we
have

21/3
(
cos θ̃ − cos(21/3S)

) dS

du
= u2 − ζ,

22/3 sin(21/3S)

(
dS

du

)2

+ 21/3
(
cos θ̃ − cos(21/3S)

) d2S

du2
= 2u.

Substituting the two saddle points into the second derivative equation yields

(
dS

du

∣
∣
∣
∣
u=ζ 1/2

)2

= 21/3ζ 1/2

sin(−θ̃ )
=
(
dS

du

∣
∣
∣
∣
u=−ζ 1/2

)2

.

We now wish to determine the signs of the square roots of these two expressions. The
Chester–Friedman–Ursell technique gives that our representation is locally uniformly
analytic in S and θ̃ , and thus we may take the limits S → 0 and θ̃ → 0 in either order
in the first derivative equation. Now we have that S = 0 ↔ u = 0 (see the top of
p. 605 in [6]). Taking first S → 0, we conclude that

dS

du

∣
∣
∣
∣
u=ζ 1/2

=
√
21/3ζ 1/2

sin(−θ̃ )
= dS

du

∣
∣
∣
∣
u=−ζ 1/2

for all −θ̃ small enough.
Now plugging in the two saddle points into (3.5), we solve for p0(θ̃) and q0(θ̃):

p0(θ̃) =
−i
22/3

(
eir
(
π/2−21/3S0

)

+ eir
(
π/2−21/3S1

))√
21/3ζ 1/2

sin(−θ̃ )

2

= −i√
2
eirπ/2 cos(r θ̃ )

√
ζ 1/2

sin(−θ̃ )
,

q0(θ̃) =
−i
22/3

(
eir
(
π/2−21/3S0

)

− eir
(
π/2−21/3S1

))√
21/3ζ 1/2

sin(−θ̃ )

2ζ 1/2

= 1√
2
eirπ/2 sin(r θ̃ )ζ−1/2

√
ζ 1/2

sin(−θ̃ )
.

Thus, the desired dominant term and the next dominant term, respectively, are

π
√
2

y1/3
e−y π

2 cos θ̃+ir π
2 cos(r θ̃ )

√
ζ 1/2

sin(−θ̃ )
Ai(y2/3ζ ), (3.6)

−iπ
√
2

y2/3
e−y π

2 cos θ̃+ir π
2 sin(r θ̃ )ζ−1/2

√
ζ 1/2

sin(−θ̃ )
Ai′(y2/3ζ ).
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Finally, to finish the first case, we need to show that outside of a small enough
neighborhood of the two saddle points, the integral is negligible (see [6, Sect. 5]). It is
a routine calculation to see that, outside of the small enough neighborhood of the two
saddle points, the integral is on the order of e−t α̃ for some α̃ > π/2. This concludes
the proof of the first case, namely Theorem 1.5.

3.2 Second case: 0 < y < t

We prove Theorem 1.6 in this section. Let

G(R) := G(R, μ) := − cosh R + i R coshμ.

Using (2.1), we have

Kν(y) = 1

2

∫ ∞

−∞
eyG(R)er R dR. (3.7)

The paths of steepest descent/ascent have been obtained byTemme [19], and the saddle
points that are relevant are R0 := μ + iπ/2 and R1 := −μ + iπ/2.

It is a routine calculation to see that, outside of a small enough neighborhood of
the two saddle points, the integral is on the order of e−t α̃ for some α̃ > π/2 and, thus,
negligible. To finish, we compute the dominant term and the next dominant term using
the Chester–Friedman–Ursell technique. Changing variables

θ̃ = −iμ,

S = 2−1/3(i R + π/2),

in (3.7), we obtain (3.2) and the relevant saddle points become (3.3). Now we have
essentially transformed the second case into the first case. There are a few minor
differences, which we now state. When μ > 0, the parameter 21/3(1 − cos θ̃ ) is a
negative real number, and thus the Chester–Friedman–Ursell technique requires us

to take the branch of ζ(θ̃) for which it is a negative real number. Thus, ζ 1/2

sin(−θ̃ )
is a

positive real number and the sign of
√

21/3ζ 1/2

sin(−θ̃ )
is determined in a similar way. Thus,

we obtain the dominant and next dominant terms in (3.6). This concludes the proof of
the second case, namely Theorem 1.6.

4 Bounds for Kr−1/2+it(y) for 0 < y < 1 and 1/2 ≤ r ≤ 3/2

Finally, we give an estimate of Kr−1/2+i t (y) for small positive real argument. Recall
that we pick t0 ≥ 1 to be a fixed large constant (large enough to use the first term in
the Stirling asymptotic series for the gamma function for the approximation below).

Proof of Proposition 1.8 Since we only need a bound for small y, it suffices to adapt
the bound for purely imaginary order from [5, Sect. 3.1]. It is well-known (see [21,
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p. 78, (6), p. 77, (2)] for example) that the K -Bessel function is defined as

Kν(z) := 1

2
π
I−ν(z) − Iν(z)

sin(νπ)
, (4.1)

where Iν(z) is the modified Bessel function of the first kind

Iν(z) :=
∞∑

m=0

( 12 z)
ν+2m

m!Γ (ν + m + 1)
.

(The Γ here is the gamma function, not the lattice subgroup.)
We would like to bound Kr−1/2+i t (y). An elementary identity gives a lower bound

for

|sin (rπ − 1/2π + i tπ)| =
∣
∣
∣
∣
−1

2i

(
etπe−i(r−1/2)π − e−tπei(r−1/2)π

)∣∣
∣
∣ ≥

1

2
e|t |π − 1

2
(4.2)

for all t .
Taking the first term of the Stirling asymptotic series for the gamma function, we

have

Γ (s) = √
2πss−1/2e−seR(s),

where R(s) = o(|s|−1). Hence, we have

|m!Γ (r − 1/2 + i t + m + 1)|
= 2πmm+1/2e−m |r + 1/2 + m + i t |r+m

× e−t arg(r+1/2+m+i t)e−r−1/2−meo(|r+1/2+m+i t |−1) ≥ C |t |r e− |t |π
2 ,

where the constant 0 < C depends only on t0.Note that, since r+1/2+m > 0,we have
that 0 ≤ arg(r+1/2+m+i t) ≤ π/2 for t > 0 and−π/2 ≤ arg(r+1/2+m+i t) ≤ 0
for t < 0. Likewise, we have

|m!Γ (−r + 1/2 − i t + m + 1)| ≥ C |t |1−r e− |t |π
2 .

Now, for 0 < y < 2, we have that
∑∞

m=0(y/2)
2m ≤ 4/(4 − y2). All of this now

implies that

|Kr−1/2+i t (y)| ≤ π

4
4−y2

(
(
y
2 )r−1/2 + (

y
2 )1/2−r

) e|t |π/2

C min(|t |r ,|t |1−r )

e|t |π − 1

≤ C̃ y1/2−r e−|t |π/2|t |r−1,

where C̃ depends only on t0 and is uniformly bounded for all large enough t0. This is
the desired result. ��
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5 Eisenstein series

5.1 Bounds on the Fourier coefficients of Eisenstein series

Using our result on the asymptotics of the K -Bessel function, we now give the proof
of Theorem 1.10, namely a bound for the sum of the cn .

Proof of Theorem 1.10 The proof is an adaption of the proof of [18, Proposition 4.1],
which is, itself, an adaption of [22, Proposition 5.1]. Let 0 < Y < H be given and
define

J :=
∫

D

∣
∣
∣E

( j)
0 (z, s)

∣
∣
∣
2 dx dy

y2
where D := (0, 1) × (Y , H).

Let B := max(B0, H ,Y−1). Since E ( j)
0 (z, s) is automorphic, we can apply exactly

the same proof as in [18, Proposition 4.1] to obtain

J ≤ O(1 + Y−1)

∫

FB

∣
∣
∣E

( j)
0 (z, s)

∣
∣
∣
2 dx dy

y2
,

where, recall, FB is the bounded part (i.e. with cusps removed) of F . Let us define
the modified Eisenstein series in which we remove the zeroth term of the Fourier
expansion:

E ( j)
0,B(z, s) :=

{
E ( j)
0 (z, s) if z ∈ FB,

E ( j)
0 (z, s) − δ jk (Im(σk z))s − ϕ jk(s) (Im(σk z))1−s if z ∈ Ck,B .

By the Maass–Selberg relation [10, p. 301 (3.43), p. 281], we have

q∑

j=1

∫

FB

∣
∣
∣E

( j)
0,B(z, s)

∣
∣
∣
2 dx dy

y2

= 1

2r − 1

⎛

⎝qB2r−1 − B1−2r
q∑

j=1

q∑

j ′=1

|ϕ j j ′(s)|2
⎞

⎠+
q∑

j=1

Re

(

ϕ j j (s)
B2i t

i t

)

.

Applying [10, p. 300 (3.38)] yields

J ≤ O(1 + Y−1)
(
B2r−1 + ω(t)

)
.

Substituting the Fourier expansion of the Eisenstein series (1.6) in the definition of
J and applying Parseval’s formula yields

J ≥
∑

n 
=0

|cn|2
∫ 2π |n|H

2π |n|Y
|Kr−1/2+i t (y)|2 dy

y
.
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Let Y = |t |/(8πN ) and H = |t |/(4π). With this choice, we have

[|t |/4, |t |/2] ⊂ [2π |n|Y , 2π |n|H ] whenever 1 ≤ |n| ≤ N ,

and, hence,

∑

1≤|n|≤N

|cn|2 ≤ C−1 J where C =
∫ |t |/2

|t |/4
|Kr−1/2+i t (y)|2 dy

y
.

Theorem 1.3 now gives that

C−1 ≤ O(|t |e|t |π).

Combining, we obtain the desired result:

∑

1≤|n|≤N

|cn|2 = O
(
e|t |π (N + |t |)

)
{

ω(|t |) +
(

|t | + N

|t |
)2r−1

}

.

��

5.2 Bounds on Eisenstein series

We now give the proof of Theorem 1.12, namely a bound for the Eisenstein series
themselves. Recall that we defined s := r + i t .

Lemma 5.1 Fix M > 0 and y0 > 0. Let |r | ≤ M and y ≥ y0. Then

Kr+i t (y) = O

(
e−y

√
y

)

,

where the constant depends only on M and y0.

Proof When |R| > (24|r |y−1)1/3, we have that

h(R) := − yR4

24
+ r R < 0,

and, thus, on the complement, the function h(R) is bounded by a constant N (M, y0) >

0. Using the integral representation (2.1) for the K -Bessel function, we have

|Kr+i t (y)| ≤ 1

2

∫ ∞

−∞
e
−y
(
1+ R2

2 + R4
24

)
+r R

dR ≤ eN

2

∫ ∞

−∞
e
−y
(
1+ R2

2

)

dR.

The desired result now follows. ��
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The following lemma gives some bounds for the K -Bessel function that are con-
venient for our proof of Theorem 1.12.

Lemma 5.2 Let |t | ≥ t0. We have

Kr−1/2+i t (y) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

O
(
y1/2−r e−|t | π

2 |t |r−1
)

if 0 < y < 1 and 3/2 ≥ r ≥ 1/2,

O
(
e−|t | π

2 |t |r−5/6
)

if 1 ≤ y < π
2 |t | and 2/3 > r ≥ 1/2,

O
(
e−|t | π

2 |t |r−1
)

if 1 ≤ y < π
2 |t | and 3/2 ≥ r ≥ 2/3,

O
(
e−y√

y

)
if y ≥ π

2 |t | and 3/2 ≥ r ≥ 1/2,

where the implied constants depend on t0 in first, second, and third branches and has
no dependance in the fourth branch.

Proof For 0 < y < 1, apply Proposition 1.8, and, for y ≥ π
2 |t |, apply Lemma 5.1.

Let us now consider |t | ≤ y < π
2 |t |. Let θ0 be as in Theorem 1.5. For the range

|t |
sin(π/2−θ0)

≤ y < π
2 |t |, we apply Theorem 1.1 with the observation that−√

x2 − 1+
arccos(1/x) < 0 for π

2 > x > 1 to obtain

Kr−1/2+i t (y) = O

(
e−|t | π

2

(y2 − |t |2)1/4
)

= O

(
e−|t | π

2

|t |1/2
)

,

where the implied constant depends only on t0.Note that the conclusion ofTheorem1.1
is uniform over all 0 < θ ≤ π/2 − θ1 for any π/2 > θ1 > 0. For the range
|t | ≤ y ≤ |t |

sin(π/2−θ0)
, we apply Theorem 1.5 to obtain

Kr−1/2+i t (y) = O

(
e−|t | π

2

|t |1/3
)

, (5.1)

where the implied constant depends only on t0.
Finally, let us consider 1 ≤ y ≤ |t |. Let μ0 be as in Theorem 1.6. For the range
|t |

coshμ0
≤ y ≤ |t |, we apply Theorem 1.6 to also obtain (5.1) where, likewise, the

implied constant depends only on t0. For the range 1 ≤ y ≤ |t |
coshμ0

, we will apply
Theorem 1.3 with two observations. The first is that the conclusion

Kr+i t (y) ∼
√

2π

y sinhμ
e−y π

2 coshμ+ir π
2

[
cosh(rμ) sin

(π

4
− y (sinhμ − μ coshμ)

)

− i sinh(rμ) cos
(π

4
− y (sinhμ − μ coshμ)

)]

is also valid as t → ∞.
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The second observation is that the conclusion of Theorem 1.3 is uniform over all
positive μ bounded away from 0, and, hence, is valid for y > 0 arbitrarily close to 0.
Applying Theorem 1.3 for the range 1 ≤ y ≤ |t |

coshμ0
yields

Kr−1/2+i t (y) = O

(
e−|t | π

2 |t |r−1/2

√|t |

)

= O
(
e−|t | π

2 |t |r−1
)

where the implied constant depends only on t0. This gives the desired result. ��
We also have the following bound, which we will use in the proof of Theorem 1.12.

Lemma 5.3 For 3/2 ≥ r ≥ 1/2, we have ϕ jk(r + i t) is uniformly bounded for |t | ≥ 1.

Proof Apply [10, p. 301, (a)]. ��
Following the proof scheme of [18, Proposition 4.2], we can now bound the Eisen-

stein series:

Proof of Theorem 1.12 We now give the proof for 3
2 ≥ r > 1

2 , leaving the proof for

r = 1
2 to the end. Consider three cases: 0 < y < 1, 1 ≤ y ≤ |t |

2 , and
|t |
2 < y.

The first case is 0 < y < 1. Let us consider the range 3
2 ≥ r > 1 first. By

Lemmas 5.3 and 5.2, we obtain the following upper bound for (1.6):

O(y1−r ) + O
(
y1−r e−|t | π

2 |t |r−1
) ∞∑

n=1

(|cn| + |c−n|) f (n) (5.2)

where

f (X) :=
{
1 if X <

|t |
4y ,

e|t | π
2 −2πXy if X ≥ |t |

4y .

Now define

S(X) :=
∑

1≤|n|≤X

|cn|.

By the fact that f (X) is continuous and monotonically decreasing, that

∞∑

n=1

(|cn| + |c−n|)

can be written as a telescoping sum, that S(X) is a function of bounded variation on
any closed interval, that S(1/2) = 0, and that f (X)S(X) → 0 as X → ∞ (which
follows from Theorem 1.10 and the Cauchy–Schwarz inequality), we can apply the
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definition of the Riemann-Stieltjes integral to obtain the inequality and integration by
parts to obtain the equality:

∞∑

n=1

(|cn| + |c−n|) f (n) ≤
∫ ∞

1/2
f (X)dS(X) = −

∫ ∞

1/2
f ′(X)S(X)dX . (5.3)

To bound (5.3), it suffices to estimate S(X) for X ≥ |t |
4y using Theorem 1.10 and

the Cauchy-Schwarz inequality:

S(X) = O
(
e|t | π

2

) (
Xr+1/2 + X

√
ω(t)

)
.

Using calculus, we obtain

∞∑

n=1

(|cn| + |c−n|) f (n) ≤ O
(
e|t | π

2

)
(( |t |

y

)r+1/2

+ |t |
y

√
ω(t)

)

,

which yields the desired result for the range 3
2 ≥ r > 1.

For the desired result in the range 1 ≥ r > 1
2 , replace (5.2) with

O(y1−r ) + O
(
y1−r e−|t | π

2

) ∞∑

n=1

(|cn| + |c−n|) f (n)

in the proof for the range 3
2 ≥ r > 1. This proves the first case 0 < y < 1.

The second case is 1 ≤ y ≤ |t |
2 . Replace (5.2) with

⎧
⎨

⎩

δ j1yr+i t + O(y1−r ) + O
(√

ye−|t | π
2

)∑∞
n=1 (|cn | + |c−n |) f (n) if 1 ≥ r > 1

2 ,

δ j1yr+i t + O(1) + O
(√

ye−|t | π
2 |t |r−1

)∑∞
n=1 (|cn | + |c−n |) f (n) if 3

2 ≥ r > 1.

In the case 1 ≤ y ≤ |t |
2 , we have that

S(X) = O
(
e|t | π

2
√
y
) (

Xr+1/2yr−1/2 + X
√

ω(t)
)

,

which yields

∞∑

n=1

(|cn| + |c−n|) f (n) ≤ O
(
e|t | π

2 y−1/2
) (

|t |r+1/2 + |t |√ω(t)
)

and the desired result for the second case 1 ≤ y ≤ |t |
2 .
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The third case is |t |
2 < y. For 3

2 ≥ r > 1
2 , replace (5.2) with

δ j1y
r+i t + O(y1−r ) + O (1)

∞∑

n=1

(|cn| + |c−n|) f (n)

and replace the previous f (X) with

f (X) = e−2πXy

√
2πX

.

In the case that |t |
2 < y, we have that

S(X) = O
(
e|t | π

2

) (
X2 +√|t |X 3

2 + γ (t)X + γ (t)
√|t |X 1

2

)
,

where γ (t) := √
ω(t) + |t |. Then

∞∑

n=1

(|cn| + |c−n|) f (n) ≤
∫ ∞

1
f (X)dS(X)

holds and the desired result for the third case |t |
2 < y now follows by calculus. This

completes the proof of the theorem for 3
2 ≥ r > 1

2 .
For r = 1

2 , the proof is analogous to that of 1 ≥ r > 1
2 , except we replace

Theorem 1.10 with [18, Proposition 4.1], yielding, for every ε > 0, the following
estimate for S(X):

S(X) = O
(
e|t | π

2 |t |ε√ω(t)X
1
2+ε
√
X + |t |

)
,

which holds for every X ≥ 1
2 . With this change, the proofs of the three cases (0 < y <

1, 1 ≤ y ≤ |t |
2 , and

|t |
2 < y) are analogous. This completes the proof of the theorem.
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