
24

SODECL: An Open-Source Library for Calculating Multiple

Orbits of a System of Stochastic Differential Equations

in Parallel

ELEFTHERIOS AVRAMIDIS, University of Exeter and University of Cambridge, UK

MARTA LALIK, Isomerase Therapeutics Ltd., UK

OZGUR E. AKMAN, University of Exeter, UK

Stochastic differential equations (SDEs) are widely used to model systems affected by random processes. In

general, the analysis of an SDE model requires numerical solutions to be generated many times over multiple

parameter combinations. However, this process often requires considerable computational resources to be

practicable. Due to the embarrassingly parallel nature of the task, devices such as multi-core processors and

graphics processing units (GPUs) can be employed for acceleration.

Here, we present SODECL (https://github.com/avramidis/sodecl), a software library that utilizes such de-

vices to calculate multiple orbits of an SDE model. To evaluate the acceleration provided by SODECL, we

compared the time required to calculate multiple orbits of an exemplar stochastic model when one CPU

core is used, to the time required when using all CPU cores or a GPU. In addition, to assess scalability, we

investigated how model size affected execution time on different parallel compute devices.

Our results show that when using all 32 CPU cores of a high-end high-performance computing node, the

task is accelerated by a factor of up to ≈6.7, compared to when using a single CPU core. Executing the task

on a high-end GPU yielded accelerations of up to ≈4.5, compared to a single CPU core.

CCS Concepts: • Theory of computation → Massively parallel algorithms; • Hardware → Testing

with distributed and parallel systems; • Software and its engineering → Software libraries and

repositories;

Additional Key Words and Phrases: Stochastic differential equations, CPU, GPU, HPC, OpenCL, Kuramoto

model, computational biology, optimisation

This work was financially supported by the Engineering and Physical Sciences Research Council (grant numbers

EP/K040987/1, EP/N017846/1 and EP/N014391/1). Computational experiments were performed using resources provided

by the Cambridge Service for Data Driven Discovery (CSD3, https://www.hpc.cam.ac.uk/high-performance-computing)

and the University of Exeter High-Performance Computing (HPC) facility. CSD3 is operated by the University of Cam-

bridge Research Computing Service (http://www.hpc.cam.ac.uk), funded by EPSRC Tier-2 capital grant EP/P020259/1, the

STFC DiRAC HPC Facility (http://www.dirac.ac.uk) and the University of Cambridge. CSD3 and DiRAC are part of the UK

National e-Infrastructure.

Authors’ addresses: E. Avramidis, University of Exeter, North Park Road, Exeter, EX4 4QF, UK, University of Cam-

bridge, Roger Needham Building, 7 JJ Thomson Avenue, Cambridge, CB3 0RB, UK; email: ea461@cam.ac.uk; M. Lalik,

Isomerase Therapeutics Ltd. Science Village, Chesterford Research Park, Cambridge, CB10 1XL, UK; email: marta_lalik@

hotmail.com; O. E. Akman (corresponding author), University of Exeter, North Park Road, Exeter, EX4 4QF, UK; email:

O.E.Akman@exeter.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0098-3500/2020/07-ART24 $15.00

https://doi.org/10.1145/3385076

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 24. Publication date: July 2020.

https://www.hpc.cam.ac.uk/high-performance-computing
http://www.hpc.cam.ac.uk
http://www.dirac.ac.uk
mailto:permissions@acm.org
https://doi.org/10.1145/3385076

24:2 E. Avramidis et al.

ACM Reference format:

Eleftherios Avramidis, Marta Lalik, and Ozgur E. Akman. 2020. SODECL: An Open-Source Library for Cal-

culating Multiple Orbits of a System of Stochastic Differential Equations in Parallel. ACM Trans. Math. Softw.

46, 3, Article 24 (July 2020), 21 pages.

https://doi.org/10.1145/3385076

1 INTRODUCTION

1.1 Modelling Dynamic Systems Using SDEs

Noise affects the behaviour of a vast number of physical and biological phenomena, such as gene

expression [Kaern et al. 2005; Keren et al. 2015], the transmission of nerve impulses [Deco et al.

2009; Faisal et al. 2008], and the dynamics of electronic circuits [Darabi and Abidi 2000; Kaern

et al. 2005; Scholten et al. 2003]. Systems that are affected by noise are commonly modelled using

sets of stochastic differential equations (SDEs) [Allen et al. 2008]. In such models, each equation

represents the rate of change of a system variable (e.g., voltage) with time and can be dependent

on one or more parameters (e.g., capacitance). Moreover, one or more equations are also affected

by a noise process. The Itô form of a first-order coupled SDE system is

dXi (t) = fi (t ,X(t), p) dt +
m∑

j=1

дi j (t ,X(t), p) dWj (s), (1)

where t ≥ t0 is time; X = (X1, . . . ,Xn) is the state vector; X0 = X(t0) specifies the initial state of

the system; p = (p1, . . . ,pd) is a vector of parameter values; {W1 (t), . . . ,Wm (t)} are independent,

scalar Wiener processes; and the functions { fi (t ,X, p) : 1 ≤ i ≤ n} and {дi j (t ,X, p) : 1 ≤ i ≤ n, 1 ≤
j ≤ m} are the drift and diffusion coefficients, respectively [Higham 2001; Kloeden and Platen 2011;

Platen 1999]. Setting the diffusion coefficients дi j to 0 reduces the system to a set of deterministic,

ordinary differential equations (ODEs).

1.2 Optimising the Parameters of SDE Models

By varying the parameters p of the SDE system (Equation (1)), different classes of dynamical be-

haviour can be observed (e.g., transitions between bursting and spiking in neural models). How-

ever, in many cases, the parameters are difficult to measure experimentally. Consequently, optimi-

sation methods are often employed to find the particular parameter combinations that most closely

reproduce the experimentally-measured behaviour of the system of interest [Paláncz et al. 2016].

Performing this parameter optimisation step in a robust, systematic fashion is a critical step in

the construction and analysis of biological models [Akman et al. 2008, 2010, 2012; Avramidis and

Akman 2017; Doherty et al. 2017; Lillacci and Khammash 2010] because determining the optimal

parameter values enables alternative models to be ranked and experimentally testable predictions

to be formulated [Ashyraliyev et al. 2009; Avramidis and Akman 2017; Cedersund and Roll 2009;

Cullen et al. 1996; Johnson and Omland 2004; Lillacci and Khammash 2010; Slezak et al. 2010; Sun

et al. 2012]. The assumptions made in constructing a given model can then be rigorously assessed,

and insights obtained into how the model could be modified so as to improve the accuracy of its

predictions [Ashyraliyev et al. 2009; Avramidis and Akman 2017; Cedersund and Roll 2009; Lillacci

and Khammash 2010; Slezak et al. 2010].

However, optimising the parameters p of the system shown in Equation (1) can incur a high

computational cost, depending on the forms of fi and дi j , the system size n, and the number

of noise terms m. Large systems (high n values), multiple noise processes (high m values), and

computationally demanding drift and diffusion terms (e.g., terms containing transcendental

functions) can all increase the computational cost considerably. Furthermore, an additional cost is

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 24. Publication date: July 2020.

https://doi.org/10.1145/3385076

SODECL 24:3

associated with the generation of the random numbers required to simulate the noise pro-

cesses. The computational cost can also be significantly increased by the particular parameter

optimisation method employed; for example, when using a population-based method—such as

an evolutionary algorithm (EA) or a particle swarm optimiser (PSO)—the equations have to

be integrated multiple times over different parameter values to explore the underlying fitness

landscape [Cedersund et al. 2016; He and Yao 2001; Witt 2008]. Additionally, a resampling

approach might be required to mitigate the effects of noise and uncertainty in model evaluation,

thereby increasing the computational load further [Doherty et al. 2017; Fieldsend 2015].

In general, the evaluation of an SDE model for the optimisation methods mentioned above in-

volves individual tasks with no interdependence or communication. These tasks can therefore be

parallelised in a straightforward manner; hence, the optimisation problem is referred to as embar-

rassingly or pleasingly parallel [Navarro et al. 2014].

1.3 Accelerating the Optimisation Process Using Multi-core and Many-core Devices

The significant computational demands of such embarrassingly parallel tasks means that high-

performance computing (HPC) clusters (i.e., multiple connected computers) are required to obtain

results within a reasonable time frame. Recently, competitively-priced CPU models that provide

between 6 and 16 physical cores have become commercially available. In the case of workstation

CPUs, there are now models with 32 cores.

Moreover, current GPU models, which are commonly used for graphics generation in personal

computers and workstations, can also be leveraged for scientific computing [Mantas and Castro

2016; Papadrakakis et al. 2011]. They contain a large number of processing units—each of which

is relatively slow compared to the cores of a CPU—and are optimised for single instruction,

multiple data (SIMD) processing. This makes them well-suited to large-scale parallelisation.

Indeed, the collective processing power of a GPU can exceed that of a single CPU for certain

tasks. Moreover, depending on the motherboard model, multiple GPUs can be installed on a single

desktop/workstation computer, boosting the potential processing power even further.

In a previous study, we demonstrated that a desktop computer with a GPU was able to robustly

optimise the parameters of a spiking neuron model to experimental eye movement data using a

multi-objective EA [Avramidis and Akman 2017]. As part of this work, we showed that the most

computationally intensive part of the optimisation process was the numerical integration of the

model over the multiple parameter combinations comprising the EA population at each genera-

tion [Avramidis and Akman 2017]. This task can be executed in an embarrassingly parallel fashion,

enabling the current trend for heterogenous HPC architectures to be exploited. Accordingly, in our

spiking neuron model, numerical integration was executed on the GPU, while all the EA operations

(mutation, crossover, fitness evaluation, etc.) were executed on the CPU [Avramidis and Akman

2017]. Utilising the GPU in this manner yielded a speedup of up to ≈20, compared with a high-end

CPU.

1.4 CUDA and OpenCL

Programs that are executed on a GPU have to be written using a specific programming framework.

The two most commonly used frameworks are Compute Unified Device Architecture (CUDA)

and Open Computing Language (OpenCL) [Demidov et al. 2013]. The CUDA framework is a

proprietary architecture specifically designed to be run on NVIDIA compute devices. By con-

trast, OpenCL is a royalty-free standard for general purpose parallel programming across CPUs

and GPUs, giving software developers portable and efficient access to the power of these het-

erogeneous processing platforms [Khronos OpenCL Working Group 2015]. OpenCL includes a

cross-platform intermediate language for writing functions (kernels), which are executed on

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 24. Publication date: July 2020.

24:4 E. Avramidis et al.

OpenCL-supported devices, together with an application programming interface (API) that is used

to coordinate the parallel computations across these devices. A simple OpenCL program involves

the following steps: identifying the OpenCL device, compiling the OpenCL code that will be run

on the device, copying the data to the device, performing the computation, and copying the results

back from the device.

A software library equipped with OpenCL functionality can use CPUs and GPUs, removing the

need to develop different libraries for each processor type.

1.5 A New Library for Numerically Integrating SDE Models

on OpenCL-supported Devices

Here, we present SODECL, a C++ library that uses OpenCL to calculate multiple orbits of an SDE

(or ODE) system in an embarrassingly parallel way. We focus on presenting the library for solving

SDE models, for which orbits are calculated using the Euler-Maruyama method [Higham 2001;

Saito and Mitsui 1996]. ODE orbits can be computed using any of the following integration meth-

ods: Euler, Runge-Kutta, Implicit Euler, or Implicit Midpoint. SODECL has previously been used

to fit both SDE and ODE versions of an oculomotor control model to experimentally recorded

timeseries [Avramidis 2015; Avramidis and Akman 2017].

In the following sections, we describe the design principles of the SODECL library, its organi-

sation, and the numerical algorithms used. Moreover, we describe the experimental protocols that

were implemented to measure the execution speed of SODECL for different compute devices (i.e.,

CPUs and GPUs), and to assess the numerical stability and accuracy of our SDE solver. As part

of the speed test experiments, we compare the performance of SODECL on a high-end multi-core

CPU with a MATLAB program that also calculates multiple SDE orbits in parallel using the same

integration method (i.e., Euler–Maruyama). Lastly, we outline directions for future development

of the library.

2 THE SODECL LIBRARY

2.1 Design Principles

We chose to implement SODECL using OpenCL because it does not pose significant constraints

on the computer hardware used. As mentioned above, whilst a user must run CUDA executables

on an NVIDIA GPU, OpenCL executables can run on both NVIDIA GPUs and AMD/Intel GPUs.

Moreover, OpenCL executables can run on Intel and AMD CPUs. This gives OpenCL a key advan-

tage over CUDA in terms of disseminating research methods and results, and promoting scientific

collaborations.

We designed SODECL to be relatively portable, modular, and easy to extend. We tested our li-

brary on the following operating systems: Windows 10 64-bit; Ubuntu 18.04 64-bit; macOS Sierra

(10.12). The SODECL library can easily be integrated into any C++ source code by including

the main header of the library and linking it to an OpenCL library. Furthermore, SODECL can

be extended by adding OpenCL functions for other SDE integration methods (e.g., the Milstein

method [Platen 1999]). The source code is released under the MIT License and is under version

control with git at https://github.com/avramidis/sodecl.

2.2 Algorithms

The primary algorithms comprising SODECL are the numerical integration method, the noise

generator, the procedure used to generate the OpenCL code at runtime, and the execution scheme

for computing multiple SDE orbits. Each of these is now described in turn.

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 24. Publication date: July 2020.

https://github.com/avramidis/sodecl

SODECL 24:5

Table 1. List of Named Constants Used by the SODECL OpenCL Functions

Named constant Description

numeq Number of equations in the SDE system

numnoi Number of noise variables in the SDE system

numpar Number of parameters in the SDE system

_m_dt_ SDE integrator timestep in seconds

numsteps Number of SDE integrator steps per OpenCL kernel call

2.2.1 The Integration Method. SODECL uses the Euler-Maruyama method [Higham 2001; Saito

and Mitsui 1996] to integrate the equations in Equation (1). The Euler-Maruyama approximation

{Xk = (X k
1 , . . . ,X

k
n) : k ≥ 1} to the true solution {X(t) : X(t0) = X0, t ≥ t0} is defined by the recur-

sion

Xk+1
i = X k

i + fi (t ,Xk , p)Δt +
m∑

j=1

дi j (t ,Xk , p)
√

ΔtNj (0, 1), (2)

where X1 = X0, Δt is the timestep (so that Xk is the approximation to X((k − 1)Δt) for k > 1), and

Nj (0, 1) are independent, normally distributed random variables with zero mean and unit variance.

2.2.2 Noise Generator. To generate the noise variablesNj (0, 1) used in each step of Equation (2),

SODECL utilises the Random123 library [Salmon et al. 2011]. Random123 generates uniformly

distributed random numbers, which are then converted to normally distributed random numbers

using the Box-Muller algorithm [Box and Muller 1958]:

r1 =
√
−2 lnU1 cos(2πU2),

r2 =
√
−2 lnU1 sin(2πU2).

(3)

Here, {U1,U2} are two independent, uniformly distributed random variables over [0,1], and {r1, r2}
are two independent, normally distributed random variables with zero mean and unit variance. In

the case where j > 2, the equations in Equation (3) are called multiple times.

2.2.3 OpenCL Code Generation. SODECL creates and builds the OpenCL source code string at

runtime. This allows the user to change the fi and дi j functions in Equation (1) without the need

to compile the source code. Moreover, SODECL allows the implementation of wrappers—e.g., for

MATLAB or Python—the use of a script/function that runs the SODECL executable, or the use of a

MATLAB .mex file without it being recompiled. The procedure for formulating the OpenCL source

code string is performed in the four steps outlined below.

Step 1. Initially, SODECL appends the definitions of five named constants to the beginning of

the empty OpenCL source code string (see Table 1). The values of these constants depend on the

general properties of the SDE system (numbers of equations, noise terms, and parameters), the

integrator’s timestep, and the number of steps to be executed by the integrator in each OpenCL

kernel call. These values are passed to the SODECL library by the user. The remainder of the

OpenCL source code string is generated using the code located in three separate files, described

in steps 2–4 below.

Step 2. The first file, integrator_caller.cl, contains the kernel function that is called by the

host to run on an OpenCL device. This function is defined in Figure 1. The parameters of the kernel

function are pointers that show the location of the arrays in the global memory of the device.

These arrays contain the time points of the SDE system at which to approximate the solution,

the values of the SDE system’s dependent variables and the parameter combinations for which the

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 24. Publication date: July 2020.

24:6 E. Avramidis et al.

Fig. 1. Definition of the SODECL kernel function. The function parameters are pointers showing the location

of the arrays in the global memory of the OpenCL device. These arrays are the time points at which the

solution to the SDE system is to be approximated (accessed by t), the corresponding values of the dependent

variables (accessed by y), and the combinations of system parameters (accessed by params_g). One additional

array of counters (accessed by counter_g) is passed to the kernel for use by the Random123 library.

Fig. 2. Definition of the SODECL system_integrator function. The function parameters are the current

time value of the SDE system (t), the corresponding values of the dependent variables (y), the parameter

values (p), the current noise values (noise), and the new values of the dependent variables calculated by the

Euler-Maruyama method (yout).

different orbits are to be calculated. One additional array of counters is passed to the kernel for use

by the Random123 library. The kernel generates the independent, normally distributed numbers

required for the integration of the SDE system. Subsequently, the same kernel calls the function

that integrates the SDE system for one timestep (see step 3). The total number of calls is defined by

the constant _numsteps_. Having integrated the SDE system _numsteps_ times, the kernel copies

the last integrated state values to the global memory of the OpenCL device, to be used in the next

kernel step and accessed by the host.

Step 3. The second file used in the creation of the OpenCL source is named

stochastic_euler.cl. It contains the function system_integrator (defined in Figure 2),

which implements the Euler-Muryama integration method. system_integrator itself calls

functions that calculate the deterministic and stochastic components of the SDE system (see

step 4). Once these have been evaluated, stochastic_euler.cl calculates the values of all

dependent variables at the next timestep.

Step 4. The third file contains two functions called sode_system and sode_system_stoch,

which calculate the drift and diffusion terms fi and дi j in the numerical scheme (2), respectively.

Their definitions are shown in Figure 3, and they have to be specified by the user (an example is

shown in Figure 5).

2.2.4 SDE Integrator Execution Algorithm. The logical flow of the SODECL integration execu-

tion algorithm is predominately a loop. During each loop iteration, the corresponding values of the

dependent variables for all orbits are copied to the host device, and the copied values are saved in

parallel to an array in preparation for the next kernel call. The OpenCL kernel is called to integrate

the model for _numsteps_ steps of length _m_dt_, which means that the output of the integration

is saved to the array every (_numsteps_ × _m_dt_) seconds of integration time. This allows the

data to be stored with a frequency of 1/(_numsteps_ × _m_dt_) Hz. Once the integration over the

required time span is completed for all parameter combinations, the algorithm ends. The number

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 24. Publication date: July 2020.

SODECL 24:7

Fig. 3. Definition of the SODECL functions specifying the SDE system. The function parameters are the

current time value (t), the corresponding values of the dependent variables of the SDE system (y), the new

values of the dependent variables of the deterministic component of the SDEs (yout), the model parameters

(p), the noise values (noise), and the new values of the stochastic components of the SDEs (stoch).

Fig. 4. Definition of the SODECL Python wrapper function. The function is used to execute the SODECL

executable from within Python. Each argument is defined in Table 2.

of loop iterations, k , is calculated using the equation

k = ttotal/(Δt · s), (4)

where ttotal is the time span of the integration, Δt is the integrator timestep, and s is the number of

steps the integrator performs in each OpenCL kernel call (i.e., the number of parallel operations,

which could include multiple parameter combinations and/or initial conditions). The values of

ttotal, Δt , and s are supplied by the user.

The storing frequency of the results plays an important role in the speedup provided by the

GPU compared to the CPU. This is due to the bottleneck caused by the transfer to and from the

GPU memory, and the time required to store the data in the host memory for further analysis. A

low frequency (250–1,000 Hz) avoids substantial data storage in the host memory. Also, the model

size is an important factor, since it sets the number of model integrations that are to be saved on

the computer’s RAM. Moreover, a larger number of returned data points can increase the analysis

time; a low number, however, may be insufficient for an accurate analysis [Avramidis and Akman

2017].

2.2.5 Python Interface. The Python package interface function for SODECL is defined in

Figure 4, whilst Table 2 describes the arguments passed to the SODECL executable by the func-

tion. The Python library pybind11 (https://github.com/pybind/pybind11) was used to implement

the interface. A MATLAB function interface is also provided with SODECL, although it should be

noted that this is currently experimental.

2.3 SODECL Speed Evaluation

2.3.1 Protocol. To evaluate the execution speed of SODECL, we used a stochastic variant of the

well-established Kuramoto model for describing the dynamics of a population of weakly coupled

phase oscillators [Acebrón et al. 2005; Bick et al. 2011; Daido 1992; Nakao 2016; Strogatz 2000]. The

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 24. Publication date: July 2020.

https://github.com/pybind/pybind11

24:8 E. Avramidis et al.

Table 2. Arguments of the SODECL Python Interface

Argument Variable Description

1 platform OpenCL platform number

2 device OpenCL device number of the selected platform

3 kernel Path of the file with the OpenCL function defining the SDE system

4 initx Initial conditions for each orbit of the SDE system

5 params Parameter sets of the SDE system for all orbits

6 solver SDE integrator

7 orbits Number of orbits to be calculated

8 nequat Number of equations of the SDE system

9 nparams Number of parameters of the SDE system

10 nnoi Number of noise processes

11 dt SDE solver timestep

12 tspan Integration timespan

13 ksteps Number of SDE integrator steps executed in each OpenCL kernel call

14 localgroupsize OpenCL local group size

Kuramoto model is commonly used to model synchronisation of biological oscillators [Acebrón

et al. 2005; Bick et al. 2011] and is relatively straightforward to implement and customise (e.g., the

oscillator population size can be easily varied). The SDE Kuramoto system we used here has the

form

dθi (t) = ωi +
K

N

N∑

j=1

sin(θ j (t) − θi (t)) + pidWi (t), (5)

where {θ1, . . . ,θN : −π ≤ θi < π } specify the phase of each oscillator; ωi is the free-running fre-

quency of the ith oscillator; {W1 (t), . . . ,WN (t)} are independent, scalar Wiener processes; pi con-

trols the strength of the noise effect on the ith oscillator; and K is the strength of the mean-field

coupling. The system parameters are thus p = (K ,ω1, . . . ,ωN ,p1, . . . ,pN).1 The initial value of

each phase variable θi was taken to be uniformly distributed over [−π ,π), the frequencies ωi to

be uniformly distributed over [0.01, 0.03] and the noise strengths pi to be uniformly distributed

over [0.001, 0.003]. The following equations define the integration scheme for Equation (5) using

the Euler-Maruyama method (cf. Equation (2) above):

θk+1
i = θk

i +
��
�
ωi +

K

N

N∑

j=1

sin
(
θk

j − θk
i

)��
�

Δt + pi

√
ΔtNi (0, 1). (6)

We set the coupling constant K in Equation (5) to 1 and integrated the model for 400 s with a

timestep Δt of 0.05 s. Moreover, we used a double-precision floating-point data type for better

accuracy. The SODECL implementation of the stochastic Kuramoto model is shown in Figure 5.

We compared the execution speed of SODECL when using different multi-core and many-core

compute devices with the execution speed when using only one core of an HPC CPU. The compute

devices used to evaluate SODECL performance are listed in Table 3. The CPU with ID I4790K is

a high-end desktop CPU, whereas the 2X6142 is an HPC node with two many-core CPUs. The

W8100 and P100 are workstation/server GPUs, with high double-precision compute capabilities

required for scientific computing. To gain a better understanding of how the SODECL runtime is

1In terms of Equation (1), Xi = θi , n =m = N , fi = ωi +
K
N

∑N
j=1 sin(θ j − θi) and дi j = pi δi j .

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 24. Publication date: July 2020.

SODECL 24:9

Fig. 5. SODECL implementation of the stochastic Kuramoto model (Equation (5)). The first function

sode_system is used to calculate the deterministic component of the model, whilst the second function

sode_system_stoch is used to calculate the stochastic part.

Table 3. Hardware Used for the Speed

Evaluation Tests

ID Type Model

I4790K CPU Intel Core i7-4790K

2X6142 CPU 2 x Intel Xeon Gold 6142

W8100 GPU AMD Firepro W8100

P100 GPU NVIDIA Tesla P100-PCIE

affected by the size of the system, we varied the number of equations in the Kuramoto model (i.e.,

we varied the number of oscillators N in the network). Moreover, we examined how the number

of orbits M being integrated affects the performance of SODECL on the different compute devices.

Eight independent runs of the solver were executed for each choice of N and M .

We also compared the execution speed of SODECL on the desktop CPU against an equivalent

parallel MATLAB implementation running on the same CPU. In order to further accelerate this

implementation, described in Figure 6, we used the MATLAB Coder to convert MATLAB functions

into C++ code. The parallelisation of MATLAB was performed automatically with OpenMP (Open

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 24. Publication date: July 2020.

24:10 E. Avramidis et al.

Fig. 6. MATLAB function for calculating orbits of the stochastic Kuramoto model in parallel. The first func-

tion kuramotoParallel calls the second function kuramoto_system—which calculates one orbit of the

model—multiple times.

Multi-Processing), an application programming interface for parallel applications that uses the

cores of CPUs and coprocessors [Dagum and Menon 1998].

2.3.2 Results. The comparative execution speeds and speedups obtained using SODECL with

different compute devices, numbers of orbits, and system sizes are shown in Figure 7 (see

Tables S1–S6 for the corresponding numerical values). For each compute device, the speedup was

calculated relative to one core of the 2X6142 node (i.e., as the ratio of the 2X6142 single core run-

time to the compute device runtime). The local group sizes used for each device and system size

(N) are shown in Table 4. The local group size is the number of work items that will run in parallel

and can communicate. In the case of embarrassingly parallel applications, although there is no

communication, the group size can have an effect on the runtime. The values shown were found

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 24. Publication date: July 2020.

SODECL 24:11

Fig. 7. Runtimes in seconds (s) and speedups for the stochastic Kuramoto model as a function of the number

of orbits for varying system sizes (N), when using different parallel computer hardware implementations.

Plot A shows the runtimes for N = 5, plot C for N = 10, and plot E for N = 15. The values are means from

eight runs. Plots B, D, and F show the corresponding speedups for N = 5, N = 10, and N = 15, respectively,

relative to one logical processor of the 2X6142. The hardware used in each case is listed in Table 3.

Table 4. Local Group Sizes Used for Each Compute

Device to Generate the Runtime Results Shown in

Tables S1–S6 and Plotted in Figure 7.

Model size, N I4790K 2X6142 W8100 P100

5 8 32 256 8

10 8 32 16 8

15 8 32 32 8

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 24. Publication date: July 2020.

24:12 E. Avramidis et al.

by doing exploratory tests, since, to our knowledge, there is no analytical formula for calculating

the optimal local group size.

For the CPUs tested, the results indicate that when using all 32 cores of the 2X6142 node,

SODECL is between ≈1.12 and ≈6.65 times faster than one core of the same node across differ-

ent system sizes and orbit numbers. By contrast, when using all cores of the I4790K CPU and

comparing its speed to one core of 2X6142, we observe speedups ranging from ≈0.69 to ≈2.66 as

the system size is increased from 5 to 15 and the number of orbits is increased from 512 to 163,840.

The greater speedup obtained overall with 2X6142 is due to its larger number of cores and newer

architecture.

For the GPUs tested, SODECL yields speedups in the range 0.6–4.5 compared to using one core of

2X6142, depending on the size of the Kuramoto model and the number of orbits. Larger numbers of

model equations and orbits allow for greater use of GPU resources, which translates to improved

speedup. When comparing the GPU runtimes to those obtained when all cores of 2X6142 are

utilised, it can be seen that the GPUs are generally slower. This could, for example, be due to

higher initialisation time overheads.

Finally, Figure 8 compares the runtimes obtained with the SODECL and MATLAB implementa-

tions of the Kuramoto model solver on the I4790K CPU (the corresponding numerical values are

given in Tables S7–S9). The MATLAB implementation is only faster than SODECL for the smallest

system size and lowest number of orbits (see Figure 8(B), (E), and (H)). In all other cases, SODECL

is up to ≈5.8 times faster.

2.4 Accuracy and Numerical Stability Tests

2.4.1 Protocol. To assess the accuracy and numerical stability of SODECL, we generated a set

of further simulations with N = 100, ωi ∼ U (0.2, 0.4), ϕi (0) ∼ U (−π ,π), and pi ∼ U (0.01, 0.03)
for two values K1 = 0.02 and K2 = 0.2 of the global coupling strength K . These values were cho-

sen to lie on either side of the Kuramoto transition that occurs in the deterministic system in

the continuum limit (N → ∞) at K = Kc =
2

5π
≈ 0.1273. As K is increased through this critical

value, macroscopic mutual entrainment (MME)—a collective synchronised rhythm with a common

frequency—is observed in the oscillator population [Daido 1992; Strogatz 2000]. For both values of

K , 64 independent integrations were carried out over 400 s (around 19 cycles of the mean period

20.94 s), using the following integration timesteps: Δt = 2l−5

5 , 1 ≤ l ≤ 5. For each realisation, the

degree of synchronisation of the simulated oscillator population was quantified using the complex

order parameter [Nakao 2016; Strogatz 2000] defined below:

r (t)eiΦ(t) =
1

N

N∑

j=1

eiθ j (t) . (7)

In the above equation, the radius r (t) measures the phase coherence and Φ(t) measures the col-

lective phase, with r values of 0 and 1 corresponding to complete desynchronisation and complete

synchronisation of the population, respectively [Nakao 2016; Strogatz 2000]. In the continuum

limit of the deterministic model, increasing the coupling strength K through the critical value Kc

causes the steady state coherence limt→∞ r (t) to increase rapidly from 0 to 1 as the population be-

comes globally synchronised [Acebrón et al. 2005; Nakao 2016; Strogatz 2000]. For finite N , values

of K less than Kc yield O (N −1/2) fluctuations in r (t), while values of K greater than Kc result in

r (t) saturating at a value limt→∞ r (t) < 1, with O (N −1/2) fluctuations [Strogatz 2000].

2.4.2 Results. Figure 9 plots how the mean phase coherence 〈r (t)〉 and the standard deviation

of the phase coherence σ (r (t)) vary with time for the two K values when Δt = 0.05. As expected,

for K = K1 < Kc , 〈r (t)〉 exhibits small-amplitude oscillations close to 0, while for K = K2 > Kc ,

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 24. Publication date: July 2020.

SODECL 24:13

Fig. 8. Runtime as a function of the number of orbits for the stochastic Kuramoto model for varying system

sizes (N), using MATLAB and SODECL implementations on all logical processors of the I4790K CPU. Run-

times are given in seconds (s). Plots A and B show results for N = 5, D and E for N = 10, and G and H for

N = 15. Plots B, E, and H show the runtimes obtained for the first 5,000 orbits. Plots C, F, and I show the

relative speeds of the MATLAB and SODECL implementations for N = 5, 10, and 15, respectively.

〈r (t)〉 asymptotes to a value close to 1. Kymographs showing the temporal evolution of the popu-

lation phases for a typical realisation generated with each K value are plotted in Figure 10. These

are consistent with the phase coherence plots—the oscillators are desynchronised throughout the

integration interval forK = K1, while forK = K2, the oscillators synchronise after around 50 s and

remain synchronised thereafter. Finally, Figure 11 plots how the values of 〈r (t)〉 and σ (r (t)) at the

end of the integration interval tMAX = 400 vary with the integration timestep Δt . It can be seen

that for both K values, 〈r (tMAX)〉 and σ (r (tMAX)) exhibit a weak dependence on Δt , suggesting

that the integration algorithm is numerically stable [Kloeden and Platen 2011].

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 24. Publication date: July 2020.

24:14 E. Avramidis et al.

Fig. 9. Temporal evolution of phase coherence r (t) in the stochastic Kuramoto model (Equation (5)) when

N = 100 for K = 0.02 (black lines) and K = 0.2 (red lines). 〈r (t)〉 and σ (r (t)) denote the mean and standard

deviation of r (t), respectively, calculated from 64 independent realisations of Equation (6) with an integration

timestep Δt = 0.05. Distributions of oscillator frequenciesωi , initial phases θi (0), and noise strengthspi were

as described in the text.

Fig. 10. Temporal evolution of oscillator phases θi (t) in the stochastic Kuramoto model. Each kymograph

corresponds to one of the realisations of Equation (6) used to compute the phase coherence statistics shown

in Figure 9. Plots A and B shows simulations for K = 0.02 and K = 0.2, respectively.

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 24. Publication date: July 2020.

SODECL 24:15

Fig. 11. Dependence on the integration timestep Δt of the phase coherence statistics 〈r (t)〉 and σ (r (t)) at

the end of the integration interval tMAX = 400. Black lines and axes show results for K = 0.02; red lines and

axes show results forK = 0.2. In each case, 〈r (tMAX)〉 and σ (r (tMAX)) were computed from 64 independent

realisations of Equation (6) with N = 100. Distributions of oscillator frequencies ωi , initial phases θi (0), and

noise strengths pi were as described in the text. Note the logarithmic scale on the x-axis.

3 CONCLUSIONS

We have described the design and performance of SODECL, an open source C++ library that uses

OpenCL to calculate multiple orbits of a SDE system in an embarrassingly parallel way. The ad-

vantage of SODECL is that it can use the parallel capabilities of multi-core CPUs and GPUs to

reduce computation time, thereby allowing large numbers of simulations to be performed simul-

taneously. This capability is critical when using population-based metaheuristics—such as genetic

algorithms—for model calibration, as it facilitates the optimisation and analysis of SDE models in a

practical time frame [Adams et al. 2013]. SODECL was designed to compile and run on Windows,

Linux, and macOS operating systems, to be user-friendly, fast, and fairly easy to extend.

Although execution speed was not the main priority in our design of SODECL, we showed

that it was faster in almost all cases when integrating the stochastic Kuramoto system compared

to a parallel MATLAB implementation. We also showed that when SODECL utilises a GPU or

many-core CPUs, there is considerable speedup compared to a high-end desktop CPU. However,

the speedup can be affected by the type and size of the SDE system being integrated. It would

therefore be instructive to obtain performance benchmarks for other canonical stochastic models.

In our previous work [Avramidis and Akman 2017], SODECL achieved a speedup of ≈20 on

the W8100 GPU compared to all cores of the I4790K CPU. By contrast, the greatest speedup ob-

tained with the same GPU against I4790K in this study was ≈1.16. We believe that the difference in

speedups between our previous and current studies is that in the work of Avramidis and Akman

[2017], the SODECL OpenCL code could not be vectorised efficiently to facilitate better utilisa-

tion of the CPU, for the following reasons. Firstly, the system was a deterministic model with six

heterogeneous equations (i.e., equations containing different functional forms). Similar equations,

if vectorised, could run in parallel more efficiently. Secondly, two of these equations included a

case mathematical function. Case functions are implemented with one or more if statements that

cause branch divergence. Most of the time, branch divergence cannot be predicted and a compiler

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 24. Publication date: July 2020.

24:16 E. Avramidis et al.

cannot vectorise the code for branches in which each case implements a different mathematical

operation. Thirdly, for the numerical integration of the model, the implicit, midpoint Euler method

was used. This method includes a loop with a variable iteration number. All of the above factors

hinder the compiler from efficiently vectorising the execution of the code on a parallel device.

There are a number of aspects of SODECL that we did not examine, which could provide inter-

esting avenues for future work. Firstly, we only measured SODECL execution speed using double-

precision, rather than single-precision, floating-point data type. Single-precision can be used if

high accuracy is not necessary and has the advantage that compute devices yield significantly

better execution speeds when using lower precision. Secondly, we did not measure the OpenCL

initialisation and finalisation time in SODECL. This would indicate whether different compute de-

vices require more time for these tasks, perhaps explaining why the MATLAB implementation is

comparable to SODECL for small numbers of orbits. Thirdly, we did not evaluate the effects of

branch divergence on different compute devices using the Euler-Maruyama method. This poten-

tially would have shown which devices are less affected. However, to assess the extent to which

performance is affected by equations with many branches, a more extensive study would need to

be carried out involving a broader range of SDE models. Lastly, we did not examine the memory

requirements for different orbit numbers and model sizes. A follow-up study could examine the

impact that the high memory requirements of larger models (i.e., more than 100 equations) could

have on the performance of different compute devices.

We remark that the future development of SODECL would involve incorporating addi-

tional methods for numerically integrating SDE systems, such as the Milstein and Runge-Kutta

schemes [Platen 1999]. Here, we have implemented the Euler-Maruyama numerical integration

scheme, which, despite its simplicity, is still widely used, in part owing to the relative ease of im-

plementation. We note, however, that the inefficiency of the Euler-Maruyama method compared

to more sophisticated numerical schemes is offset by the significant acceleration conferred by par-

allelising the computation of trajectories across multiple CPU cores or GPU compute units. The

incorporation of additional solvers would involve modifying the SODECL system_integrator
function so as to implement the chosen schemes (see Figure 2).

Also, additional optimisations could be explored for both GPUs and CPUs, such as using newer

versions of OpenCL. This could potentially further accelerate SODECL on certain devices. Fur-

thermore, we believe that splitting the integration algorithm over multiple OpenCL kernels could

also potentially increase the execution speed.

SUPPLEMENTARY TABLES

Table S1. Runtimes in Seconds (s) for the Stochastic Kuramoto Model as a

Function of the Number of Orbits for System Size N = 5, When Using

Different Parallel Computer Hardware Implementations

Orbits 2X6142 (1C) 2X6142 (32C) I4790K (4C) W8100 P100

512 0.504 0.449 0.728 0.552 0.201

5,120 0.746 0.401 0.898 0.617 0.363

25,600 2.373 0.814 1.612 1.424 0.935

40,960 3.602 1.163 2.254 1.973 1.400

81,920 6.869 1.961 3.800 3.573 2.512

163,840 13.390 3.623 6.779 6.772 4.719

The hardware used in each case is shown in Table 3.

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 24. Publication date: July 2020.

SODECL 24:17

Table S2. Runtimes in Seconds (s) for the Stochastic Kuramoto Model as a

Function of the Number of Orbits for System Size N = 10, When Using

Different Parallel Computer Hardware Implementations

Orbits 2X6142 (1C) 2X6142 (32C) I4790K (4C) W8100 P100

512 0.441 0.301 0.714 0.708 0.280

5,120 1.444 0.499 1.138 0.864 0.513

25,600 5.956 1.385 3.160 2.784 1.714

40,960 9.676 2.042 4.746 4.211 2.566

81,920 18.308 3.821 8.784 7.981 4.828

163,840 36.641 7.471 16.939 15.589 9.315

The hardware used in each case is shown in Table 3.

Table S3. Runtimes in Seconds (s) for the Stochastic Kuramoto Model as a

Function of the Number of Orbits for System Size N = 15, When Using

Different Parallel Computer Hardware Implementations

Orbits 2X6142 (1C) 2X6142 (32C) I4790K (4C) W8100 P100

512 0.8247 0.495 0.772 1.271 0.323

5,120 2.8846 0.759 1.605 1.679 0.672

25,600 12.6576 2.223 5.256 5.968 2.940

40,960 19.9707 3.288 7.987 9.128 4.566

81,920 39.6412 6.185 15.279 17.736 9.056

163,840 79.5124 11.953 29.882 34.700 17.656

The hardware used in each case is shown in Table 3.

Table S4. Speedups Obtained for the Stochastic

Kuramoto Model as a Function of the Number of

Orbits for System Size N = 5, When Using Each

of the Compute Devices Listed in Table 3

Orbits 2X6142 I4790K W8100 P100

512 1.122 0.692 0.914 2.498

5,120 1.861 0.831 1.209 2.051

25,600 2.915 1.471 1.666 2.537

40,960 3.095 1.597 1.826 2.572

81,920 3.501 1.807 1.922 2.733

163,840 3.696 1.975 1.977 2.837

Speedups are calculated as the runtime for one core of

the 2X6142 CPU divided by the runtime of the compute

device. In the case of the CPUs (2X6142 and I4790K), all

cores were used.

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 24. Publication date: July 2020.

24:18 E. Avramidis et al.

Table S5. Speedups Obtained for the Stochastic

Kuramoto Model as a Function of the Number of

Orbits for System Size N = 10, When Using Each

of the Compute Devices Listed in Table 3

Orbits 2X6142 I4790K W8100 P100

512 1.462 0.617 0.622 1.574

5,120 2.895 1.269 1.671 2.814

25,600 4.301 1.884 2.139 3.474

40,960 4.738 2.039 2.298 3.771

81,920 4.791 2.084 2.294 3.792

163,840 4.905 2.163 2.350 3.934

Speedups are calculated as the runtime for one core of

the 2X6142 CPU divided by the runtime of the compute

device. In the case of the CPUs (2X6142 and I4790K), all

cores were used.

Table S6. Speedups Obtained for the Stochastic

Kuramoto Model as a Function of the Number of

Orbits for System Size N = 15, When Using Each

of the Compute Devices Listed in Table 3

Orbits 2X6142 I4790K W8100 P100

512 1.664 1.068 0.649 2.552

5,120 3.796 1.796 1.718 4.289

25,600 5.692 2.408 2.121 4.305

40,960 6.073 2.500 2.188 4.373

81,920 6.409 2.594 2.235 4.377

163,840 6.652 2.661 2.291 4.503

Speedups are calculated as the runtime for one core of

the 2X6142 CPU divided by the runtime of the compute

device. In the case of the CPUs (2X6142 and I4790K), all

cores were used.

Table S7. Runtimes for the Stochastic Kuramoto Model as

a Function of the Number of Orbits for System Size N = 5,

Using SODECL and Parallel MATLAB Implementations on

All Cores of the I4970K CPU

Orbits SODECL MATLAB MATLAB/SODECL

512 0.728 0.131 0.180

5,120 0.898 1.229 1.369

25,600 1.612 6.149 3.813

40,960 2.254 9.841 4.364

81,920 3.800 19.588 5.154

163,840 6.779 39.213 5.784

Runtimes are given in seconds (s). The last column (MAT-

LAB/SODECL) shows the ratio of the runtimes of the MATLAB and

SODECL implementations (the speedup). Speedup values greater

than one indicate that SODECL was faster.

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 24. Publication date: July 2020.

SODECL 24:19

Table S8. Runtimes for the Stochastic Kuramoto Model as

a Function of the Number of Orbits for System Size

N = 10, Using SODECL and Parallel MATLAB

Implementations on all Cores of the I4970K CPU

Orbits SODECL MATLAB MATLAB/SODECL

512 0.714 0.297 0.415

5,120 1.138 2.875 2.525

25,600 3.161 14.362 4.543

40,960 4.747 23.005 4.846

81,920 8.780 45.837 5.218

163,840 16.939 91.111 5.378

Runtimes are given in seconds (s). The last column (MAT-

LAB/SODECL) shows the ratio of the runtimes of the MATLAB and

SODECL implementations (the speedup). Speedup values greater

than one indicate that SODECL was faster.

Table S9. Runtimes for the Stochastic Kuramoto Model as

a Function of the Number of Orbits for System Size

N = 15, Using SODECL and Parallel MATLAB

Implementations on All Cores of the I4970K CPU

Orbits SODECL MATLAB MATLAB/SODECL

512 0.772 0.529 0.686

5,120 1.606 5.050 3.144

25,600 5.256 25.322 4.817

40,960 7.987 40.642 5.087

81,920 15.279 80.467 5.266

163,840 29.882 161.250 5.396

Runtimes are given in seconds (s). The last column (MAT-

LAB/SODECL) shows the ratio of the runtimes of the MATLAB and

SODECL implementations (the speedup). Speedup values greater

than one indicate that SODECL was faster.

REFERENCES

Juan A. Acebrón, Luis L. Bonilla, Conrad J. Pérez Vicente, Félix Ritort, and Renato Spigler. 2005. The Kuramoto model: A

simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 1 (2005), 137.

Richard Adams, Allan Clark, Azusa Yamaguchi, Neil Hanlon, Nikos Tsorman, Shakir Ali, Galina Lebedeva, Alexey Goltsov,

Anatoly Sorokin, Ozgur E. Akman, Carl Troein, Andrew J. Millar, Igor Goryanin, and Stephen Gilmore. 2013. SBSI: An

extensible distributed software infrastructure for parameter estimation in systems biology. Bioinformatics 29, 5 (2013),

664–665.

Ozgur E. Akman, James C. W. Locke, Sanyi Tang, Isabelle Carré, Andrew J. Millar, and David A. Rand. 2008. Isoform

switching facilitates period control in the Neurospora crassa circadian clock. Mol. Syst. Biol. 4 (2008), 164.

Ozgur E. Akman, David A. Rand, Paul E. Brown, and Andrew J. Millar. 2010. Robustness from flexibility in the fungal

circadian clock. BMC Syst. Biol. 4, 1 (2010), 88.

Ozgur E. Akman, Steven Watterson, Andrew Parton, Nigel Binns, Andrew J. Millar, and Peter Ghazal. 2012. Digital clocks:

Simple Boolean models can quantitatively describe circadian systems. J. Roy. Soc. Interface 9, 74 (2012), 2365–2382.

Edward J. Allen, Linda J. S. Allen, Armando Arciniega, and Priscilla E. Greenwood. 2008. Construction of equivalent sto-

chastic differential equation models. Stoch. Anal. Appl. 26, 2 (2008), 274–297.

Maksat Ashyraliyev, Yves Fomekong-Nanfack, Jaap A. Kaandorp, and Joke G. Blom. 2009. Systems biology: Parameter

estimation for biochemical models. FEBS J. 276, 4 (2009), 886–902.

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 24. Publication date: July 2020.

24:20 E. Avramidis et al.

Eleftherios Avramidis. 2015. Optimisation and Computational Methods to Model the Oculomotor System with Focus on Nys-

tagmus. Ph.D. Dissertation. University of Exeter.

Eleftherios Avramidis and Ozgur E. Akman. 2017. Optimisation of an exemplar oculomotor model using multi-objective

genetic algorithms executed on a GPU-CPU combination. BMC Syst. Biol. 11 (2017), 1.

Christian Bick, Marc Timme, Danilo Paulikat, Dirk Rathlev, and Peter Ashwin. 2011. Chaos in symmetric phase oscillator

networks. Phys. Rev. Lett. 107, 24 (2011), 244101.

G. E. P. Box and Mervin E. Muller. 1958. A note on the generation of random normal deviates. Ann. Math. Statist. 29, 2

(1958), 610–611.

Gunnar Cedersund and Jacob Roll. 2009. Systems biology: Model based evaluation and comparison of potential explanations

for given biological data. FEBS J. 276, 4 (2009), 903–922.

Gunnar Cedersund, Oscar Samuelsson, Gordon Ball, Jesper Tegnér, and David Gomez-Cabrero. 2016. Optimization in biol-

ogy parameter estimation and the associated optimization problem. In Uncertainty in Biology: A Computational Modeling

Approach, Liesbert Geris and David Gomez-Cabrero (Eds.). Cham: Springer, 177–197.

Kathleen E. Cullen, Claudio G. Rey, Daniel Guitton, and Henrietta L. Galiana. 1996. The use of system identification tech-

niques in the analysis of oculomotor burst neuron spike train dynamics. J. Comput. Neurosci. 3, 4 (1996), 347–368.

Leonardo Dagum and Ramesh Menon. 1998. OpenMP: An industry standard API for shared-memory programming. IEEE

Comput. Sci. Eng. 5, 1 (1998), 46–55.

Hiroaki Daido. 1992. Order function and macroscopic mutual entrainment in uniformly coupled limit-cycle oscillators.

Prog. Theor. Phys. 88, 6 (1992), 1213–1218.

Hooman Darabi and Asad A. Abidi. 2000. Noise in RF-CMOS mixers: A simple physical model. IEEE J. Solid-State Circuits

35, 1 (2000), 15–25.

Gustavo Deco, Viktor Jirsa, Anthony R. McIntosh, Olaf Sporns, and Rolf Kötter. 2009. Key role of coupling, delay, and noise

in resting brain fluctuations. Proc. Natl. Acad. Sci. U.S.A. 106, 25 (2009), 10302–10307.

Denis Demidov, Karsten Ahnert, Karl Rupp, and Peter Gottschling. 2013. Programming CUDA and OpenCL: A case study

using modern C++ libraries. SIAM J. Sci. Comput. 35, 5 (2013), C453–C472.

Kevin Doherty, Khulood Alyahya, Ozgur E. Akman, and Jonathan E. Fieldsend. 2017. Optimisation and landscape analysis

of computational biology models: A case study. In Proc. GECCO’17 (2017). 1644–1651.

A. Aldo Faisal, Luc P. J. Selen, and Daniel M. Wolpert. 2008. Noise in the nervous system. Nat. Rev. Neurosci. 9, 4 (2008),

292–303.

Jonathan E. Fieldsend. 2015. Elite accumulative sampling strategies for noisy multi-objective optimisation. In Proc. EMO

2015 (2015). 172–186.

Jun He and Xin Yao. 2001. Drift analysis and average time complexity of evolutionary algorithms. Artif. Intell. 127, 1 (2001),

57–85.

Desmond J. Higham. 2001. An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM

Rev. 43, 3 (2001), 525–546.

Jerald B. Johnson and Kristian S. Omland. 2004. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 2 (2004),

101–108.

Mads Kaern, Timothy C. Elston, William J. Blake, and James J. Collins. 2005. Stochasticity in gene expression: From theories

to phenotypes. Nat. Rev. Genet. 6, 6 (2005), 451–464.

Leeat Keren, David Van Dijk, Shira Weingarten-Gabbay, Dan Davidi, Ghil Jona, Adina Weinberger, Ron Milo, and Eran

Segal. 2015. Noise in gene expression is coupled to growth rate. Genome Res. 25, 12 (2015), 1893–1902.

Khronos OpenCL Working Group. 2015. The OpenCL Specification, Version 2.1, Document Revision: 23. Technical Report. Lee

Howes (Ed.).

Peter E. Kloeden and Eckhard Platen. 2011. Numerical Solution of Stochastic Differential Equations. Springer: Berlin.

Gabriele Lillacci and Mustafa Khammash. 2010. Parameter estimation and model selection in computational biology. PLoS

Comput. Biol. 6, 3 (2010), e1000696.

Marc Mantas, José M. De la Asunción and Manuel J. Castro. 2016. An introduction to GPU computing for numerical simu-

lation. In Numerical Simulation in Physics and Engineering, Inmaculada Higueras, Teo Roldán, and Juan J. Torrens (Eds.).

Springer, 219–251.

H. Nakao. 2016. Phase reduction approach to synchronisation of nonlinear oscillators. Contemp. Phys. 57, 2 (2016), 188–214.

Cristóbal A. Navarro, Nancy Hitschfeld-Kahler, and Luis Mateu. 2014. A survey on parallel computing and its applications

in data-parallel problems using GPU architectures. Commun. Comput. Phys. 15, 2 (2014), 285–329.

Béla Paláncz, Kent Stewart, József Homlok, Christopher G. Pretty, J. Geoffrey Chase, and Balázs Benyó. 2016. Stochastic

simulation and parameter estimation of the ICING model. IFAC-PapersOnLine 49, 5 (2016), 218–223.

Manolis Papadrakakis, George Stavroulakis, and Alexander Karatarakis. 2011. A new era in scientific computing: Domain

decomposition methods in hybrid CPU–GPU architectures. Comput. Methods Appl. Mech. Engrg. 200, 13 (2011), 1490–

1508.

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 24. Publication date: July 2020.

SODECL 24:21

Eckhard Platen. 1999. An introduction to numerical methods for stochastic differential equations. Acta Numer. 8 (1999),

197–246.

Yoshihiro Saito and Taketomo Mitsui. 1996. Stability analysis of numerical schemes for stochastic differential equations.

SIAM J. Numer. Anal. 33, 6 (1996), 2254–2267.

John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw. 2011. Parallel random numbers: As easy as 1, 2, 3. In

Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (2011).

1–12.

Andries J. Scholten, Luuk F. Tiemeijer, Ronald Van Langevelde, Ramon J. Havens, Adrie T. A. Zegers-van Duijnhoven, and

Vincent C. Venezia. 2003. Noise modeling for RF CMOS circuit simulation. IEEE Trans. Electron. Devices 50, 3 (2003),

618–632.

Diego. F. Slezak, Cecilia Suárez, Guillermo A. Cecchi, Guillermo Marshall, and Gustavo Stolovitzky. 2010. When the optimal

is not the best: Parameter estimation in complex biological models. PloS One 5, 10 (2010), e13283.

Steven H. Strogatz. 2000. From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled

oscillators. Physica D 143, 1–4 (2000), 1–20.

Jianyong Sun, Jonathan M. Garibaldi, and Charlie Hodgman. 2012. Parameter estimation using metaheuristics in systems

biology: A comprehensive review. IEEE/ACM Trans. Comput. Biol. Bioinform. 9, 1 (2012), 185–202.

Carsten Witt. 2008. Population size versus runtime of a simple evolutionary algorithm. Theor. Comput. Sci. 403, 1 (2008),

104–120.

Received April 2019; revised February 2020; accepted February 2020

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 24. Publication date: July 2020.

